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This short perspective explores some ways in which new genomic methodologies impact the 

study of endocrine signaling. Emphasis is put on the impact on studying species which are not 

molecular biology models. This opens the door to using knowledge molecular endocrinology 

in areas of biology as distant as conservation biology, as well as enriching endocrinology with 

information from biodiversity and natural variation.  

 

Endocrinology was from its birth an interdisciplinary field of research, combining notably 

physiology with organic chemistry. Molecular endocrinology resulted from the impact of the 

molecular biology technological revolution on this field [1]. Molecular biology focused the 

attention of researchers on the small number of species which were most easily amenable to 

these techniques. Now a new revolution is ongoing, from molecular biology to genomic 

biology. One difference between the previous revolution and the new one is the number of 

species which can be reasonably studied. Molecular biology techniques provide small parts of 

the picture at a time. To make sense of a result, it needs to be put in the broader context of 

previous molecular biology results. This means that an experiment will be much more 

powerful if performed on the same species which everyone else is studying. Moreover, some 

of the most powerful experimental techniques (e.g. gene Knock-out) are difficult to set up for 

new species, providing an additional incentive to work in established models. Hence a focus 

on very few species, such as the lab mouse, fruit fly or nematode worm. This has affected 

endocrinology like other fields, and molecular endocrinology is in large part molecular 

endocrinology of the lab mouse. 

 Given the huge amount of information gathered for these molecular biology models, 

they will obviously stay with us. But genomic techniques offer the opportunity of a revival of 

the study of endocrinology in other species for three reasons: (i) an immediate global view, 

which means that a large body of pre-existing information in the species of interest is less 

critical; (ii) easy transfer of technology between species; and (iii) the exponential decrease in 

sequencing costs [2,3]. Starting with the last point, data in biology seems to be increasingly 

divided into two categories: that which can be reduced somehow to DNA sequencing, and 

that which cannot. Examples of the first are many and increasing. Let us cite: primary DNA 

sequences (obviously); levels and patterns of expression (ESTs, SAGE, MPSS); transcription 

factor binding sites (ChIP-seq); polymorphism, of sequence but also of copy number; 

epigenetic information [e.g. 4]; and even biodiversity (genetic bar code projects). Examples of 

non reducible data include protein tertiary sequences or mutant phenotypes. 



 The most obvious information provided by the new high throughput techniques is 

sequence. Why is that important? It was possible to sequence an hormone receptor in a frog 

before any genomic revolution. A first point is that sequence based homology inference 

increases in power with the abundance of already known sequences. When more sequences 

are known, orthology inference is more accurate, patterns of conservation of key residues are 

better characterized, distant homologs can be detected with greater sensitivity, and constraints 

on genomic organization are better understood. Thus in a way, the more we sequence, the 

more we can learn from a new sequence. This explains the large impact of the increasing 

number of genome sequencing projects: as of February 2008, there are genome sequences 

from 39 animal species in the UCSC genome browser [5], and the GOLD database [6] lists 

328 animal genome projects. This means that increasingly we do not have to choose between 

studying biodiversity, and investigating complete endocrine systems. For a detailed discussion 

of the application of comparative genomics to endocrinology, see Markov et al. in this issue. 

In brief, we already have the possibility to list not only all the receptors of species whose 

endocrinology has been hardly studied previously, but also to infer which ligands may or not 

be synthesized in vivo, by comparing their enzymatic pathways. 

 In a single gene study, we will often ask first: where and when in the gene expressed? 

Transcriptome techniques, especially microarrays, have greatly changed the way we consider 

this question. But the impact has been again especially felt in model species, for which 

relatively complete and specific oligonucleotide arrays can be designed based on high quality 

genome sequences, with costs reduced by the large number of potential users of each array. 

EST spotted arrays are already feasible for non model species, but have important limitations: 

data is difficult to compare between experiments and has low reproducibility [7], and a biased 

subset of genes are covered, depending on the source of ESTs. Diminishing costs of HT 

sequencing provide a new opportunity to study the transcriptome of non model species. 

Indeed, while methodological investigations are still at an early stage [8], among the first 

applications are studies of transcriptomes of organisms for which we have no genome 

sequence and little to no molecular biology: the transcriptome of a wasp [9] and of a butterfly 

[10]. In the wasp study, notably, insulin related genes were found to be differentially 

regulated between the brains of individuals which show maternal care behavior (foundresses 

and workers) and those of individuals which do not (queens and gynes) [9]. Such a result, 

linking insulin signaling with a complex eusocial behavior in a non model organism, would 

have been impossible without the conjunction of high throughput sequencing technology (in 

this case 454), and related genome sequences for comparison, in this case the bee genome. 



 Moving back to the sequence, an important aim of molecular endocrinology is to link 

genetic variants with differences in endocrine signaling. Success has been limited in 

mammalian models, even mouse, and indeed most of the literature concentrates on reports 

concerning small samples of human patients. The new HT sequencing techniques offer 

interesting opportunities in this area. Indeed, they have been called "re-sequencing 

techniques" [2], because of the combination of short reads, ill suited to de novo assembly of a 

genome, and of large sequencing depth, well suited to discovering polymorphisms. Until 

know, most polymorphism data outside human has been done on domestic varieties or lab 

strains [see dbSNP, 11]. But these are a rather biased sampling, which does not reflect 

selective pressure on genes in natural conditions. Moreover, to make the best of 

polymorphism data, it is preferable to integrate it with information on population structure 

and history. The latter is often studied in species which are not molecular biology models, but 

are good candidates for the new sequencing techniques. Progress in bioinformatic treatment 

of HT sequencing data opens the door to detecting not only single nucleotide polymorphisms 

(SNPs), but also copy number variation (CNV) [e.g 12]. Although this remains to be shown 

conclusively, it is probable that such variation plays a more important role in phenotypic 

diversity. Abundant data from large samples from the wild will provide the opportunity to not 

only list variations, but also quantify selective forces, such as positive selection or balancing 

selection (maintaining variability for functional reasons). With sufficient statistical power, it 

should be possible to link selection to specific loci on the genome. Comparative genomics can 

then provide the further link to functional annotation. For example it would be interesting to 

explain quantitatively the variance in onset of metamorphosis in wild amphibian populations 

by variations over the whole cascade of thyroid hormone signaling, not limited to a few target 

genes (e.g. TRs). 

 An aspect of natural variation that has been largely under-studied, yet may be the most 

relevant data to link genotype and phenotype, is gene expression variation [13,14]. The 

limiting factors of such studies have been similar to those on classical transcriptome studies, 

with an added issue of cost. A survey of wild populations for e.g. microsatellite variation must 

sample tens of individuals in several populations. Microsatellites may be cheap to 

characterize, but they do not inform us about functional changes in the genome. At present, 

even the new technologies remain too expensive to sample tens of individuals for variability 

in gene expression with high quality. But the exponential decrease in costs [3] means that this 

is within reach. Thus there is hope that in the next years, we will be able to scan wild 

populations of interest for variability in gene expression, and identify relevant signaling 



pathways with good reliability. Considering the relevance of hormones to many life history 

traits, such as age at reproduction, metamorphosis, rates of growth, or homeostasis under 

varying conditions (e.g. temperature, water salinity), it is probable that such non targeted 

scans of wild populations will considerably enrich our understanding of endocrine signaling 

in nature. 

 A specific application of this approach is Conservation Biology, the study and 

management of endangered species. It is also an area where the intersection of molecular 

endocrinology, genomics and biodiversity has a large potential. For example, many species of 

fishes suffer from recently distorted sex ratios. A sex ratio bias will diminish efficient 

population size, thus depleting genetic diversity. An excess of males is especially damaging, 

as it leads to a population size crash [reviewed in 15]. These distorted sex ratios may be 

caused by endocrine disruptors or by changes in temperature (including effects of global 

warming), and the study of specific cases is complicated by the diversity of sex determination 

mechanisms in fishes [16,17], which are often poorly understood. In any case, it is clear that 

endocrine signaling is central to the mechanisms which lead some salmonid populations to 

have more than 90% of males (Claus Wedekind, pers. comm.). Some genomic data is 

emerging in aquaculture fishes [e.g. 18], but so far molecular biology has been slow in 

providing the tools to understand the life cycle of endangered species. In an example of what 

can be done at present, with a heavy experimental investment, Kidd et al. [19] showed over a 

7 year study that low concentrations of estrogenic substances could lead to a near collapse of 

a lake population of fathead minnows. Molecular variations were recorded, but limited to one 

candidate gene, vitellogenin. 

 A future protocol could start for example with HT sequencing of male and female 

transcriptomes, in young individuals which can be sexed phenotypically. This could provide 

candidate genes to follow by qRT-PCR during development of many individuals, from small 

biological samples (e.g. scales). Then we might be able to determine which pathways (e.g. 

estrogen signaling) are involved in early and late sexual differentiation, and whether the 

biased ratio is present at birth, dependent on maternal life conditions, or whether a shift 

occurs during development. Finally, these results could be integrated with data on 

transcriptome variation between wild populations, related to their demographic status and the 

quality of their environment. This may provide more mechanistic, predictive models of 

species management, integrating molecular, phenotypic and populational approaches in ways 

which were out of reach up to now. By not depending on the construction of specific 

resources for each species, but combining as in the wasp study [9] de novo sequencing of 



transcriptome with comparison to a reference genome, this type of protocol may be applied to 

many different species. Thus specific molecular information may be gathered in each case, 

across the diversity of sex determining mechanisms and of environmental factors (such as 

pollution, temperature, or inbreeding). 

 In conclusion, a major effect of new genomic technologies could hopefully be to jump 

in large part the "molecular and cellular endocrinology" step for many non mammalian 

species, and bring them directly from traditional phenotype centered endocrinology and 

physiology into the realm of global molecular studies of endocrine signaling. This holds the 

potential of enriching both our understanding of biodiversity, and of endocrine signaling 

itself. 
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