Supporting Co-Regulation and Motivation in Learning
Programming in Online Classrooms

LAHARI GOSWAMI, University of Lausanne, Switzerland
ALEXANDRE SENGES, University of Lausanne, Switzerland
THIBAULT ESTIER, University of Lausanne, Switzerland
MAURO CHERUBINI, University of Lausanne, Switzerland

Self-regulation of learning in programming has been extensively investigated, emphasising an individual’s
metacognitive and motivational regulation components. However, learning often happens in socially situated
contexts, and little emphasis has been paid to studying social modes of regulation in programming. We designed
Thyone, a collaborative Jupyter Notebook extension to support learners’ programming regulation in an online
classroom context with the overall aim to foster their intrinsic motivation toward programming. Thyone’s
salient features - Flowchart, Discuss and Share Cell - incorporate affordances for learners to co-regulate their
learning and drive their motivation. In an exploratory quasi-experimental study, we investigated learners’
engagement with Thyone’s features and assessed its influence on their learning motivation in an introductory
programming course. We found that Thyone facilitated the co-regulation of programming learning and
that the users’ engagement with Thyone appeared to positively influence components of their motivation:
interest, autonomy, and relatedness. Our results inform the design of technological interventions to support
co-regulation in programming learning.

CCS Concepts: » Software and its engineering — Collaboration in software development; - Human-
centered computing — Empirical studies in collaborative and social computing; » Social and profes-
sional topics — CS1.

Additional Key Words and Phrases: Collaboration, co-regulation, motivation, programming

ACM Reference Format:

Lahari Goswami, Alexandre Senges, Thibault Estier, and Mauro Cherubini. 2023. Supporting Co-Regulation
and Motivation in Learning Programming in Online Classrooms. Proc. ACM Hum.-Comput. Interact. 7, CSCW2,
Article 298 (October 2023), 29 pages. https://doi.org/10.1145/3610089

1 INTRODUCTION

Computer programming is a complex activity and is often difficult for novices to learn and master
[37]. Mastery of the subject requires beginners to develop a diverse set of knowledge and skills
pertaining to programming concepts as well as awareness and development of the domain-specific
cognitive processes. One of the fundamental process skills crucial to the success of programming
learning, as established by prior research, is self-regulation of learning [6, 29, 70]. Self-regulation
is the process by which an individual, driven by a learning goal, strategically adapts and orients
their meta-cognitive, motivational, and behavioural strategies involved in their learning processes

Authors’ addresses: Lahari Goswami, lahari.goswami@unil.ch, University of Lausanne, Lausanne, Switzerland; Alexandre
Senges, senges.alex@gmail.com, University of Lausanne, Lausanne, Switzerland; Thibault Estier, thibault.estier@unil.ch,
University of Lausanne, Lausanne, Switzerland; Mauro Cherubini, mauro.cherubini@unil.ch, University of Lausanne,
Lausanne, Switzerland.

@ @@ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike Interna-
tional 4.0 License.

© 2023 Copyright held by the owner/author(s).
2573-0142/2023/10-ART298
https://doi.org/10.1145/3610089

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

HTTPS://ORCID.ORG/0000-0002-8975-5885
HTTPS://ORCID.ORG/0009-0000-8766-4034
HTTPS://ORCID.ORG/0000-0002-4598-9604
HTTPS://ORCID.ORG/0000-0002-1860-6110
https://doi.org/10.1145/3610089
https://orcid.org/0000-0002-8975-5885
https://orcid.org/0009-0000-8766-4034
https://orcid.org/0009-0000-8766-4034
https://orcid.org/0000-0002-4598-9604
https://orcid.org/0000-0002-1860-6110
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3610089

298:2 Lahari Goswami et al.

[83]. Studies on self-regulation in programming have frequently emphasised meta-cognitive as-
pects involved in this process, like the importance of meta-cognitive knowledge and task-specific
awareness [22], strategies for efficient self-regulation [23], the role of meta-cognitive monitoring
on self-regulation [29], and more recently facilitating this meta-cognitive awareness in novice’s
programming problem-solving [42]. In addition to meta-cognition, learner’s motivation is critical
in initiating and sustaining self-regulatory behaviours. While motivation in programming has been
studied to identify its predictors such as value in task, intrinsic motivation, self-efficacy and how
they affected self regulation and performance [6, 82], only few studies have explored interventions
in programming teaching pedagogy to foster this motivation [40, 44, 76].

Introductory programming courses in university classrooms comprise a social setting for
learning, involving a large number of students, usually with similar pedagogical experiences. The
consequences of the COVID-19 pandemic have also led many classroom instructions to adapt
to online modes of learning. Online programming classrooms in universities typically follow
synchronous learning formats with integrated tasks and teachers’ instructions, such that students
are in socially present learning contexts despite being remotely located. This format differs from
other online learning settings, like MOOCs, where following a course and doing related activities is
learner-paced and asynchronous in nature, with limited social presence [26]. Pedagogical strategies
in online programming classrooms necessitate emphasising the sociocultural paradigm of learning
[39] unique to this context and further enable students to succeed in these new learning settings.

Collaborative learning is a prevalent pedagogical approach to facilitate synergy among peers
and to develop their critical thinking and programming abilities in classrooms or remote learning
environments [43]. In the context of collaboration, contemporary education psychology grounds
learning regulation to be a social phenomenon and defines three primary modes of social regulation:
self-regulated learning, socially shared regulation of learning and co-regulated learning [30] (see
Sec. 2.3). An individual’s learning process in collaborative settings such as programming classrooms
does not occur in isolation. Their learning process is influenced by dynamic internal, social, and en-
vironmental conditions that act as affordances and constraints to shape the learner’s self-regulation
[79] - a process skill crucial for novices learning to program [23]. Therefore, collaborative program-
ming learning interventions in classrooms must recognise and support learners’ social regulatory
processes.

Learning to program in a collaborative context has received a great deal of attention in re-
search, and has paved the way for various systematic environments and computer-supported
collaborative learning (CSCL) interventions. Several CSCL interventions have been designed and
investigated to support enabling social processes in learning to program [58], facilitating collabora-
tion through programming editors [56], enabling remote pair-programming [8], using gamification
to aid problem-solving by collaboration [71], and so on. Although these CSCL interventions de-
vise different methods of collaborative interactions for productive learning and engagement, they
seldom emphasise studying the social modes of regulation in programming. A few recent studies
exploring social regulation in programming include Arciniegas-Mendez et al’s model based on the
three social regulations for collaboration in software engineering projects catered towards working
professionals [3], and ongoing research (a doctoral consortium) on the socially shared regulation
of learning in programming education context [72].

Our work aims to support learners’ social regulations in learning programming in online class-
rooms, with an overall goal to foster their intrinsic motivation' viewed through the lens of Self
Determination Theory (SDT) [64]. We present Thyone, a collaborative extension for Jupyter Note-
books with three features : Flowchart, Discuss and Share Cell, which provides remote learners with

!ntrinsic motivation is doing an activity for its inherent satisfaction rather than for some separable consequence [64, p. 56].

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

Co-Regulation and Motivation in Learning Programming 298:3

opportunities to regulate their learning at individual and social levels and to drive their learning
motivation (Sec. 3). These features of Thyone have been designed to support students’ sense of
autonomy through meta-cognitive reflection in programming and to facilitate their co-regulatory
behaviours while also fostering their relatedness through peer reviews and peer feedback on code,
error, and output. We intend to explore and understand the behavioural outcomes of introduc-
ing remote classroom learners to Thyone and whether it impacts their learning motivation and
experiences. In this study, we pose the following research questions:

RQ1. Does the availability of the salient features of Thyone result in learners co-regulating

remotely?

RQ2. Does learner’s interactions with the salient features of Thyone affect their SDT motiva-

tional constructs?
We conducted an exploratory quasi-experimental analysis to uncover how learners engaged with
the features of Thyone in their learning processes and evaluated its influence on their program-
ming motivation. We found that the features embedded in Thyone facilitated learners’ remote
co-regulation. Also their engagement with these features is positively associated with their re-
spective motivational constructs of interest, autonomy, and relatedness. Although the features
of Thyone positively shaped learners’ motivational constructs, an overall effect of the treatment
manipulation on intrinsic motivation was not observed. We contribute to research by presenting an
artifact that informs the design of affordances to support learners’ social regulation of programming
in online classroom environments. We further provide empirical evidence that design of these
situated interactions in online classrooms stimulates learners’ social regulation and contributes
toward supporting their basic psychological needs that are posited to foster students’ intrinsic
motivation.

2 LITERATURE REVIEW
2.1 Programming learning in novices

Learning to program is inherently a complex process. It entails various cognitive activities and
mental representations related to program design, comprehension, modification, and debugging.
Even at the most basic level of computer literacy, it requires acquiring and constructing conceptual
knowledge, developing strategies and structuring basic operations into schemas and plans for
execution [62]. This complex process presents many challenges for novices who start to learn
programming in introductory courses. The difficulties that novice programmers experience are
multifaceted. Several studies highlight the cognitive dimension difficulties that learners face when
beginning to learn to program; a few of them being difficulties in understanding different program-
ming concepts [47, 62], issues with applying programming knowledge to problem-solving [61, 75],
and the lack of demonstrating problem-solving skills [74, 80]. While grasping programming con-
cepts and articulating practical programming skills are central to programming learning, another
critical component contributing to a novice’s programming learning is the ability to administer their
cognitive processes while learning and doing programming. Unlike more experienced programmers,
beginners are confronted with a significant barrier in their awareness and the monitoring of their
cognitive processes [22], which are critical to problem-solving and computational thinking [9].
Allwood [2] identified that novice programmers struggle to approach programming tasks efficiently
due to their limited knowledge of both domain and problem-solving techniques and that they
usually employ hasty, general problem-solving approaches rather than specialised strategies used
by experts. Research analysis on effective programming teaching and learning suggests that process
skills, particularly self-regulation, to be a critical factor in programming learning success [70], which
we discuss in the next section.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

298:4 Lahari Goswami et al.

2.2 Self-regulation in learning programming

Theories of self-regulation of learning entail understanding how learners learn. Zimmerman defines
self-regulated learning as the extent to which a learner actively participates in the adaptation and
strategic orientation of one’s own metacognitive, motivational, and behavioural strategies while
working toward a learning goal [83]. Learners who self-regulate take proactive control of their
meta-cognition by iteratively planning, monitoring, and adapting their thoughts, beliefs, and
strategies in a given context, thereby shaping their learning and outcomes [84]. Programming
is essentially a cognitive activity, and as Falkner et al. [23] emphasises, "crucial to successful
mastery is the development of discipline specific cognitive and metacognitive skills, including self-
regulation.” Their research highlighted the importance of self-regulation for successful programming
by identifying instances of self-regulatory strategies that influence and assist students’ learning
processes.

In programming, self-regulation has been studied from different perspectives, primarily em-
phasising the meta-cognition dimension of learning [55]. From a social cognitive point of view,
"meta-cognitively self-regulated learners are the ones who plan, organise, self-instruct, self-monitor,
and self-evaluate at various stages during the learning process" [83]. Griffin et al. [29] asserted
the importance of this aspect in programming learning by pointing out that accurately assessing
one’s current state of comprehension during a cognitive task is at the core of self-regulation, which
influences learning for that task as well as transcends to future ones. Many studies have established
that successful learners and programmers demonstrate meta-cognitive self-regulation behaviours
like self-explanation, explicitly monitoring their progress, comprehension and misunderstandings
and reflecting on the effectiveness of their problem-solving strategies [14, 22, 41, 60]. Clearly, meta-
cognitive awareness about where one is at their problem-solving process and self-reflection on it is
critical in programming learning self-regulation. One of the most relevant comprehensive studies
conducted on facilitating this meta-cognitive awareness in novices’ programming problem-solving
is Loksa et al. [42]. They defined meta-cognition involved in programming solving as one’s iterative
ability to have a mental representation of the problem at hand, being able to refine and reflect this
mental representation while solving it and finally being able to converge towards a solution and
express it as code. Centered around this notion of meta-cognition, they proposed a programming
teaching intervention that explicitly taught key steps of programming problem-solving to students
and was able to conclusively promote meta-cognitive awareness. This intervention also promoted
learners’ affective aspects like productivity, independence, programming self-efficacy and growth
mindset.

Along with meta-cognition, the social cognitive view of self-regulated learning also emphasises
the role of learners’ motivation as a key factor influencing their cognitive control involved in
self-regulation. Learners need to be motivated in order to self-regulate their learning process and be
successful in programming [27]. Studies on motivation reveal that certain predictors like students’
perception of the value they associate with the task, self-efficacy, intrinsic motivation have a
positive influence on their regulatory behaviours and as well as their performance [5, 6, 59, 82]. The
implications of these studies pave the way for investigating motivational interventions to facilitate
programming learning. For example, Bergin et al. [6] and Ruf et al. [63] suggest opportunities for
pedagogical interventions that promote learner’s self-regulation and foster intrinsic motivation for
better programming learning experiences and outcomes.

In our research, we aim to foster learners’ programming intrinsic motivation by leveraging their
regulatory processes in a social learning context. To do this, we investigate the social aspects of
programming regulation which we discuss in the following section.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

Co-Regulation and Motivation in Learning Programming 298:5

2.3 Collaborative learning in programming

Collaborative learning encompasses a variety of pedagogical practices in which interactions between
learners are the most crucial factor in their learning [20]. When it involves large numbers of students,
this pedagogical approach leans on the sociocultural paradigm of learning [20], which emphasises
that learning is socially situated. It explains that learners mediate their actions and relations across
individual and social planes and cultural contexts to construct practices, meanings, and roles that
constitute new learning [39, 49]. Contemporary educational psychology also grounds the regulation
of learning as a social phenomenon and defines the regulatory process responsible for effective
learning in a collaborative context. In their most recent theory on social modes of regulation in
collaboration, Hadwin et al. [30] describe three primary modes:

(1) Self-regulated learning (SRL): This refers to the regulatory process of individual learners in a
collaborative context and is the precursor for optimal productive collaboration to occur in
the context of a group task.

(2) Socially shared regulation of learning (SSRL): This refers to the processes of group regulation,
which entail groups taking metacognitive control of the task collectively through negotiated,
iterative fine-tuning of cognitive, behavioural, motivational, and emotional states as required.

(3) Co-regulated learning (CoRL): This refers to the transitional and flexible stimulation of regu-
lation through interpersonal interactions and exchanges between learners in a collaborative
context. It focuses on creating affordances and constraints for productive self-regulated
learning for individual or shared regulation of learning in a group.

Introductory programming courses in universities usually cater to a large cohort of students in the
first year of a Bachelor’s program. In formal online classrooms, the collaborative interactions among
students and their regulation of learning differ from those in other online learning settings, like
MOOCs [54]. Learners in MOOCs have the freedom to pursue the courses on volition, following them
asynchronously, in a self-paced manner, without the commitment to finish them. Attributed to the
fact that learners do not follow courses at the same time [81], and other contextual factors, garnering
social interactions in MOOC:s is dissimilar to online classrooms and currently it mostly relies on
mediums like forums [26]. In contrast, a formal education environment, such as an online classroom,
primarily follows a synchronous online learning setting, typically with students from similar
pedagogical backgrounds who are present remotely, but engaged in tasks and classroom instructions
at the same time. It constitutes a complex socio-cultural context, shaping simultaneous interactions
across teachers, students, their changing roles and tasks embedded within the classroom [10]. This
enviroment necessitates the design of pedagogical interventions in online classrooms that recognise
the classroom aspect [73], and can support effective peer-related collective learning strategies in
remote settings. We scope our research particularly to online classroom learning contexts.

In the context of programming learning, collaboration has been extensively researched. It
has prompted the design and investigation of several collaborative interventions and Computer-
Supported Collaborative Learning (CSCL) technologies to support and analyse programming
learning. A few of the systematic collaborative learning environments designed and researched
are SCRATCH programming environment [58] to foster students’ interest, creativity and social
synergy while programming learning, the RIPPLE (Remote Interactive Pair-programming Learning
Environment) environment [8] to facilitate distributed synchronous programming in classrooms,
promote motivation and retention within students, PRAISE [16], an online peer-review system to
facilitate anonymous review and prompt feedback, Flipped Classroom [32], a pedagogical model
which reversed the lecture and homework structure to promote learning motivation, and Pyrus, a
collaborative educational game for novices to foster the problem-solving skill of planning while pro-
gramming [71]. Collaborative interventions have also been integrated into existing environments

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

298:6 Lahari Goswami et al.

like Blue] IDE[25], Alice [1] and more recently, in computational notebooks like Codestrates [56]
which has been used to explore collaborative programming learning in novices [7]. Even though
these interventions enabled social processes in learning, scaffolded programming solving strategies,
and explored collaborative behaviours to facilitate learning, they rarely addressed fostering of
regulatory processes involved in collaboration. In a few recent studies, this has been addressed by
Arciniegas-Mendez et al. in their model based on the three social regulations for collaboration in
software engineering catered towards expert stakeholders[3], and on-going research in exploring
socially shared regulation of learning in programming education context [72]. However, we found
ample scope to design collaborative intervention for programming learning by integrating social
regulatory learning strategies.

Through our study, we design technological affordances to facilitate co-regulated learning
amongst students in online classrooms, therefore also fostering their self-regulatory behaviours
and developing intrinsic motivation to program in a collaborative learning context.

2.4 Motivation in Programming: Self-Determination Theory

Self-Determination Theory (or SDT) [64] is especially different from other theories of human
motivation because it emphasises the different types and sources of motivation that impact the
quality and dynamics of behaviour. SDT posits that people have different levels or amounts of
motivation to perform a specific activity. It also states that people have different types of orientation
of motivation i.e. the underlying attitudes, goals and values that give rise to action [17]. These
types are classified as intrinsic and extrinsic motivation. Different types of motivation differ in
the sources that initiate them, in magnitude, in affects, and in the experiences of the individual
and their behavioural consequences [67, p. 14]. Moreover, intrinsically motivated behaviours are
autonomous and experienced as being volitional. In contrast, extrinsically motivated behaviours can
vary widely in the degree to which they are controlled versus autonomous [66]. For example, a student
may be extrinsically motivated to study for an exam to avoid the punishment of parents, but could
also be motivated because they observe a valued outcome (i.e., getting a degree). Additionally, the
SDT explains that these —previously mentioned- extrinsic motivation types can urge a person to
behave a certain way in the short-term, but will fail to maintain the behaviour over more extended
periods [17]. As a result, behaviour-change interventions designed for extrinsic motivation types
may not sustain the new behaviour after the intervention ends. Mainly, SDT describes three
Basic Psychological Needs (or BPN), that when satisfied by the contextual conditions, lead to a
self-determined action:

(1) Autonomy “refers to feeling willingness and volition with respect to one’s behaviour. The
need for autonomy describes the need of individuals to experience self-endorsement and
ownership of their actions.” [67, p. 86]

(2) Competence “refers to feeling effective in one’s interactions with the social environment-that
is, experiencing opportunities and support for the exercise, expansion, and expression of an
individual’s capacities and talents.” [67, p. 86]

(3) Relatedness “refers to both experiencing others as responsive and sensitive and being able to
be responsive and sensitive to them-that is, feeling connected and involved with others and
having a sense of belonging” [67, p. 86]

From an SDT perspective, self-regulation of learning is apparent when individuals are intrinsically
motivated or internalise their external motivation [19]. It further stresses that social contexts
that allow the fulfilment of autonomy, competence and relatedness help sustain this intrinsic or
internalised motivation. Classrooms that adequately support these BPNs have been shown to foster
students’ learning engagement. [57]. Incorporating SDT in online learning contexts has also been
shown to promote learners’ success by increasing their motivation [33]. Hence in this study we

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

Co-Regulation and Motivation in Learning Programming 298:7

use the motivational constructs of SDT to investigate students’ learning regulation and motivation
in online programming classrooms.

This study aims to explore aiding the regulation of programming learning at social levels in an
online classroom setting and leverage that to foster learners’ intrinsic motivation. Therefore the
umbrella research question we aim to answer is What collaborative interventions may be devised to
support social modes of regulation and facilitate intrinsic motivation for novices learning to program
in online classrooms?

3 THYONE EXTENSION

We designed and developed a collaborative extension for Jupyter Notebooks, named Thyone? to
help students regulate their process of learning programming.

3.1 Design Goals

Effectively solving a programming problem not only necessitates focus on the syntax, semantics
and constructs of the programming language, but also for a learner to be aware of their cognitive
processes and monitor errors and strategies while performing the task [22]. Thyone’s design
decisions were driven to promote this regulation required in the programming learning process
by supporting individual meta-cognitive reflection and co-regulatory interactions amongst peers.
We define our design goals as the following : (1) To aid metacognitive reflection involved in
programming problem-solving, and (2) To facilitate co-regulated learning through peer-reviews
and feedback.

Loksa et al. state that to develop metacognitive reflection in programming problem solving, a
learner must have a mental representation of the problem at hand and be able to refine and reflect
on this mental representation as they progress towards a solution iteratively [42]. In their work,
they have further proposed a set of six stages that represent self-regulated progress while solving
programming problems. For teaching programming to novices, Soloway has also defined a set
of design strategies to help them learn programming by formulating goals, plans, mechanisms
and explanations as the products of the programming process [74]. We abstract from these two
sets of programming problem-solving strategies, and define the cornerstones of Thyone’s design
rationale to be: (i) plan actions and explore problem representation, (ii) write code (iii) provide
or seek feedback by interpreting output and errors. From an SDT perspective, interactions with
Thyone should therefore assist students’ basic psychological needs of autonomy by facilitating
their learning regulation and relatedness by instilling a sense of community through collaborative
interactions — thereby supporting enhancement of their intrinsic motivation.

In the context of learning, regulation is a multi-faceted, socially situated phenomenon [30].
This concept essentially extends to the regulation process involved in programming learning
as well. In programming problem-solving, not only should the learner’s cognition and meta-
cognition be monitored, but also their motivation, affect, and behaviour, which is in turn shaped
by the socio-contextual conditions to which they are subjected. Co-regulation facilitates learning
by dynamic shifting and internalising regulatory processes through productive interpersonal
interactions amongst learners [31]. Feedback is essential for regulation in both individual and social
learning contexts [30]. In learning programming, when faced with errors in code or difficulties
in understanding, it can be frustrating for beginners to progress in their learning. Having the
possibility to discuss with a peer or seek and provide feedback on each other’s code allows for the
opportunity to reflect on and regulate one’s learning while also influencing the other. We devised
Thyone to promote co-regulatory behaviour among students through the design of opportunities

ZPronounced /0ar'ouniz/, the extension has been named Thyone after one of the planet Jupiter’s moons.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://en.wikipedia.org/wiki/Thyone_(moon)

298:8 Lahari Goswami et al.

~ jupyter! C02 - Inclass [

¢ @ | Vaidate || @ Sharo Selocted Colls

Exercice C02.7

Inverser la la phrase

Exercice C02.8

Echiquier

blanche (B) et couleur noire . Example pour un coté de taile 8:
BNBNBNBN [renp——
NBNBNBNB
BNBNBNBN
NBNBNBNB
BNBNBNBN
NBNBNBNB

Fig. 1. Flowchart: (1a) Buttons to create, connect and modify nodes and edges in flowchart. (1b) Text-box to
modify node and edge labels of a flowchart. (1c) Option to share a flowchart with the paired peer. Discuss:
(1d) Notification broadcasted through blinking of this tab. (1e) Paired with a random peer (anonymised). (1f)
Chat history with the peer showing shared text messages and code cells with error. (1g) Chat medium to
send text messages to the paired peer.

and affordances that support this dynamic exchange of ideas and peer feedback on code and output
to aid their programming learning process.

3.2 Thyone Features

Thyone is a collaborative Jupyter Notebook extension which is available to a user when they open
a notebook.’ It remains anchored to the right side of the notebook and can be minimised. This
extension has been developed using ReactJS and TypeScript in the front-end and NodeJS in the
back-end. Thyone has three main features named Flowchart, Discuss and Share Cell to accomplish
the design goals we stated earlier.

(1) Flowchart: The Flowchart feature aims to aid metacognitive awareness involved in programming
problem-solving by allowing students to externalise and reflect on their mental representations
of a problem. It has been designed as an affordance to let students plan their actions before
solving a problem. It includes provisions for creating basic rectangular nodes using the Create
button (Fig. 1a) allowing students to objectively represent their actions. To construct a flow of
activities, each node can be linked to other nodes as well as to itself using the ‘Link’ button
(Fig. 1a). All the created nodes and edges can be modified and labelled using a text field (Fig. 1b).
The Flowchart feature is kept simple and straightforward so that students feel free to abstract
and plan the provided problem in any way they see fit, as well as explore and iterate on it.
The primary focus of the feature is to encourage students to use it as a mental workout space
where they can plan and explore solutions to a programming problem. We suggest that, by
externalising their thought process while working on a problem students would, reflect on
their comprehension states and regulate accordingly by using the flowchart. This feature is

3The code for Thyone is open-source at GitHub. See https://github.com/petlab-unil/thyone-extension-frontend for front-end
and https://github.com/petlab-unil/thyone-extension-backend for back-end code.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://github.com/petlab-unil/thyone-extension-frontend
https://github.com/petlab-unil/thyone-extension-backend

Co-Regulation and Motivation in Learning Programming 298:9

primarily intended to be used individually, with the optional provision of sharing it for feedback
later (using the button in Fig. 1c). Once students save their flowcharts they are stored in their
individual notebooks, and remain persistent until the notebook is deleted.

(2) Discuss : The Discuss feature (Fig. 1g) serves as a chat medium. It allows bi-directional commu-
nication via Socket I0? between two Jupyterhub users who both have the Thyone extension
enabled. It should be noted that the connection is established between users and is not dependent
on the notebooks. This enables users who are working on different notebooks to be paired with
one another. If a user opens multiple notebooks in separate tabs, he will still be connected to the
person with whom he was initially paired, provided that person has not disconnected (Fig. 1e).
Students are paired automatically based on the order in which they launch their individual
Jupyter servers. When students log into their Jupyterhub and start their servers, they are put
in a queue to be paired with the next person who logs in right after. As a result, the pairing
mechanism is randomised, and students have no choice in selecting their partner. We devised
this random pairing strategy to increase the chances that students engage in learning-related
exchanges with peers while also ensuring that they do not feel stuck if communication with a
specific pair did not work out.

If no one is available to connect at a given time, or if the paired user disconnects their server, the
other student is placed in the waiting queue for the next available connection. When students
are paired, they are notified and can start communicating with one another. The notifications
rely solely on visual cues, through the blinking of extension’s Discuss tab (Fig. 1d). Notifications
are broadcast every time a person connects with a peer or receives a message from them. Hence
the audio cue is intentionally avoided so as not to disturb the students during lectures, or if the
student is using the service in a study room or library.

Sharing content through the Discuss feature is also limited to text and code cells which we
will discuss in the next section. The content shared between two people remains persistent.
Therefore, if the same people are paired in another instance, their chat history will be visible
(Fig. 1f). However, the extension does not allow students to copy or paste text on or from the
chat window or from the extension. We explain the rationale for this in the next point.

(3) Share Cell : Jupyter Notebook consists of code cells in which students write and execute
their code. The Share Cell feature allows students to directly share their code cells along
with output and errors from their notebook to the paired classmate (Fig. 2a,b). Ucan and
Webb identified that specific events, such as when students express a lack of understanding
or a misconception, can frequently initiate co-regulation of metacognitive processes [77].
Furthermore, enabling peers’ feedback sharing reinforces students’ self-regulatory learning
behaviours [50]. Therefore, sharing feedback on each other’s code enables students to monitor
and reflect on their understanding in relation to their established goals, as well as adopt and
adjust regulatory changes in learning mediated through emergent inter-personal interactions.
From the first phase of our study, we found that students used WhatsApp and Discord to share
code exercises, errors, doubt clarification as copied texts, screenshots and images. However, these
modes of sharing limit the readability of codes and errors and allow copy-paste solutions without
understanding them. The share cell feature (2) has been designed as a co-regulatory affordance
to stimulate learning regulation and reduce student frustration when they are stuck and seek
feedback. It aims to enable peer-reviewing through accurate representation of code, output and
error, thereby encouraging meaningful code and idea exchanges. Online environments may be
conducive to digital plagiarism. One study found that, even if students completed less obligatory
tasks, those who copied exercises from peers performed worse than those who copied fewer

4See https://socket.io/, last accessed April 2023.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://socket.io/

298:10 Lahari Goswami et al.

* Jupyter €04 - Inclass @ Logouwt ContolPanel

Fle Edt View Inset Col Kemel Widgets Help 2 |Python3 O

B+ % @B 4 v HAn W C» C § @ vaidate @

return resultat B—@

print(emails('./few_emails.txt'))

In[] Snare Coll

Cette cellule n'est pas modifiable.

Exercice C04.3

Importez un fichier texte contenant des nombres et calculez la somme des nombres. Une des lignes du fichier ne contient pas de numéro, il devra donc
atre traité avec des exceptions.

Si votre code fonctionne, vous devriez obtenir 1857 dans Ia sortie.
Hint:
Le nom de I'exception que vous devez intercepter est ValueError

In (6] Share Cell @

def numbers(filename) :
fhand = open(filename)
s

]
for line in fhand:

number = int(line)
s += number
except ValueError as err:
print(f"Line '{line}' is not a number"

return
print(numbers('./numbers_broken. txt')
"<ipython-input-6-db16e45a3co3>" 13
.t

t unexpected EOF while parsing

In[]: Share Coll

Cette cellule n'est pas modifiable.

Fig. 2. Share Cell: (2a) Option to select cell(s) to share. (2b) Button to share selected cells. (2c) Thyone extension
in minimised format.

exercises, even if they took on more voluntary exercises [21]. Furthermore, copying favors
rote learning and memorisation while giving minimal support for learning internalisation,
which has been found to hinder the performance of programming students [34]. Hence, the
shared code or output has been rendered read-only in the chat platform to prevent copying and
pasting. This is specifically different from popular editors such as Google Colab’ that allows
synchronous collaborative editing, which does not support co-regulation.

3.3 Instrumentation of the Extension

Thyone has been designed to serve as a data logging tool in addition to the primary features that
support students’ learning. This feature has been developed to collect objective measurements of
students’ learning behaviour for later analysis (Sec.4.5). In the back-end, regardless of whether
the extension is enabled, this data-logging tool of Thyone logs the user’s Jupyter activity to our
database. If a user has the extension enabled, it will log their interactions with Thyone in addition
to their Jupyter usage. Thyone interactions that are logged include interactions with the flowchart
feature and instances of sharing messages, cells, and flowcharts along with their content. All data
collected by this tool is stored in a database hosted on our institution’s server, ensuring data
protection policy. Data is anonymised and retained for up to two years.

4 METHODOLOGY

To answer our research questions (presented in Sec. 1) we conducted an exploratory quasi-
experimental study to gain an understanding of learners’ behaviours of using different features
of Thyone and investigate its influence on their learning experiences. The evaluation study was
conducted in a first-year programming course (see Sec. 4.1) with a cohort strength of several

SSee https://colab.research.google.com/, last accessed April 2023.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://colab.research.google.com/

Co-Regulation and Motivation in Learning Programming 298:11

hundreds of students in an online setup. The study took place from February 2021 end to July
2021 end, which included an initial setup phase of three weeks. We collected both quantitative and
qualitative data. The study was approved by the IRB of our institution.

4.1 Study Context

The pedagogical aim of the introductory programming course in which the study had been con-
ducted is to introduce Computer Science (CS) programming syntax and semantics to the first year
students pursuing a Bachelor of Science in either Economics or Management. The course is manda-
tory for the students. The goal of this course is to convey the basics of the Python Programming
language and the most common programming concepts (e.g., variables, conditional instructions,
loops), exposing them to algorithmic thinking, and enabling them to create simple data-analysis
tools to parse large data sets.

This course uses Jupyter Notebook®, which is hosted on JupyterHub’, to teach and practice
Python programming. JupyterHub, the multi-user version of Jupyter notebooks, makes the distri-
bution and monitoring of pedagogical materials and notebooks easily scalable and maintainable for
a large number of users.

The course took place during the COVID-19 pandemic of 2021, and was therefore entirely taught
in online format. At the beginning of the course, the university administration distributed the
registered students into three different groups. These three groups were assigned to three separate
sessions per week; each session was conducted live via Zoom and taught by three different teachers.
To let the students follow the course, they were given early access to the course resources before
each weekly session. The resources included the session slides, videos of theoretical explanations
(typically 3 to 5, of ~10 minutes each, every week), mandatory exercises to be practised during the
class, and non-mandatory homework exercises to be completed before the following session. The
Zoom sessions were devoted to classroom lectures, discussion of guided examples and facilitating
the students to practice and correct mandatory In-class exercises along with the teacher and
peers for that particular session synchronously. An example of the coursework is provided in
Supplementary 1 (Supp. 1) . At the end of the semester, students were evaluated with a final exam,
which consisted of multiple-choice questions that required them to solve programming problems.

4.2 Study Design and Procedure

We designed a quasi-experiment for the evaluation study and employed a pretest-posttest nonequiv-
alent control group design [15]. For research in natural settings, such as educational research in the
classroom and clinical research with real clients, quasi-experiments are often used when randomised
controlled experiments become difficult or unethical to conduct[28]. Given that our intervention
could influence students’ learning, and possibly their grades, we relied on a quasi-experimental
design. All students in the course were invited to participate in the study via email invitation
that contained a link to a consent form and a questionnaire. This questionnaire contained the IMI
instrument introduced in Sec.4.4 (available in Supp. 2). Out of 683 students enrolled in the course,
N=281 agreed to participate in the study and filled the enrollment questionnaire. We provided them
with a description of Thyone and let students decide whether to activate the extension in Jupyter,
or not. Once enabled, the students could not uninstall Thyone by themselves and had to opt out by
requesting the researchers, but they could minimise the extension (see Fig. 2c). This was done to
avoid jeopardising the setup of the evaluation study. The Jupyter activity logging tool implemented

%See https://jupyter.org/, last accessed April 2023.

7See https://jupyter.org/hub, last accessed April 2023.

8 All the supplementary materials are available in the Open Science Framework (OSF) Repository. See here https://doi.org/
10.17605/0sf.io/axdbt, last accessed July 2023.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://doi.org/10.17605/osf.io/axdbt
https://doi.org/10.17605/osf.io/axdbt
https://jupyter.org/
https://jupyter.org/hub
https://doi.org/10.17605/osf.io/axdbt
https://doi.org/10.17605/osf.io/axdbt

298:12 Lahari Goswami et al.

Table 1. Participants’ demographics information

No. of participants Age (in years) Gender Pre-test Interest

Participants who took part in N =136 M=203(SD=26) 8lm/55 M =447 (SD = 122)
conversation sessions

control group: N =44 M=208(SD=1.7) 17m/27f M=4.23(SD = 1.46)
treatment group : N =98 M =20.6 (SD=2.9) 57m/41f M =4.38(SD =1.30)

Participants who attended interview sessions N=13 M=209(SD=3.0) 8m/5f M=4.73(SD=1.05)

Participants who completed the study

through Thyone was installed for all the students who participated in the study, as specified in
the consent form. This resulted in N=211 students who chose to enable Thyone, henceforth our
treatment group, and N=70 students who did not choose to enable Thyone, henceforth our control
group.

During the treatment phase, we recorded conversation sessions (explained in Sec.4.4) between
peers using Thyone to qualitatively analyse learners’ regulatory behaviours (see Sec. 5.1). A total
of N=136 students with access to Thyone took part in these conversation sessions. Since these
conversations were recorded during the treatment phase, it consists of participants who were not
funnelled through the exit survey at the end of the study, explained next.

At the end of the course, we invited all students in the evaluation study to fill in an exit survey,
presenting them with the same IMI instrument they had answered at the beginning of the study.
Not all students participating filled in the exit questionnaire. We received responses from N=153 of
them, out of which five did not participate in any activity during the course, and six did not take
the final exam. Since we were unable to capture and associate the objective behaviour data and
learning outcomes of these 11 students, we decided to eliminate them from the quantitative analysis.
Therefore, even though we conducted our study with 281 participants, we performed our qualitative
analysis of conversations with N=136 treatment group participants, and performed the quantitative
analysis with a total of N=142: 98 were in the treatment group, and 44 in the control group. Six
participants, including three respondents each from pre- and post-test IMI questionnaire selected
through a raffle draw, received a monetary incentive of USD 55 to participate in the questionnaires.

Finally, we invited N=13 of these participants for an interview. We selected these participants
based on their activity in Thyone and their initial self-reported motivation in programming. We
conducted all of the interviews online via Zoom, and the participants’ audio, video and screen-shares
were recorded. The interview questions (available in Supp. 3) were designed to understand students’
motivation and behaviour when using Thyone, and to gather feedback on their perception of using
Thyone in their learning processes. Each of the interview participants received a monetary incentive
of USD 33. The interviews lasted M = 45.53 (SD = 9.50) minutes. At the end of the interviews 9
hours and 52 minutes of total recording were captured.

4.3 Participants

An overview of the participant demographics is present in Table 1. To analyse the conversation
sessions and identify instances of regulatory behaviour, the participants (N = 136) were 81 males
and 55 females, with a mean age of M = 20.3 (SD = 2.6) and a mean initial interest of M = 4.47 (SD =
1.22) — all of whom took part in conversation sessions using Thyone during the treatment phase.
For the quantitative analysis, the treatment group members (N = 98) were M = 20.6 (SD = 2.9) years
old, with 57 males and 41 females, and had a M = 4.38 (SD = 1.30) initial programming interest.’
The control group participants, aged M = 20.8 (SD = 1.7), with 17 males and 27 females, had a mean
initial interest of M = 4.23 (SD = 1.46). The 13 interview participants (for details see Supp. 4) were 8

°Interest is computed averaging several Likert measures taken on a 7-point scale (1:Not at all true — 7:Very true), more in
Sec. 4.4.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://doi.org/10.17605/osf.io/axdbt
https://doi.org/10.17605/osf.io/axdbt

Co-Regulation and Motivation in Learning Programming 298:13

males and 5 females, with a mean age of M = 20.9 (SD = 3.0), and a mean initial interest of M = 4.73
(SD = 1.05). Twelve were from the treatment and one from the control group. '

4.4 Metrics

Thyone Usage. Each user’s Thyone usage behaviour is defined by their Flowchart Interactions and
Conversation Intensity. The Flowchart interactions of a student signifies the aggregate of their
interactions with the Flowchart feature that resulted in a change in its state at any given time.
A change in a Flowchart’s state includes adding or deleting a block, adding or deleting an edge,
editing the block’s content, and editing the edge label. In Thyone, when at least one back and forth
message exchange occurs between the connected pairs, we refer to these chats as conversation
sessions. All the conversations took place using the local language. The Conversation Intensity of
each user constitutes their (i) total word count of shared text messages, denoted as Messages Word
Count, (ii) total number of their shared code-cells, Shared Cells and (iii) total number of shared
flowchart, Shared Flowcharts, for all the conversation sessions that one has participated in during
the treatment phase.

IMI measures. Intrinsic Motivation Inventory (IMI) [65] is a multi-dimensional measurement
device grounded in SDT used to assess participants’ subjective experiences of an activity. This
instrument determines levels of intrinsic motivation using the following set of sub-scales: Inter-
ests/Enjoyment, Perceived Competences, Efforts, Values/Usefulness, Pressure/Tension, Perceived
Choices, and Relatedness. The IMI has been used in several studies focused on intrinsic motivation
and self-regulation [18, 24]. We also validated the robustness of this scale in capturing learning moti-
vation by modeling its predictive relationship with students’ performance (see Sec. 5.4). The authors
of this scale pointed out that, it is necessary to adjust the instrument according to specific tasks
and fields. Thyone affordances aim to promote co-regulation, which entails learners demonstrating
autonomy and self-regulation, as well as, interaction with peers to regulate and influence each
other’s learning processes. Thus we used the following sub-scales in our study: the Perceived Choice
sub-scale is theorised to be a positive predictor of intrinsic motivation and relates to the autonomy
BPN posited by the SDT; the Relatedness sub-scale reflects the relatedness BPN in SDT; and finally
the Interest sub-scale represents the most direct measure of self-reported intrinsic motivation [65].
SDT emphasises that higher intrinsic interest in activities reflects higher self-endorsed motivation
and intrinsic regulation [64]. This has also been validated by other studies investigating motivation
in the context of learning [48]. Hence we use the Interest measure as one of the motivational
constructs in our analysis. According to SDT, for a learner to be intrinsically motivated, their BPNs
of autonomy and relatedness needs to be satisfied. Therefore, to comprehensively measure stu-
dents’ intrinsic motivation, we use the three sub-scales, each contributing to determining learners’
intrinsic motivation. The sub-scales of Interest and Perceived Choice, each comprise 7 rating items,
and the Relatedness sub-scale has 8 rating items - all on a 7-point scale (1:Not at all true — 7:Very
true).

Student Performance. We assessed student performance by calculating the number of questions
each student correctly answered in their final exam. The exam consisted of 21 multiple-choice
questions, each with 6 answer-items, for which there could either be one or multiple correct
response. The question was considered correct only if all correct options were selected by the
student. On average students identified 11.23 correct answers (3.78 SD).

1°0ne participant was chosen from the control group to compare his experience to those who had access to Thyone.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

298:14 Lahari Goswami et al.

4.5 Analysis

We used both qualitative and quantitative approaches to analyse the data collected during the study
as explained below.

4.5.1 Analysis of conversations in Thyone. To address RQ1 and identify occurrences of learning
co-regulation, we qualitatively coded and analysed students’ conversations recorded in Thyone
during the treatment phase. This is because conversations in Thyone are appropriated via the
Discuss feature along with the ability to share Flowchart and code cells using the Share Cell feature
— therefore providing the collaborative setting of Thyone for social modes of learning regulation to
emerge.

To guide our analysis of the conversation sessions in Thyone, we defined the learning regulatory
behaviours of these sessions as follows. Co-regulation is appropriated by self-regulating peers who
transiently mediate regulation amongst self and others in a social environment by recognising
regulatory support distributed amongst peers, tasks, and environments [30]. Hence, we described co-
regulatory behaviours in Thyone’s conversation sessions as instances of learning-related exchanges
between peers to help one another understand programming concepts or problems, solve errors, or
discuss problems and lessons, such that either or both of the peers in the conversation received
some support in their programming comprehension or implementation ability. On the other hand,
we defined the self-regulatory behaviours in these conversations as instances when one of the
connected peers initiated a learning-related exchange like seeking help, feedback or discussion
to aid their programming learning, but their processes were not supported by the connected peers
(i.e., did not lead to co-regulation).

Each of the conversation sessions was first coded using Process coding [69, p. 96]. We identified all
instances of students’ discussions that depicted learning exchanges, articulated learning challenges,
and related responses and then assigned each instance a code describing the interaction. Guided by
the above definitions of regulation, we assessed which codes reflected co-regulatory behaviours
in each of these instances. We distinguished these from the instances that were self-regulatory
behaviour but were not fulfilled into becoming co-regulation. We also identified conversations
that only had social exchanges, distinguishing them from learning-related ones. This analysis
was followed by Pattern [69, p. 212] coding on the learning regulatory behaviour codes generated
from the first phase. We analysed code commonality and identified the emergent patterns for co-
regulatory and self-regulatory behaviours. The first author and a research assistant independently
carried out the entire coding process on randomly sampled 25% (n=58) of the conversation sessions.
The two coders then discussed and achieved a strong agreement level of 91%. The agreement
level was computed following the equation proposed by Miles et al. [46]: agreement level = no. of
agreements / (total no. of agreements + disagreement). The remaining conversation sessions were
then coded by the first author.

4.5.2 Quantitative Analysis. Several statistical analyses were performed on the quantitative data to
highlight its main characteristics. The motivational constructs of IMI, were measured by computing
the sub-scales of Interest, Perceived Choice and Relatedness. To address RQ2 our goal was to first
statistically investigate the relationship between students’ Thyone usage behaviour and their moti-
vational constructs. To do this we used Thyone usage data from all the participants (i.e. both control
and treatment groups) to analyse its relationship with their post-test motivational constructs by
estimating multiple linear regression models for each IMI sub-scale. The post-test measures of Inter-
est, Perceived Choice and Relatedness sub-scales formed the dependent variables for their respective
models. The constituents of Thyone’s usage, i.e. the flowchart interactions, conversation sessions’
message word count, cell-shared count, flowchart shared count, respectively, formed the multiple
independent variables for each model. The predictors were checked for collinearity assumptions

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

Co-Regulation and Motivation in Learning Programming 298:15

using Variation Inflation Factor analysis [45], and multi-collinearity was not determined to be a
concern. It should be noted that a certain degree of individual interest primarily resides within an
individual for a particular activity [52]. So, to reduce bias and any confounding influence, we used
learners’ pre-test interest measures as a control variable along with the independent variables of
Thyone’s usage to predict the model for post-test Interest. The best fit model for each case was
selected using the Akaike Information Criterion (AIC).

Next, we employed the treatment group (N = 98) and control group (N = 44) to statistically
interpret the two group’s difference in their post-test programming interest, perceived choice, and
relatedness. We assessed for potential selection bias at the onset of the study by comparing pre-
and post-test measures of users’ reported Interest between the two groups. The pre- and post-test
measures in each of the three IMI sub-scales were assessed for parametric evaluation using the
Shapiro-Wilk normality test and homogeneity of variance using the Bartlett’s test. Except for
pre-test relatedness measures, the evaluation was not satisfied for the rest of the IMI measures. For
all the measures the Bartlett test confirmed assumption of equality of variance. Hence to compare
the data between the two groups, parametric data were subjected to t-test and non-parametric data
to Mann-Whitney’s U Test.

In addition to this, we ran an exploratory sub-group analysis to explore participants’ co-regulatory
behaviours with their interest measures. For this, we first considered all the 98 participants from
the treatment group. During this analysis, out of these 98, we found that N=24 people had a
conversation intensity of zero, that is, they did not share any messages, code-cells, or flowcharts
using Thyone, over the entire treatment phase. This means they had not used Thyone for any
interactions with peers during the entire time and were thus not included in this analysis. Hence we
ran the exploratory sub-group analysis with N=74 treatment group participants. We grouped these
74 participants based on whether or not they took part in co-regulatory conversation instances,
depicted as blue boxes in Fig. 3. We found 53 participants took part in at least one successful
co-regulatory instance, forming our co-regulating group. And 21 participants, who were not a part
of any successful co-regulatory instance, formed our non-co-regulating groups. The data for the
groups was assessed for parametric evaluation using the Shapiro-Wilk normality test which was
not satisfied. Hence Mann-Whitney’s U Test was used for the analysis. All the tests were run in R,
and the graphs were created with the ggstatsplot [53] and ggplot2 packages.

4.5.3 Analysis of Interviews. Finally, we also analysed interviews with Initial coding [69, p. 100] to
attune ourselves with users’ thoughts and opinions on Thyone and comprehend what aspects of
the extension they appreciated or found frustrating. This analysis was conducted to bring further
evidence to quantitative findings and was coded by the first author.

5 RESULTS

Our results ' show that features embedded in Thyone facilitated learners’ remote co-regulation
and have the potential to sustain their motivational constructs. Its use appeared to foster learners’
programming interest, autonomy, and relatedness (Fig. 4) — although an overall significant influence
on intrinsic motivation was not observed. Next, we review these results in detail.

5.1 Conversation behaviour in Thyone

A total of 231 conversation sessions were recorded during the treatment phase (Fig. 3). Each of these
conversations took place between unique pairs randomly formed from a total of N=136 Thyone
users during the treatment phase. These were analysed to address RQ1, by understanding the types
of social learning regulatory behaviours reflected in the peer interactions using Thyone.

11 All analysis scripts, including R workbooks, detailed outputs, etc are available in Supp. 5.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://doi.org/10.17605/osf.io/axdbt

298:16 Lahari Goswami et al.

PATTERNS OF CO-REGULATION

No. of conversation sessions)
with Total no. of mutually exchanging help
> co-regulation instances co-regulation instances » about programmingy/lessons
n_=98 (42.42%) n;= 142 (100%) n,=71 (50%)
es
asking for help/feedback,
No. of conversation sessions Tl . —» and receiving it back
with only 01! no. 0 n,=65 (45.77%)
P —> & i i
> self-regulation instances sellregulationlinstaices
No. of recorded n_=29 (12.55%) n,=30(100%)
- - s
GRS S S peer offering self-initiated help
n_ =231 (100%) —» to the other peer
A q n.=4(2.82%)
No. of conversation sessions !
with only
» social exchanges
n_=100 (43.30%) peer encouraging the other
© T about programming
n,=2 (1.41%)
No. of conversation sessions
—> dropped

n_=4(1.73%)

Fig. 3. Conversation Behaviour : Summary of the regulatory instances and social exchanges identified in the
conversation sessions recorded during the treatment phase. n.s represents the number of conversation sessions
in which respective regulatory and social exchanges took place. n; represents the number of occurrences of
the different types of exchanges corresponding to their ngs.

5.1.1 Co-regulatory behaviours. Firstly, across 98 out of the 231 conversation sessions (42.42
%), we identified a total of 142 instances of co-regulatory exchanges between the pairs in these
conversations (M = 1.45, SD = 1.08). Four different co-regulatory behaviour patterns were reflected
across all the instances, explained below:

o mutually exchanging help about programming/lessons: The most common pattern identified in
these interactions is mutually exchanging help about programming/lessons, occurring across
71 instances (or 50%). In all of these instances peers reciprocally shared cells to communicate
their errors or to show correct answers and discuss. Six of these instances also involved
sharing Flowcharts. They individually worked on their respective exercises or lessons while
actively discussing, explaining and assisting each other with challenges they faced in solving
programming problems or understanding parts of the lesson, as seen in the example in Table 2
(right).

e asking for help/feedback, and receiving it back: This is the second most common pattern we
identified which took place 65 times (or 45.77%). In the instances of asking for help/feedback,
and receiving it back, conversations were initiated to seek help or feedback in understanding a
concept or to solve problems and were mostly accompanied with shared cells. The responses
from the peers to provide support were, however, varied. In many cases, the responding peers
explained the problem and shared their answer cells. Sometimes they did not have the solution
but shared what they had been trying to solve. In a few cases, the peer only shared the answer
without explaining. Fifty-three out of these 65 co-regulation instances noted at least sharing
of one cell in the conversation either to express a problem or provide help and five of these
instances also included sharing of flowcharts.

o peer offering self-initiated help to the other peer: In four different instances (or 2.82%), we found
a peer offering self-initiated help to the other peer. It resulted in sharing cells and related
discussion amongst each other in all of these instances.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

Co-Regulation and Motivation in Learning Programming 298:17

Self-regulatory behaviour in a conversation session

Co-regulatory behaviour in a conversation session

S$141 : <cell shared>

$141: "How do you add to a list? "
$141: "towards the end of the prog"
$24 : "no idea, sorry :("

$16 : "Hey, tell me if you ever want to compare”

$16 : "I have a result but 'm not sure if I did it right"
$126 : <cell shared>

$126 : "T have this"

$16 : "Yes I must have done wrong”

$16 : <cell shared>

$16 : "You have a very different code?”

$126 : "ahh I see, instead of putting triSelection (sizes), I put triSelection(l)"
$16 : <cell shared>

$16 : "I have an even weirder graph ahahhaha"

$126 : "ahh yeah"

$126 : <cell shared>

$16 : "ahhhh "

§126 : "you forgot the 2nd random.shuffle right?"
$16 : "yes precisely "

$16 : "the graph is less weird but it’s still not right"
$16 : "I would see the correction I think but it’s weird I don’t have the same thing"
$16 : 'I'm looking but thanks a lot!"

$126 : "okay, no worries!"

$16 : "ahhh voila”

$16 : "Thad put for size in range(len(size))"

$16 : "while I have to iterate on the sizes list"

Table 2. Examples of regulatory behaviour in a conversation session: (left) an example of a communication
attempt that demonstrated only self-regulation; (right) an example of co-regulation where peers mutually

exchange help.

o peer encouraging the other about programming: We observed this less common occurrence of
one peer encouraging the other about programming on two occasions. When a peer expressed
their dissatisfaction with being stuck and lost in programming, their connected peer addressed
the issues and motivated them by suggesting that with practice, things would get better.

5.1.2 Self-regulatory behaviours. Across 29 (12.55%) conversation sessions, we recorded a total of
30 instances of self-regulatory behaviours, which, however, did not appropriate to co-regulation in
these conversation exchanges. Self-regulatory behaviours in these conversations imply instances
in which one of the connected peers initiated a learning-related exchange seeking help, feedback
or discussion to adapt their own regulatory activity in programming learning. However, their
processes were not supported by the connected peers — either because the peer was in a different
lesson, did not know the solution, diverted to a non-lesson related discussion, or did not respond
— therefore did not lead to co-regulation. From the example in Table 2 (left), it is evident that
participant S141 is actively self-regulating own learning to overcome a knowledge gap. Even
though S141 initiated a co-regulatory exchange with the connected peer, it was not fulfilled.

5.1.3 Social interactions. In 100 out of 231 conversation sessions (43.30%), we recorded only social
interactions from sharing course-related frustrations to non-lesson related discussions. These
interactions did not include any learning related exchanges. Lastly, even though one of the peers
initiated a conversation, the remaining four conversation sessions dropped because the other peer’s

response time was not prompt.

5.1.4 Summary. This section provides insight into students’ behaviour patterns of socially reg-
ulating online learning using Thyone. The behavioural data suggests that the Discuss feature of
Thyone afforded social exchanges, and along with sharing cells and flowcharts, it also allowed for
the emergence and sustenance of learner’s co-regulatory behaviours remotely.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

298:18 Lahari Goswami et al.

FLOWCHART FEATURE

\ Flowchart Interactions }\(
BQUAUOS),
—

DISCUSS FEATURE

’ Shared Cells }— (B=0.09)"—

’ Message Word Count }—(9:0.0004)*—

INTRINSIC MOTIVATION

o

Interest]

Perceived Choice / Autonomy ’

4.

Relatedness ’

’ Shared Flowcharts ‘

(a) (b)

Fig. 4. Results: (a) Thyone usage behaviour represented by Flowchart Interactions, Shared Cells, Message
Word Counts and Shared Flowcharts. (b) IMI sub-scales of post-test Interest, Perceived Choice/Autonomy
and Relatedness contribute to determining Intrinsic Motivation. The arrow symbol (—) defines significant
relationship (+ = p < .05, #* = p < .01) from predictors to outcome variable along with their estimates ().

5.2 Thyone usage behaviour

To address RQ2, we first explore the relationship between students’ objective interactions with
Thyone and their post-test motivational constructs. Participants with access to Thyone had a mean
flowchart interaction count of M = 66.29 (SD = 50.99). The summary of their conversation intensity
constitute an average messages word count of M = 298.60 (SD = 488.21) words, an average shared
code-cells of M = 2.30 (SD = 5.0), and an average flowchart shared count of M = 0.30 (SD = 0.92).
Below, we describe how these interactions with Thyone contributed to students’ motivational
constructs (Fig. 4).

5.2.1 Flowchart Interactions. We found that the Flowchart Interactions component of Thyone’s
usage behaviour had a significant and positive association with participant’s report of greater
post-test interest (f = 0.003, ¢33 = 2.050, p < .05). In the overall model, Flowchart Interactions and
the shared cells count (explained in the next paragraph) demonstrated a significant relationship with
post-test interest, while keeping their pre-test interest as a controlling factor in the regression model
(F5,138 = 101.5, p < .001, dej = 0.68). Since we have taken learners’ pre-test interest into account,
this finding suggests that participants who were already interested in programming interacted with
Flowchart to further self-regulate their learning, potentially contributing to fostering their interest.
However, interviews highlighted that Flowchart was used infrequently and only exploratorily
because creating a flowchart did not intuitively correspond to learners’ programming learning
process. They preferred to go step-by-step rather than abstracting the problem and planning before
solving. S4 "So, I tried using a flowchart, but I didn’t really understand the point. That’s not the way I
work to solve a problem, I go one step at a time."

5.2.2 Shared Cells. The Shared Cells count in participant’s usage of Thyone was found to be
significantly and positively associated with their higher post-test perceived choice (8 = 0.087,
ti3s = 3.291, p < .01). In an overall model having a significant relationship between messages word
count, shared cells count, and Flowchart Interactions with reported post-test perceived choice
(Fs138 = 5.24, p < .01, Ridj = 0.08), only the shared cells count was found to be a significant
predictor. Our interview findings also highlighted instances in which students were able to reflect
on their mistakes and understanding using this feature. S4 "More during the course, I was struggling
with exercises, I didn’t understand where my mistake was and we were able to share our cells. It helped

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

Co-Regulation and Motivation in Learning Programming 298:19

me to move forward and understand my mistakes." Another participant mentioned that while trying
to help others he was able to reflect on his understanding. S11 "When someone asked me a question
in chat and I was able to answer them, that also helped me progress.” This suggests that the Share Cell
feature allowed students to reflect on and regulate their learning, thus feeling more autonomous.
Furthermore, even though the effect was not significant, the Shared Cells count was also associated
with the post-test interest (f = 0.030, t135 = 1.758, p = .08, ns) of participants, along with Flowchart
Interaction being a significant predictor and the pre-test interest being a controlling factor in the
overall significant regression model, which analysed their effect on interest.

5.2.3 Messages Word Count. We discovered that participant Message Word Counts for Thyone’s
text conversations had a significant and positive relationship with their greater post-test relatedness
(B = 0.0004, t149 = 2.409, p < .05). It was the only predictor in an overall significant model for
assessing Thyone’s usage effect on post-test relatedness (Fy 149 = 5.80, p < .05, Ridj = 0.03). This
suggests that the more participants engaged in text message conversations, the more it contributed
to their sense of relatedness in learning programming. Our interview findings further add to this
result by highlighting that five participants used the Discuss feature to foster connections with
peers not only for learning-related interactions, but also for socialising. S10, I used Thyone to help
me or to meet people. In the beginning, I used it more to discuss and get help in errors, and as time
went by, I met people." They also stated that Thyone provided them with the opportunity to connect
with their classmates, whom they had not previously met due to the online classes. S6, "It was good
to be able to chat because I didn’t know all of the department or those who are in programming course
in the morning. So this is a way to socialise and meet people virtually." However, the Discuss feature
also led to certain frustrations induced by lack of flexibility in pairing with random peers who
limited productive interactions by being unresponsive. S11, "There are people who sometimes don’t
even answer, so there’s not much point in being paired with them. And then, you can’t easily change
the person you're talking to, so you’re a bit stuck.” Another source of frustration was that when one
disconnected from their Jupyter server, their paired connection was reset when they logged back in.
S3, "With the last person I was talking to, it abruptly got changed to a new pair as he got disconnected,
which is an issue since if we found a good partner to work with, it would be nice to stay in the same
conversation."

5.24 Summary. We see a positive relationship between student interactions with different features
of Thyone and how it shapes their motivational constructs (Fig. 4). It is evident that having the
ability to share cells is an autonomy-supportive feature, while being able to exchange messages is a
relatedness-supportive feature. Furthermore, even though the Shared Cells count is not a statistically
significant predictor, the sharing cell behaviour along with the exploration of flowcharts indicate
that the provision to regulate learning processes positively correlates with students’ interest in
programming.

5.3 Learning motivation

To answer RQ2 more comprehensively and further understand whether the use of Thyone drove
students’ learning motivation, we compared our control and treatment groups’ motivational con-
structs. Table 1 in Sec.4.3 depicts that the two groups regarding demographic characteristics are
balanced.

5.3.1 Interest measures. We assessed for possible selection bias at the onset of the experiment
and did not find any significant difference between the control (N=44) and the treatment (N=98)
groups on their pre-test interest measures (U = 2077.5, p = .73, ns). Furthermore, at the end of the
teaching period, post-test interest measures of the control group and the treatment group did not

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

298:20 Lahari Goswami et al.

Pre Post Pre Post
ns ns ns *
7 — 7 1 7 _— 7 .
Mdn|= 4.71

® e ot Mdn = 4.43 6 Mdn|= 4.29 ® ° Mdn) = 457

5 5 Mdn=|4.14 5 Mdn =|4.43 5 Mdn=[4.29
i
o 4 4 4 4
2
£ 3 3 3 3

2 2 2 2

- °
1 =l 1 —1 1 ° 1 °
(N=44) (N=98) (N=44) (N=98) (N=21) (N=53) (N=21) (N=53)
Group [control [] treatment Co-regulation [no [yes
(a) (b)

Fig. 5. Interest sub-scale: (5a) Pre and post-test interest measures between the control and treatment groups.
(5b) Subgroup analysis with N = 74 from treatment group: Pre and post-test interest measures between
the users in the treatment condition who did not co-regulate (i.e., “no” group, N = 21) and those who
co-regulated (i.e., “yes” group, N = 53). The remaining 24 treatment group participants were not included in
this analysis since they did not use Thyone for any conversation throughout the teaching session. Significant
and non-significant differences between groups are denoted by * and ns respectively. Only the medians are
reported in both the diagrams.

show a significant difference (U = 1734, p = .06, ns). Even though significant differences in pre-
and post-test interests were not found, we observed a negative trend in the changes of interest
from pre- to post-test conditions for both groups (Fig. 5a). This negative trend was expected and
predicted by the SDT, given the coercive nature of the course, where students are obliged to take
the course and comply with a number of requirements and assignments each week.

5.3.2 Perceived Choice and Relatedness measures. On assessing perceived-choice for the two groups,
no significant difference was identified in its pre-test measures (U = 1835, p = .157, ns). There was
also no significant difference in post-test perceived choice measures found between the control
and treatment groups (U = 1756.5, p = .078, ns). Similarly, the pre-test relatedness measures did
not significantly differ between the groups (U = 1745, p = .069, ns). Additionally, no significant
difference between the groups was found in the post-test relatedness (U = 2080, p = .739, ns).

5.3.3 Sub-group analysis for Interest measures. To get better insights into how co-regulation played
a role in driving students’ motivation, in an exploratory subgroup analysis (N = 74, explained in sec.
4.5), we compared the non-co-regulating (N=21) and co-regulating (N=53) students on the interest
sub-scale. No significant difference was found between the two groups on the pre-test interest
sub-scale (U = 461.5, p = 0.257, ns). At the end of the teaching period, a significant difference in
their post-test interest between the two groups was found (U = 391.5, p < 0.05, r = 0.230). Fig. 5b
shows that the changes of interest from the pre- to post-test phase reflect that higher measures of
interest are sustained for participants who co-regulated, even though the trend is negative for both
groups.

5.3.4 Students’ perception of Thyone. Our findings from the interviews show evidence that Thyone
supported the students’ remote programming learning process. Eleven out of the 12 participants
stated that they primarily used Thyone to receive or provide assistance; six of them said that
Thyone assisted them in engaging in meaningful exchanges and debates with their peers to assist

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

Co-Regulation and Motivation in Learning Programming 298:21

in their programming learning. S6, "With the extension I was able to talk to some people, exchange
ideas and understand some of the problems in the course. I used the Discussion side to debate things
with my classmates.” Four of the participants mentioned that Thyone helped them in self-reflecting
and understanding their own mistakes. S13, "Just by saying what I understood, I realise what I didn’t
understand as well and it helps me improve. So Thyone, for that very reason, is an incredible tool with
an amazing potential." It was also mentioned that Thyone enabled participants to form synergy
between peers by making them feel related and connected. One of the participants (S13) said, "I
found it good when all of a sudden we could share with classmates "ah yeah, it’s a pain to solve this". It’s
the fact of realising that we are not alone in having difficulties or we are not completely lost, that makes
us move forward."” Another participant could also establish relatedness with a peer that extended to
helping each other in other subjects as well. S8, "I also connected with a peer from the extension and
shared some answers and later we tried to work together on other subjects. So it was really helpful."

5.3.5 Summary. These results indicate that the interest measures and the two SDT constructs of
perceived choice and relatedness were not significantly modified during the teaching periods. A
plausible explanation for not observing an impact of Thyone on overall motivational constructs
could be due to the coercive nature of the course, which possibly overshadowed the effects of
Thyone usage. This is also reflected in the exploratory analysis, in which we see higher levels of
interest being sustained for co-regulating Thyone users despite a decreasing trend of interest across
the treatment phase. We further discuss this finding in detail in Section 6.2.

5.4 Student Performance

To understand whether the self-reported interest of participants at the end of experiment had an
influence on their performance, we modelled the two variables in a linear regression. We found
that the performance was significantly and positively associated with their self-reported post-test
interest in programming (8 = 0.80, t149 = 3.67, p < .001) with an overall model which was also
statistically significant (F; 140 = 13.52, p < 0.001, Ridj = 0.08). This suggests that participants with
a higher level of interest in programming at the end performed better in their assessment.

5.4.1 Summary. This finding is consistent with SDT’s theory that enhancing learners’ intrinsic
motivation and internalisation leads to higher achievement [68] — further validating the use of IMI
scale to capture one’s motivation in an educational context.

6 DISCUSSION

This research demonstrates supporting learners’ co-regulatory behaviours and in turn their SDT
motivational constructs in an online classroom setting for learning programming. Below we discuss
the results of our study and provide design implications for collaborative programming learning
platforms.

6.1 Supporting co-regulation in online classrooms

Given an online collaborative programming learning setting, we see that learners socially situate
their programming self-regulation and mediate interactions with peers to co-regulate their learning
processes. Our results depict that regulation in programming is indeed shaped by both self and socio-
contextual settings through the dynamic interplay between peers, tasks, and contexts [38]. The
presented results provide insights into how learners’ programming co-regulation has been enabled
and sustained by sharing cells, flowcharts, and productive learning exchanges through the features
embedded in Thyone. Furthermore, learners’ objective behaviours of using Share Cell facilitated
their autonomy, while the Discuss feature enabled them to feel more related when learning to

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

298:22 Lahari Goswami et al.

program remotely. These two features are orthogonal to each other. Interpersonal interactions
using the Discuss feature are context-specific. The Discuss feature indeed serves as a chat for
socialising conversations and also supports learners’ co-regulatory process to unfold - especially
when coupled with the sharing of cells or flowcharts that provide a deictic reference to what they
refer to in the chat [13]. Therefore, together, these features provide an affordance that enables
learners to reflect on their programming errors and comprehension through remote discussion
with peers, allowing them to self-regulate, feel related and influence each other’s learning. This
implies that these two Thyone features together afforded learners’ co-regulatory behaviours in
programming to emerge and be sustained.

This finding has implications for the design of collaborative pedagogical interventions for intro-
ductory programming courses. Incorporating affordances to assist learners’ regulation at social
levels should be explored in the future design of introductory programming courses in both class-
room and online contexts. Programming platforms should integrate the design of collaborative
features, like sharing and discussing codes, that allow peers to communicate their understanding,
code errors, code outputs, and explanations concisely and clearly. One example would be the
live peer code review feature of the tool Puzzle Me [78], which lets students in a group see group
members’ code and provide reviews in a chat widget during in-class exercise activities. Sharing code
in online programming classes can also be facilitated by sharing learners’ code editors and running
output in the programming environment, as designed in Cocode [11]. This will let learners reflect on
their programming learning and co-construct their understanding of the subject with their peers, fa-
cilitating opportunities for successful co-regulation. In exploring co-regulation, we concentrated on
peer-to-peer interactions in this study. However, different approaches might promote co-regulation
through interactions with teachers or teaching assistants and should also be examined in the
design of pedagogical interventions for programming. Interactions with teachers enable students
to receive structured guidance in their programming learning process, which not only helps in
code completion but also stimulates code comprehension. Coding platforms can incorporate deictic
code reference features for instructors to provide contextual responses and explanations tied to
specific parts of students’ codes when they seek help, as demonstrated in EdCode [12]. Furthermore,
designs of collaborative pedagogical tasks, coupled with this opportunity to share codes, can also
be extended to investigate and support learners’ socially shared regulation in programming. For
example, in project-based programming activities, where students collaboratively walk-through
instructions, debug errors and solve problems, having a shared or synchronous view of their codes
can assist in maintaining mutual awareness of their problem-solving approach.

6.2 Supporting intrinsic motivation in programming in formal educational setups

SDT [64] posits that for a learner to be intrinsically motivated, their BPNs of autonomy and
relatedness need to be satisfied, along with fostering interest and enjoyment in the task. Our results
show that learners’ usage of Thyone supported certain degrees of their interest, autonomy and
relatedness in programming. However, an overall impact of the treatment manipulation on these
constructs to drive intrinsic motivation was not observed. One possible explanation is that Thyone’s
usage effect was overshadowed by the coercive nature of the course. The course was compulsory
and included mandated assignments for students to complete weekly, as described in Section. 4.1.
SDT posits that when users act out of pressures that are experienced as controlling, they experience
heteronomy (the opposite of autonomy) [67, p. 86]. This pushes people’s motivation toward the
extrinsic end of the SDT motivation continuum, which proceeds from extrinsic motivation at one
end to more self-determined and intrinsic motivation on the other. This was likely captured by the
negative differences between the pre- and post-scores of the standardised instruments deployed
in this study. Specifically, the higher the scores on the sub-scales, the higher the level of intrinsic

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

Co-Regulation and Motivation in Learning Programming 298:23

motivation towards the target activity (i.e., programming). We suspect that the adverse effect of
the heteronomous forms of motivation due to the classroom structure thwarted the positive effect
Thyone had on users’ motivation. This interpretation is supported by the following observation: at
the end of the treatment phase, we see that students who co-regulated using Thyone during the
teaching period maintained higher levels of interest (i.e. the most direct indicator of self-reported
intrinsic motivation) in programming. Given the quasi-nature of our experimental setup, we cannot
say that the treatment manipulation impacted higher results of interest. However, we observe that
learners found support in Thyone for co-regulation, and those who did co-regulate sustained higher
interest levels during the teaching period, despite the coercive nature of the course.

Formal educational setups in universities are often constrained by classroom instructions, man-
dated evaluations, and extrinsic rewards like grades. It is impossible to tease apart these extrinsic
motivators from classic educational contexts. SDT argues that extrinsic forms of motivation can
entice a person to behave in a certain way in the short term to achieve their immediate learning
goals. However, to sustain inherent interest for long-term benefits, one’s external motivation must
be internalised and integrated to become congruent with their core values and be shifted towards
the intrinsic end of the motivation continuum. This can be enhanced by providing support for
students’ BPNs in the learning environment [68]. Therefore, programming learning technologies
must consider shaping learners’ extrinsic motivation to be driven towards more intrinsic forms.
Interventions can incorporate multiple affordances to provide basic psychological needs supportive
contexts for learners. For example, solving programming tasks is usually a mandatory activity in
introductory courses. In such controlling contexts, interventions should enable learners to progress
freely in their tasks and be in ownership of their problem-solving process. In line with our find-
ings, providing opportunities to co-regulate can be an approach to support students’ autonomy
during problem-solving in classrooms. The social environment of a classroom inherently provides
opportunities for students to form connections and feel related. However, it may be challenging
in online classrooms to sustain this sense of belonging because of learners’ remote presence. Es-
tablishing communication channels between peers is imperative to support relatedness in online
classes. Nevertheless, to build mutual reliance remote learners could be presented with continuous
opportunities of collaborative actions to solve programming problems. Effective peer interactions
can be fostered by scaffolding programming activities with Jigsaw scripting [4] or by providing
optimal group challenges [68] - particularly if the groups remain consistent over time, it can deepen
the potential for relatedness.

6.3 Challenges and Opportunities of Thyone’s Features

Thyone’s design has certain constraints that might have reduced the effect of the interventions.
Firstly, although the use of the Flowchart feature fostered students’ interest in programming, it
did not significantly contribute to their sense of autonomy. Our qualitative analysis reflected that
using the Flowchart feature required students to adopt an active change in their learning behaviour
and construct high levels of abstraction from the problem statement independently, without going
through a guided abstraction process. The necessity of explicit instructions to teach novices the
abstractions of programming problems, along with composing programming plans and goals,
has been emphasised in prior work [74]. Even though the Flowchart feature allowed to plan and
reflect on goals, it did not have explicit instructions to guide the abstraction process. Furthermore,
Flowchart creation, being agnostic to the exercises incorporating it into learning behaviour, posed
a challenge for beginners in a span of four months of study period.

Programming necessitates an individual to self-regulate, even in a collaborative context. Using
flowcharts to visualise a problem have the potential to support students’ self-reflection process. Our
findings suggest that designing flowcharts interventions for programming learning should facilitate

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

298:24 Lahari Goswami et al.

guided abstraction of the problem, possibly in an adaptive way based on their evolving expertise.
Future iterations of this Flowchart feature may investigate adopting a similar format to Parsons’
problem [51]. Rather than providing a blank space to create a flowchart, the design can scaffold
concepts linked with a particular programming problem into relevant concept fragments as nodes
for the flowchart. These fragments can be presented to students in a drag-and-drop manner, as a
puzzle or by filling in the blanks to complete the flowchart. Further, the level of obscurity can be
adjusted based on students’ progress through the lessons until they are able to do the abstractions
themselves.

Secondly, although using the Discuss feature allowed students to connect with peers, it still posed
a constraint on relatedness. This is attributed to the random pairing assignment and discreteness
of notifications that led to frustrations when students could not engage in productive interactions,
missed a message, or when their peers changed. Forming pairs or groups at random may result
in individuals exhibiting unequal engagement, off-task behaviour, and reluctance to group work
[35]. Furthermore, prior work has shown that familiarity among group members leads to a more
favourable and joyful collaborative experience for group members [36]. Randomly pairing does
not guarantee to pair members with desired characteristics, therefore constraining students from
sharing productive exchanges and a notion of relatedness.

It is evident from our findings that the role of pairing students had an influence on facilitating
co-regulation. Therefore group formation deserves attention while designing collaborative affor-
dances for programming. Depending on the scale of a collaborative setting, designers can explore
grouping aspects across multiple social planes by incorporating strategies like orchestration [20]
or by allowing more flexibility in group formation when designing co-regulatory affordances. Sub-
sequent iterations of the extension can explore intelligent group-forming mechanisms to construct
heterogeneous learner groups based on their evolving competence to provide an optimal situation
for productive co-regulation. We plan to explore some of these avenues in future work.

6.4 Study Limitations

Our study has several limitations. Firstly, given the ethical constraints, we implemented a quasi-
experimental methodology in our study, and students were not randomly assigned to groups.
Although we did not find a difference in their programming interest at the onset, there might be
other biases in the selection process which we did not consider. Secondly, the course in which the
study was conducted was mandatory and had an overall constraining effect on students’ intrinsic
motivation. As discussed in Sec. 6.2, these constraints are usually ingrained in formal education
setups and are inevitable. Other non-formal learning environments, could also include extrinsic
motivators in their pedagogical setup, such as fees to access courses or to obtain certificates on
completion. Therefore, the design of pedagogical technology must recognise the controlling aspects
in learning settings and provide support to help students internalise their extrinsic motivation
towards becoming more self-determined and to instill long-term values. Thirdly, because the
deployment of Thyone was only for a four month period, we believe that this data could only
capture the influence of Thyone to a limited extent. If the study had been conducted for a longer
length of time, it could have reflected students’ behaviour with Thyone more comprehensively and
students could have better appropriate the intervention in their practices, allowing us to gain a
thorough grasp of its effect. It is important to notice that most university courses typically span only
a few months. Therefore it is important to design interventions that could yield appreciable effects
in short time periods. Fourthly, we could not fully monitor (and control) co-regulation instances
that might have been possible through other communication channels like WhatsApp, Discord, etc.
Therefore, we look at co-regulation only through the lens of Thyone and might have overlooked
co-regulatory interactions that unfolded in physical or other learning settings. Finally, students

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

Co-Regulation and Motivation in Learning Programming 298:25

usage of Thyone and its effect on their interest and relatedness may have been influenced by the
study’s unique time and context, which took place during the COVID-19 lockdown when students
were compelled to attend classes remotely.

7 CONCLUSION

In this paper, we explored assisting students’ social learning regulation, specifically co-regulation
and their learning motivation, in an online introductory programming classroom. We present
Thyone, a collaborative extension for Jupyter Notebooks, to support students’ meta-cognitive
reflection through flowcharts and promote their co-regulatory learning behaviours through sharing
and discussing code, errors, and outputs with their peers. We provide empirical insights into how
Thyone’s embedded features shape learners’ motivational constructs of interest, autonomy, and
relatedness and foster their co-regulatory behaviours. We discuss the implications of our findings
to inform the design of CSCL for learning programming. Our study highlights that pedagogies
for teaching introductory programming online should not only focus on nurturing learners’ self-
regulation, but also on fostering their learning regulations at social levels and integrating suitable
interventions to assist these social regulations in programming. Co-regulation has the potential to
spawn more proficient self-regulation, as well as social regulation [30] making it an essential process
in co-learning and in co-working. Therefore, designing for co-regulation should be extensively
adopted not only in computing education, but also in broader applications in other scientific
domains to facilitate effective collaboration.

ACKNOWLEDGMENTS

We sincerely thank Marc-Olivier Boldi for providing insightful feedback on the quantitative data
analysis of the paper and Pegah Sadat Zeinoddin for helping with the qualitative coding process
of the conversation data. We also sincerely thank Kavous Salehzadeh Niksirat and Pooja Rao for
providing valuable feedback on the earlier versions of the paper and we thank Kévin Huguenin,
Patrick Jermann and Yamane El Zein for reading earlier versions of the paper. Finally, we thank
Vincent Vandersluis for proofreading the article.

REFERENCES

[1] Ahmad Al-Jarrah and Enrico Pontelli. 2014. "AliCe-ViLlagE" Alice as a Collaborative Virtual Learning Environment. In
2014 IEEE Frontiers in Education Conference (FIE) Proceedings. IEEE, Madrid, Spain, 1-9. https://doi.org/10.1109/FIE.
2014.7044089

[2] C. M. Allwood. 1986. Novices on the Computer: A Review of the Literature. Int. J. Man-Mach. Stud. 25, 6 (Dec. 1986),
633-658. https://doi.org/10.1016/S0020-7373(86)80079-7

[3] Maryi Arciniegas-Mendez, Alexey Zagalsky, Margaret-Anne Storey, and Allyson Fiona Hadwin. 2017. Using the Model
of Regulation to Understand Software Development Collaboration Practices and Tool Support. In Proceedings of the
2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (Portland, Oregon, USA) (CSCW
’17). Association for Computing Machinery, New York, NY, USA, 1049-1065. https://doi.org/10.1145/2998181.2998360

[4] Elliot Aronson, Nancy Blaney, Cookie Stephan, Jev Sikes, and Matthew Snapp. 1978. The Jigsaw Classroom. CA: Sage
Publishing Company, Beverly Hills.

[5] Susan Bergin and Ronan Reilly. 2005. The influence of motivation and comfort-level on learning to program. In
Proceedings of the 17th Workshop of the Psychology of Programming Interest Group, PPIG 05. Psychology of Programming
Interest Group, Brighton, UK, 293-304. https://mural. maynoothuniversity.ie/8685/

[6] SusanBergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the Role of Self-Regulated Learning on Introductory
Programming Performance. In Proceedings of the First International Workshop on Computing Education Research (Seattle,
WA, USA) (ICER ’05). Association for Computing Machinery, New York, NY, USA, 81-86. https://doi.org/10.1145/
1089786.1089794

[7] Marcel Borowski, Johannes Zagermann, Clemens N. Klokmose, Harald Reiterer, and Roman Rédle. 2020. Exploring the
Benefits and Barriers of Using Computational Notebooks for Collaborative Programming Assignments. In Proceedings

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://doi.org/10.1109/FIE.2014.7044089
https://doi.org/10.1109/FIE.2014.7044089
https://doi.org/10.1016/S0020-7373(86)80079-7
https://doi.org/10.1145/2998181.2998360
https://mural.maynoothuniversity.ie/8685/
https://doi.org/10.1145/1089786.1089794
https://doi.org/10.1145/1089786.1089794

298:26 Lahari Goswami et al.

of the 51st ACM Technical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE ’20). Association for

Computing Machinery, New York, NY, USA, 468-474. https://doi.org/10.1145/3328778.3366887

Kristy Elizabeth Boyer, August A. Dwight, R. Taylor Fondren, Mladen A. Vouk, and James C. Lester. 2008. A Development

Environment for Distributed Synchronous Collaborative Programming. In Proceedings of the 13th Annual Conference

on Innovation and Technology in Computer Science Education (Madrid, Spain) (ITiCSE "08). Association for Computing

Machinery, New York, NY, USA, 158-162. https://doi.org/10.1145/1384271.1384315

Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and assessing the development of com-

putational thinking. In Proceedings of the 2012 annual meeting, Vol. 1. American Educational Research Association,

Vancouver, Canada, 25.

[10] John Seely Brown, Allan Collins, and Paul Duguid. 1989. Situated Cognition and the Culture of Learning. Educational
Researcher 18, 1 (1989), 32-42. https://doi.org/10.3102/0013189X018001032

[11] Jeongmin Byun, Jungkook Park, and Alice Oh. 2021. Cocode: Providing Social Presence with Co-Learner Screen
Sharing in Online Programming Classes. Proc. ACM Hum.-Comput. Interact. 5, CSCW2, Article 300 (oct 2021), 28 pages.
https://doi.org/10.1145/3476041

[12] Yan Chen, Jaylin Herskovitz, Gabriel Matute, April Wang, Sang Won Lee, Walter S Lasecki, and Steve Oney. 2020.

EdCode: Towards Personalized Support at Scale for Remote Assistance in CS Education. In 2020 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC). IEEE, Dunedin, New Zealand, 1-5. https://doi.org/10.

1109/VL/HCC50065.2020.9127260

Mauro Cherubini and Pierre Dillenbourg. 2007. The Effects of Explicit Referencing in Distance Problem Solving

over Shared Maps. In Proceedings of the 2007 ACM International Conference on Supporting Group Work (Sanibel

Island, Florida, USA) (GROUP °07). Association for Computing Machinery, New York, NY, USA, 331-340. https:

//doi.org/10.1145/1316624.1316674

Michelene T.H. Chi, Miriam Bassok, Matthew W. Lewis, Peter Reimann, and Robert Glaser. 1989. Self-explanations:

how students study and use examples in learning to solve problems. Cognitive Science 13, 2 (April 1989), 145-182.

https://doi.org/10.1207/s15516709cog1302_1

T.D. Cook and D.T. Campbell. 1979. Quasi-experimentation: Design & Analysis Issues for Field Settings. Houghton Mifflin,

Boston, MA, USA. https://books.google.ch/books?id=BFNqQAAAAMAA]

Michael de Raadt, David Lai, and Richard Watson. 2007. An Evaluation of Electronic Individual Peer Assessment in

an Introductory Programming Course. In Proceedings of the Seventh Baltic Sea Conference on Computing Education

Research - Volume 88 (Koli National Park, Finland) (Koli Calling ’07). Australian Computer Society, Inc., AUS, 53-64.

Edward Deci and Richard M. Ryan. 1985. Intrinsic Motivation and Self-Determination in Human Behavior. Springer US,

New York, USA. 372 pages. https://doi.org/10.1007/978-1-4899-2271-7

Edward L. Deci, Haleh Eghrari, Brian C. Patrick, and Dean R. Leone. 1994. Facilitating Internalization: The Self-

Determination Theory Perspective. Journal of Personality 62, 1 (1994), 119-142. https://doi.org/10.1111/j.1467-

6494.1994.tb00797.x

Edward L. Deci, Richard M. Ryan, and Geoffrey C. Williams. 1996. Need satisfaction and the self-regulation of learning.

Learning and Individual Differences 8, 3 (1996), 165-183. https://doi.org/10.1016/S1041-6080(96)90013-8 Special Issue:

A Symposium on Self-Regulated Learning.

Pierre Dillenbourg, Sanna Jéarvela, and Frank Fischer. 2009. The Evolution of Research on Computer-Supported

Collaborative Learning. In Technology-Enhanced Learning, Nicolas Balacheff, Sten Ludvigsen, Ton de Jong, Ard

Lazonder, and Sally Barnes (Eds.). Springer Netherlands, Dordrecht, 3-19. https://doi.org/10.1007/978-1-4020-9827-7_1

César Dominguez, Arturo Jaime, Jonathan Heras, and Francisco J. Garcia-Izquierdo. 2019. The Effects of Adding

Non-Compulsory Exercises to an Online Learning Tool on Student Performance and Code Copying. ACM Trans.

Comput. Educ. 19, 3, Article 16 (Jan. 2019), 22 pages. https://doi.org/10.1145/3264507

Anneli Eteldpelto. 1993. Metacognition and the Expertise of Computer Program Comprehension. Scandinavian Journal

of Educational Research 37, 3 (Jan. 1993), 243-254. https://doi.org/10.1080/0031383930370305

Katrina Falkner, Rebecca Vivian, and Nickolas J.G. Falkner. 2014. Identifying Computer Science Self-Regulated Learning

Strategies. In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education (Uppsala,

Sweden) (ITiCSE ’14). Association for Computing Machinery, New York, NY, USA, 291-296. https://doi.org/10.1145/

2591708.2591715

Vincet F. Filak and Kennon M. Sheldon. 2003. Student Psychological Need Satisfaction and College Teacher-Course

Evaluations. Educational Psychology 23, 3 (2003), 235-247. https://doi.org/10.1080/0144341032000060084

Kasper Fisker, Davin McCall, Michael Kolling, and Bruce Quig. 2008. Group Work Support for the BlueJ IDE. In

Proceedings of the 13th Annual Conference on Innovation and Technology in Computer Science Education (Madrid, Spain)

(ITiCSE °08). Association for Computing Machinery, New York, NY, USA, 163-168. https://doi.org/10.1145/1384271.

1384316

—
(o)
—

—
e
—

(13

—

(14

=

[15

—

[16

—

(17

—

(18

[t

[19

—

[20

[t

[21

—

[22

—

[23

[t

[24

[l

[25

—

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1145/1384271.1384315
https://doi.org/10.3102/0013189X018001032
https://doi.org/10.1145/3476041
https://doi.org/10.1109/VL/HCC50065.2020.9127260
https://doi.org/10.1109/VL/HCC50065.2020.9127260
https://doi.org/10.1145/1316624.1316674
https://doi.org/10.1145/1316624.1316674
https://doi.org/10.1207/s15516709cog1302_1
https://books.google.ch/books?id=BFNqAAAAMAAJ
https://doi.org/10.1007/978-1-4899-2271-7
https://doi.org/10.1111/j.1467-6494.1994.tb00797.x
https://doi.org/10.1111/j.1467-6494.1994.tb00797.x
https://doi.org/10.1016/S1041-6080(96)90013-8
https://doi.org/10.1007/978-1-4020-9827-7_1
https://doi.org/10.1145/3264507
https://doi.org/10.1080/0031383930370305
https://doi.org/10.1145/2591708.2591715
https://doi.org/10.1145/2591708.2591715
https://doi.org/10.1080/0144341032000060084
https://doi.org/10.1145/1384271.1384316
https://doi.org/10.1145/1384271.1384316

Co-Regulation and Motivation in Learning Programming 298:27

[26] Dilrukshi Gamage. 2021. Scaffolding Social Presence in MOOCs. In Asian CHI Symposium 2021 (Yokohama, Japan)
(Asian CHI Symposium 2021). Association for Computing Machinery, New York, NY, USA, 140-145. https://doi.org/10.
1145/3429360.3468198

[27] Anabela Gomes, Wei Ke, Chan-Tong Lam, Maria José Marcelino, and Antoénio Mendes. 2018. Student motivation

towards learning to program. In 2018 IEEE Frontiers in Education Conference (FIE). IEEE, San Jose, CA, USA, 1-8.

https://doi.org/10.1109/FIE.2018.8659134

Frederick J. Gravetter and Lori-Ann B. Forzano. 2012. Research methods for the behavioral sciences (4th ed ed.).

Wadsworth, Australia ; Belmont, CA.

[29] Thomas D. Griffin, Jennifer Wiley, and Carlos R. Salas. 2013. Supporting Effective Self-Regulated Learning: The Critical

Role of Monitoring. Springer New York, New York, NY, 19-34. https://doi.org/10.1007/978-1-4419-5546-3_2

Allyson Hadwin, Sanna Jarveld, and Mariel Miller. 2017. Self-Regulation, Co-Regulation, and Shared Regulation in

Collaborative Learning Environments. In Handbook of Self-Regulation of Learning and Performance (2 ed.), Dale H.

Schunk and Jeffrey A. Greene (Eds.). Routledge, New York, 83-106. https://doi.org/10.4324/9781315697048-6

[31] Allyson Fiona Hadwin, Lori Wozney, and Oonagh Pontin. 2005. Scaffolding the Appropriation of Self-regulatory
Activity: A Socio-cultural Analysis of Changes in Teacher—student Discourse about a Graduate Research Portfolio.
Instructional Science 33, 5-6 (Nov. 2005), 413-450. https://doi.org/10.1007/s11251-005-1274-7

[32] Yasuhiro Hayashi, Ken-Ichi Fukamachi, and Hiroshi Komatsugawa. 2015. Collaborative Learning in Computer
Programming Courses That Adopted the Flipped Classroom. In 2015 International Conference on Learning and Teaching
in Computing and Engineering. IEEE, Taipei, Taiwan, 209-212. https://doi.org/10.1109/LaTiCE.2015.43

[33] Hui-Ching Kayla Hsu, Cong Vivi Wang, and Chantal Levesque-Bristol. 2019. Reexamining the Impact of Self-

Determination Theory on Learning Outcomes in the Online Learning Environment. Education and Information

Technologies 24, 3 (May 2019), 2159-2174. https://doi.org/10.1007/s10639-019-09863-w

Janet Hughes and D. Ramanee Peiris. 2006. ASSISTing CS1 Students to Learn: Learning Approaches and Object-Oriented

Programming. SIGCSE Bull. 38, 3 (June 2006), 275-279. https://doi.org/10.1145/1140123.1140197

Seiji Isotani, Akiko Inaba, Mitsuru Ikeda, and Riichiro Mizoguchi. 2009. An ontology engineering approach to the

realization of theory-driven group formation. International Journal of Computer-Supported Collaborative Learning 4, 4

(2009), 445-478.

[36] Jeroen Janssen, Gijsbert Erkens, Paul A. Kirschner, and Gellof Kanselaar. 2009. Influence of group member familiarity

on online collaborative learning. Computers in Human Behavior 25, 1 (2009), 161-170. https://doi.org/10.1016/j.chb.

2008.08.010

Tony Jenkins. 2002. On the difficulty of learning to program. In Proceedings of the 3rd Annual Conference of the LTSN

Centre for Information and Computer Sciences, Vol. 4. LTSN-ICS, Loughborough, 53-58.

[38] Hanna Jarvenoja, Sanna Jarveld, and Jonna Malmberg. 2015. Understanding Regulated Learning in Situative and
Contextual Frameworks. Educational Psychologist 50 (07 2015), 204-219. https://doi.org/10.1080/00461520.2015.1075400

[39] James P Lantolf. 2000. Introducing sociocultural theory. Sociocultural theory and second language learning 1 (2000),
1-26.

[40] Ramon Lawrence. 2004. Teaching Data Structures Using Competitive Games. Education, IEEE Transactions on 47 (12

2004), 459 - 466. https://doi.org/10.1109/TE.2004.825053

Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. 2015. What Makes a Great Software Engineer?. In 2015 IEEE/ACM 37th

IEEE International Conference on Software Engineering, Vol. 1. IEEE, Florence, Italy, 700-710. https://doi.org/10.1109/

ICSE.2015.335

Dastyni Loksa, Andrew J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez, and Margaret M. Burnett. 2016.

Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems. ACM, San Jose California USA, 1449-1461. https://doi.org/10.

1145/2858036.2858252

Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Giannakos, Amruth N. Kumar, Linda Ott,

James Paterson, Michael James Scott, Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic

Literature Review. In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in

Computer Science Education (Larnaca, Cyprus) (ITiCSE 2018 Companion). Association for Computing Machinery, New

York, NY, USA, 55-106. https://doi.org/10.1145/3293881.3295779

[44] Qusay H. Mahmoud, Wlodek Dobosiewicz, and David Swayne. 2004. Redesigning Introductory Computer Programming
with HTML, JavaScript, and Java. SIGCSE Bull. 36, 1 (March 2004), 120-124. https://doi.org/10.1145/1028174.971344

[45] Jeremy Miles. 2014. Tolerance and Variance Inflation Factor. https://doi.org/10.1002/9781118445112.stat06593

[46] Matthew B Miles, A Michael Huberman, and Johnny Saldafa. 2019. Qualitative data analysis: A methods sourcebook.
https://us.sagepub.com/en-us/nam/qualitative-data-analysis/book246128

[47] Iain Milne and Glenn Rowe. 2002. Difficulties in Learning and Teaching Programming—Views of Students and Tutors.
Education and Information Technologies 7 (03 2002), 55-66. https://doi.org/10.1023/A:1015362608943

[28

—

[30

—

[34

=

[35

[

[37

—

(41

—

[42

—

[43

—

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://doi.org/10.1145/3429360.3468198
https://doi.org/10.1145/3429360.3468198
https://doi.org/10.1109/FIE.2018.8659134
https://doi.org/10.1007/978-1-4419-5546-3_2
https://doi.org/10.4324/9781315697048-6
https://doi.org/10.1007/s11251-005-1274-7
https://doi.org/10.1109/LaTiCE.2015.43
https://doi.org/10.1007/s10639-019-09863-w
https://doi.org/10.1145/1140123.1140197
https://doi.org/10.1016/j.chb.2008.08.010
https://doi.org/10.1016/j.chb.2008.08.010
https://doi.org/10.1080/00461520.2015.1075400
https://doi.org/10.1109/TE.2004.825053
https://doi.org/10.1109/ICSE.2015.335
https://doi.org/10.1109/ICSE.2015.335
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/1028174.971344
https://doi.org/10.1002/9781118445112.stat06593
https://us.sagepub.com/en-us/nam/qualitative-data-analysis/book246128
https://doi.org/10.1023/A:1015362608943

298:28 Lahari Goswami et al.

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Vera Monteiro, Lourdes Mata, and Francisco Peixoto. 2015. Intrinsic motivation inventory: Psychometric properties in
the context of first language and mathematics learning. Psicologia: Reflexdo e Critica 28 (2015), 434-443.

Na’ilah Suad Nasir and Victoria M. Hand. 2006. Exploring Sociocultural Perspectives on Race, Culture, and Learning.
Review of Educational Research 76, 4 (Dec. 2006), 449-475. https://doi.org/10.3102/00346543076004449 Publisher:
American Educational Research Association.

Claudia Ott, Anthony Robins, Patricia Haden, and Kerry Shephard. 2015. Ilustrating performance indicators and
course characteristics to support students’ self-regulated learning in CS1. Computer Science Education 25, 2 (2015),
174-198. https://doi.org/10.1080/08993408.2015.1033129

Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun and Effective Learning Tool for First
Programming Courses. In Proceedings of the 8th Australasian Conference on Computing Education - Volume 52 (Hobart,
Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 157-163.

Erika A. Patall. 2013. Constructing motivation through choice, interest, and interestingness. Journal of Educational
Psychology 105, 2 (May 2013), 522-534. https://doi.org/10.1037/a0030307

Indrajeet Patil. 2021. Visualizations with statistical details: The *ggstatsplot’ approach. Journal of Open Source Software
6,61 (2021), 3167. https://doi.org/10.21105/j0ss.03167

Oleksandra Poquet, Vitomir Kovanovi¢, Pieter de Vries, Thieme Hennis, Srecko Joksimovi¢, Dragan Gasevi¢, and Shane
Dawson. 2018. Social Presence in Massive Open Online Courses. The International Review of Research in Open and
Distributed Learning 19, 3 (July 2018), 43-68. https://doi.org/10.19173/irrodl.v19i3.3370

James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and Lauren Margulieux. 2020. What Do
We Think We Think We Are Doing? Metacognition and Self-Regulation in Programming. In Proceedings of the 2020
ACM Conference on International Computing Education Research (Virtual Event, New Zealand) (ICER °20). Association
for Computing Machinery, New York, NY, USA, 2-13. https://doi.org/10.1145/3372782.3406263

Roman Rédle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and Clemens N. Klokmose. 2017. Codestrates:
Literate Computing with Webstrates. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA, 715-725.
https://doi.org/10.1145/3126594.3126642

Johnmarshall Reeve. 2013. How students create motivationally supportive learning environments for themselves: The
concept of agentic engagement. Journal of educational psychology 105, 3 (2013), 579.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (Nov. 2009), 60-67. https://doi.org/10.1145/1592761.1592779

Michael Robey, Brian R. Von Konsky, Jim Ivins, Susan J. Gribble, Allan Loh, and David Cooper. 2006. Student Self-
Motivation: Lessons Learned from Teaching First Year Computing. In Proceedings. Frontiers in Education. 36th Annual
Conference. IEEE, San Diego, CA, USA, 6-11. https://doi.org/10.1109/FIE.2006.322363

Martin Robillard, Wesley Coelho, and Gail Murphy. 2005. How effective developers investigate source code: An
exploratory study. Software Engineering, IEEE Transactions on 30 (01 2005), 889- 903. https://doi.org/10.1109/TSE.2004.
101

Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and Teaching Programming: A Review and
Discussion. Computer Science Education 13, 2 (2003), 137-172. https://doi.org/10.1076/csed.13.2.137.14200

Janine Rogalski and Renan Samurcay. 1990. Chapter 2.4 - Acquisition of Programming Knowledge and Skills. In
Psychology of Programming, J.-M. Hoc, TR.G. Green, R. Samurcay, and D.J. Gilmore (Eds.). Academic Press, London,
157-174. https://doi.org/10.1016/B978-0-12-350772-3.50015-X

Alexander Ruf, Andreas Miihling, and Peter Hubwieser. 2014. Scratch vs. Karel: Impact on Learning Outcomes and
Motivation. In Proceedings of the 9th Workshop in Primary and Secondary Computing Education (Berlin, Germany)
(WiPSCE °14). Association for Computing Machinery, New York, NY, USA, 50-59. https://doi.org/10.1145/2670757.
2670772

R. Ryan and E. Deci. 2000. Self-determination theory and the facilitation of intrinsic motivation, social development,
and well-being. The American psychologist 55, 1 (2000), 68-78. https://doi.org/10.1037/0003-066X.55.1.68

Richard M Ryan. 1982. Control and information in the intrapersonal sphere: An extension of cognitive evaluation
theory. Journal of personality and social psychology 43, 3 (1982), 450.

Richard M. Ryan and James P Connell. 1989. Perceived Locus of Causality and Internalizatoin: Examining Reasons for
Acting in Two Domains. Journal of Personality and Social Psychology 57, 5 (1989), 749-761. https://doi.org/10.1037/0022-
3514.57.5.749

Richard M. Ryan and Edward L. Deci. 2017. Self-Determination Theory Basic Psychological Needs in Motivation,
Development and Wellness. The Guilford Press, New York, USA. 770 pages.

Richard M. Ryan and Edward L. Deci. 2020. Intrinsic and extrinsic motivation from a self-determination theory
perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology 61 (2020),

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://doi.org/10.3102/00346543076004449
https://doi.org/10.1080/08993408.2015.1033129
https://doi.org/10.1037/a0030307
https://doi.org/10.21105/joss.03167
https://doi.org/10.19173/irrodl.v19i3.3370
https://doi.org/10.1145/3372782.3406263
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1109/FIE.2006.322363
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1016/B978-0-12-350772-3.50015-X
https://doi.org/10.1145/2670757.2670772
https://doi.org/10.1145/2670757.2670772
https://doi.org/10.1037/0003-066X.55.1.68
https://doi.org/10.1037/0022-3514.57.5.749
https://doi.org/10.1037/0022-3514.57.5.749

Co-Regulation and Motivation in Learning Programming 298:29

[69
[70

[t

71

—

[72

—

[73

[t}

[74

=

[75
[76

—

(77

(78]

[79]

[80]

[81]

[82]

[83]

[84]

101860. https://doi.org/10.1016/j.cedpsych.2020.101860

Johnny Saldafa. 2013. The coding manual for qualitative researchers (2nd ed.). SAGE, Los Angeles. OCLC: 0cn796279115.
Judy Sheard, S. Simon, Margaret Hamilton, and Jan Lonnberg. 2009. Analysis of Research into the Teaching and
Learning of Programming. In Proceedings of the Fifth International Workshop on Computing Education Research Workshop
(Berkeley, CA, USA) (ICER °09). Association for Computing Machinery, New York, NY, USA, 93-104. https://doi.org/
10.1145/1584322.1584334

Joshua Shi, Armaan Shah, Garrett Hedman, and Eleanor O’Rourke. 2019. Pyrus: Designing A Collaborative Programming
Game to Promote Problem Solving Behaviors. Association for Computing Machinery, New York, NY, USA, 1-12.
https://doi.org/10.1145/3290605.3300886

Leonardo S. Silva. 2020. Investigating the Socially Shared Regulation of Learning in the Context of Programming
Education. In Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education
(Trondheim, Norway) (ITiCSE °20). Association for Computing Machinery, New York, NY, USA, 575-576. https:
//doi.org/10.1145/3341525.3394003

Brian K. Smith and Brian J. Reiser. 1998. National Geographic Unplugged: Classroom-Centered Design of Interactive
Nature Films. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Los Angeles, California,
USA) (CHI ’98). ACM Press/Addison-Wesley Publishing Co., USA, 424-431. https://doi.org/10.1145/274644.274702
E. Soloway. 1986. Learning to program = learning to construct mechanisms and explanations. Commun. ACM 29, 9
(Sept. 1986), 850-858. https://doi.org/10.1145/6592.6594

E. Soloway and James C. Spohrer. 1988. Studying the Novice Programmer. L. Erlbaum Associates Inc., USA.

Alan L. Tharp. 1981. Getting More Oomph from Programming Exercises. In Proceedings of the Twelfth SIGCSE
Technical Symposium on Computer Science Education (St. Louis, Missouri, USA) (SIGCSE ’81). Association for Computing
Machinery, New York, NY, USA, 91-95. https://doi.org/10.1145/800037.800968

Serkan Ucan and Mary Webb. 2015. Social Regulation of Learning During Collaborative Inquiry Learning in Science:
How does it emerge and what are its functions? International Journal of Science Education 37, 15 (Oct. 2015), 2503-2532.
https://doi.org/10.1080/09500693.2015.1083634

April Yi Wang, Yan Chen, John Joon Young Chung, Christopher Brooks, and Steve Oney. 2021. PuzzleMe: Leveraging
Peer Assessment for In-Class Programming Exercises. Proc. ACM Hum.-Comput. Interact. 5, CSCW2, Article 415 (oct
2021), 24 pages. https:/doi.org/10.1145/3479559

Philip H. Winne and Allyson F. Hadwin. 2008. The Weave of Motivation and Self-Regulated Learning. In Motivation and
Self-regulated Learning: Theory, Research, and Applications, Dale H. Schunk and Barry J. Zimmerman (Eds.). Routledge,
New York, 297-314.

Leon E. Winslow. 1996. Programming Pedagogy—a Psychological Overview. SIGCSE Bull. 28, 3 (Sept. 1996), 17-22.
https://doi.org/10.1145/234867.234872

Diyi Yang, Tanmay Sinha, David Adamson, and Carolyn Penstein Rosé. 2013. Turn on, tune in, drop out: Anticipating
student dropouts in massive open online courses. In Proceedings of the 2013 NIPS Data-driven education workshop,
Vol. 11. Curran Associates Inc., Lake Tahoe, Nevada, USA, 14. https://cs.stanford.edu/~diyiy/docs/nips13.pdf

Noor Faridatul Zainal, Shahrina Shahrani, Noor Yatim, Rohizah Abd Rahman, Masura Rahmat, and Rodziah Latih.
2012. Students’ Perception and Motivation Towards Programming. Procedia - Social and Behavioral Sciences 59 (10
2012), 277-286. https://doi.org/10.1016/j.sbspro.2012.09.276

Barry J. Zimmerman. 1986. Becoming a self-regulated learner: Which are the key subprocesses? Contemporary
Educational Psychology 11, 4 (1986), 307-313. https://doi.org/10.1016/0361-476X(86)90027-5

Barry J. Zimmerman. 2000. Chapter 2 - Attaining Self-Regulation: A Social Cognitive Perspective. In Handbook of
Self-Regulation, Monique Boekaerts, Paul R. Pintrich, and Moshe Zeidner (Eds.). Academic Press, San Diego, 13-39.
https://doi.org/10.1016/B978-012109890-2/50031-7

Received July 2022; revised January 2023; accepted March 2023

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 298. Publication date: October 2023.

https://doi.org/10.1016/j.cedpsych.2020.101860
https://doi.org/10.1145/1584322.1584334
https://doi.org/10.1145/1584322.1584334
https://doi.org/10.1145/3290605.3300886
https://doi.org/10.1145/3341525.3394003
https://doi.org/10.1145/3341525.3394003
https://doi.org/10.1145/274644.274702
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/800037.800968
https://doi.org/10.1080/09500693.2015.1083634
https://doi.org/10.1145/3479559
https://doi.org/10.1145/234867.234872
https://cs.stanford.edu/~diyiy/docs/nips13.pdf
https://doi.org/10.1016/j.sbspro.2012.09.276
https://doi.org/10.1016/0361-476X(86)90027-5
https://doi.org/10.1016/B978-012109890-2/50031-7

	Abstract
	1 Introduction
	2 Literature Review
	2.1 Programming learning in novices
	2.2 Self-regulation in learning programming
	2.3 Collaborative learning in programming
	2.4 Motivation in Programming: Self-Determination Theory

	3 Thyone Extension
	3.1 Design Goals
	3.2 Thyone Features
	3.3 Instrumentation of the Extension

	4 Methodology
	4.1 Study Context
	4.2 Study Design and Procedure
	4.3 Participants
	4.4 Metrics
	4.5 Analysis

	5 Results
	5.1 Conversation behaviour in Thyone
	5.2 Thyone usage behaviour
	5.3 Learning motivation
	5.4 Student Performance

	6 Discussion
	6.1 Supporting co-regulation in online classrooms
	6.2 Supporting intrinsic motivation in programming in formal educational setups
	6.3 Challenges and Opportunities of Thyone's Features
	6.4 Study Limitations

	7 Conclusion
	Acknowledgments
	References

