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Abstract

Recent advances in sensor technologies, field methodologies, numerical model-

ing, and inversion approaches have contributed to unprecedented imaging of

hydrogeological properties and detailed predictions at multiple temporal and

spatial scales. Nevertheless, imaging results and predictions will always re-

main imprecise, which calls for appropriate uncertainty quantification (UQ). In

this paper, we outline selected methodological developments together with pi-

oneering UQ applications in hydrogeology and hydrogeophysics. The applied

mathematics and statistics literature is not easy to penetrate and this review

aims at helping hydrogeologists and hydrogeophysicists to identify suitable ap-

proaches for UQ that can be applied and further developed to their specific

needs. To bypass the tremendous computational costs associated with forward

UQ based on full-physics simulations, we discuss proxy-modeling strategies and

multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian in-

version for non-linear and non-Gaussian state-space problems and discuss how

Sequential Monte Carlo may become a practical alternative. We also describe
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strategies to account for forward modeling errors in Bayesian inversion. Finally,

we consider hydrogeophysical inversion, where petrophysical uncertainty is of-

ten ignored leading to overconfident parameter estimation. The high parameter

and data dimensions encountered in hydrogeological and geophysical problems

make UQ a complicated and important challenge that has only been partially

addressed to date.

Keywords: Uncertainty quantification, hydrogeology, hydrogeophysics,

inversion, proxy models, modeling errors, petrophysics

1. Introduction

The subsurface environment is highly heterogeneous and non-linear coupled

processes take place at multiple spatial and temporal scales. Valuable informa-

tion about subsurface structures and processes can be obtained from borehole

measurements, outcrops, laboratory analysis of field samples, and from geo-5

physical and hydrogeological experiments; however, this information is largely

incomplete. It is critical that basic scientific studies and management decisions

for increasingly complex engineering challenges (e.g., enhanced geothermal sys-

tems, carbon capture and storage, nuclear waste repositories, aquifer storage

and recovery, remediation of contaminated sites) account for this incomplete-10

ness in our system understanding. This enables us to consider the full range

of possible future outcomes, to base scientific findings on solid grounds and to

target future investigations. Nevertheless, uncertainty quantification (UQ) is

highly challenging because it attempts to quantify what we do not know. For

example, it is extremely difficult to properly describe prior information about a15

hydrogeological system, to accurately quantify complex error characteristics in

our data, and to quantify model errors caused by incomplete physical, chemical,

and biological theories.

Eloquent arguments have been put forward to explain why numerical models

in the Earth Sciences cannot be validated [1, 2]. These arguments are based on20

Popperian viewpoints [3] and on the recognition that natural subsurface systems
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are open and inherently under-sampled. This implies that UQ in the Earth

Sciences can never be considered to be complete. Instead, it should be viewed as

a partial assessment that is valid for a given set of prior assumptions, hypotheses,

and simplifications. With this in mind, UQ in terms of probability distributions,25

often characterized in terms of probability density functions (pdfs), can still

greatly help to make informed decisions regarding, for example, strategies for

mitigating the effects of climate change, how to best exploit natural resources,

how to minimize exposure to environmental pollutants, and how to protect

environmental goods such as clean groundwater.30

This review focuses on UQ in hydrogeology and hydrogeophysics. Using the

term UQ, we refer both to (i) the forward UQ problem, namely how to char-

acterize the distribution of output variables of interest (e.g., to determine the

risk of contamination in a water supply well) given a distribution of input vari-

ables (e.g., subsurface material properties); and (ii) the solution of the Bayesian35

inverse UQ problem, whereby prior knowledge is merged with (noisy) observa-

tional data and numerical modeling in order to obtain a posterior distribution

for the input variables. Note that it is beyond the scope of this work to make

an exhaustive review of UQ or to present all existing and potential applications

in hydrogeology and hydrogeophysics. Rather, we try to connect a number of40

recent methodological advances in UQ with selected contemporary challenges

in hydrogeology and hydrogeophysics. The mathematical development and the

description of the methods are kept to a minimum and ample references are

provided for further reading. We emphasize general methods that do not nec-

essarily rely upon linearizations or Gaussian assumptions. The price to pay45

for this generality is a substantial increase in computational cost, which is re-

flected by the fact that more approximate approaches are presently favoured

(e.g., Ensemble Kalman filters [4], quasi-static linear inversion [5]). Clearly,

these approximate methods are not only used because they are comparatively

fast, but also because they have shown to produce useful and robust results in50

a wide range of application areas.

After introducing the main concepts and notations (section 2), we discuss
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the definition of prior distributions for spatially distributed parameter fields

(section 3.1). This is followed by a discussion on the role of proxy models in

forward UQ (section 3.2), after which we present how Multi-Level Monte Carlo55

and related techniques can be used within forward UQ to propagate prior uncer-

tainties into quantities of interest (section 3.3). Next, we consider the Bayesian

inverse problem where we examine likelihood functions (section 4.1) and dis-

cuss sampling approaches with an emphasis on particle methods (section 4.2).

This is followed by an outlook towards how to best account for model errors60

(section 5.1) and petrophysical-relationship uncertainty in hydrogeophysical in-

versions (section 5.2).

2. Main concepts and notations

In hydrogeology, it is often desirable to predict and characterize uncertainties

on Quantities of Interest (QoI) given a set of inputs described by a multivariate65

parameter u. Depending on the problem, u may refer to a vector, a field, a more

general function, or combinations thereof; here, without loss of generality, we

use the “field” as a generic term to denote u. As an example, u may represent

a permeability field and a contaminant source region, and the QoI may be

the contaminant concentration in a water supply well at some future time. In70

this case, the forward model that links the two would typically be a numerical

solver of the advection-dispersion equation for some set of (possibly uncertain)

boundary and initial conditions. Herein, u is treated either as a discretized

(finite-dimensional) or continuous (infinite-dimensional) object. This distinction

might seem superfluous at first because discretization is always needed at some75

stage when dealing with numerical forward models; however, considering an

infinite-dimensional formalism can be highly relevant as discussed later.

A given QoI, denoted by Q, is a function of the output from the considered

solution map (in practice, the output of a numerical simulator), formalized as a

deterministic function R : u 7→ R(u) that is generally non-linear. Here, we use80

Q for the function mapping u to Q. This function can be formulated as Q̃ ◦ R
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for some function Q̃ as Q is assumed to depend on u solely via R(u) so that

Q = Q(u) = Q̃(R(u)).

In essence, the probabilistic approach to forward UQ consists of endowing

the considered set of u’s with a probability distribution µ0, and propagating this85

distribution to Q by using uncertainty-propagation techniques. The standard

means of doing this, referred to as the basic Monte-Carlo method, consists of

drawing a sample {u1, . . . ,uN} from µ0, calculating the corresponding sample

{Q(u1), . . . ,Q(uN )}, and empirically approximating expectations of functions

of Q under the discrete probability distribution 1
N

∑N
i=1 δQ(ui).90

Practical and theoretical work over the past decade has focused on how to

best account for imperfect numerical modeling (see section 3.2), for instance via

error models, and how to take advantage of multiple numerical models with dif-

ferent levels of fidelity and computation times (see section 3.3). Overall, propa-

gating uncertainties in the inputs, accounting for imperfect numerical modeling,95

and addressing real-world problems using statistical procedures and numerical

models are broadly considered as part of uncertainty propagation or forward

UQ.

Inverse problems have played an important role in applied mathematics for

more than a century and are of crucial importance in hydrogeology (e.g., [6, 7, 8])100

and geophysics (e.g., [9, 10, 11]). The starting point when solving an inverse

problem is to write the relation linking observed data y to model parameters u

y = G(u) + ε, (1)

where the forward map G : u 7→ G(u) can be viewed as the combination of a

solution map R and an observation map O that returns n ≥ 1 functionals of

R(u) (typically linear forms, such as point-wise evaluations at specific locations105

and/or times), and ε typically stands for observational noise. In simpler terms,

O extracts from the output of the solution map the information that is needed

to calculate the forward responses G(u) = O(R(u)), that are to be compared

with the observed data y.

For example, u may stand for lithological properties of an aquifer, with110
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R returning the space-time evolution of contaminant concentration within this

aquifer. The corresponding O could indicate concentrations at specific well

locations and times, and the inverse problem would then consist of recovering the

unknown lithology from noisy measurements y at these locations. In practice,

G is the best possible numerical prediction of an experiment, but it is never a115

perfect map in a strict mathematical sense. This implies that virtually all G’s

in the geosciences could be considered as proxy models (see section 3.2) and we

use G herein when referring to high-fidelity forward simulations. While we do

not explicitly consider ε terms that incorporate model errors at this stage, the

topic is implicitly tackled in forthcoming sections on likelihood functions and120

error modeling.

The inherent inaccuracies of forward solvers G have two origins. First, geo-

logical and physical heterogeneity are present at all scales, but numerical forward

solvers can only handle heterogeneity up to a given spatial (e.g., model cell size)

or spectral (e.g., truncation of spherical harmonics) resolution. The impact of125

limited resolution on simulation results depends strongly on the physics involved.

For example, predicted gravimetric or groundwater-level responses will be com-

paratively insensitive, whereas seismic or ground penetrating radar (GPR) full-

waveform modeling or tracer transport simulation results may be highly sensi-

tive [12]. Second, considerable simplifications of the underlying physics are often130

made, even when using the most advanced simulation algorithms. The needed

simplifications and their impacts are strongly problem dependent. For instance,

gravimetric modeling can be performed using physical descriptions that are

highly accurate, whereas GPR forward modeling typically does not account for

the well-known frequency-dependence of subsurface electrical properties or the135

finite sizes of transmitter and receiver antennas [13]. Furthermore, the accuracy

of G for a given physical description and model domain depends also on the

numerical schemes (e.g., in time) and equation solvers (e.g., iterative, direct)

employed. Despite these simplifications, evaluating G(u) (i.e., solving the for-

ward problem) often leads to significant computing times (e.g., [14, 15]), which140

limits the number of forward simulations that can be practically considered.
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In hydrogeology and geophysics, u is generally high-dimensional, G is costly

to evaluate and non-linear, and the size of y is limited by data acquisition

constraints. Bayesian inversion (the inverse UQ problem) provides a framework

to make inferences on u from observations y by formulating and inferring the145

posterior distribution µy. Since analytical derivations of posterior distributions

are generally intractable, Bayesian inverse problems call for Markov chain Monte

Carlo (MCMC) and related sampling procedures (see section 4.2). Below, we

first focus on the topic of defining the prior µ0 (i.e., a probabilistic description

of model parameter values and their relations before considering the observed150

data); an essential component both in uncertainty propagation (forward UQ)

and Bayesian inversion (inverse UQ).

3. Prior distributions and forward UQ

3.1. Prior distributions on parameter fields

Defining a prior distribution, µ0, for a spatial parameter field u is a chal-155

lenging task. Since the advent of geostatistics, and notably the seminal works

of Krige [16] and Matheron [17], a central approach underlying the prediction

of spatially distributed variables has been to view the true but unknown field of

interest as one realization of a random field (i.e., a random process with multi-

variate index space). In basic versions of kriging, no distributional assumptions160

on the field were made beyond the existence of moments. However, the Gaussian

assumption delivers a way to express the simple-kriging equations in terms of

conditional expectation and variance, thus allowing for conditional simulations

[18, 19]. With time, this initial Gaussian model was further developed to ac-

count for positivity (e.g., with log-Gaussian fields) and other constraints [20, 21].165

Connections between kriging, Gaussian random fields, and Bayesian inference

have been made notably in [22, 23, 24, 25, 11, 26]. This has led to a number

of developments, for instance, hierarchical models that include distributions on

hyperparameters describing Gaussian process models [27, 28]. Throughout the

paper, we use the notions of random processes and fields exchangeably. Note170
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also that the Gaussian-random-field terminology is equivalent to what is often

referred to as multi-Gaussian in the geosciences.

In mathematics, Gaussian-related priors have been recently revived through

their omnipresence in the blossoming field of UQ. Due to their favorable proper-

ties and well developed mathematical theory, Gaussian random fields, or equiva-175

lently Gaussian measures on function spaces [29], have been extensively used in

the study of stochastic partial differential equations (PDEs) [30, 31] and PDEs

with random coefficients (e.g., [32]). Recent contributions to the stochastic

PDE approach to Gaussian-random-field modelling have highlighted its ability

to cope with large data sets and to encode non-stationarity in a powerful way180

[33, 34, 35, 36]. Also, theoretical aspects of infinite-dimensional Bayesian inverse

problems with Gaussian-random-field priors have been investigated [37, 38, 39],

where µ0 is specified in terms of random series u = φ0 +
∑+∞
j=1 ujφj , with φj

denoting functions in a Banach space (i.e., a complete normed vector space) and

uj Gaussian random coefficients. Non-Gaussian extensions (e.g., for uniformly185

distributed uj ’s) have also been considered [40, 41, 42].

The impact of non-Gaussian property fields on stochastic forward simula-

tions have been investigated (e.g., [43]) with results illustrating that covari-

ances are insufficient to characterize geologically realistic subsurface properties.

To address this, multiple-point statistics (MPS) simulation has arisen as a new190

paradigm that has deeply influenced modern geostatistics [44, 45, 46, 47, 48].

Connections between MPS and Markov random fields [49, 50], texture synthesis

developed for computer graphics purposes [51], and universal kriging [52] have

been investigated. [53] studied the ability of MPS to reproduce statistical prop-

erties of a random field by averaging over a large number of MPS realizations195

obtained from a single training image. Exact statistical recovery was only shown

to be possible when the training image was an ‘infinitely” large realization of

a stationary and ergodic random field (i.e., statistical properties do not change

in space and statistics can be recovered from one realization). The influence of

Gaussian-random-field and training-image-based priors on the solution of geo-200

physical inverse problems was examined in [54]. It was found that complex
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prior information not only enhances the geological realism of posterior model

realizations, but also renders the inference problem easier and faster to solve

compared to the case of non-constraining priors. In field applications, the main

challenge in applying MPS is how to obtain representative training images. For205

recent reviews on geologically realistic prior model definitions and inversion, we

refer to [55, 56].

The process of choosing realistic and implementable prior distributions is a

crucial yet rarely addressed topic that is often restricted to mean and covariance

selection for Gaussian random fields or training image definition in MPS. In all210

instances, choices must be made that may dramatically influence forward UQ

and the posterior distributions obtained through Bayesian inversion. Already

for the Gaussian case, designing the covariance function (kernel) is a delicate

task that implies a range of assumptions on the physical attributes for which

one is inverting. For instance, the choice of a specific family of covariance215

function automatically defines the spatial regularity (smoothness class) of each

realization drawn from the prior distribution and, hence, from the posterior

distribution as well (see [57] for results in the Gaussian case and beyond). The

impact of the prior is clearly shown in [54] who inverted the same synthetic data

set using different prior models (Fig. 1). It is seen that the spatial statistics are220

largely determined by the prior model, while regions of predominantly high- or

low velocities are determined by the data used in the inversion.

3.2. Proxy models for forward UQ

Proxy or surrogate models are often used when the full or high-fidelity for-

ward response is too expensive to be systematically used in computations. They225

are commonly employed when a large number of forward simulations are re-

quired for UQ or sensitivity analysis applications. Proxy models can be grouped

into two broad categories: lower-fidelity models and metamodels. Lower-fidelity

proxies are typically physically-based; however, they contain less detail and

therefore offer a less accurate, but cheaper-to-run, means of computing forward230

responses than their high-fidelity counterparts. Model simplifications are gen-
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erally made by (i) considering only some of the physics involved, either through

approximations or by explicitly ignoring particular elements (e.g., [58]); (ii) re-

ducing the numerical accuracy of the forward model response by, for example,

coarsening the spatial discretization (e.g., [59]) or using model-order-reduction235

(MOR) approaches (e.g., [60]). In contrast, metamodels are usually not linked

to the physics of the problem at hand. Instead, they are based on data-driven

approximations of the forward model response using a relatively small number

of high-fidelity simulation outputs. Methods that fall into the latter category

notably include response surface modeling (RSM) (e.g., [61]), polynomial chaos240

expansion (PCE) (e.g., [62]), artificial neural networks (e.g., [63]), radial basis

functions (e.g., [64]), and Gaussian process (GP) models [65, 66].

Hydrogeology has seen significant use of proxy models for forward UQ and

sensitivity analysis. Being physically-based, lower-fidelity models have the ad-

vantage over metamodels in that they may better emulate the original response245

in unexplored regions of the input parameter space and are generally less sus-

ceptible to problems in high parameter dimensions (e.g., [67]). In this regard,

[68, 69] employ simplified-physics proxies for subsurface flow and transport to-

gether with distance and kernel methods (e.g., [70]) in order to select, from a

large number of permeability fields, a small subset of representative fields upon250

which to run high-fidelity forward simulations.

In terms of metamodels, many studies have focused on the application of

PCE-based methods to hydrogeological problems (e.g., [71, 72]). Basically, a

PCE represents the response of a complex system by a polynomial expansion

with respect to the input random variables. When using PCEs, polynomials255

must be chosen that form an orthogonal basis with respect to the assumed prob-

ability distribution of input random variables. An important advantage of PCE

over other metamodels is that it delivers polynomial approximations that are

fast to evaluate and can lead to closed-form expressions (e.g., for Sobol’ sensitiv-

ity indices) provided that the orthogonal polynomial basis functions are chosen260

accordingly [73]. Initial work was limited to low-dimensional problems because

of the marked increase in the required number of PCE terms with the number
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of input parameters. However, recent applications involving sparse grids and

truncated spectral expansions of the input random fields report successes with

problems involving hundreds of model parameters. Nevertheless, the effective-265

ness of PCE techniques deteriorates when dealing with input random fields that

are rough and/or have short correlation lengths. Hydrogeological applications

of metamodeling with Gaussian process models include [74] that considered a

hydrogeological transport problem. Here, the use of Gaussian process models

were shown to outperform boosting regression trees and linear regression on270

most considered outputs. Another example is [75], in which a Gaussian process

model incorporating proxy simulations and distance information was proposed

for a sequential inversion problem where the candidate inputs were generated

using MPS simulation.

3.3. Forward UQ with Multi-level Monte Carlo275

Consider the forward problem of reliably computing the expectation of some

quantity of interest Q involving the solution of the forward model, Q = Q(u),

where u is assumed random with prior distribution µ0 (hence Q is a random

variable). Examples of QoIs could be tracer breakthrough curves or contami-

nant concentrations for an assumed prior distribution of lithological properties280

(e.g., porosity, permeability). In practice, approximations of Q(u) can only

be obtained by numerical simulations that inevitably require discretization or

physical simplifications (see section 2). We denote by Q`(u) any such numerical

solution, where ` denotes the resolution level. The latter may refer to the spatial

grid discretization and/or time step increments used in the forward simulator,285

or any other type of model simplification.

In recent years, the so-called Multi Level Monte Carlo (MLMC) method has

been established as a computationally efficient sampling method that builds

upon the classical Monte Carlo technique. It was first proposed in [76] for appli-

cations in parametric integration, and then extended to weak approximations of290

stochastic differential equations in [77] together with a full complexity analysis.

The idea behind MLMC is to introduce multiple levels ` = 0, . . . , L of increasing
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resolution (accuracy) with corresponding numerical solutions Q0 = Q0(u),Q1 =

Q1(u), . . . ,QL = QL(u). While a classical Monte-Carlo approach would sim-

ply approximate the expected value of QL on a sufficiently high-resolution level295

L using an ensemble-average over a sample of independent realizations from

µ0, the MLMC method relies upon the simple observation that, by linearity of

expectation,

E [Q] ≈ E [QL] =

L∑
`=1

E [Q` −Q`−1] + E [Q0] , (2)

and computes each expectation in the sum by statistically independent Monte-

Carlo sampling. Thanks to independence, the overall variance of the MLMC300

estimator is given by the sum of the variances of each Monte Carlo estimator. If

Q` converges to a limit value as the resolution level ` increases, the variance of

(Q`−Q`−1) will be progressively smaller as ` increases. Dramatic computational

savings can thus be obtained by approximating the quantities E [Q` −Q`−1]

with smaller sample sizes at higher, and computationally more costly, resolution305

levels.

The application of MLMC methods to forward UQ problems involving PDE

models with random parameters has been investigated from the mathematical

point of view [78, 79, 80, 81, 82, 83]. Recent work [84, 85, 86, 87, 88] has

also explored the possibility of replacing the Monte-Carlo sampler on each level310

by other formulas, such as sparse polynomial or quasi-Monte-Carlo quadra-

ture. Multi-Index Monte Carlo is a generalization of MLMC that was recently

proposed [89] to accommodate and treat independently multiple resolution pa-

rameters; potentially, this leads to substantial improvements over MLMC. This

idea has been extended to sparse polynomial quadratures [88, 90].315

Despite recent efforts, performing accurate forward UQ analyses for high-

dimensional hydrogeological and geophysical problems remains a challenging

task and further advances are needed with respect to the above-mentioned

methods to have a strong impact on applications. Indeed, in hydrogeology,

the use of MLMC has been so far limited [91, 92, 93, 94]. For example, [94]320

considered water flooding of an initially saturated oil reservoir characterized
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by a Gaussian-random-field prior describing the logarithm of permeability. Us-

ing different quantities of interest and a pre-defined approximation error, they

investigated the performance of MC, MLMC with a grid hierarchy of five lev-

els, and an alternative MLMC approach based on a solver hierarchy using fast325

streamline-based and full reservoir-simulator predictions. With Q representing

the mean saturation field at a given time, they found that MLMC with grid

hierarchy and with solver hierarchy were 28.7 and 3.3 times faster than MC,

respectively (Fig. 2). The authors argue that the solver-based hierarchy might

be more practical when boundary conditions cannot be accurately defined with330

a coarse mesh. Combinations of MLMC techniques and metamodels based on

sparse-grid PCE approximations have also been proposed [95] to further acceler-

ate the computation of expectations in forward UQ problems with rough input

permeability fields.

4. Bayesian inversion335

It is well understood [96] that inverse problems are ill-posed unless the search

space is drastically restricted. Standard deterministic inversion approaches pro-

ceed by penalizing a measure of model structure (e.g., relying on gradients,

curvatures, or deviations from a reference model), thereby leading to a unique

“regularized” solution. Deterministic approaches are popular because of their340

simplicity and the efficiency of the associated numerical methods. Although ob-

taining a unique solution is appealing, these methods do not provide a reliable

assessment of uncertainty.

For a finite set of model parameters, a general formulation of the inverse

problem is found in the work of [97], wherein the solution of the problem is345

described as the conjunction of two states of information: (i) a density function

describing the prior information about the system, including both the outputs

of measurement instruments (i.e., the data) and prior assumptions about model

parameter values; and (ii) a density function describing theoretical relationships

between model parameters and data. This framework, which naturally accounts350
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for forward modeling errors, makes it possible to solve the majority of non-linear

inverse problems provided that appropriate density functions and the necessary

computing resources are available.

Here we focus on the case when G is deterministic and we follow a classical

Bayesian approach, which is extendable to infinite-dimensional model parame-355

ter spaces. This approach consists in combining a prior probability distribution

µ0 of u with observed data in order to obtain the posterior distribution, µy. In d-

dimensional cases where µ0 and the probability distribution ν0 of the error term

ε have probability densities ρ0 and ρ with respect to some given measures (e.g.,

Lebesgue measures on R` with ` = d, n, respectively), one denotes by likelihood360

the function u 7→ L(u;y) := ρ(y−G(u)). Note that the likelihood is also often

noted L(u|y), but should generally not be confused with the conditional density

of u knowing y. Assuming further that Z :=
∫
Rd ρ(y− G(u))ρ0(u)du > 0 then

µy has the posterior density (Bayes’ theorem)

ρy(u) =
1

Z
ρ(y − G(u))ρ0(u) =

1

Z
L(u;y)ρ0(u), (3)

as recalled in [42] and generalized to the infinite-dimensional case as follows.365

Provided that the translate of ν0 by G(u), νu, possesses a density dνu
dν0

(y) =

exp(−Φ(u;y)) with respect to ν0 for some function Φ referred to as potential,

and assuming that Z :=
∫

exp(−Φ(u;y))dµ0(u) > 0, then the posterior distri-

bution µy possesses a density with respect to µ0 with:

dµy

dµ0
(u) =

1

Z
exp(−Φ(u;y)). (4)

In other words, the posterior distribution can be obtained from the prior distri-370

bution via reweighting. Following [42], in the case where ν0 = N (0,Γ) for some

n× n invertible covariance matrix Γ, the potential function is

Φ(u;y) =
1

2
||Γ−1/2(y − G(u))||2Rn −

1

2
||Γ−1/2y||2Rn . (5)

Analytical formulations for density values and more particularly density ratios

make it possible to apply the Metropolis-Hastings algorithm and to generalize it

to infinite-dimensional settings. Quoting [42], it is expected that “formulating375
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the theory and algorithms on the underlying infinite dimensional space [...] en-

ables constructing algorithms which perform well under mesh refinement, since

they are inherently well-defined in infinite dimensions.”

4.1. Likelihoods in geoscientific inverse problems

Two important components that must be specified before inferring the pos-380

terior distribution µy are the forward map G and the noise distribution ν0, which

together determine the likelihood function L(·;y) for the finite-dimensional case

and/or the potential function Φ(·;y) for the infinite-dimensional case. These

functions are used to evaluate how likely a given model realization is given the

observed data and its noise characteristics. To allow for a large number of385

forward simulations (as needed for inverse-problem solving), it is often neces-

sary to favor computational speed and make concessions in terms of simulation

accuracy. The appropriate trade-off between time-consuming high-fidelity sim-

ulations and many fast, but approximate, solutions is problem dependent. Op-

timal determination of this trade-off is an important topic that we do not treat390

herein. Presently, the vast majority of Bayesian inversion studies in the geo-

sciences implicitly assume that forward simulators are perfect and hence that

modeling errors are negligible (i.e., only observational errors are considered).

When acknowledged, the modeling errors are usually considered to be part of

ν0 [98]. Alternative approaches exist and formal ways to account for proxy er-395

rors are discussed in section 5.1. The latter often proceed by an adaptation of

the likelihood function by correcting proxy simulations with an error model in

order to obtain error-corrected simulations with a quality similar to that of high-

fidelity simulations (Fig. 3). There has been limited use of MLMC techniques in

Bayesian inversion. The works [99, 100] have combined the multilevel idea with400

Metropolis-Hastings-type MCMC and, very recently, [101] applied the multilevel

idea to Langevin dynamics to sample from a given distribution. An alternative

approach to compute posterior expectations of QoIs, which does not resort to

MCMC sampling but rather relies on standard MLMC or Quasi-Monte-Carlo

integration, was proposed in [102].405
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Observational errors are most often treated as independent and identically

distributed (iid) random variables with zero mean. These errors are typically

considered to stem from Gaussian or Laplace distributions, partly because the

corresponding likelihood functions have simple forms that are easy to manipu-

late. More advanced likelihood descriptions have been proposed. For example,410

[103] introduced and inverted for parameters describing a likelihood function

with residual errors that are heteroscedastic and non-Gaussian with varying

degrees of kurtosis and skewness. Hierarchical Bayes includes approaches in

which parameters describing the likelihood function are considered uncertain.

It can be a very powerful approach to relax assumptions about parameter values415

describing the likelihood function, but it still requires a certain class of noise

model to be selected for which the corresponding parameters are inferred. It is

common to account for the combined effects of model and data errors in the like-

lihood function. For instance, [104] estimated hierarchical autoregressive error

models that enable efficient handling of correlated errors at low computational420

costs (e.g., no need to invert the covariance matrix or compute its determinant

in order to evaluate the likelihood function). In [105], the authors estimated a

correlated error model and used it in the likelihood function to account for errors

related to local heterogeneities close to GPR antennas. Using crosshole GPR

data, [98] demonstrated how to practically sample a model-error distribution,425

which was found to be well described by a correlated multivariate Gaussian dis-

tribution. They demonstrated severe bias in the inferred posterior distributions

when modeling errors were ignored.

4.2. Sampling: Markov chain Monte Carlo and particle filters

When performing Bayesian inference for complex statistical models, it is430

necessary to approximate numerically the resulting posterior distribution as it

is typically intractable to compute analytically. For more than half a century,

much effort has been placed on deriving sampling schemes for posterior distri-

butions by relying on Markov chain Monte Carlo (MCMC) methods (see [106]

and [107] for comprehensive reviews of the literature and [56] for the specific435
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case of informed spatial priors). These schemes generally consist of sequential

perturbations to candidate inputs u followed by either acceptance or rejection

of the proposed perturbations with a probability that involves the likelihood

ratio between the new and the old u and their prior probability ratio. Standard

algorithms such as the Metropolis-Hastings algorithm and the Gibbs sampler440

have become very popular but they can be highly inefficient if the proposal

distributions are not well-chosen and/or if the target (posterior) distribution

exhibits complex patterns of dependence. A substantial research effort has thus

been placed on making MCMC approaches more efficient, for instance, via par-

allel tempering [108], population MCMC [109] and/or through derivative-based445

perturbations with Metropolis-adjusted Langevin algorithms and Hamiltonian

MCMC [110]. In infinite-dimensional settings, adaptations of MCMC schemes

have been touched upon, notably in [111], and the links between performance

and the spectral gap that controls the rate of exponential decay to µy have been

established in [112].450

MCMC methods for Bayesian inverse problems are suitable when we are

interested in inferring parameters, for example, a hidden (unobserved) static

random field from data. However, there is also a wealth of data assimilation

problems in hydrogeological and geophysical applications that can be recast

as statistical inference problems for non-linear and non-Gaussian state-space455

models [113, 4, 114, 115, 116, 117], with some of the published methods (e.g.,

[118, 119]) being applicable to complex prior information (e.g., MPS). We dis-

cuss below sampling techniques that have been developed in this context. These

methods do not make any distributional assumptions on the prior distribution,

but we highlight that it still remains to be investigated how they would perform460

within a MPS context.

Formally, a state-space model is defined by a discrete-time RnX−valued

hidden Markov process (Xt)t≥1 such that X1 ∼ pθ (·) and Xt| (Xt−1 = x) ∼

fθ ( ·|x) for t ≥ 2 and we collect Rny−valued observations (Yt)t≥1 which are

conditionally independent given (Xt)t≥1 and distributed according to Yt| (Xt = x) ∼465

gθ ( ·|x) . For example, if we assume that Yt = φ(Xt) + εt where εt is a mul-
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tivariate standard normal noise then g(y|x) is the multivariate normal density

of argument y, mean φ(x) and identity covariance. Here θ ∈ Θ denotes the

parameters of the model. In the case of a static random field to be inferred,

θ = u. When θ is known, inference about (Xt)t≥1 is referred to as state estima-470

tion. On-line inference (filtering) refers to sequential assimilation of the data as

they become available. In batch/off-line inference (smoothing), the estimated

states are also affected by the data acquired at later times. When θ also needs

to be estimated/calibrated from observations, this is referred to as parameter

estimation and it can also be performed either on-line or off-line. In hydrogeol-475

ogy, Yt could represent salinity measurements within a coastal aquifer at some

specific time, Xt the corresponding salinity distribution throughout the same

aquifer, and θ an unknown hydraulic conductivity distribution and boundary

conditions.

Standard MCMC methods can be used in this context, but it is often dif-480

ficult to build efficient algorithms. In many fields such as computer vision,

econometrics and robotics, particle methods, also known as Sequential Monte

Carlo (SMC) methods, have emerged as the most successful class of techniques

to address state estimation problems as they are easy to implement, suitable

for both filtering and smoothing, admit parallel implementation and addition-485

ally provide asymptotically consistent state estimates. In its most generic form,

SMC consists of initiating particles from an importance distribution at time

zero, resampling them to ensure that they have the same weight, using the

state associated with each particle to run a forward solver and analyze the

resulting particle weight, and resampling until the particles at the new time490

have the same weight [120]. On- and off-line parameter estimation procedures

building upon these state-estimation procedures have also been proposed; see

[121] for a recent comprehensive review. An illustration of hydrogeophysical

fully-coupled inversion using a particle filter [114] is given in Figure 4. Other

low-dimensional applications to hydrogeological and hydrogeophysical problems495

include [113, 122, 123, 115].

Nevertheless, SMC methods have not yet become prominent in hydrogeol-
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ogy. This is because Xt often corresponds to a high-dimensional spatial field

and the variance of SMC state estimates is typically exponential in the state

dimension nX where routinely nX > 103. This problem is often referred to in500

the literature as the curse of dimensionality for particle methods [124]. Hence,

practitioners rely on alternative approximation techniques such as the Ensemble

Kalman filter (EnKF) [4, 116, 117]. Empirically, the EnKF scales much better

with nX than particle methods, but relies on potentially crude Gaussian ap-

proximations of the posterior distributions of interest. A non-standard particle505

method known as the equivalent weights particle filter has also been proposed

and has shown empirical success in addressing high-dimensional data assimi-

lation problems [125]. However, it does not provide consistent state estimates

and it is unclear how to control the error introduced by this scheme. The need

for novel particle methods that can scale to high-dimensional settings has been510

recognized and there is a fast emerging literature addressing these problems

in data assimilation and statistics [126, 127, 128, 129]. A detailed theoreti-

cal analysis of such a scheme has been proposed in [130] where it was shown

rigourously that it can overcome the curse of dimensionality. These methods

provide asymptotically biased state and parameter estimates, the bias being515

controlled under suitable regularity assumptions, or consistent estimates whose

mean square errors go to zero at a slower rate than the usual 1/N Monte Carlo

rate [130, 131]. The main idea behind these techniques is to ignore long-range

dependencies when performing Bayes updates in a filtering procedure, an idea

borrowed from the ensemble Kalman filter literature where it is referred to as520

localization [4]. The components of the state are partitioned into blocks and

resampled using only the corresponding observations. Some of these methods

are promising for high-dimensional hydrogeological and hydrogeophysical state

and parameter estimation although several challenges remain to be addressed.

First, these methods introduce a non-homogeneous bias amongst state com-525

ponent estimates, which is damaging as Xt often corresponds to a spatial field

(e.g., salinity or soil moisture distribution) in hydrogeological applications [129].

Second, the smoothing and parameter estimation procedures developed in [131]
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cannot be applied when only forward simulation of (Xt)t≥1 is feasible. Third,

while consistent estimates can be obtained by scaling the size of the blocks with530

N , the resulting rate of convergence is low and new efficient approaches are

required.

An alternative class of particle-based techniques that provides consistent

state and parameter estimates in high-dimensional settings are off-line proce-

dures which build on particle MCMC methods, a class of MCMC methods535

relying on particle proposals introduced in [118]. For example, [132] presented

a modification of the conditional SMC algorithm of [118] which performs em-

pirically significantly better in high-dimensional settings by introducing posi-

tive correlation between particles [119]. [133] proposed a block Gibbs sampling

scheme by updating the path of one state component at a time conditional on the540

other component paths. Although these techniques are not yet well-understood

theoretically, they are highly promising. However, when they are used to per-

form parameter estimation, they alternate between updating θ conditional to

(Xt)t≥1 and (Xt)t≥1 conditional to θ. As the parameter and states are very often

strongly correlated under the posterior distribution, this can result in an ineffi-545

cient scheme. Alternative techniques such as the particle marginal Metropolis-

Hastings algorithm that update parameters and states simultaneously scale very

poorly in a data-rich environment [118, 134] but various improved schemes have

been recently proposed to mitigate these problems [135, 136].

5. Selected challenges550

Below, we highlight two important topics for future research: namely, how to

best account for modeling errors in hydrogeological Bayesian inversion (section

5.1) and for petrophysical errors in hydrogeophysical inversion (section 5.2). We

describe existing work in these domains and possible paths forward.

5.1. Accounting for modeling errors in Bayesian inverse problems555

Proxy models (section 3.2) are increasingly used in Bayesian inference for

geoscientific problems, where it is not uncommon to require millions of for-
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ward model runs when dealing with high-dimensional parameter spaces. In

[137, 138], for example, a 1D Richards equation is used to approximate 3D

unsaturated flow when estimating soil hydraulic properties from time-lapse geo-560

physical data. Coarsened discretization proxies are employed in [139, 140] for

unsaturated parameter estimation and reservoir history matching, respectively.

There has also been increasing recent use of PCE surrogates for Bayesian pa-

rameter estimation [141, 142, 143, 144, 145, 146]. It is critical that modeling

errors arising from the use of proxy models are properly taken into account when565

solving Bayesian inverse problems; not doing so can easily lead to biased pos-

terior parameter estimates that have little to no predictive value [147]. While

the latter finding is now relatively well understood in hydrology and reservoir

engineering (e.g., [148, 149, 150, 151, 140]), few workable approaches (see be-

low) for dealing with modeling errors are yet in view. As mentioned previously,570

a formal and general inverse problem formulation that accounts for modeling

errors (described by a probability density function) has existed for 35 years [97].

A practical challenge, however, is how to accurately quantify and efficiently ac-

count for this probability density function when dealing with high-dimensional

parameter fields, large data sets, and highly non-linear physical processes.575

In hydrogeology and geophysics, work to address modeling errors for high-

dimensional and data-rich inverse problems includes (i) studies where the errors

are assumed to be multivariate Gaussian distributed and the corresponding

means and covariances are determined either empirically prior to inversion based

on a small number of stochastic model-error realizations [98, 140] or during580

the inversion by means of sequential data assimilation [152, 153, 154]; and (ii)

applications of the two-stage MCMC approach, whereby the proxy is employed

as a first “filter” to improve the acceptance rate of parameter configurations that

are tested using the high-fidelity forward model [155, 156, 157]. A key challenge

with respect to (i) is that modeling errors in real-world non-linear problems may585

be strongly non-Gaussian with characteristics that vary significantly over the

input parameter space, meaning that the underlying assumptions are too simple

and cannot be easily fixed by, for example, consideration of a more appropriate
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parametric distribution or formalized likelihood (e.g., [158, 103]). With regard

to (ii), there is limited computational savings because each posterior sample590

acquired using two-stage MCMC must be tested with respect to the high-fidelity

forward model.

In the field of statistics, one of the most influential works on model error is

[159], whereby the discrepancy between the proxy and the high-fidelity simu-

lation model is described by a GP. The approach is flexible as the parameters595

governing the GP are estimated as a part of the inversion procedure. Never-

theless, one issue with such an approach is that it is not guaranteed that the

inferred model parameters and error model can be used for predictive forward

modeling with different boundary conditions and forcing terms. Another key

concern in the context of geoscience applications is model dimensionality. The600

vast majority of applications of [159] and its variants (e.g., [160, 161, 147, 162])

have focused on small numbers of data and low-dimensional parameter spaces.

In contrast, spatially-distributed inverse problems in hydrogeology and geo-

physics may involve hundreds or thousands of data, often measured over both

space and time and under different source conditions, and many thousands of605

unknowns. Nevertheless, when solving inverse problems over spatial domains,

it is important to realize that the number of independent model parameters is

typically much smaller than the number of grid elements on which the model

realizations are mapped. This is indeed a major motivation for introducing

spatial priors (Gaussian-random-field or based on MPS) as they help to make610

intractable inverse sampling problems tractable (see discussion in [56]).

In terms of practical applications, open questions include: (i) Can a GP

model be used to effectively represent model discrepancy in problems where

spatial and temporal correlations between model parameters and data are com-

plex, the statistical nature of the modeling errors changes significantly over the615

input parameter space, and/or the model discrepancy is not smoothly vary-

ing? (ii) How can hydrogeological and geophysical data be transformed and/or

spatially organized to enable appropriate representation of modeling errors us-

ing a GP model? (iii) How computationally burdensome does the approach of
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[159] become in high-dimensional data spaces, and how may this be alleviated?620

Work by [163] suggests that basis representations can be exploited to signifi-

cantly reduce dimensionality and help in the latter regard. Promising recent

research by [164] shows that a data-driven GP construction can be used for ef-

fective inference under modeling errors in a moderate-dimensional hydrological

problem (Fig. 5). From a more theoretical point of view, mathematical prop-625

erties of Kennedy and O’Hagan’s approach and variations thereof have been

investigated in [165, 166], tackling in particular parameter identifiability and

estimation issues.

One recent idea to account for model errors is that of [167], whereby mod-

eling errors are accounted for by model parameters that are intrinsically un-630

certain. That is, each model parameter is described by a mean value and, for

example, a standard deviation that is inferred as part of the inversion process.

Another avenue to be explored is the question of whether we are best to focus

on “correcting” the simulated data from proxy forward models to better fit the

high-fidelity forward simulations, or whether we should aim to transform mea-635

sured data into quantities that are more consistent with the proxy. A related

approach involving the use of data summary statistics (i.e., using statistics of

the data set instead of likelihood functions that are based on pair-wise com-

parisons of observed and simulated data) is employed in approximate Bayesian

computation to address similar issues (e.g., [168, 169]). Finally, it is possible to640

ignore modeling error altogether when performing MCMC posterior inference

using a proxy if one subsequently corrects the corresponding pseudo-posterior

using importance sampling based on the high-fidelity forward model [170]. The

advantage of this approach is that, unlike two-stage MCMC, the use of the

high-fidelity forward model can be parallelized.645

5.2. Hydrogeophysics and uncertain petrophysical relationships

Since the early 1990’s [171, 172, 173], hydrogeology has seen an ever-increasing

use (and acceptance) of geophysics. Geophysics offers non-invasive imaging of

lithology and monitoring of mass transfer without the need for borehole access
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(even though such infrastructure is very helpful). It is well established that650

geophysical data offer complementary information to traditional hydrogeologi-

cal data [174] (e.g., different sensitivity patterns and scales of investigation, no

need to inject or pump water and solutes in the subsurface). Currently, there is

a push towards so-called fully-coupled hydrogeological and geophysical modeling

and inversion aiming at seamless integration of hydrogeological and geophysical655

data [175, 176]. In a fully-coupled approach, the hydrogeological model and

its predicted states define, together with a petrophysical relationship, the geo-

physical model. Discrepancies between associated geophysical forward model

predictions and observed data can then be used in the inversion to guide, possi-

bly together with hydrogeological data, the update of the hydrogeological model660

parameters. This research field at the interface of hydrogeology and geophysics

is often referred to as hydrogeophysics. Despite its promise, petrophysical rela-

tionships that link geophysical properties with hydrogeological properties and

state variables are uncertain and we are not aware of hydrogeophysical inversion

studies that fully account for this uncertainty. By referring to hydrogeophysical665

inversion, we exclude the extensive literature in hydrogeophysics on sequential

approaches in which geophysical models are first obtained by inversion before

these models are treated as “data” in a second stage to predict hydrological tar-

get variables given an uncertain petrophysical relationship and available hydro-

logical data [172, 177]. The risk for strong bias when applying such approaches is670

well demonstrated [178]. Ignoring petrophysical uncertainty in hydrogeophysi-

cal inversion leads to overconfident predictions and the risk that hydrogeological

colleagues become disenchanted with geophysics [179]. In terms of methodology,

the petrophysical relationship is the only major difference in hydrogeophysical

inversion compared with classical hydrogeological inversion.675

Before discussing the general non-linear case, we illustrate the strong im-

pact of petrophysical uncertainty by considering the simple synthetic case of a

linear forward model and a linear petrophysical relationship. For linear theory,

a Gaussian-random-field prior model, Gaussian noise and petrophysical errors,

one can propagate petrophysical uncertainties into the data covariance matrix680
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and rely on well-known analytical solutions for the posterior mean and stan-

dard deviation [11]. Figure 6a is the true porosity field. Assuming a total of 729

first-arrival ground-penetrating radar travel times acquired for various source

and receiver positions at the left and right side of the model domain (contam-

inated with 0.5 ns of uncorrelated Gaussian noise) and a perfect petrophysical685

relationship (black line in 6e) leads to the mean porosity field in Figure 6b. The

information content in the data is high and there is an important decrease in

posterior porosity uncertainty (Fig. 6c) compared to the standard deviation of

0.04 in the prior model. Figure 6d confirms that the resulting data covariance

matrix is the conventional diagonal matrix. When accounting for uncorrelated690

petrophysical errors with strong (correlation coefficient of 0.85; Fig. 6e) and

moderately strong (correlation coefficient of 0.59; Fig. 6i) petrophysical rela-

tionships, we find that the resulting mean porosity field is smoother (Figs. 6f

and 6j), and that the posterior standard deviations are larger (Figs. 6g and 6k)

compared to the case of no petrophysical error. Importantly, the data covariance695

matrix that accounts for both data and petrophysical errors is no longer a diag-

onal matrix (Figs. 6h and 6i). Clearly, petrophysical uncertainty decreases the

information content of the geophysical data for hydrogeological inference and

broadens the likelihood function (for the true model, the noise-contaminated

data have a log-likelihood of -508 when there is no petrophysical errors, -944700

for the strong petrophysical relationship and -1259 for the moderately strong

petrophysical relationship). The impact of petrophysical errors is even stronger

when considering spatial correlations (not shown). Unfortunately, the inference

problem is much more complicated for the general non-linear case as discussed

below.705

Geophysical data (e.g., electrical resistances, electromagnetic transfer func-

tions, waveform recordings) are related to subsurface physical properties (e.g.,

electrical conductivity, seismic wave speeds). In most applications, these prop-

erties represent hidden variables v of limited practical interest, while the un-

derlying goals of geophysical surveys are often to infer state variables (e.g.,710

temperature, pressure, water content, gas saturation) or lithological properties
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(e.g., porosity, permeability) of, for example, aquifers. For conciseness, we refer

to all such target variables and properties as u. When forward solvers take the

hidden variables v rather than u as input, for example, via a non-linear geophys-

ical “forward map” GV : v 7→ GV (v), some knowledge of the petrophysical (rock715

physics) relationships that link u and v is required to infer u from geophysical

observables y = GV (v) + ε. These relationships are typically non-linear, un-

certain, and non-stationary [180]. A possible description of such a relationship

is

v = F(u) + εP , (6)

where the residual εP may exhibit non-stationarity and spatial dependence.720

Spatial dependence of εP is expected because of the common simplifying as-

sumption of constant petrophysical model parameters in hydrogeophysical in-

versions [181, 182]. In nature, the most appropriate petrophysical parameter

values will be different for different lithologies, which suggests that the scales of

spatial dependence correspond to those of geological bodies. An alternative is725

to infer for geological bodies with different petrophysical parameters, but this

has its own problems in terms of non-uniqueness, assumptions of low variability

within each lithological unit [6] and a much more non-linear inverse problem

than for the continuous case. Assuming here for simplicity finite-dimensional

settings with continuous distributions and denoting ρP the probability density730

of εP , we obtain a joint prior on (u,v) with density

ρjoint,0(u,v) = ρ(u)ρP (v −F(u)). (7)

In geophysics, inference of the joint conditional distribution of (u,v) given

geophysical data y is referred to as lithological tomography [183]. A recent tu-

torial [184] describes how to formulate Bayesian networks (using direct acyclic

graphs) for arbitrarily complicated situations involving multiple data and pa-735

rameter types, as well as a hierarchy of hidden variables. For simplicity, we focus

our discussion on a single hidden variable v. The standard approach (notably
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advocated by [184]) for posterior simulations of u consists in applying (varia-

tions of) the Metropolis-Hastings algorithm to (u,v), where at each iteration

the model perturbation consist in (i) drawing u, and then (ii) drawing v con-740

ditionally on u. Unfortunately, such a sampling strategy can be very inefficient

when confronted with high parameter dimensions, large data sets with small

errors ε, and uncertain petrophysical relationships. The main reason for this

is that the likelihood LV (v;y) = ρ(y − GV (v)) is very peaked, which implies

that the geophysical data need to be fit in great detail even for cases when745

petrophysical uncertainty is significant (see discussion surrounding Fig. 6).

As alternatives, we suggest two approaches to directly sample from ρy(u)

without needing to sample from ρyjoint(u,v). The underlying motivation is to

take advantage of the uncertainty of petrophysical relationships and work di-

rectly with approximations of LU (u;y) =
∫
LV (v;y)ρP (v −F(u))dv, which is750

expected to be less informative (i.e., less peaked) than LV (v;y). These approxi-

mations are needed as there are generally no closed-form expressions to evaluate

LU (u;y).

The first approach builds on the pseudo-marginal MCMC method [185, 186]

and the recent correlated pseudo-marginal method [187]. These methods are755

based on the remarkable property identified by [185] that a Metropolis-Hastings

algorithm that uses a non-negative unbiased estimate L̃U (u;y) of LU (u;y) will

sample the same target distribution as an ideal marginal Metropolis-Hastings

algorithm that uses LU (u;y). Since the expression needed to evaluate LU (u;y)

during MCMC sampling is unknown, it is convenient to estimate L̃U (u;y) by760

Monte Carlo averaging of LV (·;y) over samples of v conditional on u. Clearly,

LV (·;y) can be evaluated using standard likelihood expressions. The correlated

pseudo-marginal method improves on the pseudo-marginal MCMC method by

using correlated random samples to estimate the ratios between L̃U (·;y) val-

ues of the present and proposed models in the Metropolis-Hastings algorithm.765

This leads to lower variance estimates of the ratios, which results in significant

performance improvements (e.g., two orders of magnitude).

The second approach relies on a linearized Gaussian approximation. A first-

27



order expansion of GV around F(u) delivers

GV (F(u) + εP ) ≈ GV (F(u)) + 〈∇GV (F(u)), εP 〉. (8)

From there it is straightforward to derive the data covariance matrix of y770

given u by adding two distinct contributions: one related to the observational

errors and the other one related to the petrophysical errors (after appropriate

scaling with the Jacobian matrix). Assuming further Gaussian distributions for

εP and ε leads to a completely determined Gaussian approximation for LU . In

essence, this is an extension of the linear analysis in Figure 6 to the weakly775

non-linear case. We expect this approach, which is similar to the so-called

multivariate delta method [188], to be efficient when the Jacobian matrix is

comparatively cheap to calculate. The accuracy of the method is expected to

degrade with increasing non-linearity and degree of petrophysical uncertainty.

6. Concluding remarks780

It is only recently that computational resources have enabled routine forward

UQ and Bayesian sampling-based inversion for non-trivial problems involving

high-parameter dimensions and complex prior distributions. In this review, we

argue that (1) multi-resolution modeling using MLMC approaches is suitable

for effective forward UQ given a distribution of material properties, while their785

role in inverse modeling remains to be explored; (2) general formulations of data

assimilation problems based on particle methods (Sequential Monte Carlo) that

are valid under strong non-linearity and non-Gaussianity are still underused in

hydrogeology and geophysics and that more work is needed to enable accurate

inference of posterior parameter distributions for such state-space models; (3)790

the use of low-fidelity (proxy) forward models are inevitable both for forward UQ

and large-scale Bayesian inversion problems, while the question of how to quan-

tify and efficiently account for modeling errors remains an important research

topic; (4) that new approaches, such as the pseudo-marginal MCMC method,
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are needed to effectively incorporate petrophysical uncertainty in hydrogeophys-795

ical inversion and, thereby, to allow for proper weighting of hydrogeological and

geophysical data in joint inversions and to avoid overly optimistic UQ. The high

dimensionality and data rich environments encountered in modern hydrogeology

and geophysics, together with complex spatial parameter relations, call for ad-

vanced mathematical and statistical methods that work well in high parameter800

and data dimensions. We hope that this review on selected topics on UQ will

contribute in stimulating such research.
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Figure 1: Sampled MCMC posterior realizations based on 800 crosshole first-arrival GPR

travel times acquired between the left and the right sides of the model domain. The true

subsurface structure (not shown) used to create the data in this synthetic example has channel-

like features similar to those in (d). The other posterior realizations are based on: (a) a nugget

prior model with the correct mean and variance; (b) a Gaussian-random-field prior model

with the correct two-point statistics; and (c) the same Gaussian-random-field prior model

truncated into a binary field with the correct facies proportions provide realizations that are

largely incompatible with the true subsurface structure. From [54]

.
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Figure 2: Considering water flooding of a saturated petroleum reservoir, [94] evaluated the

performance of MLMC strategies. (a) MC estimation of the mean saturation field at time t;

and (b) plots showing the number of evaluations at each level, Ml, the computation time for

one evaluation at each level, wl, and the variance between levels, σ2
l . Note that there is only

one level for the MC case. Corresponding results for MLMC with (c-d) grid and (e-f) solver

hierarchy. Note that the mean solutions in (a), (c) and (e) have the same numerical accuracy,

while the computational times and the distributions across different levels vary strongly.
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Figure 3: By considering a learning set of contaminant breakthrough curves consisting of proxy

responses based on single-phase saline transport simulations “exact” responses obtained using

a two-phase solver (purple dots in (a) and (b)), [58] used functional principal components

analysis (FPCA) to develop an error model that allows proxy simulations (orange dots in

(a)) to be mapped into “exact” responses (blue dots in (b)). Using a learning set based

on 20 geostatistical realizations, they demonstrated for a fluvial aquifer with five distinct

facies how error-corrected proxy modeling leads to error-corrected predictions that are similar

(correlation coefficient of 0.97) to the full physics responses.
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Figure 4: An iterated particle filter method was developed by [114] to infer the hydraulic

conductivity of four zones of known geometry given geophysical data. (a) A synthetic infil-

tration experiment in the vadose zone led to a (b) water plume evolving over time that was

sensed by electrical resistivity tomography data under the assumption of a known and perfect

petrophysical relationship. (d-f) The inferred hydraulic conductivities converged to the true

values.
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Figure 5: [164] considered a synthetic test example involving a “true” 2-D Gaussian hydraulic

conductivity field in contact with a river. The inverse problem was parameterized in terms of

12 pilot points. Ignoring model errors caused by this smooth representation leads to biased

predictions in terms of (a-b) drawdown at two locations and (c) river-groundwater exchange

and unrealistically low uncertainty bounds. By inferring a Gaussian process model describing

model errors during the calibration period, the authors obtained (d-f) significantly improved

predictions and more realistic uncertainty bounds. Unfortunately, this approach lead to pre-

dictions that are unphysical (e.g., not honoring mass constraints). To circumvent this, they

considered inversion with a data covariance matrix that include both the observational and the

previously inferred model errors. (g-i) The corresponding predictions based on the resulting

inversion model are physically-consistent and the bias is low.
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Figure 6: Synthetic example of porosity inference from crosshole GPR travel time data under

assumptions of linear theory, a known Gaussian-random-field model, and uncorrelated data

and petrophysical errors. (a) True porosity field, (b) inferred mean model, (c) standard de-

viation and (d) structure of the data covariance matrix under the assumption of a perfect

petrophysical relationship (black line in (e)). (e) Strong petrophysical relationship and result-

ing (f) mean model, (g) standard deviation and (h) structure of the data covariance matrix.

(j-l) corresponding results for a (i) rather strong petrophysical relationship.
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