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Abstract 23 

Despite the development of novel typing methods based on whole genome sequencing, most 24 

laboratories still rely on classical molecular methods for outbreak investigation or 25 

surveillance. Reference methods for Clostridium difficile include ribotyping and pulsed-field 26 

gel electrophoresis, which are band-comparing methods often difficult to establish and which 27 

require reference strain collections. Here we present the double locus sequence typing (DLST) 28 

scheme as a tool to analyse C. difficile isolates. Using a collection of clinical C. difficile 29 

isolates recovered during a one-year period, we evaluated the performance of DLST and 30 

compared the results to multilocus sequence typing (MLST), a sequence-based method that 31 

has been used to study the structure of bacterial populations and highlight major clones. 32 

DLST had a higher discriminatory power compared to MLST (Simpson's index of diversity of 33 

0.979 versus 0.965) and successfully identified all isolates of the study (100% typeability). 34 

Previous studies showed that discriminatory power of ribotyping was comparable to that of 35 

MLST, thus DLST might be more discriminatory than ribotyping. DLST is easy to establish 36 

and provides several advantages, including absence of DNA extraction (PCR is performed on 37 

colonies), no specific instrumentation, low cost and unambiguous definition of types. 38 

Moreover, implementation of DLST typing scheme on an Internet database, such previously 39 

done for Staphylococcus aureus and Pseudomonas aeruginosa (http://www.dlst.org), will 40 

allow users to easily obtain the DLST type by submitting directly sequencing files and will 41 

avoid problems associated with multiple databases. 42 

43 
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Introduction 44 

During the last few decades Clostridium difficile has arisen as a major human pathogen 45 

mainly associated with nosocomial infections [1-3]. Disruption of the gut microbiota 46 

homeostasis due to use of antibiotics allows C. difficile to colonize the colon and cause a 47 

whole range of intestinal diseases, ranging from mild diarrhea to life-threatening diseases like 48 

pseudomembranous colitis [3, 4]. Novel genotypes associated to more severe clinical 49 

outcomes and outbreaks were increasingly reported throughout Europe and United States [5, 50 

6].  51 

Molecular typing of clinical isolates, allowing rapid epidemiological tracking of C. 52 

difficile infections (CDI), could lead to development of more effective infection control 53 

measures that might reduce the spread of C. difficile between patients, yet reducing the risk of 54 

outbreaks. Recent advances in sequencing technology allowed the use of whole genome 55 

sequencing as tool for epidemiological tracking of CDI [7, 8]. Nevertheless, this technology 56 

remains restricted to few centers for research purposes and classical molecular typing 57 

methods remain essential for epidemiological investigations. The actual reference method for 58 

C. difficile is PCR-ribotyping, which relies on the amplification of variable DNA segments 59 

comprised between 16S and 23S rRNA genes of rrn operons [9]. After electrophoresis, DNA 60 

banding patterns are compared to those of reference strains and a PCR ribotype is assigned. 61 

The requirement of a reference strain collection and the lack of standardization make de novo 62 

implementation of this method challenging and comparison of results between laboratories 63 

often difficult. In contrast to band pattern methods, sequence-based methods are portable and 64 

definitive, offering good intra- and inter-laboratory reproducibility [10]. Multilocus sequence 65 

typing (MLST) uses the nucleotide sequence data of several (generally seven) housekeeping 66 

genes. This method is considered the gold standard to understand the global population 67 
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structure of a bacterial species [11, 12]. However, it is rather expensive and its discriminatory 68 

power is often relatively low to investigate local epidemiology. 69 

We recently developed a typing scheme involving single strand sequencing of small 70 

fragments of only two highly variable loci (double locus sequence typing, DLST). This typing 71 

scheme allowed us to investigate the epidemiology of two major nosocomial pathogens, 72 

Staphylococcus aureus and Pseudomonas aeruginosa [13, 14]. Using this approach, a 73 

definitive type is assigned to strains, based on the sequence of the two alleles, and typing 74 

results can be unambiguously compared between laboratories with the help of a web-based 75 

database (http://www.dlst.org). In this study, we developed the DLST typing scheme for C. 76 

difficile in order to investigate the epidemiology of this bacterium. To validate the method, 77 

DLST results were compared to MLST using a collection of strains isolated at the University 78 

Hospital of Lausanne during a one-year period.   79 
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Material and methods 80 

Bacterial isolates 81 

A total of 109 C. difficile clinical isolates (toxigenic and non toxigenic) were collected from 82 

hospitalized patients at the Lausanne University Hospital during the year 2012 83 

(Supplementary file 1). Stools of symptomatic patients were tested for the presence of C. 84 

difficile glutamate dehydrogenase (GDH) antigen and the A/B toxins with an 85 

immunochromatographic test (C. Diff. Quik Chek Complete®, Alere, Orlando, FL, USA). If 86 

positive, stools were cultured and C. difficile isolates were identified using standard 87 

microbiological methods. In addition to clinical isolates, a collection of 18 strains 88 

(Supplementary file 1) with known PCR ribotypes was included in the study (strains were 89 

kindly provided by F. Barbut, see Acknowledgments section). Presence of toxins was 90 

assessed by a 5-plex PCR assay targeting the toxin genes tcdA, tcdB, cdtA and cdtB, in 91 

addition to 16S rDNA as previously described [15]. 92 

Molecular procedures for DLST 93 

Primers for amplification of loci are shown in Table 1. When required, they were designed 94 

using Primer3 software (version 2.3.4, [16]). PCR amplification of the loci was performed 95 

with the KAPA 2G Robust HotStart PCR kit (KAPA Biosystems, Cape Town, South Africa). 96 

C. difficile colonies were used directly as template for PCR, by transferring a small amount of 97 

colony biomass in the reaction tubes using sterile toothpicks. PCR amplification was carried 98 

out in 30-μl reaction containing 1.25 U of Taq DNA polymerase, 1X Reaction Buffer B, 0.4 99 

μM of each primer, and 0.2 mM of each dNTP. PCR cycling conditions consisted of 3 min of 100 

initial denaturation at 95 °C, 30 cycles of 15 sec at 95 °C, 30 sec at 60 °C and 45 sec at 72 °C 101 

and a final extension step of 3 min at 72 °C. Sequencing reactions were performed with the 102 

Big Dye Terminator kit 3.1 (Applied Biosystems, Carlsbad, CA, USA) and purification of 103 
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sequencing products was performed with the BigDye XTerminator kit (Applied Biosystems), 104 

according to the manufacturer’s instructions. Purified samples were analyzed with the ABI 105 

3130xl sequencer (Applied Biosystems), according to standard protocols. For sequences of 106 

unsatisfactory quality, the whole procedure was repeated and if the absence of sequence was 107 

again obtained after the second assay, a null allele (0) was assigned to the isolate. 108 

Allele assignment for DLST 109 

Sequences were analyzed using the BioNumerics software version 7.0 (Applied Maths, Sint-110 

Martens-Latem, Belgium). Increasing allele numbers were assigned sequentially to new 111 

alleles. 112 

Comparison between DLST and MLST 113 

Chromosomal DNA for MLST analysis was extracted with the GenElute bacterial genomic 114 

DNA Kit (Sigma-Aldrich, Buchs, Switzerland), following manufacturer’s specifications. 115 

MLST was performed according to the typing scheme proposed by Griffiths et al. [17]. 116 

Sequencing was performed as for DLST (see above). 117 

Discriminatory power of MLST and DLST was evaluated by calculating the Simpson's 118 

index of diversity (ID), which is the probability that two strains sampled randomly in the 119 

collection belong to two different types [18]. An ID value of 1 would indicate that the typing 120 

method was able to distinguish each isolate and, conversely, an index of 0 would indicate that 121 

all isolates belong to an identical type. This coefficient was determined via an online tool 122 

(http://biophp.org/stats/discriminatory_power/demo.php). 123 

The degree of congruence between DLST and MLST was calculated using the 124 

adjusted Wallace coefficient (AW), which indicates the probability that two strains belonging 125 

to one type by one method will also be classified to a same type using the other method [19]. 126 

This coefficient was determined via an online tool 127 

(http://darwin.phyloviz.net/ComparingPartitions/). 128 
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Epidemiological investigation 129 

Probable epidemiological links between CDI cases were suspected when two or more patients 130 

were hospitalized in the same ward, under overlapping periods of time. If those patients 131 

carried isolates with the same DLST type, these epidemiological links were considered as 132 

possible.  133 
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Results 134 

Development of DLST scheme 135 

A literature search was conducted to identify highly variable loci present in C. difficile 136 

genomes [20, 21]. Four loci (TR6, TR10, A6 and C6) were selected and tested in silico on 137 

eight C. difficile genomes available in the NCBI database. Among these, TR6, TR10 and C6 138 

were retained for further analyses (locus A6 was not found in all strains). Specific primers 139 

located in conserved parts of C6, TR6 and TR10 loci were used to determine the sequence of 140 

the variable region containing the repeat units. As expected, amplicons of different sizes were 141 

obtained for each locus, confirming the genomic variability at these sites. Sequencing of 142 

amplicons was performed on both ends for a subset of strains and the best-performing 143 

sequencing direction (forward or reverse) was consequently chosen (Table 1). A trimming 144 

start located in the conserved region was determined for each locus and lengths of alleles were 145 

selected according to the variants that had the shortest variable region (Table 2). Allele 146 

sequences of C6, TR6 and TR10 loci and MLST types were successfully determined for all 147 

strains, with the exception of a null TR10 allele in one isolate (Table 3). 148 

The Simpson’s ID was calculated for combinations of two loci and the combination 149 

C6+TR6 was found to have the highest discriminatory power, almost the same as the three 150 

loci combined together (Table 3). Considering that C6 and TR6 had a typeability of 100%, 151 

their combination was the best candidate for the DLST scheme. 152 

The Adjusted Wallace indexes were calculated in order to compare the congruence 153 

between DLST and MLST (Table 3). The fact that AWDLST→MLST = 0.877 and AWMLST→DLST 154 

= 0.514 means that, if two strains are in the same cluster by DLST, they have about 88% 155 

chance of having the same MLST type, while conversely, the chance is only about 51%. This 156 

reflects the fact that, within our collection of strains, DLST was more discriminatory than 157 

MLST and that DLST may subdivide MLST types. Correspondence between DLST and 158 
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MLST types, as well as their distribution and presence/absence of toxin A, toxin B, and the 159 

binary toxin is shown in Table 4. For isolates with identical ribotypes (Supplementary table 160 

2), identical DLST types were also observed, with two exceptions: a single DLST variant was 161 

observed within the 4 isolates of ribotype 027 and within the 3 isolates of ribotype 078-126.  162 

Stability of DLST markers was evaluated by comparing two isolates from the same 163 

patient. For 11 patients, a second isolate was available after 11 to 103 days (mean 30 days, 164 

median 20 days). For 8 of them, the same DLST type was observed in both isolates, 165 

suggesting the stability of DLST markers over this period of time. For the remaining three 166 

patients, the second isolate showed a different DLST type and a different sequence type (ST), 167 

suggesting the presence of different strains rather than a genetic evolution over time. 168 

Analysis and confirmation of transmissions  169 

The newly developed DLST typing scheme was used to investigate possible C. difficile 170 

transmissions at the University Hospital of Lausanne during the year 2012. From a total of 98 171 

symptomatic patients diagnosed with toxigenic C. difficile stool samples, at least one isolate 172 

was successfully recovered in 58 patients (75 isolates in total). Epidemiological maps for 173 

these patients were constructed (Supplementary table 2) and 25 possible transmissions 174 

between patients could be highlighted. For 23 of them, different DLST types were observed in 175 

isolates from linked patients, ruling out transmission event. In only two cases, isolates with 176 

the same DLST (and ST) were found for patients with epidemiological links, supporting 177 

transmission between patients.  178 
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Discussion  179 

Despite the recent development of highly discriminatory typing methods based on whole 180 

genome sequencing, classical molecular typing remain the only available methods for most 181 

laboratories. Ideally, such typing methods should give fast and unambiguous results. In this 182 

study we developed a typing method based on two highly variable loci (DLST) and we used a 183 

local epidemiological collection of C. difficile isolates to evaluate the method. Our results 184 

showed that, using the C6 and TR6 loci, DLST was more discriminatory than MLST, and thus 185 

more discriminatory than ribotyping as previous studies showed that MLST had a similar 186 

discriminatory power as ribotyping [17]. The good congruence between DLST and MLST 187 

(AWDLST→MLST = 0.877) shows that our method is able to recognize important lineages, such 188 

as the ST1 (ribotype 027). The stability of DLST (same DLST in consecutive isolates over 189 

several weeks in the same patients) suggests no transmission occurred when two patients 190 

carry different DLST types. 191 

Investigation of possible C. difficile transmissions between patients in our hospital 192 

(CDI patients with overlapping period of hospitalization) with DLST results allowed us to 193 

rule out 23 possible transmission events and to confirm only two. Therefore, suspected events 194 

of transmission based on epidemiological data can easily be investigated with DLST. 195 

One advantage of DLST is that it assigns a definite characterization of types, allowing 196 

ongoing surveillance and thus an early detection of outbreaks or increase frequency of 197 

transmission events. However, during the 1-year period of investigation in our hospital, the 198 

number of transmissions must have been underestimated. First, for nearly half of CDI 199 

patients, no isolate was obtained and could represent the source or the recipient of a 200 

transmission event. Second, recent studies showed that a large percentage of new CDI cases 201 

resulted of transmission from asymptomatic cases [7, 22, 23]. Third, the persistence of C. 202 

difficile in the environment might further complicate the establishment of epidemiological 203 
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links between patients. Among nine patients belonging to the predominant DLST type in our 204 

collection, five were found in the same ward but with no apparent epidemiological link 205 

supporting the hypothesis of an environmental reservoir. 206 

 Interestingly, we did not observe the international hypervirulent clone rt027 in our 207 

collection of clinical isolates, suggesting this clone did not reached our hospital yet. However, 208 

7 patients carried the hypervirulent clone ST11 (rt078), for which four DLST types were 209 

found (4-4, 5-4, 17-5 and 17-34) suggesting this clone did not cause outbreak. 210 

Ribotyping is the standard typing method to study the molecular epidemiology of C. 211 

difficile in Europe [24, 25]. However, the need of a reference strain collection and comparison 212 

of banding patterns to discriminate isolates make the setting of this method challenging. We 213 

developed a DLST typing method that provides several advantages previously shown [13] 214 

including low cost, high portability and definitive typing. Moreover, we were able to avoid 215 

the DNA extraction step, by performing the PCR amplification of the two loci directly on C. 216 

difficile colonies. Standardization of the results can be easily simplified by the 217 

implementation of the typing scheme on a centralized Internet database assigning the DLST 218 

alleles such it has been done for DLST of Staphylococcus aureus and Pseudomonas 219 

aeruginosa (http://www.dlst.org). Thus, the C. difficile DLST typing scheme might represent 220 

a valuable alternative for existing molecular typing of this bacterium and should be tested to 221 

more diverse strain collections to confirm its promising value. 222 
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