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Abstract: This study aimed to find the molecular basis of Bardet-Biedl syndrome (BBS) in Pak-
istani consanguineous families. A total of 12 affected families were enrolled. Clinical investiga-
tions were performed to access the BBS-associated phenotypes. Whole exome sequencing was
conducted on one affected individual from each family. The computational functional analysis
predicted the variants’ pathogenic effects and modeled the mutated proteins. Whole-exome se-
quencing revealed 9 pathogenic variants in six genes associated with BBS in 12 families. The
BBS6/MKS was the most common BBS causative gene identified in five families (5/12, 41.6%),
with one novel (c.1226G>A, p.Gly409Glu) and two reported variants. c.774G>A, Thr259LeuTer21
was the most frequent BBS6/MMKS allele in three families 3/5 (60%). Two variants, c.223C>T,
p.Arg75Ter and a novel, c. 252delA, p.Lys85STer39 were detected in the BBS9 gene. A novel 8bp
deletion c.387_394delAAATAAAA, p. Asn130GlyfsTer3 was found in BBS3 gene. Three known
variants were detected in the BBS1, BBS2, and BBS7 genes. Identification of novel likely pathogenic
variants in three genes reaffirms the allelic and genetic heterogeneity of BBS in Pakistani patients.
The clinical differences among patients carrying the same pathogenic variant may be due to other
factors influencing the phenotype, including variants in other modifier genes.

Keywords: retinitis pigmentosa; BBS; genetic variants; Pakistan

1. Introduction

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive genetic disorder, with
at least 26 genes reported to cause BBS in different ethnicities [1]. BBS shows variable
intra-familial and inter-familial phenotypes; the clinical presentations may include retinal

Genes 2023, 14, 404. https://doi.org/10.3390/genes14020404 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14020404
https://doi.org/10.3390/genes14020404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-1900-6181
https://orcid.org/0000-0002-2596-9032
https://doi.org/10.3390/genes14020404
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14020404?type=check_update&version=1


Genes 2023, 14, 404 2 of 13

degeneration and strabismus, postaxial polydactyly, obesity, hypogonadism, intellectual
disability, hepatic fibrosis, diabetic mellitus and speech deficits [2,3].

The BBS-associated genes encode numerous ciliary-associated proteins [4]. Primary
cilia are responsible for photoreceptor function in the retina and permit the transport of
molecules in photoreceptors. Cilia dysfunction causes retinal degeneration, renal diseases,
obesity, cerebral anomalies, and diabetes [5]. Interaction of multiple BBS-associated genes
forms a BBSome-complex, essential in cilia formation. For example, the BBS6, BBS10, and
BBS12 proteins form a chaperonin complex, which acts with BBS7, BBS2, and BBS9 to form
the core of the BBSome protein complex [6].

The prevalence of BBS is variable among different world populations. The highest
incidence, 1/3700, has been reported in the Faroe Islands [7], followed by 1/17,000 and
1/18,000 in Newfoundland and Kuwaiti populations [8,9]. BBS is rare in the European
population and its prevalence varies from 1/125,000 to 1/160,000 in English and Swiss
populations [10,11], whereas it is even lower at 1 in 18 million in the Asian population [12].
The prevalence of BBS is not well defined in the Pakistani population; only 20 affected
families belonging to different ethnic groups have been reported. Further comparative
studies are needed to explore the genetic pattern of BBS in the Pakistani population.

The Pakistani population is genetically heterogeneous and the fraction of consan-
guineous marriages is higher than in other countries. 60% of marriages in the country
are consanguineous [13], resulting in increased autosomal recessive disorders. This study
aimed to determine the molecular cause of BBS in consanguineous families and further
study the phenotypic heterogeneity.

2. Materials and Methods
2.1. Enrollment of Participants

The Bioethics Committee approved this study of the University Hospitals of Geneva,
Geneva, Switzerland (Protocol number: CER 11–036) and the Research Ethics committee of
Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan. Informed written
consent was obtained from all participants. Clinical examination confirmed the BBS-
associated phenotypes, and family history was recorded. Twelve consanguineous families
with a minimum of two affected siblings with BBS belonged to different ethnic groups and
regions of Pakistan. The LUBS-1 to LUBS6, LUBS-9, and LUBS-10 families were enrolled
from different cities of Sindh province and belonged to mixed ethnic groups. The CB-3
and CB-44 families have enrolled from Khyber Patktoon Khuwa (KPK) region, and both
originate from the same ethnic group. Both the RP-04 and VI-44 families were enrolled
from Punjab province and belonged to the same ethnic group.

2.2. Blood Sampling and Clinical History

Pedigrees of all families were drawn, and family history was recorded. Detailed clini-
cal information was taken, and BBS-related phenotypic characteristics, including postaxial
polydactyly, brachydactyly, obesity, nystagmus, strabismus, intellectual disability, and obe-
sity, were noted in every affected and normal individual (Table 1, Supplementary Figure S1).
Then, 10 mL blood sample was collected. DNA was extracted by using a standard opti-
mized protocol [14].

2.3. Whole Exome Sequencing Data Analysis

Whole exome sequencing (WES) was performed at the University Hospital Geneva,
Geneva, Switzerland using SureSelect Human All Exon kit v5 (Agilent Technologies, Santa
Clara, CA, USA) on an Illumina HiSeq4000 [15]. Exome data were analyzed through a
customized pipeline, and we successfully used the following strategy to identify novel ID/DD
genes in consanguineous families [15,16]. The pipeline includes the Burrows–Wheeler aligner
tool (BWA), SAMtools, PICARD (http://broadinstitute.github.io/picard/ (15 June 2020)) and
GATK [17]. The human assembly GRCh37/hg19 was used for reference alignment [18]. WES
was performed in one affected member per family to an overall mean-depth base coverage

http://broadinstitute.github.io/picard/
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of at least 100-fold, and >90% of the targeted region covered at least 20-fold. Mapping
of sequenced reads and variant calling was performed as described previously [15,16,19].
First, variants in the genes reported to cause BBS and/or retinitis pigmentosa (RP) were
extracted from the WES variant files to look for genetic diagnosis. Extracted variants were
filtered with a minor allele frequency <1% in the GnomAD [20] and our local database. The
remaining variants were prioritized according to (i) their predicted deleteriousness scores
calculated by the SIFT [21], PolyPhen [22] and MutationTaster [23], (ii) GERP scores [24]
to look at the conservation, (iii) the severity of the genetic alteration (e.g., truncation
vs missense vs synonymous variant). Cases in which we found pathogenic or likely
pathogenic variants in known BBS/RP genes were further investigated by genotyping all
family members through Sanger sequencing for the segregation of variants with the disease
phenotypes in corresponding families [25].

The human assembly GRCh37/hg19 was used for reference alignment [18]. WES was
performed in individuals; IV-8 of LUBS01, IV-3 of LUBS02, IV-1 of LUBS03, IV-2 of LUBS09,
IV-2 of LUBS05, IV-1 of LUBS06, IV-1 of RP-04, IV-4 of VI-65, IV-4 of CB03 and IV-2 of CB04.
Additionally, both parents and all siblings of all families were genotyped for the found
variants by sanger sequencing.

Table 1. Clinical findings of the families affected with Bardet biedl syndrome.
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LUBS-01 BBS6/
MKKS

c.775delA,
p.Thr259LeuTer21

IV:4 M 12 Yes Yes No Yes No Yes No No No

IV:5 M 08 Yes Yes No NA No Yes No No No

IV:8 F 6 Yes Yes No NA No Yes No No No

LUBS-02 BBS6/
MKKS

c.775-delA,
p.Thr259LeuTer21

IV:03 F 15 Yes No No NA No Yes No No No

IV:04 F 11 Yes No No NA No Yes Yes No No

LUBS-03 MKKS c.748G>A,
p.gly250Arg

IV:01 M 12 Yes Yes No NA NA Yes Yes No No

IV:04 F 5 Yes Yes No NA NA Yes No No No

LUBS-04 BBS9 c.223C>T,
p.Arg75Ter

IV:03 M 21 Yes Yes No No No Yes No No No

IV:04 M 17 Yes Yes No No No Yes No No No

V:02 M 14 Yes Yes No No No Yes Yes No No

V:05 F 07 Yes Yes No NA No Yes Yes No No

LUBS-05 BBS1 c.1150
C>T,Glu384Ter

IV:01 M 06 Yes Yes Yes Yes Yes Yes No No No

IV:02 F 03 Yes Yes No Yes Yes Yes No No No
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Table 1. Cont.
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LUBS-06 BBS2 c.471 +1G>A No

IV:01 M 30 Yes Yes NA Yes No Yes Yes No No

IV:02 M 18 Yes Yes NA Yes No Yes Yes No No

LUBS-09 MKKS c.775delA,
p.Thr259LeuTer21

IV:01 M 10 Yes Yes Yes No No Yes Yes No No

IV:02 F 14 Yes Yes Yes Yes No Yes Yes No No

IV:03 F 17 Yes Yes Yes NA NA Yes Yes No No

LUBS-10 BBS9 c.252delA,
p.Lys85SerTer39

IV:02 M 16 Yes Yes Yes Yes No Yes Yes No No

IV:03 M 18 Yes Yes yes Yes No Yes yes No No

CB-03 BBS7 c.580_582delGCA,
p.Ala194del

IV:01 M 30 Yes Yes No NA NA Yes Yes No No

IV:04 F 34 Yes Yes No NA NA Yes Yes No No

CB-44 BBS7 c.580_582delGCA,p.Ala194del

IV:01 M 11 Yes Yes No NA NA Yes Yes No No

IV:02 M 22 Yes Yes Yes NA NA Yes Yes No No

IV:03 M 21 Yes Yes Yes NA NA Yes Yes No No

VI-65 ARL6 c.387_394delAAATAAAA

IV:01 M 19 Yes No No No No No No No No

IV:04 F 10 Yes No No No No No No No No

IV:06 M 12 Yes Yes No No No Yes No No No

RP-04 MKKS 1226G>A,p.Gly409Glu

IV:01 M 20 Yes Yes No No No No No No No

IV:02 M 25 Yes No No No No No No No No

2.4. Sanger Sequencing Method

Sanger sequencing was performed at the Department of Molecular Biology and Genetics,
Liaquat University of Medical and Health Sciences, Jamshoro Sindh, Pakistan. Primer pairs
were designed to amplify variants using the Primer 3 web tool (Supplementary Table S1).
The sequencing reaction was carried out for affected families and 60 normal controls using
the previously described Big dye terminator Sanger sequencing kit [16]. The samples were
electrophoresed using Genetic analyzer 3130, and the chromatograms were analyzed using
chromas ver 3.

2.5. Computational Analysis for Protein Predictions

Bioinformatic analysis was performed for in silico predictions of pathogenic variants
and their effects on the encoded protein. For non-synonymous substitutions, Polyphen2 [26],
Sift, Mutation taster, and HOPE (Have your Protein Explained) protein prediction web
tool were used and Provean, and Editseq were used for Frameshift variants [22,23,27]. The
Phyre2 bioinformatics tool was used to model the protein [28].
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3. Results

Twelve unrelated consanguineous families with more than two affected siblings with
BBS were enrolled from Sindh, Punjab, and KPK provinces of Pakistan. The medical exami-
nation confirmed the clinical diagnosis of BBS with variable clinical presentations, showing
interfamilial and intra-familial phenotypic differences. The exome sequencing revealed 9
likely causative variants; four novels and five reported in six different genes; these variants
were segregated with the disease phenotype in all 12 families. Two variants were detected in
the BBS9 (NM_198428.3) gene, including one nonsense substitution (c.223C>T, p.Arg75Ter)
and a second novel single base deletion, resulting in a frameshift followed by premature ter-
mination (c.252delA, p.Lys85SerTer39). An 8bp novel deletion, c.387_394delAAATAAAA,
pAsn130GlyfsTer3 was found in BBS3 (NM_001278293.3) gene and one novel substitution
1226G>A, p.Gly409Glu was identified in BBS6/MKKS (NM_170784.3) gene. The variants
were homozygous in each family studied. No disease alleles were detected in 120 ethnically
matched normal controls.

Five variants were previously reported, including a frameshift deletion (c.774delA,
Thr259LeuTer21), a missense substitution (c.748G>A, Gly250Arg) in BBS6/MKKS
(NM_170784.3), one nonsense substitution (c.1150G>T, p, Glu384Ter) in BBS1, one splice site
variation (c.471G>A) in BBS2 (NM_031885.5), and a 3bp inframe deletion (c.580_582delGCA,
p.A194del) in BBS7 (Supplementary Figure S2). The in silico functional studies supported
the pathogenic role of all variants found segregating with the BBS phenotype in the study
(Supplementary Table S2).

The BBS6/MKKS was the most common causative BBS gene in the study (41.6%,
5/12 families) and the c.774delA:p. (Thr259LeuTer21) was the frequent BBS6/MKKS vari-
ant found in three families (60%, 3/5). All five families harboring BBS6/MKKS variants
were consanguineous. The three families (LUBS-01, LUBS-02, and LUBS-09) carrying
c.774delA:p.(Thr259LeuTer21) were unrelated and belonged to different ethnic groups
(Figure 1). The clinical presentation of patients is described in Table 1; briefly, the age of
the patients carrying c.774delA:p. (Thr259LeuTer21) ranged from 6 to 17 years, with a
mean age of 12. There were three female and five male patients. The retinitis pigmentosa
and obesity were consistent phenotypic features among all affected individuals, whereas
polydactyly showed interfamilial and intra-familial variability. It is noteworthy that intel-
lectual disability was observed in all three patients of LUBS09. In contrast, five patients
of the other two families had normal intellectual development. Two patients of LUBS01
and LUBS09 had hypogonadism, each belonging to LUBS01 and LUBS09. The protein
prediction showed that adenine deletion causes the frameshift and only results in a pre-
mature polypeptide of 259 amino acids. Another BBS6/MKKSreported missense variant
c.748G>A, p. (Gly250Arg) segregated with BBS in family LUBS-03 (Figure 1). This fam-
ily belonged to the Pakhtoon ethnic group of Mirpur Khas, Sindh, and consisted of two
affected members, a boy and a girl, aged 12 and five years, respectively. Both patients
had polydactyly at birth, whereas the retinitis pigmentosa and obesity manifested at three
years. The in silico analysis revealed that this substitution (p.Gly250Arg) replaces glycine,
which is neutral and small in size, whereas arginine is positively charged and big. This
replacement of the amino acids might affect the binding function of the apical domain of the
BBS6/MKKS protein.

Two patients of the RP-04 family were carrying a novel substitution, resulting in a
missense variant c.1226G>A, p.Gly409Glu (Figure 2C). Both patients had night blindness as
the primary symptom, and only one (IV:01) presented with polydactyly. In silico analysis
showed that the wild and mutant amino acid differs in size, charge, and hydrophobic-
ity. The mutant residue is bigger than the wild-type residue; the wild-type residue is
more hydrophobic than the mutant residue. The wild-type glycine is the most flexible
of all residues. This flexibility might be necessary for the protein’s function. Mutation
of this glycine can abolish this function. Mutation of a 100% conserved residue is usu-
ally damaging to the protein. The Proven, Polyphen and mutation tester tools indicate
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the change as harmful and disease-causing. In addition, this variant is not found in the
genomeAD database.
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Figure 2. Bardet-Biedl Syndrome affected Pedigrees with novel variations showing chromatogram
along with the wild type and mutant protein models.

The Ramachandran plot was used to predict the effect of amino acid substitution on
protein structure. It compares the stereo-chemistry and geometry of wild and mutant types
of protein structure by analyzing the angles of amino acids. The wild type and mutant
proteins revealed a non-comparable range. The wild-type protein carried 82% and 17%
residues in favored and allowed regions, while the mutant structure had 87% and 8%
residues in favored and allowed regions (Figure 3A). The metaDome health map shows
that the glycine at 409 position is located in the TCP-1/cpn60 chaperonin family domain
and is found in the neutral region (Figure 3B).
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for wild-type and mutated residues of the BBS6/MKKS gene. (B) MetaDome health map showing
BBS6/MKKS residue. (C) MetaDome health map showing BBS9 residues. (D) MetaDome health map
showing BBS3 residue.

A novel 8bp deletion c.387_394delAAATAAAA, resulting in truncation of the protein
p.Asn130GlyfsTer3 in the BBS3 gene (NM_001278293.3), was segregated with BBS in the
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VI-65 family (Figure 2D). The clinical examination of three patients showed that retinitis
pigmentosa was the consistent phenotype in all the patients, whereas only one had poly-
dactyly. The deletion of 8 nucleotides removes conserved amino acids and results in a
non-homologous sequence. (Figure 2D). The deletions may disturb the small GTP-binding
protein domain and GTP hydrolysis activity of the BBS3 gene. The metaDome analysis
revealed that Asn 130 amino acid is located in an intolerant region of ADP-ribosylation
(Figure 3D).

A previously reported BBS1 (NM_024649.5) variant, c.1150G>T: p.(Glu384Ter), was
found segregating with BBS in two affected individuals of family LUBS-05 (Figure 1). The
family belonged to the Pathan ethnic group and was enrolled from Dadu, Sindh, Pakistan.
Both affected individuals were diagnosed with retinitis pigmentosa, obesity, polydactyly,
and hypogonadism. The affected boy (IV-1) also manifested intellectual disability. The
c.1150G>T substitution introduces premature stop codon at the 384th residue of BBS1
protein, affecting the apical domain and impairing binding properties.

Two truncating mutations were detected in the BBS9 (NM_198428.3) gene, segregating
with BBS in two unrelated families (Figure 2A,B). LUBS04 consisted of four affected indi-
viduals who belonged to the Sindhi ethnic group (Figure 2A). All the affected individuals
had retinitis pigmentosa as the primary phenotype, polydactyly, and obesity. None of
the affected family LUBS04 had intellectual disability and hypogonadism. The exome
sequencing revealed nonsense codon in homozygosity, c.223C>T, p.Arg75Ter; the truncated
protein is only 75 amino acids long and lacks the functionally important conserved Pfam
domain. This allele was previously reported in Danish and Saudi cohorts [29,30]; however,
no details of this variant’s clinical and in silico functional data are available in the literature.
Our bioinformatics analysis supported this change as disease-causing. The metaDome
analysis revealed that the truncated Arg75 amino acid is located in the neutral region of the
N-terminal domain of the PTHB1 protein (Figure 3C).

The second novel homozygous variant c.252delA, p.Lys85SerTer39 in the BBS9 re-
sulted in a frameshift and truncation of the protein at the 39th amino acid, segregating
with BBS in family LUBS10 (Figure 2B). The affected individuals had consistent typical
symptoms, including RP, polydactyly, and obesity. In addition, both affected were intellec-
tually disabled. This variant affects the conserved Pfam domain of the BBS9 protein. The
bioinformatics analysis indicated this variation as disease-causing. The metaDome analysis
revealed that truncated Lysine at the 85th position is located in the slightly intolerant region
of the N-terminal domain of the PTHB1 protein (Figure 3C).

One known splicing variant, IVS3 -1G>A, was found in the BBS2 gene, which seg-
regated with the BBS phenotypes in two affected individuals of family LUBS06. Both
affected had RP, obesity, and intellectual disabilities, whereas polydactyly was absent in
both patients (Table 1). The family belonged to the Punjabi ethnic group and was enrolled
from Sindh province. The splice variant is predicted to cause the failure of removal of
intron-3, resulting in abnormal protein.

A 3bp deletion (c.580_582delGCA:p(Ala194del)) in BBS7 (NM_176824.3) gene segre-
gated with the BBS phenotype in two unrelated families, CB03 and CB44. Both families
were enrolled from the KPK province of Pakistan and belonged to the same ethnic group,
Pashtun. The clinical findings showed that all five affected of the two families had RP,
polydactyly, obesity, and nystagmus. In contrast, intellectual disability was found only in
two affected individuals of family CB-44. Bioinformatics analysis showed that the deletion
of the conserved Ala194 deteriorated the normal protein structure and function.

4. Discussion

In this study, we expand the repertoire of BBS phenotypes caused by the reported
and novel variants in different BBS genes. We report 31 one affected individuals from
12 BBS families ascertained from different regions of Pakistan, who possess different
pathogenic and likely pathogenic homozygous variants in BBS genes. The study affirmed
the BBS6/MKKS alleles as the most common BBS-causing variants in Pakistani patients.
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(41.6% 5/12 families). The c.774delA was the frequent variant in the mutated 60% (3/5)
BBS6/MKKSfamilies. The allele frequency of the frequent BBS6/MKKS allele, c.774delA in
Pakistani patients was 24% (14/58) (Table 2). Our study showed a 41.6% (10/24 alleles) con-
tribution of BBS6/MKKS alleles in the included families (Table 2). The global contribution is
insignificant; only one family carrying the BBS6/MKKS mutation was detected in 55 families
comprising European-derived American, Tunisian, Arabic, and Pakistani patients [31]. To
date, 60 pathogenic variations have been reported in the BBS6/MKKS gene, most of which
are missense and nonsense mutations [32]. Notably, the frequent mutation c.774delA was
first detected in a Pakistani family. In contrast, the second missense variant found in the
study, p.Gly250Arg was initially detected in a Spanish family [33]. This study identifies a
novel BBS6/MKKS variant, p.Gly409Glu, indicating the allelic heterogeneity. A haplotype
of intragenic variants across the c.774delA was assessed in families LUBS01, LUBS02 and
LUBS09. A typical region of 3’033’925 bp was shared between family LUBS01 and LUBS02;
LUBS09 shared a 2’636’377 bp region with LUBS01 and LUBS02, indicating a founder
effect (Supplementary Table S3). Overall assessment of BBS6/MKKS-associated disease in
Pakistani patients ranks it as a frequently mutated gene, with 27% (16/58) prevalence in
the Pakistani patients studied. (Table 2).

Table 2. BBS associated variants detected in Pakistani patients.

Gene Variants No. of Families No. of Alleles Frequency
(gnomAD Database) References

BBS1 c.1150G>T,p.Glu Ter384 1 2 0 [34]

c.47 +1G>T 1 2 0.00000399 [35]
[35]c.442 G>A,p.Asp148Asn 1 2 0.00029

BBS2 c.471 +1G>A 1 2 0 [36]

BBS3/
ARL6 c.534A>G.p.Gln178Gln 1 2 0.00000796 [37]

c.387_394delAAATAAAA 1 2 0 In this study

BBS5 c.734_744del,p.Glu245Gly Ter18 2 4 0 [37]

BBS6/MKKS c.775delA,
p.Thr259LeuTer21 4 8 0.0000438 [38]

c.1226G>A,pGly409Glu 1 2 0 In this study

c.287 C>T,p.Ala96Val 1 2 0
[39]

c.748 G>A,p.gly250Arg 1 2 0.0000159

c.822 C>G,p.Ser40 * 1 2 0 [38]

BBS7 c.580_582delGCA 3 6 0 [38]

c.1592_1592delTCCAG 1 2 0

BBS8 c.1347G>C,p.Gln449His 1 2 0 [38]

BBS9 c.223C>T, p.Arg Ter75 1 2 0.0000199

In this studyc.252delA,
p.Lys85S Ter39 1 2 0

c.299delC (p.Ser100Leu Ter24) 3 06 0 [40]

c.1789 C>T,p.Gln Ter597 1 2 0 [37]

BBS10 c.271_272insT 1 2 0.000579 [38]

BBS12 c.2014G>A,p.Ala672Thr 1 2 0.001102 [37]

Total 29 58

BBS9 variants are the second most frequent cause of BBS in Pakistan patients, with
20.6% (12/58) allelic contribution (Table 2). Previously, a single BBS9 deletion, c.299delC,
was found in three Pakistani families of the same ethnic group [33,39]. This study expands
the BBS9 mutation spectrum and adds two truncating variants c.223C>T, p.Arg75Ter and
a novel c.252delA:p.Lys85SerTer39, associated with BBS in two unrelated pedigrees. The
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BBS9 gene plays a central role in binding BBSome constituting proteins (BBS1 to BBS10),
and the loss of function mutations may affect the integrity of the BBSome complex [6]. The
affected of both families carrying novel variations presented three consistent phenotypic
features, including RP, polydactyly, and obesity. In addition, LUBS10 patients had intel-
lectual disability and hypogonadism (Table 1). The previously reported Pakistani families
carrying a loss of function variant showed the same significant clinical symptoms, except
for intellectual disability and hypogonadism. However, the two tested patients were adults
aged 20 and 18 [38]. This phenotypic variation among the families reported in this study
and previously reported pedigree may be due to different ethnic lineages.

Previously, three different mutations in the BBS3 gene have been identified in three
Pakistani families affected with BBS; one of the homozygous variants is a deletion of
54 Kb [31,40,41]. Notably, four other large deletions in BBS3 were found in BBS fam-
ilies from Saudi Arabia, France and USA [37,38]. In this study, a novel 8 bp deletion
(c.387_394delAAATAAAA) was inherited recessively in three patients of BBS. Initial clinical
assessment of the proband indicated a nonsyndromic RP; however, the examination of all
other affected showed unilateral polydactyly in one patient. Previously, nonsyndromic
RP has been reported in Saudi Arabian patients carrying homozygous missense variants
(p.Ala89Val) in the BBS3 gene. In contrast, patients with a deletion, c.732+1952_899-3806-
del4139, showed polydactyl, obesity, and dysmorphism [42]. The variable phenotype may
be due to different types and locations of BBS3 variants.

BBS1 mutations are uncommon in Pakistani patients; previously, only one family
with a splice site mutation was reported. We identified another BBS family carrying bi-
allelic substitution p.Glu384Ter, resulting in the termination of the protein. Previously,
c.1150G>T was detected as a compound heterozygous with a missense allele, Met390Arg,
in French patients [42]. This study described the first report of homozygousp.Glu384Ter
from Pakistan. The BBS1 mutations are more frequent in Caucasian patients; the founder
variant p.(Met390Arg) has been homozygous and compound heterozygous in more than
15 families [34,43]. In addition, BBS1 variants cause mild ocular and renal abnormalities [6,34].
Our patients, homozygous for the BBS1 variant, showed early onset of RP at 3 and 6 years
and renal anomalies. These clinical differences may be due to the nature of the variant;
the Caucasian patients harbored missense variants, whereas our patients carried bi-allelic
truncation mutations. In addition, epigenetic or environmental factors may also aggravate
the phenotype.

Identification of BBS mutation in the BBS2 gene elaborates clinical and genetic hetero-
geneity in BBS patients of Pakistan. Previously no disease allele of BBS2 has been reported
in Pakistani patients. We detected a splice site variant, IVS3 -1G>A, in two patients of
the LUBS06 family, which was initially reported in an isolated case affected with nonsyn-
dromic retinitis pigments [44]. The affected individuals of family LUBS06 presented with
typical characteristics and features of BBS, including polydactyly and obesity (Table 1). Our
findings show that the IVS3 -1G>A segregates with BBS phenotype in a consanguineous
pedigree, an additional variant phenotype.

BBS7 mutation p.(Ala194del) segregated BBS into two families of the Pathan ethnic
group. The clinical assessment showed interfamilial differences among patients despite the
same variant and ethnicity. Two patients of the CB44 family had an intellectual disability,
whereas no such phenotype was present in family CB03. This deletion was first reported in
a Pakistani family of the same ethnicity, and the patients had RP, obesity, and intellectual
disability [38]. Our study indicates that p.Ala194del is the recurrent BBS mutation of
Pathan ethnicity and KPK province. The haplotype analysis showed a shared region of
5,063,463 bp long between the two families and indicated a common origin of the variant.

5. Conclusions

BBS is a rare disorder, and this is the largest cohort of consanguine BBS families,
characterized by the molecular basis of the disease. The BBS6/MKKS and BBS9 are the
frequent genes associated with BBS in the Pakistani population, and identifying novel
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variants reaffirms the allelic heterogeneity. In addition, the differences in clinical manifesta-
tion and severity of the disease in patients carrying the same mutated allele indicate the
contribution of other factors, including additional genomic variations. This study provides
carrier screening and genetic counseling opportunities for affected families and helps in
the prognosis and management of patients with BBS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14020404/s1, Figure S1: Phenotypic features of families
affected with BBS; Figure S2: Chromatograms of common known variants; Table S1: Sequencing
primers used for selected exons of BBS genes; Table S2: Predictions of bioinformatics tools for
variants segregating in families affected with Bardet Biedal Syndrome (BBS); Table S3: Haplotype of
interagenic variants across the BBS6/MKKS and BBS7 common variants.
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