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Purpose: STereotactic Arrhythmia Radioablation (STAR) showed promising results in patients with refractory ventricular
tachycardia. However, clinical data are scarce and heterogeneous. The STOPSTORM.eu consortium was established to investi-
gate and harmonize STAR in Europe. The primary goal of this benchmark study was to investigate current treatment planning
practice within the STOPSTORM project as a baseline for future harmonization.
Methods and Materials: Planning target volumes (PTVs) overlapping extracardiac organs-at-risk and/or cardiac substruc-
tures were generated for 3 STAR cases. Participating centers were asked to create single-fraction treatment plans with 25 Gy
dose prescriptions based on in-house clinical practice. All treatment plans were reviewed by an expert panel and quantitative
crowd knowledge-based analysis was performed with independent software using descriptive statistics for International Com-
mission on Radiation Units and Measurements report 91 relevant parameters and crowd dose-volume histograms. Thereafter,
treatment planning consensus statements were established using a dual-stage voting process.
Results: Twenty centers submitted 67 treatment plans for this study. In most plans (75%) intensity modulated arc therapy with 6
MV flattening filter free beams was used. Dose prescription was mainly based on PTV D95% (49%) or D96%-100% (19%). Many par-
ticipants preferred to spare close extracardiac organs-at-risk (75%) and cardiac substructures (50%) by PTV coverage reduction.
PTV D0.035cm3 ranged from 25.5 to 34.6 Gy, demonstrating a large variety of dose inhomogeneity. Estimated treatment times with-
out motion compensation or setup ranged from 2 to 80 minutes. For the consensus statements, a strong agreement was reached
for beam technique planning, dose calculation, prescription methods, and trade-offs between target and extracardiac critical struc-
tures. No agreement was reached on cardiac substructure dose limitations and on desired dose inhomogeneity in the target.
Conclusions: This STOPSTORM multicenter treatment planning benchmark study not only showed strong agreement on
several aspects of STAR treatment planning, but also revealed disagreement on others. To standardize and harmonize STAR in
the future, consensus statements were established; however, clinical data are urgently needed for actionable guidelines for
treatment planning. � 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/)
Introduction
Ventricular tachycardia (VT), potentially leading to sudden
cardiac death, is a severe arrhythmia arising mainly from
structural heart disease.1 Patients are prescribed antiar-
rhythmic and cardioprotective drugs and often receive an
implantable cardioverter defibrillator (ICD) to detect and
terminate VT by means of antitachycardia pacing or defi-
brillation shocks.1,2 For patients with refractory VT, catheter
ablation is performed to localize and disrupt the underlying
arrhythmogenic substrate. Although antiarrhythmic drugs
and catheter ablation can control VT episodes in the long
term, they also come with significant risks of complications
and VT recurrences in 20% to 50% leading to repeat inter-
ventional procedures.3 Still, some patients continue to have
recurrent VTs despite all treatments.1-3

STereotactic Arrhythmia Radioablation (STAR) recently
showed promising results for patients with refractory VT
and limited treatment options.4-6 In a systematic review,
STAR showed >85% reductions in VT episodes with prom-
ising safety profiles in >40 patients,4 and many more STAR
procedures have been performed since.7 For STAR, a single-
fraction radiation therapy dose of 25 Gy is applied to the
arrhythmogenic substrate using stereotactic body radiation
therapy (SBRT) techniques that are routinely used for cancer
treatment.8,9 However, reported outcomes for STAR are
based on heterogeneous cohorts with different inclusion cri-
teria, target definitions, and dose distributions in the target
and treatment techniques.7,10 STAR requires high-quality
standards for optimal treatment because of the complexity of
STAR with respect to arrhythmogenic substrate identification
by electroanatomic mapping and scar imaging,11 target
volume (TV) delineation,12,13 beam-delivery technique plan-
ning,14 cardiac and respiratory motion management,10 and
the application of high single-fraction doses.

Because STAR is an emerging treatment, the EU funded a
Standardised Treatment and Outcome Platform for Stereotac-
tic Therapy Of Re-entrant tachycardia by a Multidisciplinary
(STOPSTORM) consortium (EU-Horizon-2020 GA no.
945119) to create a unified database to evaluate the safety and
efficacy of this novel therapy and eventually optimize and har-
monize STAR.7 One work package of STOPSTORM focuses
on comprehensive quality assurance (QA) of the procedure,
which includes various benchmark studies for STAR. Here,
we report on the results of the treatment planning benchmark
study for which the participation was part of the accreditation
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process for the consortium member institutions.7 Besides
accreditation, the primary goal of this study was to evaluate
current treatment planning approaches of STAR. Further-
more, the benchmark results were used to provide treatment
planning consensus statements by the participating center to
refine and standardize future clinical (trial) protocols.
Methods and Materials
Detailed project descriptions and background of the STOP-
STORM.eu consortium have been reported previously.7

Benchmark establishment for critical structure contouring
and treatment planning was intended per protocol and cov-
ered by the approval of the institutional ethics committee of
the lead institution for the QA work package (UKSH Kiel,
D483/21)). For the treatment planning benchmark, an inter-
disciplinary expert panel was formed based on clinical expe-
rience on STAR and on multicenter treatment planning
benchmarks.15 The expert panel consisted of 4 medical
physicists (DS, WVE, MI, OB), 4 radiation oncologists (BB,
JB, MM, DK), and 1 cardiologist (EP), and the whole bench-
mark process was monitored by the STOPSTORM
credentialing and audit committee.7

Benchmark data

Three STAR cases previously used for a critical structure con-
touring benchmark16 and for a national clinical trial as
described in detail elsewhere12,14,17 were selected by the expert
panel for this treatment planning benchmark. In brief, the
patients who had sustained VT were treated with STAR as pre-
viously described18-20 and represent a meaningful variety of
commonly treated STAR cases in terms of location, dimension,
and used techniques7 while at the same time provide chal-
lenges for treatment planning for this novel treatment (eg,
overlap with the stomach or the coronary arteries and strong
artifacts). For STAR treatment of these cases, national and con-
sensus guidelines on SBRT and STAR were followed,8,9,21 and
thin-slice planning CTs (1 mm £ 1 mm £ 1.5-2.0 mm) in
head-first supine were deformably coregistered with contrast-
enhanced, ECG-triggered cardiac CT.10

The TV definition was based on the original clinical
cases18-20 refined by an expert panel consensus of a target
delineation benchmark study,12 which was guided for this
study by a recently developed QA tool for STAR.13 Respira-
tory motion management for treatment planning was imple-
mented using an internal target volume (ITV) approach
based on 4-dimensional computed tomography (CT) (case
118), a robotic real-time tracking approach based on an ICD
lead tip (case 219), and a beam gating approach based on real-
time MR-guidance (case 320). Cardiac motion management
for treatment planning was implemented using an ITV
approach based on cardiac CT in end-systole and
end-diastole.10 These motion management techniques are
routinely used for STAR, cover a broad range of case
scenarios, and could be implemented with all common treat-
ment systems used for thoracic SBRT. An isotropic margin of
5 mm to cover treatment delivery uncertainties was used to
create the planning target volume (PTV).8,9 TVs for cases 1,
2, and 3 were 10.3 cm3, 14.1 cm3, and 14.9 cm3 and PTVs
were 97.3 cm3, 62.2 cm3, and 83.1 cm3, respectively.

Delineation of extracardiac and intracardiac organs-at-
risk (OAR) was based on the consensus of the critical struc-
ture contouring benchmark for all 3 cases as reported previ-
ously.16 For case 1, the PTV overlapped partly with the
stomach and the left anterior descending coronary artery
(LAD). For case 2, the PTV overlapped with a left ventricle
assist device (LVAD) and minimally with the LAD. For case
3, the PTV overlapped with several cardiac substructures
(aorta, mitral and aortic valve, LAD, and left circumflex
artery). A graphical case presentation can be found in
Supplement E1 (Figure E1). The anonymized planning and
cardiac CT and the contours of the 3 cases were sent to the
radiation oncology departments participating in the
STOPSTORM.eu consortium.7
Treatment planning

For all cases, the prescribed dose to the surrounding PTV
was to be reported according to the International Commis-
sion on Radiation Units and Measurements (ICRU) report
9122 and was required to be 25 Gy in 1 fraction in line with
the literature on STAR4-6 and the actual treated cases.18-20

From July until November 2021, each participating institu-
tion was required to create one clinically acceptable treat-
ment plan for each of the 3 benchmark cases as determined
by the interdisciplinary team on-site for each treatment
system in use for STAR.

Further strict requirements for treatment planning were
not provided to obtain an unbiased view of current clinical
STAR practice. Beam-delivery technique planning strategies
such as beam energy, direction, orientation, and modulation
selection as well as dose homogeneity within the TV, ITV,
and PTV and dose-fall <25 Gy in and outside the PTV (eg,
because of close critical structures) were up to the individual
institution. Extracardiac OAR and cardiac substructure dose
limitations were explicitly not specified; however, references
for relevant dose constraints based on international guide-
lines22-27 and clinical trials for STAR17,28-32 were provided.

The participants had to provide the treatment plan data
and radiation therapy dose files and fill out a detailed ques-
tionnaire about their planning approach and trade-offs
made between target coverage and OAR sparing.
Data analysis

The treatment plan data were imported into an independent
custom-made community-driven software designed for
crowd knowledge-based evaluation of multicenter planning
studies as previously presented.33,34 Dose distributions of
PTV and relevant extracardiac OAR and cardiac
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substructures were analyzed using the following: (1) descrip-
tive statistics for ICRU report 91 relevant parameters (eg,
PTV/gross tumor volume D98%, D50% and D0.035cm3 and
OAR D0.035cm3)

22 and (2) multidata dose-volume histo-
grams (DVHs), both correlated with institutional experience
on STAR and planning approaches from the questionnaires.
A quantitative plan quality score was not calculated because
of a lack of actionable guidelines and clinical data on best
practice approaches for STAR.
Treatment planning consensus statements

Based on the results of the benchmark study and discussions
during a dedicated workshop, the expert panel drafted
treatment planning statements for STAR on requirements,
prescription dose, trade-offs and documentation, dose inho-
mogeneity, dose limitations for cardiac substructures, beam
technique planning, dose calculation, and treatment times.
In a 2-step process, all participating centers voted and com-
mented on the draft statements in the first step. After fur-
ther refinements by the expert panel based on the results of
the first step, all participating centers voted on the final
statements in the second step based on a 5-point Likert scale
(5, strongly agree to 1, strongly disagree). Finally, consensus
with the agreement as strongly agree or agree (strong agree-
ment ≥80%, moderate agreement ≥66%, no agreement
<66%) and interquartile ranges (IQR; small IQR [≤1] = har-
monized opinion, larger IQR [>1] = polarized opinions) for
each statement was calculated with Microsoft Excel (version
2308, Microsoft Corporation).
Results
For this benchmark, the participating centers submitted
22, 23, and 22 treatment plans for cases 1, 2, and 3,
respectively. Most of the plans (67%) were generated for
c-arm−based linear accelerators using intensity modulated
arc therapy whereas 22%, 6%, and 5% of the plans were
generated for robotic-based linear accelerators, MRI-based
linear accelerators, and synchrotron-based (intensity mod-
ulated particle therapy) accelerators, respectively. For
intensity modulated arc therapy, 73% and 27% of the
plans used 6 and 10 MV flattening filter free beams. All
well-established treatment planning systems (TPSs) were
used and technical details of the treatment plans can be
found in Supplement E1 Table E1. Because TPS−specific
beam technique planning manuals have been published
previously for SBRT35 and STAR,14 we omitted those
details in this manuscript.

PTV and prescription isodose

In accordance with local prescription protocols and
employed techniques, prescription criteria varied among the
institutions. Almost half of the total plans (49%) were
normalized with 100% prescription dose to 95% of the PTV
(PTV D95%), 19% prescribed to a PTV volume ranging from
96% to 100% (PTV D96%-100%), 5% normalized to 100% of
the TV, whereas the other 27% used other prescription
volumes (see Supplement E1 Table E1). As a result,
maximum doses varied from 25.5 Gy to 34.6 Gy (median,
29.9-30.5 Gy for the 3 cases).
OAR and dose trade-offs

Because specific dose limits were not provided, we asked the
participants which protocol and guidelines their chosen
dose constraints were based on. Eighty-five percent of the
planners based their OAR limits on the provided references
of SBRT and STAR clinical trial protocols and guide-
lines17,24-27 whereas 30% had an internal (clinical trial)
STAR protocol already established.

For case 1, the submitted cases compromised the pre-
scription dose coverage in favor of dose sparing to stomach
(32%), to A_LAD (32%), or both (18%). PTV D98% and
D0.035cm3 range were 6.4 to 25.0 Gy and 25.5 to 34.6 Gy,
respectively. The stomach and LAD D0.035cm3 range were
6.5 to 27.0 Gy and 11.2 to 31.4 Gy, respectively. For case 2,
PTV D98% and D0.035cm range were 21.4 to 25.6 Gy and 25.7
to 34.6 Gy, respectively. LAD D0.035cm3 range was 10.1 to
27.2 Gy. For case 3, 46% of the submitted plans compro-
mised prescription dose coverage in favor of OAR dose
sparing. PTV D98% and D0.035cm3 range were 6.7 to 25.2 Gy
and 25.9 to 34.5 Gy, respectively. The left circumflex artery
and LAD D0.035cm3 range were 10.7 to 33.8 Gy and 11.5 to
32.2 Gy, respectively. Details of key dosimetric parameters
including mean values are presented in Table 1.

Overall, approximately 75% and 50% of the participants
of this planning benchmark study preferred to spare close
extracardiac OAR and cardiac substructures, respectively,
over achieving high PTV coverage. This center preference
was noted in the treatment plan by simultaneous low PTV
D98% and low D0.035cm3 for the closest OAR and was inde-
pendent of the TPS or beam technique planning and not
correlated to institutional experience on STAR. Example
dose distributions for different planning approaches show-
ing significant underdosing of the PTV on one hand and
high OAR doses on the other are presented in Figure 1. The
crowd DVH for PTV and relevant OAR for the 3 cases is
shown in Figure 2.
Dose calculation and artifact handling

Dose calculation algorithms9,22 were type-A (20%), type-B
(25%), and type-C (55%) where type-A algorithms only
model the primary particle transport correctly (eg, ray
trace, pencil beam), type-B algorithms include more
sophisticated models for the management of secondary
particles (eg, collapsed cone and convolution/superposi-
tion), and type-C algorithms explicitly consider the lateral
particle transport (eg, Monte Carlo, Boltzmann solver).9,22



Table 1 Mean and median doses for PTVs and considered OARs for the 3 benchmark cases

Dose endpoints Mean Median SD Min Max

Case 1 PTV D98% 16.7 15.4 5.0 6.4 25.0

PTV D0.035cm3 29.9 30.5 2.0 25.5 34.6

Stomach D0.035cm3 18.1 18.5 6.0 6.5 27.0

A_LAD D0.035cm3 29.7 30.2 3.0 25.5 34.3

Right ventricle D0.035cm3 22.1 21.5 6.0 11.2 31.4

Left ventricle Dmean 26.9 26.8 1.7 22.7 30.0

Case 2 PTV D98% 24.2 24.4 0.9 21.4 25.6

PTV D0.035cm3 30.4 30.4 2.0 25.7 34.6

A_LAD D0.035cm3 19.9 19.6 6.0 10.1 27.2

Left lung D0.035cm3 19.4 19.5 1.6 16.8 22.5

Left ventricle_Dmean 27.3 27.5 1.3 24.9 30.3

Case 3 PTV D98% 20.6 23.4 5.0 6.7 25.2

PTV D0.035cm3 30.3 30.3 2.0 25.9 34.5

A_LAD D0.035cm3 24.0 25.0 6.0 11.5 32.2

A_LCX D0.035cm3 24.6 26.0 6.0 10.7 33.8

AVN D0.035cm3 23.3 24.1 3.0 16.0 26.6

Valve_pulmonic D0.035cm3 12.5 13.2 3.0 3.3 16.0

Valve_aortic D0.035cm3 13.4 13.1 3.0 8.6 18.3

Valve_mitral D0.035cm3 27.4 27.5 1.5 24.5 30.3

A_LM D0.035cm3 25.3 25.1 2.0 20.9 29.3

Left ventricle Dmean 9.2 9.7 3.0 0.7 12.8

Abbreviations: A_LAD: left anterior descending coronary artery; A_LCX = left circumflex coronary artery; A_LM = left main coronary artery;
AVN = atrioventricular node; OAR = organs-at-risk; PTV = planning target volume.

222 Trojani et al. International Journal of Radiation Oncology � Biology � Physics
Grid sizes for dose calculation were 1.0 to 2.5 mm with
26% based on CT slice thickness (2-2.5 mm) and 61%
based on higher resolution interpolation (1.0-1.5 mm)
whereas the rest did not provide any information (13%).
To manage the LVAD artifacts for case 2, 74% of the par-
ticipants decided to override the artifacts’ density with
water or air (depending on whether they were inside or
outside the body) and the rest did not employ any artifact
management strategy (13%) or did not provide any infor-
mation (13%) (see Supplement E1 Table E2).
Estimated beam-on times

Estimated beam-on times without motion compensation
and setup times were for c-arm−based systems 2.7 to 10
minutes, 2.6 to 10 minutes, and 2.4 to 10 minutes, and for
robotic-based systems with and without multi-leaf-collima-
tor 21 to 66 minutes, 32 to 71 minutes, and 33 to 80 minutes
for cases 1, 2, and 3, respectively. For intensity modulated
treatments with c-arm−based systems, a mean modulation
factor (total MU/2500) of 3.0 (range, 2.2-4.1), 3.8 (range,
2.2-7.5), and 3.4 (range, 2.0-6.1) was calculated for cases 1,
2, and 3, respectively.
STOPSTORM project accreditation

Because participation in this benchmark study was a man-
datory part of the accreditation process within the STOP-
STORM project,7 the expert panel provided detailed
feedback for each participant in reference to the crowd
DVH to improve the overall quality of STAR treatment
planning within the consortium. A dedicated, mandatory
workshop with group discussions on approaches and trade-
offs thereafter resulted in the draft of consensus statements
and part-accreditation of the participating centers for this
subpart of the STAR treatment chain.
Treatment planning consensus statements

Twenty-seven statements and 6 cardiac substructure dose
limitation scenarios were created after the 2-staged treat-
ment planning statement establishment process. Twenty
centers voted on the final statements (Table 2 and Supple-
ment E2) and dose limitation scenarios (Table 3). Strong
agreement was achieved for STAR requirements, prescrip-
tion dose, trade-offs and documentation, dose calculation,
treatment times, and general approaches for cardiac



Fig. 1. Three-dimensional dose distribution in axial, sagittal, and coronal views of 2 planning solutions employing an organ-
at-risk sparing strategy (top) versus a planning target volume coverage strategy (bottom) for the first (A) and third (B) bench-
mark cases. The stomach is shown in yellow, left anterior descending coronary artery is shown in light blue, and the planning
target volume is shown in red.
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substructure dose limitations, albeit not for specific dose val-
ues. Strong or moderate agreement was also achieved on
two-thirds of the beam technique planning subpoints
whereas no agreement was reached on specific required
beam energies, dose to ICD electrodes, and plan complexity.
Also, no agreement was reached for the use of doses >30
Gy, albeit strong agreement was reached that if higher doses
are used, they should be confined to the TV. Detailed infor-
mation with score frequency, median agreement, and IQR
are shown in Supplement E2.
Rating score

Recently, Radiotherapy Treatment plannINg study Guide-
lines (RATING) were published along with a scoring metric
to assess the quality of treatment planning studies.36 Based
on the self-assessment of our study, we achieved a RATING
score of 179 out of 200 points (90%, Supplement E3), which
was validated by 2 independent reviewers.
Discussion
To our knowledge, this is the first large-scale multicenter
treatment planning benchmark study for STAR representing
current treatment approaches in diverse treatment settings
from experienced centers in Europe.7 In contrast to other
benchmark studies,14,33-35,37 we provided limited constraints
and objectives for this novel treatment to investigate differ-
ent approaches to STAR treatment planning in current clin-
ical practice. As expected from previous experience with
multicenter planning studies,38,39 providing only a sparse
set of objectives and constraints resulted in very divergent
treatment plans with different methods of dose prescription
and prioritization of PTV coverage and extracardiac OAR
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Fig. 2. Dose-volume histograms (DVH) distribution of relevant organs-at-risk and planning target volume (PTV) structures
for all 3 benchmark cases. The mean DVH is shown in red while its range is shown in the shaded area. Abbreviations:
A_LAD = left anterior descending coronary artery; A_LCX = left circumflex artery; A_LM = left coronary artery;
AVN = atrioventricular node.
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and cardiac substructure dose sparing. Because of the nov-
elty of this treatment and the lack of clinical results on larger
cohorts, there is currently no consensus on best practice
approaches for treatment planning, which is why a plan
score metric14,35,38,39 was not used to evaluate overall plan
quality. Instead, we used a crowd DVH-based data presenta-
tion where for detailed feedback we were able to show indi-
vidual plan DVH in relation to the average and range of all
treatment plans submitted in this study. With such data pre-
sentation, individual plans can be discussed in comparison
to other plans and the overall average for potential quality
improvement as demonstrated in other planning studies.
Furthermore, this benchmark may serve as a basis for creat-
ing meaningful score metrics in the future for more qualita-
tive and conclusive plan comparisons.

One of the current controversies in STAR concerns
the actual biological mechanisms of high single-fraction
radiation dose in the heart. Although for solid tumors (eg,
early-stage non-small cell lung cancer) dose-response rela-
tionships are clinically accepted for several dose parameters



Table 2 Final vote on the most important treatment planning statements for STAR. E2

Agreement in % Strength of agreement

For well-known single-fraction dose limits of extracardiac OAR,25,49,50 the dose
trade-off in the PTV for STAR must be in favor of OAR sparing to minimize
risks of severe and fatal toxicities52

100 Strong agreement

For dose limitations on the coronary arteries as defined in Balgobind et al,16 the
individual patient anatomy and coronary function, indication for STAR as well
as the location of the target volume must be considered for STAR56,60,61

100 Strong agreement

For dose limitations on the cardiac valves as defined in Balgobind et al,16 the
individual patient anatomy and the valves functionality, the indication for STAR
as well as the location of the target volume must be considered for STAR

100 Strong agreement

Because dose limits for cardiac substructures are not well established,17,26,54-57,60,61

the dose trade-off in the PTV for STAR should be based on the clinical situation
of the patient

95 Strong agreement

Treatment delivery times for STAR should be kept as short as possible considering
all technical options (eg, IMAT and FFF modes and ITV motion management
concepts if clinically and technically reasonable) because of radiation biology
considerations and possibly poor patient conditions7

95 Strong agreement

The prescription dose and the dose inhomogeneity in the PTV should be based on
the clinical situation of the patient, the desired treatment effect, and the target
location with its surrounding extracardiac and cardiac OARs7 (NCT05258422)

90 Strong agreement

If higher doses over 30 Gy are considered for STAR, these doses should be
confined to the target volume and not placed in the PTV margin zone (PTV
minus ITV) or in PTV overlapping extracardiac OAR or cardiac substructures14

90 Strong agreement

For STAR with photon beams, energies ≤6 MV should generally be used to avoid
malfunction of ICD62−65

65 No agreement

To avoid changes in functionality of the ICD electrodes (eg, from electrical or
from tissue changes), the dose to the ICD electrodes should be reduced to below
15 Gy if the PTV coverage is not affected by this reduction.66

60 No agreement

The full list of statements can be found in Supplement. Abbreviations: FFF = flattening filter free; ICD = implantable cardioverter defibrillators; IMAT =
intensity modulated arc therapy; ITV = internal target volume; OAR = organs-at-risk; PTV = planning target volume; STAR = STereotactic Arrhythmia
Radioablation.
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(ie, PTV D98%, gross tumor volume D50%, and PTV D2%),
40

clinical data for STAR are still sparse and inconclusive.4-7 In
preclinical experiments, 2 main mechanisms were identified
for higher doses: fibrosis and necrosis after doses exceeding
30 Gy,41,42 and increased conduction velocity with protein
changes because of notch activation with doses between 20
and 25 Gy.43,44 Clinical investigations, however, may yield
contrasting results,45,46 highlighting complex interactions
and variable effects in VT patients following high-dose left
ventricle radiation. These controversies will lead to different
concepts of dose inhomogeneity and dose conformity to the
target, which resulted in large variances in this benchmark
study and in no agreement on the consensus statements.
These questions may be answered in the future by the
STOPSTORM project and its associated clinical trials (eg,
NCT05594368), but, as a prerequisite, a moderate agree-
ment was reached to consequently prescribe, record, and
report STAR treatments according to the ICRU report 91
standards.22 However, because the ICRU report 91 was writ-
ten for photon beams, discussions on how to harmonize
proton and photon beam therapy in the context of SBRT
and STAR are still ongoing. Indeed, protons were also used
in this benchmark and a first patient treatment has already
been reported,47 but it remains unclear if the conduction
modulating effects of median doses in the heart are compa-
rable to photons. Furthermore, it remains unclear if the
reduction of low doses in the heart with protons (eg, 5 Gy)
is desired as new studies suggested ventricular function
improvement after low doses for cardiomyopathy patients.48

Strong agreement was reached for extracardiac OAR
dose limits, which are well-known for thoracic SBRT for
solid tumors.25,49-51 However, the actual treatment plans
submitted showed that not in all cases the extracardiac OAR
dose limits were strictly kept. For case 1, the PTV over-
lapped with the stomach because of the used ITV approach.
Although 75% of the planners favored extracardiac OAR
dose sparing over PTV coverage, 50% of the treatment plans
still showed higher maximum doses >19 Gy exceeding clini-
cally accepted dose limitations.25,49-51 Esophageal and stom-
ach fistulas have already been reported in some rare cases
after STAR30,52 and keeping well below known limits while
scarifying dose coverage in the PTV, which still may lead to
therapeutic effects,43,53 must be considered in those cases.
Another possibility to increase the safety for target locations



Table 3 Final vote on the dose constraints of cardiac substructures

Coronary arteries 16 Gy 20 Gy 25 Gy 30 Gy

We have no
limit and
optimize to
ALARA

We cannot
answer the
question at
this time

To avoid long-term complications for STAR,57-61 given that
the coronary arteries as defined in Balgobind et al16 are
located outside the PTV, the near maximum dose (D0.035cc)
must not exceed:

3 3 2 0 8 4

If treatment efficacy is clinically prioritized for STAR and the
coronary arteries as defined in Balgobind et al16 are located
inside the PTV, but outside the target volume, the near
maximum dose (D0.035cc) must not exceed:

1 4 7 0 8 3

If treatment efficacy is clinically prioritized for STAR and the
coronary arteries as defined in Balgobind et al16 are located
inside the target volume, the near maximum dose (D0.035cc)
should not exceed:

0 1 8 2 8 4

Valves 10 Gy 15 Gy 20 Gy 25 Gy

We have no
limit and
optimize to
ALARA

We cannot
answer the
question at
this time

To avoid long-term complications for STAR,54,57,58 given that
the valves as defined in Balgobind et al16 are located outside
the PTV, the near maximum dose (D0.035cc) must not
exceed:

0 2 2 3 9 4

If treatment efficacy is clinically prioritized for STAR and the
valves as defined in Balgobind et al16 are located inside the
PTV, but outside the TV, the near maximum dose (D0.035cc)
must not exceed:

0 0 4 7 6 3

If treatment efficacy is clinically prioritized for STAR and the
valves as defined in Balgobind et al16 are located inside the
TV, the near maximum dose (D0.035cc) should not exceed:

0 0 0 9 5 6

Abbreviations: ALARA = as low as reasonably achievable; PTV = planning target volume; STAR = STereotactic Arrhythmia Radioablation; TV = (clinical)
target volume.
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close to the stomach and/or esophagus could be strict fasting
protocols and/or to use gating or tracking techniques if tech-
nically and clinically feasible.10 No agreement on the other
hand was found for cardiac substructure dose limitations,
mainly because of inconclusive clinical data and practice at
this time, and depending on overlap, 20% to 50% of the
plans reduced PTV coverage to spare cardiac substructures.
However, strong agreement was reached on basing individ-
ual patient-specific dose limitations for coronary arteries
and valves on the primary indication for STAR as well as
the TV location, the individual patient anatomy, and the
substructure functionality.

Although long-term toxicity data are emerging for car-
diac substructures from lung cancer SBRT for patients with-
out cardiac diseases,26,54,55 short-term toxicity data for
single-fraction irradiation to specific regions in the heart for
patients with significant cardiac diseases continue to be
inconclusive.56-58 Although Knutson et al56 acknowledged
the fact that survival after STAR seems to be correlated with
TV, it remained unclear if the extent of the underlying
cardiomyopathy or the dose to the left ventricle was the
main correlating factor for survival. On the other hand, van
der Ree et al,57 Krug et al,58 and Miszczyk et al59 showed no
reduction in left ventricle ejection fraction after STAR with
varying left ventricle mean doses, and recent studies even
suggest ventricular function improvement after STAR.48 In
our benchmark study, the left ventricle mean dose was 26.8
Gy (22.7-30.0 Gy), 27.5 Gy (24.9-30.3 Gy), and 9.66 Gy
(0.729-12.8 Gy) for cases 1, 2 and 3, respectively with differ-
ent strategies to spare other regions in the heart (eg, left
atrium or superior vena cava17,26). Near maximum doses to
the valves, predominantly to the aortic and mitral valves,
however, seem to be of clinical relevance for preserving aor-
tic valve functionality. Van der Ree et al57 showed signifi-
cant differences between 1.5 and 7.2 Gy and 12.7 and 19.8
Gy for the reduction in valve functionally; however, they
also were not able to distinguish between a clear dose effect
and progression of the underlying cardiomyopathy close to
the valves. In our benchmark study, the aortic and mitral
valve near maximum dose ranged from 8.6 to 18.3 Gy and
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24.5 to 30.3 Gy, respectively, as they were close and even
overlapping with the PTV in case 3. Special consideration of
the primary clinical goal of the treatment and the current
VT burden in such cases is strongly advised. For example, if
the patient is in an uncontrollable VT storm (similar to case
3), achieving high-effective dose coverage in the target area
with short treatment times may be preferred over reducing
potential toxicity in the valves, but not all planners choose
this approach.

Other important close critical cardiac substructures for
STAR are the coronary arteries. Data on long-term toxicity
in the form of occlusion/stenosis and increased mortality are
known from intracoronary brachytherapy60 and from con-
ventional lung radiation therapy.61 For STAR, there are no
reports of coronary toxicity to date. This may be related to
several factors, among them limited long-term follow-up7,58

competing mortality from the underlying heart disease,
underreporting because the cause of death may be difficult
to discern, and possibly higher tolerance of the coronary
arteries to SBRT than previously believed. The main coro-
nary artery was going through the PTV in case 3 and 46%
of the planners decided to underdose the PTV in favor of
sparing the coronary artery. The same discrepancy was
noted in the treatment planning statements and again, the
VT burden and coronary artery function (eg, after infarct)
in comparison with the potentially manageable late side
effects of stenosis (eg, with stenting) must be considered (eg,
when the patient is in uncontrollable VT storm), but again
not all planners choose the approach of high PTV coverage.
Dosimetric data on further cardiac substructures are avail-
able for this benchmark study; however, more clinical data
on toxicity to those are needed and hence strong agreement
was reached for consequently recording and reporting STAR
treatments according to the ICRU report 91 standards.22

Finally, moderate agreement was found for doses to the
ICD main electronics, but not for required beam energies,
in both the statements and the benchmark study, despite
existing recommendations.62-65 Also, no agreement was
found for maximum dose limitations for the ICD leads as
clinical data suggest that higher doses may be safely deliv-
ered to leads in or near the target area in the left ventricle.66

Concerning image artifacts, frequently occurring from ICD
devices and leads and potentially from LVAD systems19

(benchmark case 2), discrepancy in dose calculation up to
10% may occur67,68 and hence density override of the arti-
facts after use of metal artifact reduction with appropriate
dose calculation algorithms especially when density inho-
mogeneities are present in the PTV9 should be standard
practice for STAR (strong agreement).

Limitations of this benchmark study are the limited num-
ber of cases (n = 3) and that only STOPSTORM.eu consor-
tium centers (n = 22) were able to participate. Current
standard practice for multicenter planning studies is the use
of 3 cases15 and we mitigated the risk of selection bias using
previous expert panel selection processes.12,14 Another limi-
tation may be the predefined motion compensation strategy
with the according margins for each of the cases. However,
the motion management strategy was selected based on the
actual treatment performed18-20 and studies have shown that
all systems currently used for thoracic SBRT can deliver the
same treatment accuracy with appropriate techniques (eg,
c-arm−based gating and robotic-based tracking69). Further-
more, the primary reason for reduced coverage in the PTV
in this study was the overlay of close critical structures and
not the motion management strategy or the planning tech-
nique used. Granted, for case 1 the PTV-stomach overlay
could be reduced with an active motion management strat-
egy (eg, gating), but similar to previous studies35,38 our aim
was to create challenging scenarios often faced in clinical
routine. Nevertheless, although different motion manage-
ment strategies could lead to improved treatment plans for
some cases presented in this work, it remains unclear if high
accuracy for STAR dose delivery using tracking or gating
techniques is required biologically,43,70 pathologically,70,71 or
even clinically.70 The latter also comes with the consider-
ation that patients are often in a fragile state72 and active
motion management strategies will prolong treatment times
significantly. Furthermore, accreditation for STOPSTORM
was based on participation, feedback, and discussion and
not on actionable guidelines because clinical result correla-
tion with treatment techniques is lacking at this time. Over-
all, we tried to minimize the risk of bias as much as possible
to allow for the generalizability of the results and statements
comparable with previous treatment planning bench-
marks.33-39 Not addressed in this work was the retreatment
scenario with STAR and great caution is advised concerning
dose limitations in such cases.73 Replanning with more spe-
cific dose constraints and objectives and plan quality assess-
ment will be addressed in subsequent benchmark studies as
well as plan delivery QA for the created treatment plans.
Conclusion
This benchmark study provided a very detailed view on cur-
rent STAR treatment planning approaches in Europe that
will serve as a baseline for future harmonizing of this novel
treatment for cardiac arrhythmias. For new centers seeking
to start a clinical STAR program, we provided treatment
planning consensus statements derived from the results of
this study to enhance a safe and effective start. Nevertheless,
more information on efficacy and toxicity in larger cohorts
is needed to move toward actionable practice guidelines,
and prescribing, recording, and reporting STAR treatments
according to ICRU report 91 standards is mandatory to gen-
erate missing data.
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