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Abstract: In this paper we consider the estimation of the coe�cient of tail dependence and of small tail probability
under a bivariate randomly censoring mechanism. A new class of generalized moment estimators of the coe�cient of
tail dependence and the estimator of small tail probability are proposed, respectively. Under the bivariate Hall-type
conditions, the asymptotic distributions of these estimators are established. Monte Carlo simulations are performed
and the new estimators are applied to an insurance data-set.
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1 Introduction

Modeling dependence structures underlying rare events is a crucial topic for advanced actuarial applications since
the misidenti�cation of dependence structures can cause a dramatic risk underestimation (cf. Beirlant et al. (2011)
and Haug et al. (2011)). For a given bivariate risk vector (X,Y ) with unit Fréchet distributed margins, Ledford and
Tawn (1997) proposed the following tail dependence model

P(X > x, Y > y) = x−c1y−c2L(x, y), with c1, c2 > 0. (1.1)

Commonly, the parameter η1 = (c1+c2)
−1 is referred to as the coe�cient of tail dependence, whereas L is a bivariate

slowly varying function, i.e., there exists a function g such that for all x, y > 0 and c > 0

lim
t→∞

L(tx, ty)
L(t, t)

= g(x, y), with g(cx, cy) = g(x, y).

For various insurance and �nance applications it is of interest to estimate both η1 and P(X > x, Y > y), see
e.g., Embrechts et al. (1997), Peng (1999), Beirlant and Vandewalle (2002), Einmahl et al. (2012), Goegebeur and
Guillou (2013), and the references therein. Recently, Beirlant et al. (2011) studied model (1.1) by assuming further
that

L(x, y) = g1(x, y)
(
1 + xp1yp2g2(x, y)(1 + o(1))

)
, x, y → ∞, (1.2)

with
gi(x, y) = hi(x/(x+ y)), i = 1, 2, h2 ̸= 0 and τ1 = p1 + p2 < 0.

Let next 0 < w < 1, w = w/(1 − w) and for some positive x de�ne y = x/w. Then the random variable Z =
min(X,wY ), has survival function F = 1− F such that

F (x) = P(X > x, Y > x/w) = x−1/η1wc2h1(w)
(
1 + w−p2h2(w)x

τ1(1 + o(1))
)

(1.3)

=: C1x
−1/η1

(
1 +D1x

τ1(1 + o(1))
)
, x → ∞,

which shows that F belongs to the Hall-class, denoted by F ∈ Hall(η1, C1, D1, τ1). In the sequel we say that (X,Y )
satis�es the bivariate Hall-type condition with tail dependence parameters (ci, hi, pi, i = 1, 2) if (1.3) holds. By (1.3),
the coe�cient of tail dependence η1 and the small tail probability P(X > x, Y > y) can be estimated on the basis
of univariate extreme value techniques, see e.g., Hill (1975), Dekkers et al. (1989), Gomes et al. (2008), Beirlant et
al. (2009). However, in many insurance and �nance applications complete data are rarely available, and censoring of
data is a common phenomenon caused for instance by the existence of deductibles or retention levels. In univariate
settings, di�erent estimators of extreme value index under randomly censoring have been proposed, see e.g., Beirlant
et al. (2007), Einmahl et al. (2008), Gomes and Neves (2011) and the references therein.
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So far there are no contributions in the literature dealing with extreme value problems for censored data in higher
dimensions. Therefore, the aim of this paper is to establish some new estimators of the coe�cient of tail dependence
and for the tail probability in the presence of bivariate randomly censoring. Our framework of bivariate randomly
censoring is easily explained if we consider two independent bivariate random vectors (X,Y ) and (X̃, Ỹ ). Then the

random vector (X,Y ) is componentwise randomly censored by (X̃, Ỹ ), and we will establish our estimators based
on samples from (X∗, Y ∗) and (δ(1), δ(2)) de�ned by

X∗ = min(X, X̃), Y ∗ = min(Y, Ỹ ), δ(1) = I{X ≤ X̃}, δ(2) = I{Y ≤ Ỹ }, (1.4)

with I{·} the indicator function.

The main restrictions are that both (X,Y ) and (X̃, Ỹ ) have unit Fréchet distributed margins and satisfy the bivariate

Hall-type conditions with tail dependence parameters (ci, hi, pi, i = 1, 2) and (c̃i, h̃i, p̃i, i = 1, 2). The principal
challenge in our framework is that all parameters are assumed to be unknown. Our new estimators are highly
�exible with a tuning parameter (see (2.2) and (3.2) below). With a suitable choice of the tuning parameter, under
certain extreme value conditions our new estimators are asymptotically normal with zero-mean.

The rest of this paper is organized as follows. Section 2 shall introduce some notation and preliminaries. The main
results are presented in Section 3 followed by a section with illustrating examples. Section 5 is dedicated to a small
simulation study and a real life data application, whereas the proofs are deferred to Section 6.

2 Notation and Preliminaries

Let (Xi, Yi) and (X̃i, Ỹi), i = 1, . . . , n be two independent and identically distributed samples from independent

parents (X,Y ) and (X̃, Ỹ ) with unit Fréchet distributed margins. Then by (1.4) the samples X∗
i , Y

∗
i , δ

(1)
i , δ

(2)
i , i =

1, . . . , n are from parents X∗, Y ∗, δ(1) and δ(2), respectively. De�ne

Z∗
i = min(X∗

i , Y
∗
i ), δ∗i = I{X∗

i ≤ Y ∗
i }, δi = δ

(1)
i δ∗i + δ

(2)
i (1− δ∗i )

for each sample (Xi, Yi) and (X̃i, Ỹi). Let Z
∗
1,n ≤ Z∗

2,n ≤ . . . ≤ Z∗
n,n be the associated order statistics of Z∗

i . Write
δ[i,n] for the concomitant order statistics with respect to Z∗

i,n, in other words, δ[i,n] = δk if Z∗
i,n = Z∗

k , i = 1, . . . , n.
For some intermediate integer sequence k = k(n) satisfying limn→∞ k(n) = limn→∞ n/k(n) = ∞ de�ne

M (j)
n (k) =

1

k

k∑
i=1

(
log

Z∗
n−i+1,n

Z∗
n−k,n

)j

; N (β′)
n (k) =

1

k

k∑
i=1

(
Z∗
n−i+1,n

Z∗
n−k,n

)β′

; p̂n(k) =
1

k

k∑
i=1

δ[n−i+1,n], (2.1)

where j = 1, 2 and β′ < 0. In this paper we propose the following new estimators of η1

η̂(α)n (k) =

M
(1)
n (k) + α

(
1− 1

2

(
1− (M(1)

n (k))2

M
(2)
n (k)

)−1
)

p̂n(k)
, with α ∈ R, (2.2)

which we refer to as the generalized moment estimators since they extend the Hill estimator (α = 0) and the moment
estimator (α = 1) in the absence of censoring. In order to establish their asymptotic distribution, the following two
assumptions are needed:

A1. (X,Y ) and (X̃, Ỹ ) are independent and satisfy the bivariate Hall-type conditions with tail dependence param-

eters (ci, hi, pi, i = 1, 2) and (c̃i, h̃i, p̃i, i = 1, 2), respectively.

A2. For a distribution function (df) F ∈ Hall(η1, C1, D1, τ1) de�ned by (1.3), ℓ0,F (x) = (C1D1x
τ1)−1(x1/η1F (x)−

C1) is a normalized regularly varying function (see Bingham et al. (1987), p 15).

Next, we present two lemmas which will be used to prove the main results and to deal with the simulation study.
The �rst one is from Beirlant et al. (2007), p 160.

Lemma 2.1. Denote by F,G and H the dfs of Z = min(X,wY ), Z̃ = min(X̃, wỸ ) and Z∗ = min(X∗, Y ∗),
respectively. If the assumption A1 holds, then F ∈ Hall(η1, C1, D1, τ1) and G ∈ Hall(η2, C2, D2, τ2) with

η1 =
1

c1 + c2
, C1 = h1(w)w

c2 , D1 = h2(w)w
−p2 , η2 =

1

c̃1 + c̃2
, C2 = h̃1(w)w

c̃2 , D2 = h̃2(w)w
−p̃2 .
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Furthermore, if D1 +D2 ̸= 0 for τ1 = τ2, then H ∈ Hall(η, C,D, τ) with

η =
η1η2

η1 + η2
, C = C1C2, D = D1I{τ1 > τ2}+D2I{τ1 < τ2}+ (D1 +D2)I{τ1 = τ2}, τ = max(τ1, τ2).

For convenience, we assume D ̸= 0 throughout this paper, which holds in most applications (cf. Table 1).
Remark 2.2. Let U(t) = inf{y ∈ R : H(y) ≥ 1 − 1/t} for t > 1. If H ∈ Hall(η, C,D, τ), then U(t) = tηCη[1 +
ηDCρtρ(1 + o(1))]. Moreover,

lim
t→∞

U(tx)/U(t)− xη

b(t)
= xη x

ρ − 1

ρ
(2.3)

holds locally uniformly for all x > 0. Here ρ = ητ < 0 and b(t) = η(ρDCρ)tρ =: ηβtρ (cf. Lemma 2.4 in Beirlant et
al. (2009)).

From Lemma 2.1, Z∗ is essentially Z censored independently by Z̃. To estimate the coe�cient of tail dependence η1,
it is su�cient to estimate the uncensored proportion P(Z ≤ Z̃). Indeed, one may conclude that δ = δ(1)δ∗+δ(2)(1−δ∗)

and δ = I{Z ≤ Z̃} by straightforward calculations.

We conclude this section with Lemma 2.3 below for the asymptotic expansions of M
(j)
n (k), N

(τ)
n (k) and p̂n(k). For

notational simplicity we denote for j, j′ = 1, 2

µj,ρ =
1/(1− ρ)j − 1

ρ
, σ2

j = Γ(2j + 1)− Γ2(j + 1), σj,j′ =
Γ(j + j′ + 1)− Γ(j + 1)Γ(j′ + 1)

σjσj′
, (2.4)

with Γ(·) the Euler Gamma function. If some estimator say θ̂n converges in distribution to a N(0, 1) random variable

as n → ∞, we shall abbreviate that as θ̂n ∼ AsN(0, 1). For two estimators θ̂n and ϕ̂n, denote their asymptotic

covariance by AsC(θ̂n, ϕ̂n), and set AsV(θ̂n) = AsC(θ̂n, θ̂n) for the asymptotic variance. Our notation for equality

in distribution, convergence in distribution and convergence in probability are
d
=,

d→ and
p→, respectively. All the

limits are taken as n → ∞ unless otherwise speci�ed.
Lemma 2.3. Suppose that A1 and A2 hold for an intermediate integer sequence k = k(n) and j, j′ = 1, 2.

(a). For P
(j)
n ∼ AsN(0, 1) such that AsC(P (j)

n , P
(j′)
n ) = σj,j′

M
(j)
n (k)

ηjΓ(j + 1)
− 1

d
=

σj

Γ(j + 1)

P
(j)
n√
k

+ µj,ρ
b(n/k)

η
(1 + op(1)). (2.5)

(b). For Kn ∼ AsN(0, 1) such that AsC
(
Kn, P

(j)
n

)
=

√
1− 2ρΓ(j + 1)

µj,ρ

σj

N (τ)
n (k)− 1

1− ρ

d
=

ρ

(1− ρ)
√
1− 2ρ

Kn√
k
+

ρ

(1− ρ)(1− 2ρ)

b(n/k)

η
(1 + op(1)). (2.6)

(c). For Jn ∼ AsN(0, 1) being further asymptotically independent of P
(j)
n and Kn

p̂n(k)
d
=

η

η1

(
1 +

√
η1
η2

Jn√
k
+

(
1

1− ρ

b(n/k)

η
− η1τ1D1(ρD)−τ1/τ

1− ητ1

(
b(n/k)

η

)τ1/τ
)
(1 + op(1))

)
. (2.7)

Here µj,ρ, σj and σj,j′ are given by (2.4) and

Kn =
(1− ρ)

√
1− 2ρ

ρ

∑k
i=1 (ξ

ρ
i − 1/(1− ρ))√

k
, Jn =

√
η1η2

η

∑k
i=1

(
δ[n−i+1,n] − E(δ|Z∗ = Z∗

n−i+1,n)
)

√
k

,

with ξi, i = 1, . . . , n being identically and independent random variables with common df Fξ(x) = 1− 1/x, x ≥ 1.
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3 Main Results

The aim of this section is to establish the asymptotic normality of the estimations of the coe�cient of tail dependence
η1 and the tail probability P(X > x, Y > y). These results are stated in Theorem 3.1 and Theorem 3.3 under the
following asymptotic condition

lim
n→∞

√
kb(n/k) = λ < ∞, (3.1)

which has been utilised for instance in Beirlant et al. (2007) where therein λ = 0 is investigated.
Theorem 3.1. Under the assumptions A1 and A2 and suppose further the condition (3.1) holds for an intermediate
integer sequence k = k(n), then √

k(η̂(α)n (k)− η1)
d→ Z ∼ N

(
µ, σ2

)
,

where ρ = ητ < 0 and

µ =
λη1

η2(1− ρ)

(
αρ

1− ρ
+

η1D1

D
I{τ1 ≥ τ2}

)
, σ2 =

η21
(
α2 + η1η

)
η2

.

Remark 3.2. (a). For λ = 0, the results for α = 0 and α = 1 coincide with those in Beirlant et al. (2007).

(b). The asymptotic variance is increasing with respect to |α|; its minimum value η31/η is obtained at α = 0.

The tuning parameter α renders the estimators given in (2.2) to be highly �exible. With a suitable α even when the

condition (3.1) holds with λ ̸= 0, the asymptotic bias of η̂
(α)
n (k) may become zero.

Next, we consider the estimation of small tail probability

pn = P(X > xn, Y > xn/w) = P(Z > xn) = F (xn)

for given w and su�ciently large xn. The main inspiration for our estimator of small tail probability (denoted by
p̂n below) comes from the recent contribution Beirlant et al. (2011). We retain the notation and the framework

previously introduced, and denote further τ̂ = ρ̂/M
(1)
n (k) and τ̂1 = τ̂I{τ1 > τ2} with ρ̂ a consistent estimator of ρ,

and thus p̂n is given by

p̂n = F̂n(Z
∗
n−k,n)

 xn

Z∗
n−k,n

1 +
b̂(n/k)

p̂n(k)
− b̂(n/k)

p̂n(k)

(
xn

Z∗
n−k,n

)τ̂1
−1/η̂(α)

n (k)

, (3.2)

with

b̂(n/k) = M (1)
n (k)(1− 2ρ̂)(1− ρ̂)3ρ̂−3

(
N (τ̂)

n (k)− 1

1− ρ̂

)
, F̂n(Z

∗
n−k,n) =

n−k∏
i=1

(
1−

δ[i,n]

n− i+ 1

)
, (3.3)

where p̂n(k), N
(τ)
n (k) and η̂

(α)
n (k) are de�ned by (2.1) and (2.2), respectively. The estimator of the tail empirical

df F̂n(Z
∗
n−k,n) is from Kaplan and Meier (1958), while ρ̂, the consistent estimator of ρ, can be found in Gomes

et al. (2009), de Wet et al. (2012). As in Theorem 5.2 in Beirlant et al. (2009) we assume further the following
condition: For an intermediate integer sequence k = k(n)

pn

F (Z∗
n−k,n)

p→ 0,

√
k

log(pn/F (Z∗
n−k,n))

p→ ∞, as n → ∞, (3.4)

which will be utilised for the derivation of the asymptotic distribution of p̂n.
Theorem 3.3. Under the conditions and notation of Theorem 3.1, if further (3.4) holds, then we have the conver-
gence in distribution

√
k(p̂n/pn − 1)

log(pn/F (Z∗
n−k,n))

d→ −Z
η1

. (3.5)
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Remark 3.4. (a). Theorem 3.3 shows the following convergence in probability

log p̂n − log pn

log(pn/F (Z∗
n−k,n))

p→ 0.

Hence an equivalent statement of (3.5) is

√
k(p̂n/pn − 1)

log(p̂n
/
F̂n(Z∗

n−k,n))

d→ −Z
η1

.

(b). In the absence of censoring, p̂n simpli�es to the Weissman estimator provided that τ̂1 ≡ 0. In fact, Theorem 5.2
in Beirlant et al. (2009) is a special case of our results.

Theorem 3.3 shows that under some mild conditions the limit distribution of p̂n depends only on the asymptotic

distribution of η̂
(α)
n (k). If the condition (3.1) holds with λ = 0 or the asymptotic bias µ of η̂

(α)
n (k) is zero with

a suitable parameter α, then an asymptotic con�dence interval of nominal level 1 − β is obtained as follows (see
Theorem 3.1)

p̂n/
1 +

| log(p̂n
/
F̂n(Z

∗
n−k,n))|√

k

σ̂

η̂
(α)
n (k)

zβ/2

 , p̂n

/1−
| log(p̂n

/
F̂n(Z

∗
n−k,n))|√

k

σ̂

η̂
(α)
n (k)

zβ/2

 ,

where σ̂ and zβ/2 are respectively the estimation of σ and the (1−β/2)-quantile of the standard normal distribution.

Due to the censoring mechanism and all unknown parameters, common bias-reduction methods for instance Caeiro
et al. (2005) and Beirlant et al. (2009) can not be employed. Another approach to reduce bias is to adjust the bias

term on the basis of b̂(n/k) in (3.3), which is however not in the scope of this contribution. From the simulations
in Section 5 below, we see that our new estimators with suitable tuning parameter are highly �exible and perform
very well.

4 Examples

In the following Q denotes the joint df of (X,Y ) with unit Fréchet distributed margins, i.e., Q1(x) = Q2(x) =
e−1/x, x > 0. The corresponding copula of Q with one parameter θ is denoted by Cθ(u, v) = Q(Q−1

1 (u), Q−1
2 (v)).

Our examples below show that Z = min(X,wY ) belongs to Hall(η1, τ1, C1, D1) with η1, τ1, C1, D1 listed in Table 1
below.
Example 4.1. Farlie�Gumbel�Morgenstern (FGM(θ)). Cθ(u, v) = uv + θuv(1− u)(1− v), θ ∈ [−1, 1] and further

P(X > x, Y > y) = 1− e−1/x − e−1/y + e−1/x−1/y
(
1 + θ(1− e−1/x)(1− e−1/y)

)
, x, y > 0.

(a). For θ = −1/3

P(X > x, Y > y) =
1

xy
g1(x, y)

(
1 +

1

xy
g2(x, y)(1 + o(1))

)
,

with

g1(x, y) =
2

3
, g2(x, y) = −7/6(x/y + y/x) + 9/4

2
.

(b). For θ = −1

P(X > x, Y > y) =
1

xy
√
xy

g1(x, y)

(
1 +

1
√
xy

g2(x, y)(1 + o(1))

)
,

with

g1(x, y) =

√
x

y
+

√
y

x
, g2(x, y) = −7/6(x/y + y/x) + 9/4

g1(x, y)
.

(c). For θ ̸= −1/3,−1
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P(X > x, Y > y) =
1

xy
g1(x, y)

(
1 + g2(x, y)

1
√
xy

(1 + o(1))

)
,

with

g1(x, y) = 1 + θ, g2(x, y) = − 1 + 3θ

2(1 + θ)

(√
x

y
+

√
y

x

)
. (4.1)

Example 4.2. Gumbel copula (Gumbel(θ)). Cθ(u, v) = exp(−((− log u)θ + (− log v)θ)1/θ), θ ∈ [1,∞), which is not
only an extreme value copula but also an Archimedean copula. For all x, y > 0

P(X > x, Y > y) = 1− e−1/x − e−1/y + e−(x−θ+y−θ)1/θ .

In the following we exclude the case θ = 1 for which X and Y are independent since it is covered by the previous
example.

(a). For θ = 2 we have

P(X > x, Y > y) =
1

√
xy

g1(x, y)

(
1 +

1

xy
g2(x, y)(1 + o(1))

)
, x, y → ∞,

with

g1(x, y) =

√
x

y
+

√
y

x
−
√

y

x
+

x

y
, g2(x, y) =

(x/y)3/2 + (y/x)3/2 − (x/y + y/x)3/2

6g1(x, y)
.

(b). If θ /∈ {1, 2}, then

P(X > x, Y > y) =
1

√
xy

g1(x, y)

(
1 +

1
√
xy

g2(x, y)(1 + o(1))

)
, x, y → ∞,

with

g1(x, y) =

√
x

y
+

√
y

x
−
√

y

x

(
1 +

(
x

y

)θ
)1/θ

, g2(x, y) = −x/y + y/x− y/x(1 + (x/y)θ)2/θ

2g1(x, y)
.

Example 4.3. Survival Clayton copula (S-clayton(θ)). Clayton copula Cθ is de�ned by

Cθ(u, v) =
(
max(u−1/θ + v−1/θ − 1, 0)

)−θ

, θ ∈ [−1, 0) ∪ (0,∞).

Its survival copula Ĉθ is given by Ĉθ(u, v) = u+ v − 1 +Cθ(1− u, 1− v). Consequently, if Q has survival copula Ĉθ

with θ > 0, then as x, y → ∞

P(X > x, Y > y) = 1−Q1(x)−Q2(y) +Q(x, y) = Cθ(Q1(x), Q2(y))

=
g1(x, y)√

xy

(
1 +

(
I{θ = 1}

xy
ga2 (x, y) +

I{θ < 1}
√
xy

gb2(x, y) +
I{θ > 1}
(xy)1/2θ

gc2(x, y)

)
(1 + o(1))

)
,

where

g1(x, y) =

((
x

y

)1/(2θ)

+
(y
x

)1/(2θ))−θ

, ga2 (x, y) = −1

4
,

gb2(x, y) = −1

2

(x/y)
1/2−1/(2θ)

+ (y/x)
1/2−1/(2θ)

(x/y)
1/(2θ)

+ (y/x)
1/(2θ)

, gc2(x, y) =
θ

(x/y)
1/(2θ)

+ (y/x)
1/(2θ)

.

Hence if θ ∈ (0,∞), then η1 = 1 and limx→∞ g1(x, x) ̸= 0, implying its asymptotic dependence (cf. Ledford and
Tawn (1997)).
Example 4.4. Gaussian copula (Gauss(θ)). Cθ(u, v) = Φθ(Φ

−1(u),Φ−1(v)), θ ∈ (−1, 1). The Gaussian copula does
not satisfy the assumption A1, since c1 = c2 = 1/(1 + θ), p1 = p2 = 0, τ1 = 0, g1(x, y) is ray independent and
limx→∞ g1(x, x) = 1, see Embrechts et al. (1997) and Hashorva (2010, 2012).
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Copula θ η1 ∈ (0, 1] τ1 C1 > 0 D1 ̸= 0

FGM
−1/3 1/2 −2 2

3w − 7/6(w2+1)+9/4w
2w

−1 1/3 −1 w(w + 1) − 7/6(w2+1)+9w/4
w+1

(−1,−1/3) ∪ (−1/3, 1] 1/2 −1 w(1 + θ) − 1+3θ
2(1+θ)

1+w√
w

Gumbel
1 1/2 −1 w −1

2 (w + 1)

2 1 −2 w + 1−
√
w2 + 1 w3+1−(w2+1)3/2

6C1

(1, 2) ∪ (2,∞) 1 −1 w + 1− (wθ + 1)1/θ −w2+1−(wθ+1)2/θ

2C1

S-clayton
1 1 −2

√
w
(
w1/(2θ) + w−1/(2θ)

)−θ
− 1

4w

(0, 1) 1 −1 −1
2
w1/(2θ)+w1−1/(2θ)

w1/(2θ)+w−1/(2θ)

(1,∞) 1 −1/θ θ
w−1/θ+1

Gauss (−1, 1) (1 + θ)/2 0 w1/(1+θ) −−

Table 1: Examples Z = min(X,wY ) ∈ Hall(η1, C1, D1, τ1) with (X,Y ) ∼ Cθ(Q1(x), Q2(y)) with unit
Fréchet margins Q1, Q2 and copula Cθ.

5 Simulation Studies and Application to Insurance Data

In this section, we illustrate the �nite sample properties of our estimations of the coe�cient of tail dependence η1
and the joint tail probability P(X > x, Y > y) via Monte Carlo simulations and a real-life example. The estimations
of joint tail probability as well as conditional probabilities of the form P(X > x|Y > y) are proceeded in both
simulations and applications.

We �rst perform small Monte Carlo simulations with 100 samples of size n = 1000 from the bivariate random vectors

discussed in Section 4. For comparison, we mainly simulate our generalized moment estimators η̂
(α)
n (k) (abbreviated

as η̂
(α)
n , the same for other estimators below) with di�erent α, and compare them with H

(c)

n and H̃
(c)
n de�ned by

H
(c)

n (k) = η̂(0)n (k)

(
1− β̂

1− ρ̂

(n
k

)ρ̂)
, H̃(c)

n (k) = η̂(0)n (k)− 1

1− ρ̂

b̂(n/k)

p̂n(k)
, (5.1)

where ρ̂ and β̂ are respectively the estimators of ρ and β given by Gomes et al. (2009), and p̂n(k) and b̂(n/k) are
de�ned by (2.1) and (3.3), respectively. Caeiro et al. (2005) and Beirlant et al. (2009) studied estimators (5.1) in the
absence of censoring, which are rather attractive in the sense of minimal variance reduced bias (MVRB) extreme
value index estimators.
As showed below in Table 2 and Figure 1 ∼ Figure 4, our new estimators of the coe�cient of tail dependence with

suitable α are comparable with H
(c)

n and H̃
(c)
n . For comparison, we also simulate all estimators without censoring,

which are respectively superior to those in the presence of censoring. Next we simulate samples from (X,Y ) ∼
Gumbel(2) censored by (X̃, Ỹ ) ∼ S-clayton(1) with w = 0.2, 0.5, 0.6 and 0.8. It turns out that no big discrepancy
appears with di�erent w, so we take w = 0.5 for the rest of simulations unless otherwise stated. Finally, we make
comparisons for the cases τ = τ1, τ2 and τ = 0. For τ1 > τ2 we take samples from FGM(0.5) censored by Gumbel(2),

our estimator with α = 1 is comparable to H̃
(c)
n . While for τ2 > τ1, we draw samples from Gumbel(2) censored by

FGM(0.5) and S-clayton(2), respectively. Our estimator with α = 0.5 (1) for the former (the latter) and H
(c)

n are
better than the others for the case (cf. Table 2 and Figure 3). For τ1 = τ2 < 0, we take samples from Gumbel(2)
censored by Gumbel(2) and S-clayton(1), respectively. The simulation shows that all estimators show good �nite
sample behaviors. As an exceptional case τ = 0 with samples from S-clayton(1) censored by Gauss(0), our estimator
with α = 0.5 is the best one among all simulated estimators, see Figure 4.

Next, we shall focus on the �nite sample behaviors of p̂n in (3.2), the estimators of small tail probability P(X >
xn, Y > xn/w), and the estimator of conditional probability P(X > xn|Y > xn/w), which is obtained by p̂n divided
by the Kaplan�Meier estimation of survival df of Y (cf. (3.3)). Motivated by Theorem 3.3 and the simulation results
above, we mainly consider our tail probability estimators with α = 0, 0.5, 1 and τ̂ = −1, τ̂1 = 0,−1 due to the
unknown parameters τ1 and τ2. To this end, we take samples from Gumbel(2) censored by S-clayton(1) and draw
the sample paths in Figure 5 for τ̂1 = 0 and Figure 6 for τ̂1 = −1, respectively. The results show that our estimators
with α = 1, τ̂1 = 0 and α = 0.5, τ̂1 = −1 are quite stable. For the conditional probability Figure 7 and Figure 8
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illustrate the similar �nite sample behaviors as those for the estimations of tail probability.

Finally, we consider an application of Loss-ALAE data-set examined by Beirlant et al. (2011). There are 34 data
points censored out of 1500 data points. First we transform the original data to be unit Fréchet distributed margins
by using the Kaplan-Meier estimation of survival df as follows (cf. Kaplan and Meier (1958))

Xi = −1/ log(1− F̂X(X∗
i )), Yi = −1/ log(1− F̂Y (Y

∗
i )),

with

F̂X(x) =

n∏
i=1

1−
δ
(1)
[i,n]

n− i+ 1
I{X∗

i,n ≤ x}

 , F̂Y (x) =

n∏
i=1

1−
δ
(2)
[i,n]

n− i+ 1
I{Y ∗

i,n ≤ x}

 .

Now we apply our censoring mechanism into the transformed data. Figure 9 draws sample paths of our estimators

η̂
(0)
n and η̂

(1)
n for the coe�cient of tail dependence of (Loss, ALAE) with w = 0.5, which shows that η̂

(1)
n is more

stable than H
(c)

n and H̃
(c)
n . Next, we estimate the tail probability P(Loss > 200000,ALAE > 100000) by our tail

probability estimators (3.2) plugged in the estimator (2.2) of the coe�cient of tail dependence with w = 2/3. Figure
10 shows that our tail probability estimators with α = 1, τ̂1 = 0 and α = 0.5, τ̂1 = −1 are rather stable and close
to the empirical tail probability 0.006. Figure 11 shows similar behaviors for estimations of the conditional tail
probability P(ALAE > 100000|Loss > 200000).
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Figure 1: Finite behaviors of mean values (left) and mean squared errors (right) of η̂
(0)
n , η̂

(1)
n , H

(c)

n , H̃
(c)
n . Random

samples are from (X,Y ) ∼ Gumbel(2) without censoring. Here η1 = 1.
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Figure 2: Finite behaviors of mean values (left) and mean squared errors (right) of η̂
(0)
n , η̂

(1)
n , H

(c)

n , H̃
(c)
n . Random

samples are from (X,Y ) ∼ FGM(0) censored by Gumbel(1). Here η1 = 1/2 and τ1 = −1, τ2 = −1.



9

C
on
d
it
io
n
s

(X
,Y

)
(X̃

,Ỹ
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Figure 3: Finite behaviors of mean values (left) and mean squared errors (right) of η̂
(0)
n , η̂

(1)
n , H

(c)

n , H̃
(c)
n . Random

samples are from (X,Y ) ∼ Gumbel(2) censored by S-clayton(2). Here η1 = 1 and τ1 = −2, τ2 = −1/2.
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Figure 4: Finite behaviors of mean values (left) and mean squared errors (right) of η̂
(0)
n , η̂

(0.5)
n ,H

(c)

n , H̃
(c)
n . Random

samples are from (X,Y ) ∼ S-clayton(1) censored by Gauss(0). Here η1 = 1 and τ1 = −2, τ2 = 0.
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Figure 5: Mean values (left) and mean squared errors (right) of the estimation of P(X > 40, Y > 160) = 0.0054 with
τ̂1 = 0. Samples are from Gumbel(2) censored by S-clayton(1).
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Figure 6: Mean values (left) and mean squared errors (right) of the estimation of P(X > 40, Y > 160) = 0.0054 with
τ̂1 = −1. Samples are from Gumbel(2) censored by S-clayton(1).
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Figure 7: Mean values (left) and mean squared errors (right) of the estimation of P(Y > 160|X > 40) = 0.2219 with
τ̂1 = 0. Samples are from Gumbel(2) censored by S-clayton(1).

6 Proofs

Proof of Lemma 2.1 By the assumption A1 we have

F (x) = P(Z > x) = P(min(X,wY ) > x)

= P(X > x, Y > x/w) = x−c1 (x/w)
−c2 h1(w)

(
1 + xp1 (x/w)

p2 h2(w)(1 + o(1))
)

= x−(c1+c2)h1(w)w
c2
(
1 + xp1+p2h2(w)w

−p2(1 + o(1))
)

=: x−1/η1C1

(
1 +D1x

τ1(1 + o(1))
)
.

Consequently, F ∈ Hall(η1, C1, D1, τ1). Similarly,

G(x) = P(Z̃ > x) = x−(c̃1+c̃2)h̃1(w)w
c̃2
(
1 + xp̃1+p̃2 h̃2(w)w

−p̃2(1 + o(1))
)

=: x−1/η2C2

(
1 +D2x

τ2(1 + o(1))
)
,

i.e., G ∈ Hall(η2, C2, D2, τ2). Finally, note that Z
∗ = min(X∗, wY ∗) = min(Z, Z̃) and Z, Z̃ are independent of each

other,

H(x) = F (x)G(x) = x−(1/η1+1/η2)C1C2

(
(1 +D1x

τ1)(1 +D2x
τ2)(1 + o(1))

)
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Figure 8: Mean values (left) and mean squared errors (right) of the estimation of P(Y > 160|X > 40) = 0.2219 with
τ̂1 = −1. Samples are from Gumbel(2) censored by S-clayton(1).
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Figure 9: Estimations of the coe�cient of tail dependence of (Loss, ALAE) considering the censoring case (left) and
neglecting the censoring case (right).
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Figure 10: Estimations of the tail probability of P(Loss > 200000,ALAE > 100000)) by estimators (3.2) with τ̂1 = 0
(left) and τ̂1 = −1 (right). The empirical tail probability 0.006 is indicated by the horizontal line.



13

0 500 1000 1500

0.0
0.2

0.4
0.6

0.8
1.0

k

α = 0 α = 0.5 α = 1

0 500 1000 1500

0.0
0.2

0.4
0.6

0.8
1.0

k

α = 0 α = 0.5 α = 1

Figure 11: Estimations of the tail probability of P(ALAE > 100000|Loss > 200000)) by estimators (3.2) with τ̂1 = 0
(left) and τ̂1 = −1 (right). The empirical tail probability 0.1428 is indicated by the horizontal line.

=: x−1/ηC
(
1 +Dxτ (1 + o(1))

)
,

with
D = D1I{τ1 > τ2}+D2I{τ1 < τ2}+ (D1 +D2)I{τ1 = τ2} ≠ 0, τ = max(τ1, τ2),

i.e., H ∈ Hall(η, C,D, τ) and thus the proof is complete. 2

Proof of Lemma 2.3 Let ξ1,n ≤ . . . ≤ ξn,n be the associated order statistics of {ξi}ni=1 from ξ ∼ Fξ(x) =

1− 1/x, x ≥ 1. It follows from de Haan and Ferreira (2006) that (k/n)ξn−k,n
p→ 1 and

{U(ξn−i+1,n)}i=1,...,k
d
= {Z∗

n−i+1,n}i=1,...,k, {ξn−i+1,n/ξn−k,n}i=1,...,k
d
= {ξk−i+1,k}i=1,...,k

independent of ξn−k,n. By Lemma 2.1, H ∈ Hall(η, C,D, τ) and thus H satis�es the second-order condition (2.3),
implying that

Z∗
n−i+1,n

Z∗
n−k,n

d
=

U(ξn−i+1,n)

U(ξn−k+1,n)

d
= ξηk−i+1,k

(
1 +

ξρk−i+1,k − 1

ρ
b(n/k)(1 + op(1))

)
, i = 1, . . . , k. (6.1)

By the uniform convergence theorem of regular varying function (cf. Theorem 2.3.9 in de Haan and Ferreira (2006))

M (j)
n (k) =

1

k

k∑
i=1

(
log

Z∗
n−i+1,n

Z∗
n−k,n

)j

d
=

1

k

k∑
i=1

(
η log ξk−i+1,k +

ξρk−i+1,k − 1

ρ
b(n/k)(1 + op(1))

)j

=
ηj

k

k∑
i=1

(log ξk−i+1,k)
j +

jηj−1

k

k∑
i=1

(log ξk−i+1,k)
j−1

ξρk−i+1,k − 1

ρ
b(n/k)(1 + op(1))

= ηjΓ(j + 1) +
ηj

k

k∑
i=1

((log ξi)
j − Γ(j + 1)) + ηjΓ(j + 1)

1/(1− ρ)j − 1

ρ

b(n/k)

η
(1 + op(1))

= ηjΓ(j + 1)

(
1 +

σj

Γ(j + 1)

P
(j)
n√
k

+ µj,ρ
b(n/k)

η
(1 + op(1))

)
,

with σ2
j = Γ(2j + 1)− Γ2(j + 1), µj,ρ = 1/(1−ρ)j−1

ρ and

P (j)
n =

1

σj

√
k

k∑
i=1

((log ξi)
j − Γ(j + 1)) ∼ AsN(0, 1).

Similarly, for N
(τ)
n (k) de�ned in (2.1), we have

N (τ)
n (k)

d
=

1

k

k∑
i=1

ξρk−i+1,k

(
1 +

ξρk−i+1,k − 1

ρ
b(n/k)(1 + op(1))

)τ
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=
1

k

k∑
i=1

ξρk−i+1,k

(
1 +

ξρk−i+1,k − 1

η
b(n/k)(1 + op(1))

)

=
1

1− ρ
+

1

k

k∑
i=1

(
ξρi − 1

1− ρ

)
+

ρ

(1− 2ρ)(1− ρ)

b(n/k)

η
(1 + op(1))

=
1

1− ρ
+

ρ

(1− ρ)
√
1− 2ρ

Kn√
k
+

ρ

(1− ρ)(1− 2ρ)

b(n/k)

η
(1 + op(1)),

with ρ = ητ and

Kn =
(1− ρ)

√
1− 2ρ

ρ
√
k

k∑
i=1

(
ξρi − 1

1− ρ

)
∼ AsN(0, 1).

By the Cramér�Wold device and Liapounov's theorem (cf. Chung (1974), p 200) for j, j′ = 1, 2,

AsC(P (j)
n , P (j′)

n ) =
Γ(j + j′ + 1)− Γ(j + 1)Γ(j′ + 1)

σjσj′
, AsC(Kn, P

(j)
n ) =

√
1− 2ρΓ(j + 1)

µj,ρ

σj
.

Therefore, it remains to prove the asymptotic distribution expansion of p̂n(k) as in (2.7). For that we shall use that

E(δ|Z∗ = t) =
η

η1

(
1 +

(
ρDtτ − η1τ1D1t

τ1
)
(1 + o(1))

)
(6.2)

for large t, where E(δ|Z∗ = t) = limε→0 E(δ|Z∗ ∈ ∆ε) with ∆ε = (t, t + ε) or ∆ε = (t − ε, t). In fact, since
F ∈ Hall(η1, C1, D1, τ1),H ∈ Hall(η, C,D, τ) and ℓ0,F (t) = (C1D1t

τ1)−1(t1/η1F (t)− C1) is a normalized regularly
varying function, as t → ∞

∂ logF (tx)

∂x
= − 1

η1x
+

D1t
τ1xτ1−1[τ1ℓ0,F (tx) + txℓ′0,F (tx)]

1 +D1(tx)τ1ℓ0,F (tx)
=

1

x

(
τ1D1(tx)

τ1(1 + o(1))− 1

η1

)
,

H(tx)

H(t)
= x−1/η

(
1 +Dtτ (xτ − 1)(1 + o(1))

)
,

H(t+ ϵ)

H(t)
= 1 +

ϵ

ηt

((
ρDtτ − ϵ

2t

(
1 +

1

η

))
(1 + o(1))− 1

)
holds locally uniformly for all x > 1 and ϵ ∈ (0, 1). Recall that δ = δ(1)δ∗ + δ(2)(1− δ∗) is the indicator function of

the event {Z ≤ Z̃}, hence for large t

E(δ|Z∗ = t) = lim
ε→0

P(δ = 1|Z∗ ∈ ∆ε)

= lim
ε→0

P(Z ≤ Z̃, Z∗ ∈ ∆ε)

P(Z∗ ∈ ∆ε)
= lim

ε→0

∫
x∈∆ε

G(x) dF (x)

P(Z∗ ∈ ∆ε)
= lim

ε→0

∫
tx∈∆ε

H(tx) d logF (tx)

−P(Z∗ ∈ ∆ε)

= lim
ε→0

1
ε

∫
tx∈∆ε

x−1/η−1
(
1 +Dtτ (xτ − 1)(1 + o(1))

)(
τ1D1t

τ1xτ1(1 + o(1))− 1/η1

)
dx

−P(Z∗ ∈ ∆ε)/(εH(t))

=
η

η1

(
1 + ρDtτ (1 + o(1))

)(
1− η1τ1D1t

τ1(1 + o(1))
)

=
η

η1

(
1 +

(
ρDtτ − η1τ1D1t

τ1
)
(1 + o(1))

)
thus, (6.2) is proved. Substituting t with Z∗

n−i+1,n in (6.2) for i = 1, . . . , k, we have

En(k) =
1

k

k∑
i=1

E(δ|Z∗ = Z∗
n−i+1,n)

=
η

η1

1

k

k∑
i=1

(
1 +

((
U(ξn−i+1,n)

U(ξn−k,n)

)τ

ρD(U(ξn−k,n))
τ −

(
U(ξn−i+1,n)

U(ξn−k,n)

)τ1

η1τ1D1(U(ξn−k,n))
τ1

)
(1 + op(1))

)
d
=

η

η1

1

k

k∑
i=1

(
1 +

(
ξρk−i+1,k

b(n/k)

η
− ξητ1k−i+1,k

η1τ1D1

(ρD)τ1/τ

(
b(n/k)

η

)τ1/τ
)
(1 + op(1))

)
(6.3)

=
η

η1

(
1 +

(
1

1− ρ

b(n/k)

η
− 1

1− ητ1

η1τ1D1

(ρD)τ1/τ

(
b(n/k)

η

)τ1/τ
)
(1 + op(1))

)
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Vn(k) =
1

k

k∑
i=1

AsV(δ|Z∗ = Z∗
n−i+1,n) =

1

k

k∑
i=1

(1− E(δ|Z∗ = Z∗
n−i+1,n))E(δ|Z∗ = Z∗

n−i+1,n)
p→ η2

η1η2
.

Note that the concomitant order statistics {δ[n−i+1,n]}i=1,...,k is independently Bernoulli distributed with successful
probability E(δ|Z∗ = Z∗

n−i+1,n), it follows that

p̂n(k) = En(k) +
1

k

k∑
i=1

(δ[n−i+1,n] − E(δ|Z∗ = Z∗
n−i+1,n)) = En(k) +

η
√
η1η2

Jn√
k

=
η

η1

(
1 +

√
η1
η2

Jn√
k
+

(
1

1− ρ

b(n/k)

η
− η1τ1D1(ρD)−τ1/τ

1− ητ1

(
b(n/k)

η

)τ1/τ
)
(1 + op(1))

)
,

with

Jn =

√
Vn(k)

η/
√
η1η2

∑k
i=1

(
δ[n−i+1,n] − E(δ|Z∗ = Z∗

n−i+1,n)
)√

kVn(k)
∼ AsN(0, 1).

Finally, note that
∑k

i=1 δ[n−i+1, n] relates only to Z∗
n−k,n, independent ofM

(j)
n (k) and N

(τ)
n (k). On the other hand,

by the Cramér�Wold device and Liapounov's theorem (cf. Chung (1974), p 200), En(k) is asymptotic independent

of M
(j)
n (k) and N

(τ)
n (k) (see (6.3)), thus Jn is independent of M

(j)
n (k) and N

(τ)
n (k), hence the proof is complete. 2

Proof of Theorem 3.1 Lemma 2.3 implies

η̂(α)n (k)− η1 =
1

p̂n(k)

M (1)
n (k)− η + α

1− 1

2

(
1− (M

(1)
n (k))2

M
(2)
n (k)

)−1
− η1

(
p̂n(k)−

η

η1

)
=

η1
η

(
(η − 2α)

(
M

(1)
n (k)

η
− 1

)
+ α

(
M

(2)
n (k)

2η2
− 1

)
− η1

(
p̂n(k)−

η

η1

))
(1 + op(1))

=
η1
η

(
(η − 2α)P

(1)
n +

√
5αP

(2)
n − η

√
η1/η2Jn√

k

+

(
(η − 2α)µ1,ρ + αµ2,ρ − η

(
1

1− ρ
− η1τ1D1(ρD)−τ1/τ

1− ητ1

(
b(n/k)

η

)τ1/τ−1
)
(1 + op(1))

)
b(n/k)

η

)
.

(6.4)

In view of condition (3.1) we obtain further

AsV
(
(η − 2α)P (1)

n +
√
5αP (2)

n − η
√
η1/η2Jn

)
= α2 + η1η,

√
kb(n/k)

η

(
(η − 2α)µ1,ρ + αµ2,ρ − η

(
1

1− ρ
− η1τ1D1(ρD)−τ1/τ

1− ητ1

(
b(n/k)

η

)τ1/τ−1
)
(1 + op(1))

)
p→ λ

η

(
αρ

(1− ρ)2
+

η1D1

(1− ρ)D
I{τ1 ≥ τ2}

)
and thus the claim follows. 2

Proof of Theorem 3.3 We treat the cases τ1 > τ2 and τ1 ≤ τ2 separately. For the case τ1 > τ2, by Lemma 2.1
F ∈ RV−1/η1

, it follows from the condition (3.4) that

yn =
xn

Z∗
n−k,n

p→ ∞. (6.5)

Let p̃n = F (Z∗
n−k,n)Gη1,

b(n/k)
η/η1

,τ1
(yn) with Gη,δ,τ (x) = 1− [x(1 + δ − δxτ )]−1/η. Rewrite

√
k(log p̂n − log pn)

log(pn/F (Z∗
n−k,n))

=

√
k(log p̃n − log pn)

log(pn/F (Z∗
n−k,n))

+

√
k(log p̂n − log p̃n)

log(pn/F (Z∗
n−k,n))

.

We treat the two terms on the right-hand side separately. For the �rst summand term, it follows from Proposition
2.3 in Beirlant et al. (2009) that

√
k(log p̃n − log pn)

log(pn/F (Z∗
n−k,n))

=

√
k

log(pn/F (Z∗
n−k,n))

(
logG

η1,
b(n/k)
η/η1

,τ1
(yn)− log

F (ynZ
∗
n−k,n)

F (Z∗
n−k,n)

)
p→ 0.
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For the second summand term, rewrite

√
k(log p̂n − log p̃n)

log(pn/F (Z∗
n−k,n))

=

√
k

log(pn/F (Z∗
n−k,n))

log
F̂n(Z

∗
n−k,n)

F (Z∗
n−k,n)

+ log

G
η̂
(α)
n (k),

b̂(n/k)
p̂n(k)

,τ̂1
(yn)

G
η1,

b(n/k)
η/η1

,τ1
(yn)

 =: In + Jn.

It follows from Csörg® (1996) that In
d→ 0. Next we rewrite Jn as follows

Jn =

√
k

log(pn/F (Z∗
n−k,n))

log

(
yn

(
1 +

b̂(n/k)

p̂n(k)
− b̂(n/k)

p̂n(k)
yτ̂1n

))−1/η̂(α)
n (k)

− log

(
yn

(
1 +

b(n/k)

η/η1
− b(n/k)

η/η1
yτ1n

))−1/η1


=

√
k log yn

log(pn/F (Z∗
n−k,n))

(
1

η1
− 1

η̂
(α)
n (k)

)
+

√
k

log(pn/F (Z∗
n−k,n))

(
1

η1
− 1

η̂
(α)
n (k)

)
log

(
1 +

b(n/k)

η/η1
− b(n/k)

η/η1
yτ1n

)

−
√
k

η̂
(α)
n (k) log(pn/F (Z∗

n−k,n))

(
log

(
1 +

b̂(n/k)

p̂n(k)
− b̂(n/k)

p̂n(k)
yτ̂1n

)
− log

(
1 +

b(n/k)

η/η1
− b(n/k)

η/η1
yτ1n

))
=: J1n + J2n − J3n.

It follows from Theorem 3.1 and the fact that F ∈ RV−1/η1

J1n =
log yn

log(F (ynZ∗
n−k,n)/F (Z∗

n−k,n))

√
k(η̂

(α)
n (k)− η1)

η1η̂
(α)
n (k)

d→ −Z
η1

. (6.6)

Similarly, note that b(n/k) → 0 and the condition (3.4) holds, it follows that

J2n =

√
k(η̂

(α)
n (k)− η1)

log(pn/F (Z∗
n−k,n))

b(n/k)(1− yτ1n )

ηη1
(1 + op(1))

p→ 0. (6.7)

We consider next J3n. We have

J3n = −
√
k

log yn

(
b̂(n/k)

p̂n(k)
(1− yτ̂1n )− b(n/k)

η/η1
(1− yτ1n )

)
(1 + op(1))

p→ 0. (6.8)

In view of condition (3.1) and the proved result (6.5), it is su�cient to prove that
√
kb̂(n/k) is bounded. Note that

τ̂ is a consistent estimator of τ and

b̂(n/k)
d
= η(1− 2ρ)(1− ρ)3ρ−3

(
N (τ̂)

n (k)− 1

1− ητ̂
+

1

1− ητ̂
− 1

1− ρ̂

)
= η(1− 2ρ)(1− ρ)3ρ−3

(
N (τ̂)

n (k)− 1

1− ητ̂
− ρ

η(1− ρ)2
(M (1)

n (k)− η)

)
=

η(1− 2ρ)(1− ρ)

ρ2

(
(1− ρ)2

ρ

(
N (τ̂)

n (k)− 1

1− ητ̂

)
−

(
M

(1)
n (k)

η
− 1

))
.

Consequently, by Lemma 2.3,
√
kb̂(n/k) is bounded. Consequently, combining (6.6), (6.7) and (6.8) the claim follows

for the case τ1 > τ2.
For the case τ1 ≤ τ2, one can follow the line of the proof for the case τ1 > τ2, we leave it to the readers. 2
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