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Abstract

To ensure genome stability, sexually reproducing organisms require that mating brings

together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fis-

sion yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling

cascade, which represses subsequent mating and initiates meiosis. Here, we establish a

degron system to specifically degrade proteins postfusion and demonstrate that mating

blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion

attempts. Using long-term imaging and flow-cytometry approaches, we identify previously

unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 pro-

motes premeiotic S-phase independently of Mei2 and that cell cycle progression is both nec-

essary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic

program and promotes the meiotic cycle, but also blocks mating behaviors independently of

Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival

by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry

triggered by Mei3 synergize to prevent zygotic mating.

Introduction

Most sexually reproducing species oscillate between haploid and diploid states. Meiotic divi-

sions in diploid cells give raise to haploid progeny, while fertilization brings the genomes of 2

haploid partners together to form a diploid offspring. This ploidy cycle is central to the mainte-

nance of a stable genome and relies on mechanisms that on the one hand promote faithful

meiosis, and on the other hand ensure inheritance of exactly 2 parental genomes. Different

species rely on processes that either restrict fusion to 2 parental gametes or 2 parental nuclei

when fertilization occurs between multiple gametes [1–3]. Working on the fission yeast Schizo-
saccharomyces pombe, we recently discovered that fungal zygotes actively block recurrent

fusion events. Upon fusion of the partner cells, the gamete-specific factors Mi and Pi form a

bipartite transcription complex that triggers zygotic gene expression and blocks refertilization

[4] through mechanisms that remain unknown.
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The fission yeast is a well-established model to probe the process of sexual differentiation.

Mating is initiated when compatible partners from the 2 mating types, P and M, lack a source

of nitrogen. Paracrine signaling between partners through diffusible pheromones and nitrogen

depletion initiate the sexual development program dependent on the Ste11 transcription factor

[5–8]. Increased Ste11 activity enhances expression of the pheromone and pheromone-signal-

ing genes, which further drives gamete differentiation [9]. Starvation and pheromone signaling

also promote arrest in the G1 phase of the cell cycle [10,11]. Several mechanisms concur in

enforcing the G1 arrest, including (1) inhibition of CDK1-cyclin B complexes by cyclin-depen-

dent kinase inhibitor; (2) cyclin degradation mediated by the anaphase promoting complex;

and (3) reduction in cyclin mRNA stability [12–14]. G1 arrest is essential for gamete differenti-

ation, most likely as it is the only permissive phase for Ste11 to activate target genes [15,16].

Once differentiated, gametes use the pheromone gradients released by the other mating

type to search for a partner, grow toward each other, form pairs, and fuse together [17,18]. In

this process, the formin Fus1, whose transcription is induced by Ste11, is a major player, as it

assembles the actin fusion focus at the site of cell–cell contact to drive local cell wall digestion

and allow gametes to fuse together [19,20]. Timely degradation of the cell wall precisely at the

site of cell contact is critical since incautious perforations in the cell wall, which, for instance,

occur upon pheromone signaling hyperactivation or upon construction of autocrine cells, lead

to cell lysis [21,22]. After gamete fusion, the fusion focus disappears, the fusion neck expands

and the cells stop growing, the partner nuclei fuse together, and the now diploid zygote imme-

diately enters the meiotic cycle. Thus, even though the zygote is still in conditions of starvation

and pheromone exposure, it fundamentally changes fate, reenters the cell cycle, and blocks

mating. This is all the more remarkable as pheromone signaling is essential for initiation of

meiosis, at least in azygotic diploids (diploid cells not directly resulting from the fusion of 2

gametes) [23].

The molecular details of meiosis initiation have been intensely studied in fission yeast (Fig

1A, [24]). The principal target of the Mi–Pi bipartite transcription factor is the mei3 gene,

which is considered a master inducer of meiosis [4,25,26]. Mei3, a small, largely disordered

protein, functions as an inhibitor of the Pat1 kinase. Forced Mei3 expression or direct inactiva-

tion of Pat1 are both sufficient to trigger meiosis even from a haploid genome [27,28]. In hap-

loids, which do not express mei3, Pat1 phosphorylates and inhibits the RNA-binding protein

Mei2, whose activation is also sufficient to initiate meiosis [24,29]. A large body of work, per-

formed primarily on azygotic diploid cells using acute inactivation of Pat1 kinase, has dissected

the critical role of Mei2 in driving meiosis. This showed that Mei2 is essential for both G1/S

and, in association with the long noncoding meiRNA, G2/M meiotic transitions [29,30]. How-

ever, this work largely ignored the functions of Mei3, which was assumed to solely initiate a

linear Mei3-Pat1-Mei2 pathway (Fig 1A). Consistent with this idea, indirect radioactive label-

ing of DNA suggested that mei3Δ zygotes become arrested before the initiation of premeiotic

DNA replication [31], as was reported for mei2Δ diploids [29]. We previously found that both

mei3Δ and mei2Δ zygotes mate with a third gamete [4]. However, this phenotype is much

more prominent in double mutants [4], suggesting a nonlinear pathway. These observations

led us to investigate the roles of Mei3 and Mei2 in blocking refertilization and driving meiosis.

Here we show that zygotic mating blocks not only prevent refertilization but also avert lysis

caused by autocrine signaling postfertilization. Our findings reveal that zygotes block mating

through 2 pathways, dependent on Mei3 and Mei2, respectively. First, we show that Mei3 pro-

motes exit from the G1 phase, which by itself blocks refertilization. Second, we find that Mei2

confers the zygotic fate, which ensures not only meiotic commitment but also mating arrest,

independently of cell cycle progression. Thus, fungal cells exhibit 2 pathways to block zygotic

mating, ensuring the fidelity of the ploidy cycle.
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Fig 1. Meiotic signaling mutants show distinct phenotypes. (A) Schematic representation of meiotic signaling at the start of this study. (B) Quantification of

phenotypes observed by long-term DIC imaging of zygotes. Numbers at the top report frequency of refertilization. (C) DIC images of cells prior to partner

fusion (0 minute), at the time zygotes complete concave neck expansion (150 minutes; yellow outline in right panel) and 10 hours later (750 minutes; green

outline). A fraction of mei2Δ zygotes divides (here at 990 minutes). (D) Myosin light-chain Rlc1-sfGFP (bottom panel) in mei2Δ cells expressing mCherry from

P-cell-specific pmap3 promoter (top panel, magenta overlaid with DIC) from prefusion (time 0) to zygote septation. (E) GFP-α-tubulin (bottom panel) in mei2Δ
cells also expressing nuclear marker Uch2 fused to mCherry (top panel, magenta overlaid with DIC). Note the cell division after the zygote forms a microtubule

spindle. (F and G) Area increase (F) and maximum perimeter displacement (G) of zygotes observed by time-lapse imaging during 10 hours after neck

expansion measured from outlines as shown in (C). Dots show individual measurements, bars mean values, and error bars standard deviation. p-Values for

indicated comparisons were obtained from the Kruskal–Wallis test. (H) Projection of 60 time points during 10 hours from the time of neck expansion of

polarity and growth markers Scd2-GFP (green) and Myo52-tdTomato (magenta). The arrowheads point to the signal at the neck. Both proteins are restricted to

the neck in wild-type cells. In mei2Δ and mei3Δmei2Δ zygotes, both markers continuously trail the growth projection, while mei3Δ zygotes show a fluorescent

signal appearing at various cortical sites. See S1E Fig for individual time points. (I) Quantification of Myo52-tdTomato patch lifetime from data as (H) (n� 10

cells). Data are presented as in (F). The data underlying this Figure may be found at https://doi.org/10.6084/m9.figshare.13274837.v1.

https://doi.org/10.1371/journal.pbio.3001067.g001
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Results

Mei3 and Mei2 independently regulate zygotic growth, cell division, lysis,

and mating

We previously reported that in addition to regulating meiotic entry, Mei3 and Mei2 also act to

prevent zygotic mating and refertilization [4]. Indeed, deletion of either mei3 or mei2 led to

refertilization in approximately 1% and approximately 6% zygotes, respectively (Fig 1B and

[4]). We also observed that simultaneous deletion of mei3 and mei2 genes increased the inci-

dence of refertilizations to approximately 13% zygotes (Fig 1B and [4]). These results suggested

that Mei3 and Mei2, which initiate meiosis via a linear Mei3-Pat1-Mei2 cascade, may also act

independently of each other to repress mating in zygotes. We thus set out to dissect the respec-

tive roles of Mei2 and Mei3 in blocking zygotic mating.

We carefully analyzed the phenotypes of wild-type, mei3Δ, mei2Δ, and mei3Δmei2Δ zygotes

(Fig 1C and S1 Movie). After fertilization, wild-type zygotes expanded the fusion neck and

underwent sporulation. The mutant zygotes also expanded the fusion necks but never sporu-

lated and instead grew mating projections, refertilized and/or lysed. Surprisingly, we also

found that one-third of mei2Δ zygotes went through cell division, a phenotype that was virtu-

ally absent from mei3Δ and mei3Δmei2Δmutant zygotes (Fig 1B and 1C). Two lines of evi-

dence suggest that these mei2Δ zygotes divide mitotically. First, dividing mei2Δ zygotes

formed an actomyosin ring: After mei2Δ gametes fused, shown by the entry of cytosolic

mCherry from the P- into the M-partner, the myosin light chain Rlc1-sfGFP formed a contrac-

tile ring in the zygotes, which subsequently underwent septation (Fig 1D and S2 Movie). Sec-

ond, dividing mei2Δ zygotes underwent nuclear division using a microtubule spindle, as

shown by the nuclear marker Uch2-mCherry [32] and α-tubulin GFP-Atb2 (Fig 1E). Spindle

formation, nuclear division, contractile ring assembly, and septation were not observed in

mei3Δ and mei3Δmei2Δ zygotes. We conclude that (1) in absence of Mei2, a fraction of

zygotes progresses through mitosis, and (2) mitotic entry in mei2Δ zygotes depends on Mei3.

The only known molecular function of Mei3 is to inhibit the Pat1 kinase. We thus tested

whether Mei3 signals through Pat1 to initiate mitotic entry in mei2Δ zygotes. Since pat1 dele-

tion is inviable due to constitutive Mei2 activation, we analyzed double and triple mei3Δ,

pat1Δ, and mei2Δmutants (S1A and S1B Fig): Approximately 37% pat1Δmei2Δ double

mutant zygotes underwent cell division, similar to mei2Δ. Again, zygotic cell division was vir-

tually absent from mei3Δ pat1Δmei2Δ zygotes. Thus, Mei3 promotes mitotic entry indepen-

dently of Pat1 in mei2Δ zygotes.

Even when comparing zygotes that did not undergo mitosis, mei3Δ and mei2Δ single and

double mutant zygotes showed clear differences in zygotic growth, morphology, and lysis. To

quantify zygotic growth and morphology, we segmented cross sections immediately after

fusion necks have expanded (Fig 1C, 150-minute time point and yellow line in the far-right

panel) and 10 hours later (Fig 1C, 750-minute time point and green line in the far-right panel).

We then quantified the cross section area increase (Fig 1F) and 3 morphological parameters of

zygotic growth including (1) the maximum cell perimeter displacement (Fig 1G); (2) the mean

coefficient of variation in cell perimeter displacement, which is inversely linked to growth

isometry (S1C Fig); and (3) the diameter of the mating projections (S1D Fig). Growth was

absent from wild-type zygotes between these 2 time points, whereas the cross section area

increased in all mutants (Fig 1F). The growth in mei3Δmei2Δ zygotes was most prominent

(Fig 1F and 1G) and clearly a consequence of cells forming long mating projections, which

mostly originated from the fusion neck region (Fig 1C and S1 Movie), leading to a high coeffi-

cient of variation (S1C Fig). Nondividing mei2Δ zygotes exhibited a qualitatively similar

behavior, but less extensive growth of mating projections. Conversely, mei3Δ zygotes did not
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form pronounced mating projections, and instead enlarged largely isometrically (Fig 1C, 1F

and 1G, S1C and S1D Fig and S1 Movie). Deleting pat1 in mei2Δ and mei3Δmei2Δ did not

change the overall phenotypes of these 2 genetic backgrounds (S1B Fig and S3 Movie).

We further investigated the differences in growth and morphology of mei2 and mei3
mutant zygotes by monitoring the dynamics of the cell growth machinery. Specifically, we

imaged Scd2-GFP, a scaffold protein that binds the active form of the key mating and growth

regulator Cdc42 [33,34]. We simultaneously monitored Myo52-tdTomato, a type V myosin

that delivers secretory vesicles to growth and fusion sites [17,19,35,36]. In wild-type cells, Scd2

and Myo52 focalized at the partner fusion site and then dispersed throughout the zygote after

fertilization (Fig 1H, S1E Fig and S4 Movie). In mei3Δ zygotes, Scd2 and Myo52 signal also

rapidly dispersed from the fusion site, but then formed relatively short-lived patches through-

out the cell cortex (Fig 1H and 1I, S1E Fig). The patches occasionally stabilized at the sites

where mating projections formed (S4 Movie). In mei3Δmei2Δ and nondividing mei2Δ
zygotes, Scd2 and Myo52 patches were significantly more stable after fertilization and marked

the growing mating projection (Fig 1H and 1I, S1E Fig, and S4 Movie). In these zygotes, Scd2

and Myo52 patches frequently did not disassemble after fertilization, and mating projections

grew from the region of the fusion neck. These differences in zygotic growth between mei2Δ
and mei3Δ support the conclusion that Mei2 has roles in regulating the zygotic growth

machinery that are independent of upstream Mei3 signaling.

Taken together, our analyses of individual and double mei2Δ and mei3Δmutants show that,

in addition to their well-established codependent role in meiotic induction, Mei2 and Mei3

independently regulate the zygotic cell cycle, growth, and mating blocks: (1) Mei3 promotes cell

cycle progression in absence of Mei2; (2) Mei2 prevents zygote mating and lysis even in absence

Mei3; and (3) mating and lysis phenotypes are exacerbated in the double mutant.

Mating blocks prevent zygote lysis

Lysis is a prominent phenotype of mei3Δmei2Δ zygotes that we also readily observed in mei2Δ
zygotes but not in mutant gametes prior to fertilization (S2A Fig). What causes lysis specifically

postfertilization? Cell wall digestion is normally brought about by paracrine pheromone sig-

naling and formation of an actin fusion focus nucleated by the formin Fus1 at the site of part-

ner contact [19,37]. In self-stimulating autocrine cells, high levels of pheromone signaling

induce the formation of an ectopic fusion focus, which leads to localized cell wall degradation

independently of a partner cell, and consequently lysis [21]. Lysis in autocrine cells is sup-

pressed by deletion of the formin Fus1 [21]. As gamete fusion brings together the machineries

for production, secretion, and perception of both pheromones, we hypothesized that zygotes

behave as autocrine cells, which would explain their frequent lysis.

To test whether the death of mei3Δmei2Δ zygotes is a consequence of failed fusion

attempts, we aimed to deplete Fus1 specifically postfertilization by developing a zygote-specific

artificial degron system (Fig 2A). We first generated DegGreen by fusing the N-terminus of

the ubiquitin E3 ligase complex protein Pof1 with the GFP-binding protein (GBP) and

expressing it from a strong constitutive promoter. We reasoned that GFP-GBP binding will

direct the Pof1 E3 ligase activity toward GFP and lead to its degradation. Indeed, introducing

the DegGreen into cells expressing meGFP (monomeric enhanced GFP) lowered the green

fluorescent signal by 95% (Fig 2B). We then built DegRed, a fusion between Pof1 N-terminus

and mCherry-binding protein, which decreased the red fluorescence in cells expressing

mCherry by 63% (Fig 2C). When we introduced DegGreen into gametes that carried the native

Fus1 fused with meGFP, the fusion efficiency to fus1Δ partners was reduced by approximately

5-fold as compared to control cells carrying individual proteins (Fig 2D). Likewise, expression
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of DegRed in cells with native Fus1 fused to mCherry reduced fusion efficiency to fus1Δ part-

ners by approximately 2-fold as compared to cells carrying individual proteins (Fig 2E). Thus,

both artificial degrons can decrease the function of Fus1 in gametes.

To specifically degrade Fus1 in zygotes, we used the mei3Δmei2Δ genetic background and

introduced DegGreen into gametes expressing Fus1-mCherry, and DegRed into the other

Fig 2. Zygote lysis is induced by aberrant fusion attempts. (A) Schematic of the artificial degron system. The DegGreen construct composed of the N-

terminal, E3 ligase domain of Pof1 (E3, gray) fused with the GFP-binding nanobody (GBP, dark green) targets GFP (light green; here linked to Fus1) for

degradation. Similarly, the DegRed construct, consisting of the E3 ligase domain of Pof1 (E3, gray) fused with the mCherry-binding nanobody (CBP, dark

purple), targets mCherry (light purple) for degradation. For zygote-specific protein depletion, 1 partner gamete carries DegGreen and the mCherry-tagged

protein of interest, while the other partner brings DegRed and the GFP-tagged protein of interest. Ubiquitination (orange circles) and degradation only

happens postfertilization. (B and C) Exponentially growing cells expressing GFP (B) or mCherry (C) from the strong pact1 promoter without (left) or with

DegGreen (B) or DegRed(C) (right). The graph shows the fluorescence normalized to cells without degron systems. Dots show individual measurements, bars

mean values, and error bars standard deviation. p-Values for indicated comparisons were obtained from the Kruskal–Wallis test. (D and E) Gamete fusion

efficiency between h− strains with incomplete or complete (right) Fus1 degron systems and h+ fus1Δ. Dots show individual replicates, bars mean values, and

error bars standard deviation. p-Values for indicated comparisons were obtained from the Welch test. (F) Mating of mei3Δmei2Δ gametes carrying the

indicated halves of the Fus1 artificial degron system. Zygotes with the incomplete Fus1 degron (top and middle panels) undergo cell lysis (examples outlined in

yellow), whereas zygotes with a complete Fus1 degron postfertilization (bottom panel) prevent lysis (examples outlined in white). (G) Frequency of lysis in

mei3Δmei2Δ zygotes with incomplete or complete degron systems (genotypes as in (F)). Data are presented as in (D). The data underlying this Figure may be

found at https://doi.org/10.6084/m9.figshare.13274837.v1.

https://doi.org/10.1371/journal.pbio.3001067.g002
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gamete expressing Fus1-meGFP, such that substrates and degrons come in contact only post-

fertilization (Fig 2F and S5 Movie). Live imaging showed high levels of Fus1-GFP and detect-

able levels of Fus1-mCherry in control mei3Δmei2Δ zygotes lacking the cognate artificial

degron, with fluorescence concentrated at the shmoo tip, similar to the Scd2 and Myo52 locali-

zation described above (S2B Fig, top and middle panels). Remarkably, zygotes with both

degrons and Fus1 tags had visibly reduced Fus1 fluorescence postfertilization (S2B Fig, bottom

panels), which was also evident from quantification of whole-cell Fus1-GFP signal (S2C Fig),

and showed decreased cell lysis by at least 2-fold relative to control zygotes (Fig 2G, S2D Fig).

Thus, cell death in mei3Δmei2Δmutant zygotes is a consequence of their inability to block

mating. We conclude that mating blocks prevent zygote death.

Mei3 promotes G1-S cell cycle transition independently of Pat1 and Mei2

Our findings that mei2Δ, but not mei3Δmei2Δ, zygotes undergo mitosis strongly suggests that

Mei3 drives cell cycle progression postfertilization. To directly assess progress through the cell

cycle, we used the Hoechst 3334 dye to stain the DNA of cell mixtures produced by mating of

heterothallic h+ (P) and h- (M) strains carrying either cytosolic sfGFP or mCherry expressed

from the strong ptdh1 promoter (Fig 3A). The 2 fluorophores distinguish gametes, which fluo-

resce in a single channel, from zygotes, which fluoresce in both channels using flow cytometry,

and enabled us to determine the cell cycle stage of each cell type in mating mixtures. We per-

formed this experiment in mei3Δ, mei2Δ, mei3Δmei2Δ, and as control mei4Δ, which arrest

with 4C DNA content prior to sporulation [38,39]. As expected, all mutant gametes arrested

with 1C content in response to nitrogen starvation and mating (Fig 3A, magenta and green

curves). Mutant zygotes however exhibited differences in DNA content (Fig 3A, orange

curves). Consistent with previous work, mei4Δ zygotes arrested with 4C content. Approxi-

mately half of the mei2Δ zygotes also had 4C DNA content, indicating genome replication.

The exact number of mei2Δ zygotes that progress to S-phase could not be determined in this

manner since some zygotes pass mitosis, and thus regain a 2C DNA content, prior to our flow

cytometry measurements (Fig 1B). By contrast, mei3Δ and mei3Δmei2Δ zygotes arrested with

2C content, indicating that fertilization brought partner genomes together but the zygotes did

not replicate their genomes. We obtained similar results in experiments with homothallic

(h90; self-fertile) strains where mCherry expression was driven by the P-cell-specific pmap3 pro-

moter, and sfGFP by the M-cell-specific pmam1 promoter (S3A Fig). Zygotes produced by h90
mei3Δ and mei3Δmei2Δ strains arrested the cell cycle in G1 phase, while a large fraction of

mei2Δ zygotes progressed through S-phase. In this experiment, we used as control sme2Δ
mutants, which lack the Mei2-binding meiRNA and arrest with 4C DNA content prior to spor-

ulation [29]. We conclude that Mei3 promotes S-phase entry in zygotes.

We further tested whether Mei3 function in driving the S-phase entry relies on Pat1. To that

aim we performed flow cytometry measurements of DNA content in zygotes produced by

mutants lacking individual and combinations of mei3, mei2, and pat1 genes. We note that in this

instance, we did not label the gametes with fluorescent proteins since we found that we could use

the flow cytometry forward and side scatters to separate zygotes based on their larger size (S3B

Fig, see Materials and methods). Removal of Pat1 had no effect on the ability of zygotes to enter S-

phase as both mei2Δ and mei2Δ pat1Δ zygotes accumulated 4C content, while all zygotes deleted

for mei3 arrested in G1-phase (Fig 3B). Mei3-driven DNA replication also occurred in zygotes

where Mei2 RNA-binding was abolished due to the F644A mutation in the RRM motif (Fig 3B,

[29]). We conclude that Mei3 drives G1-S transition in zygotes independently of Mei2 and Pat1.

Though independent of downstream zygotic signaling, Mei3 may require some zygote-spe-

cific factors to promote S-phase entry. To test this hypothesis, we ectopically expressed Mei3
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Fig 3. Mei3 promotes G1 exit independently of Pat1 and Mei2. (A) Strategy used for flow cytometry on mating mixtures of heterothallic

strains that constitutively express either sfGFP or mCherry (top). Gametes, which carry a single fluorophore, can be distinguished from

zygotes, which carry both fluorophores. Flow cytometry analysis of Hoechst-stained DNA fluorescence (x-axis) in mating mixtures after 24

hours (bottom). The y-axis shows the cell number normalized to mode. Profiles of all cells (gray), gametes (green and magenta), and

zygotes (orange) are shown. Gametes largely arrest with unreplicated 1C genomes. mei3Δ and mei3Δmei2Δ zygotes show unreplicated 2C

content. mei2Δ and mei4Δ zygotes show a prominent 4C peak. (B) Hoechst-stained DNA fluorescence in zygotes identified through gating

for increased size in forward and side scatter measurements (see Materials and methods). Zygotes lacking mei3 arrest with unreplicated

genomes (2C), while those with intact mei3 replicate their genomes even in absence of mei2 and pat1. The smaller 2C peak in mei2Δ
zygotes compared to panel A likely stems from the gating strategy which excludes zygotes that have undergone mitotic division. (C)

Hoechst-stained DNA fluorescence of haploid mei2Δ cells with or without mei3 expressed from the constitutive ptdh1 promoter grown in

presence or absence of nitrogen for 24 hours. Ectopic expression of Mei3 prevents the G1 arrest in nitrogen starved gametes but has no

effect in nitrogen-rich media. (D) Mating efficiency of mei2Δ and mei2Δ pat1Δ cells with or without mei3 expressed from the constitutive

ptdh1 promoter after 24-hour incubation on agar plates. Constitutive mei3 expression reduces mating of gametes independently of mei2
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from the strong ptdh1 promoter in haploid cells that remained alive due to simultaneous dele-

tion of the mei2 gene. During exponential growth in nitrogen-rich media, overexpression of

Mei3 did not cause detectable defects in DNA replication based on flow cytometry measure-

ments (Fig 3C). However, upon nitrogen removal, which arrested the mei2Δ haploids in

G1-phase, a large fraction of cells overexpressing Mei3 had duplicated genomes (Fig 3C). To

directly test whether Mei3 promotes G1/S transition or blocks cells in G2, we imaged the GFP-

tagged DNA replication fork component Pcn1 [40] expressed in addition to the native protein.

Outside S-phase, GFP-Pcn1 produces a uniform nuclear signal but forms prominent foci dur-

ing DNA replication [40,41]. While most wild-type and mei2Δ haploid cells responded to

nitrogen withdrawal by undergoing division, one S-phase, a second division and then arresting

in G1 of the subsequent cell cycle, the majority of cells overexpressing Mei3 underwent a sec-

ond round of DNA replication (Fig 3E and 3F). Thus, Mei3 does not lead to a premature G2

arrest and instead promotes G1 exit. In agreement with impaired ability to arrest in G1, over-

expression of Mei3 resulted in decreased mating efficiency (Fig 3D). Mei3 overexpression

impaired mating also in cells lacking Pat1 consistent with our results that Mei3 cell cycle effects

are Pat1-independent (Fig 3D). We conclude that Mei3 functions independently of zygote-

specific factors to promote the G1-S transition.

Mei3 promotes S-phase entry and represses mating in diploid fission yeast

Our results contrast earlier work that proposed that Mei2 is required for S-phase entry in

nitrogen-starved diploid cells committed to azygotic meiotic differentiation [24,29]. Note that

the diploids in these experiments are to be distinguished from zygotes as they do not directly

result from the fusion of 2 haploid cells but have been propagated mitotically as diploids before

meiotic induction by nitrogen starvation. Diploids are typically isolated from mating mixtures

of 2 haploid strains bearing different ade6 mutant alleles that exhibit intermolecular comple-

mentation [42]. We decided to revisit these findings and prepared wild-type and diploid cells

lacking mei4 or, either individually or combined, mei2 and mei3 (S4A Fig). Since pheromone

response is necessary for Mei3 induction and downstream meiotic differentiation [23,25,26],

we also monitored the expression of mCherry and sfGFP placed under the pheromone-

responsive, mating type-specific pmap3 and pmam1 promoters, respectively (S4A Fig). Impor-

tantly, we observed that even the wild-type diploid population is heterogeneous with (1) cells

that do not induce expression from both pmap3 and pmam1 (S4A Fig, outlined cell); (2) cells that

mate (S4A Fig, arrow); and (3) cells that respond to nitrogen removal asynchronously. These

issues result in flow cytometry subpopulations (S4C Fig) and complicate the analysis of flow

cytometry data.

To overcome these issues, we used 2 complementary approaches. First, we adapted the flow

cytometry gating to evaluate the DNA content only in small cells, which excluded mated and

clumped cells (see Materials and methods). We also restrained the analysis of nitrogen-starved

cells to those with clear pmap3 and pmam1 promoter activity required for meiotic differentiation

(S4B Fig). Before nitrogen starvation, a majority of cells had replicated genomes. Whereas

wild-type, mei2Δ, and mei4Δ cells showed clear G1 and G2 cell populations after 24 hours of

and pat1. Dots show individual replicates, bars mean values, and error bars standard deviation. p-Values for indicated comparisons were

obtained from the Welch test. (E) Time lapses show GFP-Pcn1 in haploid wild type and mei2Δ cells with or without constitutively

expressed Mei3 upon removal of nitrogen from the media. Nuclei are enlarged in insets below for better visualization of the signal at

indicated cell cycle stages with arrowheads pointing to Pcn1 replication foci. (F) Quantification of the number of cells that pass through

the first and second S-phases upon nitrogen restriction as shown in (E). Note that analyses include only cells that were in the G2 phase at

the beginning of imaging, which represents 66% to 70% of cells (n> 380). The data underlying this Figure may be found at https://doi.org/

10.6084/m9.figshare.13274837.v1.

https://doi.org/10.1371/journal.pbio.3001067.g003
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nitrogen starvation, the mei3Δ and mei3Δmei2Δ diploids completely arrested in G1 phase

within 12 hours after nitrogen removal. In a second approach, we argued that mat1-P and

mat1-M loci are not stable in diploids cell produced by standard h+ and h- strains [43], a

hypothesis in agreement with our observation of diploid cells with a single active mating type-

specific promoter (S4A Fig, outlined cell). To overcome this problem, we produced diploids

where mat1 locus switching was prevented by a H1Δ17 mutation [4,44]. These diploids showed

activity from both pmap3 and pmam1 promoters, did not mate, and sporulated within 24 hours

after nitrogen removal (Fig 4A). Flow cytometry analysis also showed increased homogeneity

and similar activation of both pmap3 and pmam1 promoters (S4C Fig, note that cells largely fall

along the diagonal). Flow cytometry measurements of DNA content on all nonclumped

mat1-H1Δ17 diploids (70% to 95% of all cells) clearly showed that mei3Δ and mei3Δmei2Δ
diploids completely arrested in G1, while wild-type, mei2Δ, and mei4Δ cells replicated their

genomes (Fig 4B). Furthermore, imaging revealed that approximately 10% mei2Δ diploids, but

no other genotype, underwent cell division after cells had activated the 2 pheromone respon-

sive promoters (Fig 4C and 4F and S6 Movie). Thus, nitrogen-starved azygotic diploids, like

zygotes, require Mei3 for the G1-S transition.

While otherwise wild-type and mei4Δmat1-H1Δ17 diploids did not grow when nitrogen-

starved, mei2Δ and/or mei3Δmat1-H1Δ17 diploids formed shmoo-like projections (Fig 4A,

arrows). Time-lapse microscopy revealed that mating projections in mei2Δ, mei3Δ, and double

mutant diploids formed after activating both P- and M- pheromone-responsive promoters

(Fig 4C–4E and S6 Movie). These results imply that, like in zygotes, Mei2/Mei3 signaling

blocks mating in diploid cells starved for nitrogen.

These observations raise a conundrum about the role of pheromone signaling in diploids.

Indeed, expression of the Pi–Mi complex essential for Mei3 and thus meiotic induction relies

on pheromone signaling [25], yet our results show that Mei3 actively represses pheromone-

induced mating in diploids. We reasoned that induction of the Pi–Mi complex may occur at

lower levels of pheromone signaling than needed to form mating projection. While we did not

directly measure pheromone levels in diploids, expression of Mi-sfGFP in mei3Δmutant dip-

loids was observed prior to formation of mating projections (n> 50 diploids forming a

shmoo, Fig 4G and S7 Movie). Appearance of the Mi-sfGFP signal though asynchronous in

the population was concomitant with its nuclear accumulation (Fig 4G and 4H), which

depends on Pi ([4] and S4D and S4E Fig). This suggests that the Pi–Mi complex forms at the

time of Mi induction. These results are consistent with the view that in diploids, low levels of

pheromone signaling induce the Pi–Mi complex, leading to Mei3 expression, which in turn

represses further pheromone-dependent mating and initiates meiosis.

We conclude that in diploid cells, like in zygotes, Mei3 promotes the G1-S transition, and

both Mei2 and Mei3 repress mating behaviors.

Mei3 promotes the premeiotic S-phase

We showed above that Mei3 can advance the cell cycle in mitotic cells and is required for

premeiotic S-phase in diploids and zygotes. However, interpreting the function of Mei3 in

premeiotic S-phase is complicated by the well-established role of Mei3 in relieving the Pat1-

mediated inhibition of Mei2. To uncouple possible functions of Mei3 in promoting premeiotic

S-phase from Mei2 activation, we built cells with a simplified meiotic signaling that we refer to

as SMS cells (Fig 5A). We reasoned that pat1 deletion would be made viable in haploid cells by

deletion of mei2 and that Mei2 expression can be induced specifically postfertilization to

induce meiosis. Accordingly, we deleted the mei2 and pat1 loci and replaced the native mei3
open reading frame (which is induced postfertilization) with that of mei2. SMS cells did not
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Fig 4. Mei3 promotes G1 exit in stable diploid cells. (A) H1Δ17 diploid cells expressing mCherry and sfGFP from P-

and M-cell-specific promoters pmap3 and pmam1 24 hours after removal of nitrogen. Arrows point to shmoo-like

projections in mei3Δ and mei2Δmutants. (B) Flow cytometry analysis of Hoechst-stained DNA fluorescence (x-axis)

in diploid cell used in (A) at indicated time points after nitrogen removal. The y-axis shows the cell number

normalized to mode. Note that mei3Δ and mei3Δmei2Δmutants arrest with unreplicated genomes (2C), while wild-

type, mei4Δ, and mei2Δ cells replicate their DNA (4C). The sub-2C population in wild-type sample are likely spores.

(C–E) Time lapses show induction of fluorophores in cells as in (A). Note formation of mating projections (arrows)

and the septum in mei2Δmutant (arrowhead). (F) Percentage of H1Δ17 diploids expressing both pmam1:GFP and

pmap3:mCherry that are septating. (G and H) Time lapse (G) and quantification (H) of Mi-sfGFP induction in H1Δ17
diploid cells deleted for mei3. Note that Mi-sfGFP induction (black line in H) coincides with its nuclear accumulation

(green arrow in G and green line in H) and precedes the formation of the shmoo (yellow arrow in G). The graph

reports mean fluorescence for 8 cells with shaded areas denoting standard deviation. The data underlying this

Figure may be found at https://doi.org/10.6084/m9.figshare.13274837.v1.

https://doi.org/10.1371/journal.pbio.3001067.g004
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exhibit any obvious defects during exponential growth (pWelch test = 0.59, n = 5) and produced

zygotes that sporulated at wild-type rates (Fig 5B and 5C; pWelch test = 0.28). We note that

approximately 3% ± 2% SMS zygotes produced asci with aberrant spore number and that

approximately 2% ± 1% SMS zygotes died prior to sporulation. We also compared the levels of

meiotic recombination between wild-type and SMS zygotes (Fig 5D). Briefly, strains carrying

constructs for expression of cytosolic sfGFP or mCherry integrated at the leu1 and aha1 geno-

mic loci, respectively, were mated, and the proportion of progeny carrying each fluorophore

was quantified. The genetic distance between the 2 markers decreased from 17.13 ± 0.14 cM in

wild type to 14.70 ± 0.13 cM in SMS mutants. We conclude that SMS zygotes, which lack

Mei3, show minor overall defects, but no gross perturbation of the meiotic cycle.

SMS zygotes, however, showed a substantial delay in G1-S transition, with GFP-Pcn1 foci

forming before nuclear fusion in wild-type zygotes, but only after karyogamy in SMS zygotes

(S8 Movie). The time between partner fusion (monitored by entry of cytosolic mCherry in the

P-partner) and S-phase onset was 91 ± 23 minutes in SMS zygotes, but only 35 ± 7 minutes in

wild-type zygotes (Fig 5E and 5F). To test whether Mei3 advances S-phase in cells with con-

tracted zygotic signaling, we compared mei3+ and mei3Δ cells, which had pat1 and mei2 loci

deleted and mei2 coding sequence under pmei3 promoter control at the ura4 locus. Mei3

expression reduced the time between fertilization (marked here by entry of cytosolic mCherry

in the M-partner) and premeiotic S-phase entry, labeled by Pcn1 foci, by approximately 17

minutes (Fig 5G and 5H). Thus, Mei3 promotes but is not essential for the premeiotic S-phase

in zygotes with functional Mei2. This function is also independent of Pat1 kinase.

In wild-type zygotes, previous work showed that the meiotic G1-S transition is largely

driven by additive effects of the 5 nonessential cyclins, Cig1, Cig2, Puc1, Crs1, and Rem1 [45].

However, even upon deletion of these 5 cyclins (named here cycΔ5), approximately 23%

zygotes sporulate (Fig 5I and [45]). Examination of DNA content in cycΔ5 zygotes by flow

cytometry showed a 2C peak with a clear 4C shoulder, indicating that a significant number of

zygotes have sufficient residual CDK1 activity for premeiotic S-phase, likely driven by the

remaining, essential B-type cyclin Cdc13 (Fig 5J). By contrast, premeiotic S-phase was almost

completely blocked when combining the cycΔ5 with the SMS background, which lacks Mei3,

as shown by absence of the 4C shoulder in flow cytometry analysis, and only 3% ± 0.5%

zygotes sporulated (Fig 5I and 5J). The additive effects between cycΔ5 and SMS genetic back-

grounds further support the view that Mei3 serves to elevate cyclin-CDK activity to promote

S-phase entry.

Mei3-driven cell cycle progression prevents zygote mating and refertilization

Because Mei3 shows Mei2-independent roles in both promoting S-phase entry and blocking

refertilization, we tested whether cell cycle progression per se may block refertilization. This

Fig 5. Mei3 advances premeiotic-S phase entry. (A) Schematic representation of meiotic signaling in SMS zygotes. (B) Time lapse of SMS cells mating. (C)

Quantification of zygotic phenotypes after 48 hours on solid media lacking nitrogen. (D) Results of flow cytometry quantification for nonrecombinant

(purple and green) and recombinant (gray and yellow) progeny obtained by crossing strains coding for sfGFP at the leu1 locus with strains coding for

mCherry at the linked aha1 locus. (E, G) Time lapses show DIC (gray) and GFP-Pcn1 (green) during mating of cells with indicated genotypes. The fusion

time (0 minute) is evident as partner exchange cytosolic mCherry (magenta) expressed in only 1 gamete. Nuclei are enlarged in insets below for better

visualization of the GFP-Pcn1 signal with arrowheads pointing to replication foci. Note that SMS zygotes take longer to exit G1 than wild type (E) and that

Mei3 promotes S-phase entry in zygotes lacking Pat1 (G). (F, H) Quantification of postfertilization time to appearance of GFP-Pcn1 puncta determined

from time lapses as in (E) and (G). Dots show individual measurements, bars mean values, and error bars standard deviation. p-Values for indicated

comparisons were obtained from the Kruskal–Wallis test. (I) Quantification of zygotic phenotypes after 24 hours on solid media lacking nitrogen. (J) Flow

cytometry analysis of Hoechst-stained DNA fluorescence (x-axis) for gametes (gray) and zygotes (magenta) in mating mixtures after 18 hours. The y-axis

shows the cell number normalized to mode. Gametes arrest with unreplicated 1C genomes. Genome duplication occurs in a fraction of cycΔ5 (left panel,

arrow points a 4C shoulder) but not SMS cycΔ5 zygotes (right panel). The data underlying this Figure may be found at https://doi.org/10.6084/m9.figshare.

13274837.v1.

https://doi.org/10.1371/journal.pbio.3001067.g005
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hypothesis is also suggested from the knowledge that haploid cells mate only during the

G1-phase of the cell cycle. To address this possibility, we monitored the timing of shmoo for-

mation relative to S-phase entry in mating mixtures of zygotic signaling mutants. Time-lapse

imaging of GFP-Pcn1 faithfully reproduced our earlier flow cytometry findings with Pcn1 rep-

lication foci forming in virtually all wild-type, sme2Δ, and mei4Δ zygotes but in none of the

mei3Δ or mei3Δmei2Δ zygotes (S5A Fig and S9 Movie). In mei2Δ zygotes, we observed 50%

passing S-phase, 37% arresting in G1-phase for the duration of the experiment, and the

remaining 13% lysing. Remarkably, all lysing cells were in the G1 phase, and the remaining

G1-arrested mei2Δ zygotes formed mating projections (Fig 6A and 6B and S10 Movie). Con-

versely, only 40% of zygotes that advanced in the cell cycle formed shmoos and did so prior or

during S-phase but never after S-phase completion. Thus, cell cycle progression correlates with

mating repression in zygotes.

To test whether forced S-phase entry can suppress zygotic mating independently of Mei3

and Mei2, we used mei3Δmei2Δ cells, which produce G1-arrested zygotes (Fig 3A, S5A Fig),

and forced the expression of the G1 cyclin Puc1 under the regulation of the zygote-specific

pmei3 promoter. Imaging of the GFP-Pcn1 showed that forced expression of Puc1 postfertiliza-

tion drove approximately 15% of zygotes through S-phase (Fig 6C, S5B Fig and S11 Movie)

and approximately 7% through division (Fig 6D). Consistent with the hypothesis that cell cycle

progression acts as a refertilization block, Puc1 expression decreased the rates of refertilization

and lysis in mei3Δmei2Δmutant zygotes (Fig 6C and 6D). Puc1 expression also diminished

the mating-induced growth in mei3Δmei2Δ zygotes that did not initiate S-phase (S5C Fig).

Our results imply that increased CDK activity and associated cell cycle progression is sufficient

to prevent mating and refertilization in zygotes.

We next sought to test whether the G1 exit is necessary to prevent zygotic mating. We used

cycΔ5 zygotes, which largely fail to enter S-phase (Fig 5I). Remarkably, mating of cycΔ5 gam-

etes, which are elongated likely due to an extended cell cycle, produced a noticeable fraction of

zygotes that grew a shmoo and underwent refertilization (approximately 4% of zygotes; Fig 6E

and 6F and S12 Movie). We conclude that rapid exit from the G1 phase is required to prevent

zygotic mating and refertilization, even in cells with intact zygotic signaling. These data are

consistent with the view that Mei3 blocks zygotic mating and refertilization by promoting the

premeiotic S-phase.

Mei2 blocks refertilization independently of cell cycle progression

While the role of Mei3 in blocking refertilization can be explained by its function in promoting

the premeiotic S-phase, it remained unclear whether Mei2 blocks refertilization solely by promot-

ing cell cycle progression or through other means. A role in promoting the meiotic transitions is

suggested by our data and previous work [29], as some mei2Δ cells arrest in G1 (Fig 6A). In addi-

tion, while mei3Δ pat1Δmei2Δ triple mutant zygotes arrest in G1, reexpression of mei2 in these

cells (in the SMS background) restores a quasi-normal meiotic cycle (Fig 5). However, the higher

frequency of lysis and refertilization observed in mei3Δmei2Δ compared to mei3Δ zygotes, which

are both arrested in G1, also indicates a cell cycle-independent function of Mei2 in blocking

zygotic mating. To probe this point further, we compared G1-arrested cycΔ5 mei3Δmei2Δ pat1Δ
zygotes with or without Mei2 expression from the pmei3 promoter. Expression of Mei2, which in

these cells is devoid of Pat1 inhibition, resulted in zygotes that still largely arrested in G1 (S6 Fig)

but strongly repressed zygotic growth, mating, lysis, and refertilization (Fig 7A–7C and S13

Movie). Consistently, the Scd2-GFP polarity patch was not present after fusion necks expanded in

mutant zygotes expressing Mei2 (Fig 7D and S14 Movie). We conclude that Mei2-dependent mat-

ing blocks operate largely independently of cell cycle progression.
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Discussion

Zygote formation is a key developmental transition, where the newly formed diploid cell has

to exit the mating program and reenter the cell cycle. Our previous work established that, in

fission yeast, the Mei3 and Mei2 proteins play a critical role in preventing zygote refertiliza-

tion. These 2 proteins are part of a well-characterized signaling cascade that induces meiosis,

Fig 6. Cell cycle progression prevents refertilization. (A) Time lapse of mating mei2Δ cells. Zygotes that persist in G1 (yellow outlines) form prominent mating

projections (yellow arrowhead). Zygotes that progress through S-phase (blue outlines), evident from GFP-Pcn1 puncta (blue arrowhead), largely repress shmoo

formation and instead divide. (B) Quantification of phenotypes of mei2Δ zygotes presented in (A). We used GFP-Pcn1 to group zygotes into those that either

arrest (left bars) or exit (right bars) G1-phase and scored the mating behaviors of both groups. (C) Mating of control mei3Δmei2Δ cells (top panel) and mei3Δ
mei2Δ cells that express Puc1 from the zygote-specific pmei3 promoter. GFP-Pcn1 (green) forms puncta (blue arrowhead) in Puc1-expressing zygotes (blue

outlines). G1-arrested zygotes (yellow outlines) frequently lyse in control but not Puc1-expressing zygotes. (D) Quantification of zygotic phenotypes observed in

time lapses as in (D). (E) Mating of cycΔ5 cells, which undergo refertilization (yellow outlines). (F) Quantification zygotic phenotypes observed in (E). The data

underlying this Figure may be found at https://doi.org/10.6084/m9.figshare.13274837.v1.

https://doi.org/10.1371/journal.pbio.3001067.g006
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where Mei3 relieves the inhibition of Mei2 by the kinase Pat1. Whereas most studies on meio-

sis have used data obtained from cells with inactivated Pat1 or from diploid strains that are

unstable, here we tracked cells throughout the natural sexual life cycle and performed detailed

phenotypic analysis of mutants lacking Mei3, Pat1, and/or Mei2. Our long-term imaging com-

bined with flow cytometry show that zygotes with defective signaling not only fail to initiate

meiosis but also exhibit cell cycle defects and aberrant sex that results in refertilization and cell

lysis. In contrast to the proposed linear meiotic signaling, we establish that Mei3 and Mei2

play independent functions to prevent refertilization and cell death. Mei3 serves to promote

premeiotic DNA replication and thereby brings the zygote out of the mating-permissive G1

phase. Mei2 repression of mating behaviors is largely independent of both the cell cycle pro-

gression and activation by Mei3. Together, these effects synergize to repress mating and confer

the zygotic state (Fig 8).

Fig 7. Mei2 blocks zygotic mating independently of cell cycle progression. (A) Mating mixtures of SMS cycΔ5 cells (bottom), which induce Mei2 postfertilization and

control cells that lack Mei2 (top). Mei2 expression prevents zygote lysis (yellow outlines) and refertilization (white outlines). (B) Quantification of phenotypes in zygotes

as in (A). (C) Quantification of growth in zygotes as in (A) in the 10 hours after concave neck expansion was completed. Dots show individual measurements, bars mean

values, and error bars standard deviation. p-Values for indicated comparisons were obtained from the Kruskal–Wallis test. (D) Projection of 60 time points during 10

hours from the time of fertilization of polarity and growth marker Scd2-GFP. The yellow arrowheads point to the signal at the neck. Scd2 is restricted to the neck in the

zygote expressing Mei2 (right) but continuously trails the growth projection in the zygotes lacking Mei2 (blue arrow). The data underlying this Figure may be found at

https://doi.org/10.6084/m9.figshare.13274837.v1.

https://doi.org/10.1371/journal.pbio.3001067.g007
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Refertilization blocks protect zygotes from death

Both Mei3 and Mei2 strongly contribute to preventing zygote refertilization, with 10% to 15%

of mei3Δmei2Δ double mutant zygotes fusing with an additional gamete, consistent with our

previous observations [4]. However, an even more prevalent phenotype of mei3Δmei2Δ zygotes

is cell lysis. To test whether lysis may be due to failed zygotic fusion attempts, we developed a

tool to target proteins for degradation specifically in zygotes. By linking an E3 ligase domain to

the GFP- or mCherry-binding proteins, which bind their target with nanomolar affinities, this

tool can be used to target any GFP- or mCherry-tagged protein for degradation. While combi-

nation of degron and target in the same cell leads to constitutive target degradation, as we have

shown for cytosolic GFP and mCherry, the mating of gametes carrying the degron for the target

expressed in the partner cell leads to target degradation specifically in zygotes. This is particu-

larly interesting to test the zygotic role of essential proteins or proteins necessary for the earlier

mating steps, and thus we expect it will be useful beyond the specific question asked here.

Using this zygotic degradation tool, we now show that the cell death of mei3Δmei2Δ
zygotes depends on the formin Fus1, the critical mating-specific organizer of the actin fusion

focus. Indeed, degron-induced Fus1 depletion reduced fusion in gametes and lysis of mei3Δ
mei2Δ zygote to similar extent, suggesting that most, if not all, lysis is due to erroneous activity

of Fus1. This shows that zygotic death is due to ectopic formation of the fusion focus, which

promotes local cell wall digestion. While we do not formally show it, these ectopic fusion

attempts are most likely due to zygotes becoming autocrine cells, which exhibit similar lysis

phenotypes [21], as fertilization brings together the production and perception machineries

for both pheromones. We conclude that postfertilization mating blocks not only prevent poly-

ploid formation to ensure genome maintenance across generations but also are essential to

prevent zygotic death.

The high rates of refertilization and cell death in mei3Δmei2Δ zygotes point to strong selec-

tive pressures to evolve mating blocks. This finding is likely to have relevance well beyond the

Fig 8. Model for gamete to zygote transition in fission yeast. In G1-arrested gametes (left panel), which express either Pi or

Mi, mei3 is not expressed and Pat1 maintains Mei2 repression to prevent meiosis and allow mating. Postfertilization (right

panel), the Pi–Mi complex induces Mei3 expression which relieves Mei2 inhibition. Mei3 and Mei2 independently activate

CDK1 to repress mating and drive the G1 exit. Additionally, Mei2 commits zygotes to meiosis and imposes a second, cell

cycle-independent block to mating.

https://doi.org/10.1371/journal.pbio.3001067.g008
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fission yeast. In principle, species where sex relies on a diffusible signal produced by one and

perceived by the other partner will lead to autocrine signaling postfertilization. In walled cells,

sexual signaling normally promotes gamete cell wall digestion for fertilization and is likely to

similarly induce cell wall breakage and thus cell lysis when activated in an autocrine manner in

zygotes. Thus, we expect that mechanisms to down-regulate autocrine signaling and prevent

cell death postfertilization may be a common feature of sex in fungi [46] and likely other

walled organisms that employ diffusible signals [47,48].

Mei3 promotes S-phase entry independently of Mei2

The strong phenotype of mei3Δmei2Δ zygotes is a combination of the contributions of Mei3

and Mei2 functions, whose individual deletions produce much milder phenotypes. Multiple

lines of evidence indicate that, in addition to its role in relieving Pat1 inhibition of Mei2 [49],

Mei3 drives S-phase entry. First, mei3Δ and mei3Δmei2Δ but not mei2Δ zygotes are blocked

before S-phase, consistent with previous work on mei3 [31]. Second, overexpression of Mei3

prevents the G1 arrest in response to nitrogen starvation. Third, Mei3 expression advances the

premeiotic S-phase entry in SMS zygotes, which lack pat1 and induce Mei2 expression only

postfertilization. Indeed, in the aforementioned experiments, the pat1 gene is dispensable for

the Mei3-driven cell cycle progression, and thus Mei3 must operate independently of Mei2

activation. In the SMS background, the effect of mei3 deletion is relatively weak, with only a

delay in S-phase entry. This reflects the direct, Mei2-independent role of Mei3 in promoting S-

phase. In otherwise wild-type zygotes, the deletion of mei3 has a much more severe outcome,

completely blocking S-phase. This is because in these zygotes Mei2 also cannot be activated,

and thus the phenotype is identical to the deletion of both mei3 and mei2. We conclude that

Mei3 promotes S-phase entry both by relieving Pat1 inhibition of Mei2 and by means indepen-

dent of its activation of Mei2.

While the initial studies on meiosis suggested that Mei2 is essential for premeiotic S-phase

[29], these have relied on h+/h− diploids, which are unstable. We have revisited this work and

introduced controls that ensure we are analyzing the h+/h− diploids stimulated by pheromone

signaling. Our results mirror those obtained from zygotes and find that S-phase entry

completely relies on Mei3 and only partially on Mei2. A direct implication of this result is that

initiation of meiosis upon Pat1-inactivation, a widely used tool to initiate azygotic meiosis

[27], does not fully reproduce the physiological process. Instead, azygotic diploids with inacti-

vated Pat1 are analogous to SMS zygotes as both lack Mei3 and Pat1 functions and start S-

phase with a delay. This conclusion agrees with other notable differences between Pat1 inacti-

vation-induced meiosis and normal zygotic meiosis [27,50] and suggests that Mei3 (and possi-

bly Pat1) may have additional roles to that of regulating Mei2 activity.

One important question for the future is how Mei3 promotes premeiotic S-phase. A

detailed recent study on the meiotic roles of cyclins found a number of differences between

zygotic and azygotic meiosis [45]. In particular, removal of all nonessential cyclins almost fully

impaired S-phase entry during azygotic meiosis, but only partially prevented zygotic sporula-

tion. Consistent with this work, we found that the deletion of nonessential cyclins impairs the

progression through premeiotic S-phase. As the G1-block is exacerbated in cycΔ5 zygotes lack-

ing Mei3 (but expressing active Mei2), we hypothesize that Mei3 at least in part promotes the

activity of the only remaining cyclin Cdc13-CDK complex.

Cell cycle progression acts as zygotic mating block

Irrespective of the precise molecular mechanisms by which Mei3 promotes premeiotic S-

phase, this role is critical to prevent zygotic mating. Indeed, 3 lines of evidence show that cell
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cycle progression prevents mating postfertilization. First, mating of mei2Δ zygotes correlates

with their cell cycle stage, with only G1 and early S phase zygotes displaying mating behaviors.

Second, G1 arrest upon removal of nonessential cyclins leads to refertilization, even in pres-

ence of functional Mei3-Pat1-Mei2 signaling. Third, forced cell cycle progression by zygotic

expression of the G1 cyclin Puc1 substantially decreases the mating behaviors of mei3Δmei2Δ
zygotes. The observation that Puc1 reduces mating even in cells that fail to replicate their

genomes suggests that CDK represses mating independently of the cell cycle transition. These

data are in line with transcriptional genome-wide studies of meiosis showing that the expres-

sion of key mating regulators rapidly declines as cells progress through the meiotic stages [51].

They also agree with the well-established knowledge that gamete mating strictly requires G1

arrest, as CDK activity inhibits Ste11 at both pre- and posttranscriptional levels [15,16]. Thus,

we propose that one important way Mei3 blocks refertilization is by promoting CDK activity.

Similar to the case of S. pombe, only the G1 phase is permissive for mating in Saccharomyces
cerevisiae, and zygotes reenter the cell division cycle. Antagonism between CDK activity and

pheromone signaling is very well established in this organism and leads to arrest of gametes in

G1 [52–54]. Pheromone signaling also arrests the cell cycle in other fungi such as C. albicans,
F. oxysporum or U. maydis [55–57]. Beyond fungi, gametes generally arrest the cell cycle at var-

ious stages and zygotes resume cell cycle progression. We can thus speculate that zygotic reen-

try in the cell cycle may have conserved roles in bringing the zygote out of a fertilization-

permissive state.

Mei2 blocks zygotic mating independently of cell cycle progression

The role of Mei2 is more complex, with at least 3 different functions. First, Mei2 is absolutely

critical to induce meiosis. Indeed, we found that a fraction of mei2Δ zygotes enter a cell cycle

akin to mitosis, with assembly of a single microtubule spindle followed by formation of a cyto-

kinetic ring and septation. This indicates that upon cell fusion, zygotes lacking mei2 can reen-

ter the cell cycle (driven by Mei3), but that this cycle is mitotic. Thus, Mei2 is the master

specifier of meiosis. Second, Mei2 contributes in driving the meiotic cycle forward. Indeed, a

fraction of mei2Δ zygotes and azygotic diploids are blocked or delayed in G1-phase. The ability

of Mei2 to drive meiosis in SMS zygotes lacking Mei3 and Pat1 also shows that active Mei2 is

in principle sufficient to allow a whole meiotic cycle, albeit with a G1 delay. A third function of

Mei2, independent of promoting the meiotic cycle, is to block mating in zygotes. Indeed,

mei3Δmei2Δ double mutants show substantially more refertilization, growth, and lysis than

mei3Δ zygotes, even though both are blocked in G1. This is also evident form the difference in

dynamics of the polarity regulators Scd2 and Myo52, which were relatively short-lived in

mei3Δ but stable in mei2Δ zygotes. These dynamics differences are reminiscent of dynamics

observed in gametes where low levels of pheromone lead to unstable polarity zones which sta-

bilize at elevated pheromone levels [58], suggesting that Mei2 suppresses pheromone signaling

or downstream response. Expression of Mei2 in SMS zygotes lacking all nonessential cyclins

was also sufficient to block most mating behaviors including Scd2 patch formation. We con-

clude that Mei2 imposes the zygotic fate, characterized by meiotic competence and mating

blocks.

Our results challenge the current understanding of Mei2 regulation. The canonical view is

that Mei2 is kept inactive by Pat1 until Mei3 relieves this inhibition. However, the observation

that mei3Δmutants do not lyse postfertilization like mei3Δmei2Δ zygotes indicates that Mei2

must prevent the pheromone from stabilizing mating and fusion machineries even prior to

Mei3-dependent activation. This suggests that Pat1 inhibition of Mei2 is not complete, a view

in agreement with a previous report that Mei2 promotes efficient mating when Mei3 is not
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expressed [59]. These findings raise the question of how Mei2 allows mating prior to fertiliza-

tion but prevents mating-induced lysis postfertilization. The simplest explanation may be that

there are additional differential regulations of Mei2 between gametes and zygotes, for instance,

inhibition by TOR kinase [59] or other unidentified factors.

Synergistic action of 2 mating blocks in zygotes

We propose that the dramatic mating phenotypes of mei3Δmei2Δ double mutant zygotes are

due to synergistic actions of Mei3 and Mei2, which act in parallel to block mating. Mei2 is the

key inducer of the zygotic fate, which represses mating and promotes meiosis. Mei3 involve-

ment is 2-fold: On the one hand, Mei3 promotes Mei2 activation and in this way acts upstream

of Mei2 to promote meiosis and inhibition of the pheromone response. On the other hand,

Mei3 promotes the exit from the mating permissive G1 phase, independently of Mei2, and in

this way acts synergistically with Mei2. Indeed, we found that combining mutations in nones-

sential cyclins, which block zygotes in G1, with mei2Δ also show synergistic mating block

defects. Prolonging the G1 arrest exacerbates the mating block defects of mei2Δ zygotes by

allowing extra time to grow mating projection and thus increasing chances of refertilization

and lysis. Collectively, our work shows that in fission yeast, distinct zygotic signaling branches

initiate cell cycle-dependent and independent refertilization blocks that ensure survival and

ploidy maintenance.

Robustness of biological systems often relies on parallel mechanisms regulating a single

process [60]. This is also the case for refertilization blocks in several organisms [61]. For exam-

ple, in amphibians, changes in the plasma membrane potential provide the so-called “fast”

block to refertilization, while secretion of an outer cell layer presents a physical barrier to fur-

ther sperm entry and a “slow” block to refertilization [62]. Subsequent development in all

instances requires cell cycle progression, but its relevance as a refertilization block has not

been studied. Fungal sexual reproduction might have experienced similar evolutionary pres-

sures for rapid and long-term blocks to refertilization and lysis. Thus, Mei2- and Mei3-depen-

dent mating blocks may act analogously, as rapid and delayed blocks, respectively. The

fertilization-induced exit from G1 occurs only approximately 35 minutes after cell fusion, lead-

ing to the speculation that evolution could have selected for additional rapid refertilization

blocks. Furthermore, the G1 exit alone may not be sufficient to fully block mating since gam-

etes arrested in S-phase do mate, albeit at a very low frequency [16]. As the Mei2-dependent

mating block is already operational independently of Mei3 at the time of fertilization, it may

act as a “fast” block preventing refertilization during this permissive time frame.

Materials and methods

Strains and genetic markers

All strains used in the study are shown in S1 Table.

All genetic markers with detailed description are available in S2 Table. As indicated, previ-

ously reported markers were either present in the lab stock, received as a gift, or obtained from

the National BioResource Project (yeast.nig.ac.jp/yeast/top.jsf) or fission yeast deletion library

produced by Bioneer (Daejeon, Republic of Korea).

For markers generated in this study, we provide sequences of plasmids and primers used to

make them in the Supplemental Sequences on Figshare (https://doi.org/10.6084/m9.figshare.

13274837.v1). Briefly, we used SIV vectors [41] to integrate artificial constructs into the ade6,

his5, lys3, or ura4 genomic loci. The pRIP vector [63] was used to integrate GFP under the

pmam2 promoter at the mam2 locus. Recombination assay markers were integrated into either

leu1-apc10 or aha1-SPBC1711.09c intergenic regions. Artificial degrons were integrated at
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either ura4 or fus1 loci. Fluorophore tagging of fission yeast proteins was performed at their

native genomic loci with the exception of the S-phase marker Pcn1 which was expressed as sec-

ond copy. To achieve constitutive gene expression, we used the strong promoters of act1 and

tdh1 genes or moderate promoters of the pcn1 gene or the SV40 viral promoter. To induce

mating type-specific expression of genes, we used either the M-cell-specific pmam1 and pmam2

promoters or the P-cell-specific pmap3 promoter. Zygote-specific gene expression was achieved

by using the pmei3 promoter. All constructs were sequenced and their integration into the

genome confirmed by genotyping.

To prevent the mat1 locus switching, wild-type H1-homology box was replaced with the

one amplified from the PB9 strain carrying the H1Δ17 mutation [4,44].

The DegRed artificial degron was comprised of the N-terminus of E3 ligase Pof1 (a.a.

1–261) fused to the mCherry-binding protein (ChBP, [64]). Similarly, the DegGreen construct

consisted of the Pof1 N-terminus (a.a. 1–261) fused to the GBP [65]. Both constructs were

placed under the regulation of the strong ptdh1 promoter (1,000 bp upstream the START

codon) and the budding yeast ADH1 transcriptional terminator and integrated at either the

ura4 or fus1 locus. We note that the 2 artificial degrons differ significantly in the ability to

deplete target proteins (Fig 2B and 2C) for reasons that are not immediately clear. It is possible

that the degron activities differ due to different expression levels, strength of nanobody-target

binding, or availability of residues for ubiquitination. We highlight that DegRed and Deg-

Green lack the WD40 repeats that target Pof1 to native target proteins and that neither caused

any obvious defects in cells.

Growth conditions

Note that all strains used in the study are prototrophs. The growth conditions used for experi-

ments with haploid cells are detailed in [66]. Briefly, freshly streaked cells were inoculated

into MSL +N medium and incubated overnight at 25˚C with 200 rpm shaking to exponential

phase. The next day, cultures were diluted to OD600 = 0.025 in 20 ml of MSL +N medium and

incubated overnight at 30˚C with 200 rpm agitation to exponential phase. Experiments on

exponentially growing cultures were performed at this point. For analysis of mating cells,

homothallic cells or 1:1 mixtures of heterothallic cells were pelleted for 1 minute at 1,000g,

shifted to microcentrifuge tubes and washed 3 times with 1 ml of MSL −N medium. To pre-

pare the mating mixtures for flow cytometry and quantifications of sporulation, fusion, and

mating efficiencies, we resuspended 1 OD600 (approximately 1.4 × 107 cells for our spectro-

photometer) in 20 μl of MSL −N media, dropped them onto solid MSL −N media and incu-

bated at 25˚C for 24 hours unless otherwise indicated. For time-lapse imaging and related

quantifications, we diluted cells in 3 ml of MSL −N medium to final OD600 = 1 to 1.5 and incu-

bated them at 30˚C with 200 rpm agitation for 4 to 6 hours. The exception is the cycΔ5

mutants, which once nitrogen starved rapidly formed clumps difficult to image. Thus, we

either shortened the incubation in liquid MSL −N to 2 to 3 hours, or alternatively, starved the

h+ and h− cells separately for 5 hours before mixing them immediately prior to imaging.

Finally, cells were mounted onto MSL −N agarose pads and covered with a coverslip, and the

chamber was sealed using VALAP (vaseline, lanolin, and paraffin; 1:1:1). We directly pro-

ceeded with imaging, or incubated slides until cells were 24 hours without nitrogen before

scoring for phenotypes. The same growth conditions were used in nitrogen starvation experi-

ments with a single heterothallic strain.

To summarize, we monitored exponentially growing cells in MSL +N liquid media and

mating on MSL −N solid agar media plates or agarose pad chambers. We note that we

observed quantitative differences between matings performed in different conditions (e.g.,
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mating efficiency is higher on MSL −N solid agar plates) possibly due to limitation of nutrients

and lower cell density in agarose chambers. Therefore, in all experiments, control strains were

always run in parallel with identical conditions.

To obtain diploid cells through ade6 complementation, we mated ade6-M210 and

ade6-M216 strains on ME media and the next day streaked cells onto EMM media lacking ade-

nine. As soon as visible, colonies of adenine prototrophs were restreaked and inoculated for

experiments the following day. We paid attention that cells never overgrow as this may lead to

meiotic activation. To obtain H1Δ17 diploids, we mated on ME heterothallic strains that have

the H1Δ17 allele linked with different antibiotic resistance markers [4]. The next day, we

streaked cells onto YE media selecting for both antibiotics and waited for double resistant

clones to form. We cultured both types of diploids starting with fresh cells OD600 = 0.025 in 20

ml of MSL +N media lacking amino acids. Cells were incubated overnight to OD600 = 0.3 to

0.5, collected by centrifugation at 1,000g for 1 minute, and washed in MSL −N media 3 times.

For time-lapse imaging, we imaged cells in the CellASIC ONIX microfluidic device (Merck

Group, Darmstadt, Germany). For flow cytometry and snapshot images, we resuspended

cells in 25 ml of MSL −N media to final O.D.600 = 0.5. A volume of 5 ml aliquots were collected

at indicated time points, cells pelleted by centrifugation at 1,000g for 1 minute, supernatant

discarded, and cell pellet thoroughly resuspended in 50 μl of MSL −N on ice before ethanol

fixation.

To evaluate the meiotic recombination frequency, we prepared mating mixtures on solid

MSL −N media as described above. After 48-hour incubation at 25˚C, we collected cells using

inoculation loops, resuspended them in 1 ml of MSL −N media containing 10 μl of glusulase

(NEE154001EA, Perkin-Elmer, Massachusetts, United States of America), and incubated the

samples for 24 hours at 30˚C. Samples were then washed 3 times in water, and we visually con-

firmed that glusulase treatment killed all cells except spores, thus ensuring that subsequent

analyses evaluated only the filial generation. Samples were then resuspended in YE media and

incubated at 30˚C for approximately 8 hours. We diluted samples to final O.D.600 = 0.025 and

grew them to exponential phase for additional approximately 12 hours when samples were

subjected to flow cytometry.

Genetic crosses were performed by mixing freshly streaked strains on either ME or MSL

−N media. We note that MSL −N media enhanced mating and sporulation of mutants lacking

multiple cyclins and zygotic signaling components.

We used standard conditions and protocols for genetic manipulations [67]. Briefly, yeast

cells were grown in standard fission yeast YES media at either 25˚C or 30˚C and using 200

rpm rotators for liquid media. Cells were transformed with the lithium-acetate protocol [67].

For selection, we supplemented YES with 100 μg/ml G418/kanamycin (CatNo.G4185, Forme-

dium, Norfolk, United Kingdom), 100 μg/ml nourseothricin (HKI, Jena, Germany), 50 μg/ml

hygromycinB (CatNo.10687010, Invitrogen, California, USA), 100 μg/ml zeocin (CatNo.

R25001, ThermoFischer, Massachusetts, USA), and 15 μg/ml blasticidin-S (CatNo.R21001,

ThermoFischer). To our knowledge, this work is the first fission yeast report that employs

patMX dominant marker to select for growth on glufosinate-ammonium. The patMX
sequence was obtained from pAG31 plasmid [68] and introduced into the pAV0892 (see Sup-

plemental Sequences). After plasmid transformation into the prototroph yeast, cells were

plated onto nonselective YES media and incubated overnight at 30˚C. The next day, we repli-

cated the cells onto the EMM media without amino acids and supplemented with approxi-

mately 400 μg/ml of glufosinate-ammonium (CatNo. G002P01G, Cluzeau Info Labo, Sainte-

Foy-La-Grande, France) and incubated them at 30˚C. If background growth was observed

after a couple of days, we replicated cells once more onto the fresh selective media. Individual

colonies developed within 5 days.
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To determine growth rates, strains were cultured in YE media overnight, diluted to

O.D.600 = 0.01, and arrayed in the 96-well plate. After a 2-hour incubation at 30˚C with constant

shaking to relaunch cultures out of stationary phase, the plate was placed in plate reader Synergy

H1M (Biotek, Winooski, USA), which measured to O.D.600 every 2.5 minutes for a total of 5

hours at 30˚C without shaking. A total of 5 replicates of each sample in each condition were

measured. Growth rates were calculated by first subtracting the blank from the O.D.600 reading

and then performing log2 transformation. The slope of a linear regression line fitted on a plot of

the log2-transformed O.D.600 values over time, within a selected time window, which was man-

ually determined to find a slope associated with the best fit reported through R2. We report the

Welch test pvalue in the text and provide raw data and calculations as Source Data.

Flow cytometry

To prepare nitrogen-starved and mated cells for DNA content measurements, we collected

cells from solid media using inoculation loops and resuspended them in 1 ml of MSL −N

media precooled to 4˚C. Cells were pelleted by centrifugation at 1,000g for 1 minute at 4˚C,

supernatant discarded, and cells thoroughly resuspended in 50 μl of MSL −N on ice before eth-

anol fixation.

For cell fixation, we added 1 ml of 70% EtOH (v/v in H2O) prechilled to −20˚C and rapidly

mixed by pipetting and vortexing for 5 seconds, followed by incubation at −20˚C for 15 min-

utes. Samples were once more vortexed for 5 seconds, centrifuged at 4˚C for 2 minutes at

2,000g, supernatant discarded, and cells gently resuspend in 1 ml of room-temperature PBS

(NaCl 8 g/l, KCl 0.2 g/l, Na2HPO4 1.44 g/l, KH2PO4 0.24 g/l, HCl adjusted (pH 7.4); filtered

using 0.2 μM filter). Samples were pelleted by centrifugation at room temperature for 1 minute

at 1,000g, supernatant discarded, and cells resuspended in 1 ml of PBS. We did not store the

samples as we noticed that their quality degraded considerably already after a day at 4˚C.

Instead, we immediately stained samples with Hoechst-33342 (Sigma-Aldrich B2261-25MG)

at final concentration 25 ng/μl. We note that increasing the dye concentration produces a

strong background signal. We resuspend 0.1 O.D.600 of cells in 0.2 ml of PBS in 5 ml flow

cytometry Falcon tubes, added 1.8 ml of Hoechst working solution (27.7 ng/ml Hoechst-33342

in PBS) leading to final 25 ng/μl Hoechst-33342 concentration, and briefly vortexed. Tubes

were closed and incubated in the dark ensuring thorough mixing using a rocking platform for

15 to 60 minutes before flow cytometry. We note that the signal produced by staining showed

variation between experimental replicas, possibly due to stability of Hoechst-33342 stock (25

mg/ml in DMSO, −20˚C) and slightly different concentrations of the Hoechst working solu-

tion, which was freshly prepared for each experiment. Furthermore, experimental variation

arose due to laser intensities and recording settings. Thus, we refrain from comparing samples

from different experimental replicates and show in the same figure panel the data obtained

from samples processed simultaneously.

Flow cytometry was performed on Fortessa instrument (Becton Dickinson, Franklin

Lakes, USA) with proprietor software platform. The analysis was performed using the FlowJo

(Becton Dickinson, Franklin Lakes, USA) software package. The 488-nm laser was used to

determine the forward scatter (FSC) and side scatter (SSC). We used the 355-nm laser with

450/50 filter to detect Hoechst 33342 stained DNA, 488-nm laser with 505LP mirror and 550/

50 filter to detect sfGFP, and 561-nm laser line with 610LP mirror and 610/20 filter to detect

mCherry.

Raw data (FCS format files) with sample legends and Source Data figures detailing the gat-

ing strategies for each analysis are available from Figshare (https://doi.org/10.6084/m9.

figshare.13274837.v1). Importantly, data presented in the same panel use identical gates. We
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used FSC and SSC signal gating to exclude dust and clumped cells. Mating mixtures of P- and

M-cells differentially labeled with sfGFP and mCherry provided fluorescent signals that were

gated to distinguish gamete and zygote populations (S3B Fig), since gametes possess only one

and zygotes both fluorophores. Importantly, these experiments also showed that gametes and

zygotes produce populations with distinct FSC-SSC profiles (S3B Fig). We exploited this obser-

vation and used the FSC-SSC profiles to gate the zygote populations in mating mixtures pro-

duced by unlabeled gametes. When evaluating the frequency of meiotic recombinants, we

used the red and green fluorescence signal to gate the populations of cells expressing neither,

individual, or both fluorophores.

Microscopy and image processing

Images were obtained by wide-field microscopy performed on a DeltaVision platform (Cytiva,

Massachusetts, USA) composed of a customized inverted microscope (IX-71; Olympus,

Japan), a UPlan Apochromat 100x/1.4 NA or 60x/1.4 NA oil objective, either camera (Cool-

SNAP HQ2; Photometrics, Arizona, USA) or camera (4.2Mpx PrimeBSI sCMOS camera;

Photometrics, Arizona, USA), and a color combined unit illuminator (Insight SSI 7). Images

were acquired using softWoRx v4.1.2 software (Cytiva, Massachusetts, USA). We used the

GFP-mCherry filterset to detect the green (Ex: 475/28, Em: 525/50) and red (Ex: 575/25; Em:

632/60) fluorescent proteins. We imaged a different number of z-sections to best capture the

structure of interest. We present either a single z-plane or a projection image.

All image analysis and processing was performed using Fiji software package [69] using

either built-in modules or additional modules as specified. We used the MultiStackReg v1.45

module to adjust drifting time lapses.

Time-projection images were prepared from 60 time points during 10 hours. Fluorescence

channels show the maximum projection image. DIC images show either maximum or average

projection image to allow for best visualization of the discussed phenotype.

Quantifications and statistics

Sample sizes were not predetermined. No randomization was used. No blinding was used. In

analysis of imaging data, we excluded regions with multiple cell layers as we could not obtain

reliable data. In morphometric analysis, we excluded cells where we could not follow the

shmoo growth because it went out of the imaging focal plane. We report p-values from Krus-

kal–Wallis test generated using Matlab function ranksum() and p-values from Welch t test

generated using Excel function TTEST(). Flow cytometry gating strategy is explained in detail,

and identical gates are applied to samples under comparison. All quantifications except those

requiring long-term time lapses were obtained from experimental triplicates. Variability

between imaging chambers and their deterioration between different time points makes direct

comparison between different imaging experiments difficult. For example, refertilization and

lysis in meiotic signaling mutants increase over time and reach different incidence at 18 hours

and 24 hours, and thus results depend on when the chambers fail. Thus, we refrain from statis-

tical comparison between different replicates and make comparisons only between samples

processed and imaged simultaneously. We stress that we reached the same qualitative results

and conclusions from experimental replicates. In panels 1B, 1C, 1F, 1G, S1C, S1D, 6E, 6F, and

S2A, the wild type was imaged separately from other samples.

Quantifications of sporulation efficiencies were performed on mating mixtures spotted on

solid MSL −N media for 24 hours unless indicated otherwise. Samples from the edge of the

mating mixture were scored for zygotic phenotypes by microscopy. We report percentages of

each phenotype and p-values from Welch t test.
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Quantification of zygotic phenotypes was performed from DIC time lapses where we

could follow zygotes for 10 or more hours. We scored zygotes that underwent cell lysis, cell

division, refertilization, or neither, and scored only the first observed event. Such scoring was

adapted zygotes could carry out several events consecutively. For example, a zygote may

undergo division and the daughter cells may then fuse with another partner. In quantifications

that include of mei3Δ zygotes, we classified the remaining zygotes as nondividing and refrain

from denoting the percentage of shmooing since zygotes form subtle shmoos which we may

underreport. Since mei2Δ and mei3Δmei2Δ zygotes form prominent mating projections, we

additionally distinguish shmooing zygotes from those that abolished mating.

Quantification of diploid phenotypes (septation) was performed from DIC time lapses.

In experiments targeting Fus1 with the synthetic degron, quantification of fusion efficien-

cies and zygotic lysis frequencies were performed from cells mating in agarose pad chambers

24 hours after nitrogen removal. Fusion efficiency was calculated as the percentage of fused

gametes compared to the total gamete pairs formed. The detailed analysis of zygotic pheno-

types was performed from long-term time lapses.

DIC images were used for analyses of zygotic growth and morphology. We measured the

mating projection diameter by determining the diameter of the half circle that fitted in the

shmoo tip. Our measurements correlated well with the diameter across the mating projections

in mei2Δ and mei3Δmei2Δ zygotes, which could not be reliably measured for the subtle mating

projections in mei3Δ zygotes. We compared the cell outlines immediately after the concave

neck expansion ceases (initial perimeter) and 10 hours later (final perimeter). Subtracting the

area of 2 outlines determined the growth of the cross section area. To quantify the displace-

ment of the cell perimeter during this period, we used the MorphoLibJ library [70]. Briefly, for

each zygote, the initial perimeter was used to generate a binary image. We then used the Mor-

phoLibJ function “Chamfer Distance Map” on the image to convert each pixel’s minimal dis-

tance from the initial outline into intensity of that pixel. We could then obtain intensities,

which correspond to minimal distances from the initial perimeter, for each pixel on the final

perimeter using built-in Fiji function “Plot Profile.” For each zygote, we then determined the

maximum perimeter displacement and the coefficient of variation in perimeter displace-

ment (for perfect isometric growth, where all measured values are identical, coefV = 0). A

minimum of 20 cells was analyzed, and we report the mean measurement values and its stan-

dard deviation.

Polarity patch lifetime was determined from time lapses of cells co-expressing Scd2-GFP

and Myo52-tdTomato imaged at a single plane with 10-minute intervals. The patch was visu-

ally assessed and considered 1 entity when at consecutive time points the signal, irrespective of

intensity, maintained position or moved to an adjacent location. Thus, we considered as a sin-

gle patch those that trail the growth site, partially lose focus, transiently dim or slide across the

cortex. We evaluated 10 or more cells per genotype and compared samples using the Kruskal–

Wallis test.

Fluorescence quantifications to assess efficiency of the artificial degron was performed on

average projections of images containing 12 z-sections with 0.5 μm spacing. We measured the

fluorescence in unlabeled wild-type cells, and the cells expressing either the fluorophore alone

or together with the degron. We used the DIC channel to outline the cells, measured the mean

fluorescence of 30 cells per sample and the slide background florescence. We subtracted the

slide background fluorescence and compared samples using the Kruskal–Wallis test. We then

calculated the average fluorescence for cells from each sample and its standard deviation. We

set the average wild-type cell fluorescence to 0, the average fluorescence of cells expressing the

fluorophore alone to 100, and used error propagation formula to calculate standard deviations.

PLOS BIOLOGY Cell cycle dependent and independent mating blocks ensure fungal zygote survival and ploidy maintenance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001067 January 6, 2021 25 / 34

https://doi.org/10.1371/journal.pbio.3001067


To quantify Fus1-GFP levels, we first determined the average cell background fluorescence

by measuring fluorescence in cells not encoding GFP and subtracting the media fluorescence

measured in the neighboring regions. Similarly, we determined fluorescence in gametes

expressing Fus1-GFP from 1 hour before fusion for 5 hours with 10-minute intervals and sub-

tracted the average cell background. Since Fus1-GFP signal varied between cells, we normal-

ized the signal at the time of gamete fusion to 1 and calculated average and standard deviation

for 8 different mating pairs per sample. We note that the whole-cell Fus1-GFP fluorescence is

weak, which makes it difficult to determine how much of the signal remains in zygotes co-

expressing DegGreen.

Quantifications of Mi induction were performed on single z-plane time lapses of nitrogen-

starved H1Δ17 diploids. We used the DIC channel to outline the cells over time and measure

mean cell fluorescence. We used these measurements to visually determine the time of Mi

induction and align time courses from different cells. The Mi signal also allowed us to visualize

and outline the circular nuclei and measure the mean fluorescence. We then subtracted the

slide background and report the mean fluorescence (line) and standard deviation from mea-

surements of 8 cells.

To quantify cell cycle progression upon nitrogen starvation, we performed 24-hour time-

lapse imaging of eGFP-Pcn1 immediately after cells were removed from MSL+N media,

washed and mounted onto MSL −N agarose pads. We tracked cells which were in G2 phase at

the beginning of imaging and scored their passage through S-phase. All cells went through at

least 1 cell division, and we report the frequency of cells passing the subsequent S-phase. For

cells that progressed to divide for a second time, we also report the frequency of their entry

into the next S-phase.

Quantifications of the S-phase timing used the exchange of cytosolic mCherry between

partner gametes to determine the fusion time (Tfusion). Time of S-phase was recorded as the

first time point with punctate GFP-Pcn1 localization. We analyzed only cells that fused within

the first 5 hours since the onset of imaging since we noticed that zygotes formed at late time

points took longer time to exit G1 in all crosses investigated, possibly due to depletion of nutri-

ents from the agarose pads used for imaging. Additionally, we ensured that the populations we

compare have similar average Tfusion and do not show statistically significant Tfusion differences

(pKruskal–Wallis > 0.1).

To determine the meiotic recombination frequencies, in 1 parental strain, we introduced

at the leu1 genomic locus sequences driving sfGFP expression from the strong ptdh1 promoter,

and in the other parental strain at the aha1 genomic locus sequences driving mCherry expres-

sion also from the strong ptdh1 promoter. We chose to integrate the constructs proximal to leu1
and aha1 loci in regions with no known function. Mating between these 2 parental strains

yielded nonrecombinant progeny that expresses 1 fluorophore and recombinant progeny that

expresses either both or neither fluorophore. We used flow cytometry to determine the fre-

quencies of recombinant and nonrecombinant progeny and the genetic distance of the 2 loci

in cM (centimorgan) was determined according to the following formula:

d cM½ � ¼ 50� ln
1

1 � 2� FractionOfRecombinants

� �

The experiment was performed in triplicate, and we report mean values, standard devia-

tion, and p-values obtained using the Welch t test. We obtained that the genetic distance

between the leu1 and aha1 loci is 17.13 ± 0.14 cM in wild-type crosses, which is consistent

with previous report of approximately 18 cM separating the leu1 and aha1-proximal his2 gene

[71,72].
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Supporting information

S1 Fig. Mei3 has functions independent of Pat1 kinase. (A) Quantification of phenotypes

observed by long-term DIC imaging of zygotes. Numbers at the top report frequency of refertiliza-

tion. (B) DIC images of cells prior to partner fusion (0 minute), at the time zygotes complete con-

cave neck expansion (150 minutes), and 10 hours later (750 minutes). Note that a fraction of

pat1Δmei2Δ zygotes divides. (C and D) Quantification of zygotic growth observed by time-lapse

imaging during 10 hours after neck expansion measured from outlines as shown in Fig 1C. Dots

show individual measurements, bars mean values, and error bars standard deviation. p-Values for

indicated comparisons were obtained from the Kruskal–Wallis test. In (C), we determined the

zygote outlines at the time of completion of concave neck expansion and 10 hours later, which we

then used it to determine the perimeter displacement for each pixel and quantify the coefficient of

variation. Large values in the coefficient of variation indicate large variation in growth along the

cell perimeter, such as the growth of 1 long projection. Smaller values indicate more isometric

growth. Theoretically, perfect isometric growth shows 0 coefficient of variation. The values

obtained for the wild-type zygotes, which do not grow, are indicative of the measurement error. In

(D), we quantified the diameter of the shmoos formed by zygotes. (E) Individual time points from

time lapses used to generate Fig 1H. Note that polarity and growth markers Scd2-GFP (green) and

Myo52-tdTomato (magenta) rapidly diminish in wild-type but not in mutant zygotes. The data

underlying this Figure may be found at https://doi.org/10.6084/m9.figshare.13274837.v1.

(TIF)

S2 Fig. Zygote lysis is induced by aberrant fusion attempts. (A) The graph quantifies the fre-

quency of lysed and intact gametes within 24 hours of mating as observed from DIC time-

lapse imaging. Numbers on the top report the frequency of surviving gametes. Gametes lack-

ing meiotic genes do not experience increased lysis. (B) Projection of 60 time points obtained

during 10 hours postfertilization of mei3Δmei2Δ gametes carrying the indicated halves of the

Fus1 artificial degron. Zygotes with the incomplete Fus1 degron (top and middle panels)

showed a high level of Fus1 fused to the fluorophore which trailed the growth projections (yel-

low arrows). Conversely, in zygotes that inherited a complete artificial degron from the 2

parents (bottom panel), Fus1 fluorescent signal was detected only at the time of fertilization

followed by its rapid disappearance during growth of mating projections. Note that Fus1-m-

Cherry is detectable postfusion in mei3Δmei2Δ zygotes that have an incomplete degron system

but is not detectable in gametes due to low fluorescence signal. (C) Quantification of green

fluorescence during mating of gametes that express Fus1-GFP and fuse with partners that

either lack (green) or express (black) DegGreen. Lines represent mean values and shaded areas

standard deviation. (D) Quantification of zygotic phenotypes observed during time-lapse

imaging of mating between indicated h+ and h− strains which produce zygotes with either

incomplete (left and middle bar) or complete (right bar) artificial Fus1 degron. Note the

decreased lysis in zygotes that carry the complete Fus1 degron system. The data underlying

this Figure may be found at https://doi.org/10.6084/m9.figshare.13274837.v1.

(TIF)

S3 Fig. Mei3 promotes G1 exit and flow cytometry gating strategy. (A) Flow cytometry mea-

surements performed on mating mixtures of homothallic strains which express sfGFP and

mCherry from mating type-specific promoters pmam1 and pmap3, respectively. Haploid cells,

which differentiate into either P- or M-gametes, induce a single fluorophore and thus can be

distinguished from zygotes, which express both fluorophores. Shown is the Hoechst-stained

DNA fluorescence (x-axis) 24 hours after transfer to medium lacking nitrogen. The y-axis

shows the cell number normalized to mode. Profiles of all cells in the mating mixture (gray),
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gametes (green and magenta), and zygotes (orange). Gametes largely arrest with unreplicated

1C genomes. mei3Δ and mei3Δmei2Δ zygotes show unreplicated 2C content. mei2Δ and

sme2Δ zygotes show a prominent 4C peak. (B) Flow cytometry analysis of mating mixtures

produced between the h− strain expressing sfGFP and h+ strain expressing mCherry from a

constitutive promoter. Note that populations of gametes and zygotes gated according to red

and green fluorescence (top panel) produce distinct populations in the forward and side scatter

plot (bottom panel). The data underlying this Figure may be found at https://doi.org/10.6084/

m9.figshare.13274837.v1.

(TIF)

S4 Fig. Mei3 promotes G1 exit in diploid cells obtained by ade6 complementation. (A) Dip-

loid cells obtained by ade6 complementation expressing mCherry and sfGFP from P- and M-

cell-specific promoters pmap3 and pmam1 24 hours after removal of nitrogen. Note the mated

pair (arrow) and a cell expressing only mCherry (yellow outline). (B) Flow cytometry analysis

of Hoechst-stained DNA fluorescence (x-axis) in diploid cell used in (A) at indicated time

points following nitrogen removal. The y-axis shows the cell number normalized to mode.

Note that mei3Δ and mei3Δmei2Δmutants arrest with unreplicated genomes (2C), while

wild-type, mei4Δ, and mei2Δ cells replicate their DNA (4C). (C) Flow cytometry analysis of

mCherry and sfGFP induction from the pmap3 and pmam1 promoters in 2 ade6-complementa-

tion diploids (left and middle panels) and an H1Δ17 diploid (right panel) 24 hours after nitro-

gen removal. Note subpopulations of cells with high pmap3 signal (arrow). (D) DIC and Mi-

sfGFP images of nitrogen-starved mei3Δ diploids which either express (top) or lack (bottom)

Pi. Nuclear localization of Mi (yellow arrowhead) is dependent on Pi. (E) Quantification of the

time required to detect Mi-sfGFP in diploid cells shifted to nitrogen-free media. The data

underlying this Figure may be found at https://doi.org/10.6084/m9.figshare.13274837.v1.

(TIF)

S5 Fig. Cell cycle progression correlates with mating repression. (A) Time lapses show DIC

(top panels) and GFP-Pcn1 (bottom panels) during mating of wild-type and mutant cells.

GFP-Pcn1 puncta (blue arrowhead) form in wild-type, sme2Δ, and mei4Δ zygotes but not in

mei3Δ and mei3Δmei2Δ zygotes. (B) Quantification of zygotes passing through S-phase as

observed from GFP-Pcn1 dynamics shown in Fig 6C. (C) Quantification of growth in

G1-arrested zygotes in the 10 hours after concave neck expansion was completed. Dots show

individual measurements, bars mean values, and error bars standard deviation. p-Values for

indicated comparisons were obtained from the Kruskal–Wallis test. The data underlying this

Figure may be found at https://doi.org/10.6084/m9.figshare.13274837.v1.

(TIF)

S6 Fig. Mei2 is not sufficient for zygotic G1 exit in absence of nonessential cyclins, Mei3

and Pat1. Quantification reports the number of zygotes with indicated genotypes which fail to

form eGFP-Pcn1 puncta during 24-hour time-lapse imaging of mating. The data underlying

this Figure may be found at https://doi.org/10.6084/m9.figshare.13274837.v1.

(TIF)

S1 Movie. Meiotic signaling mutants show distinct phenotypes. DIC time lapses show mat-

ing of meiotic signaling mutants. Note zygotes forming mating projections (yellow arrow-

heads) and mei2Δ zygotes dividing (red arrowhead).

(MOV)

S2 Movie. Division ring forms in mei2Δ but not in mei3Δ nor mei3Δmei2Δ zygotes. Time

lapses show mating of meiotic signaling mutants. Fertilization is visualized as partner exchange
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of cytosolic mCherry (magenta) expressed from the P-cell-specific pmap3 promoter. Note

mei2Δ zygotes (yellow outlines) that assemble an actomyosin ring labeled by Rlc1-sfGFP

(green; arrowheads) and divide.

(MOV)

S3 Movie. Pat1 kinase is dispensable for division in mei2Δ zygotes. DIC time lapses show

mating of meiotic signaling mutants. Note that cell division (yellow arrowheads) occurs in

pat1Δmei2Δ but not in mei3Δ pat1Δmei2Δ zygotes.

(MOV)

S4 Movie. Meiotic signaling mutants show distinct dynamics of growth and polarity mark-

ers. Time lapses show mating of cells expressing polarity and growth markers Scd2-GFP

(green) and Myo52-tdTomato (magenta). The intense Myo52 signal formed at the time of fer-

tilization (highlighted with white arrowheads in outlined cell pair) rapidly disappears in wild-

type zygotes but persists (yellow arrowheads) in zygotes with impaired meiotic signaling.

(MOV)

S5 Movie. Zygote lysis is induced by aberrant fusion attempts. Mating of mei3Δmei2Δ gam-

etes carrying the indicated halves of the Fus1 artificial degron system. Arrowheads point to

zygotes with incomplete Fus1 artificial degron (top and middle panel) that maintain a strong

Fus1-GFP (green) or Fus1-mCherry (magenta) signal postfertilization. Zygotes with incom-

plete Fus1 degron undergo cell lysis (example marked with yellow outlines) more frequently

than zygotes with the complete Fus1 degron (bottom panel).

(MOV)

S6 Movie. Mei3 promotes G1 exit in stable diploid cells. Time lapses show H1Δ17 diploid

cells expressing mCherry (magenta) and sfGFP (green) from P- and M-cell-specific promoters

pmap3 and pmam1 after a shift to nitrogen-free media. Note septum formation (arrowheads) in

mei2Δmutant cells expressing both fluorescent proteins.

(MOV)

S7 Movie. The Pi–Mi complex formation precedes mating in diploid cells. Time lapses of

mei3ΔH1Δ17 diploid cells shifted to nitrogen-free media that express Mi-sfGFP and are either

wild type (top) or mutant (bottom) for Pi. Nuclear enrichment of Mi (red arrowheads) is Pi

dependent and precedes the formation of mating projections (yellow arrowheads).

(MOV)

S8 Movie. Mei3 advances premeiotic-S phase entry. Time lapse shows DIC (gray) and the

nuclear GFP-Pcn1 (green) in wild-type (top panels) and SMS zygotes (bottom panels). Fertili-

zation is evident as partner exchange cytosolic mCherry (magenta) expressed in only 1 gamete.

Punctate GFP-Pcn1 signal (arrowheads), indicative of S-phase, appears prior to karyogamy in

wild-type but later in SMS zygotes.

(MOV)

S9 Movie. Zygotes lacking mei3 cannot progress to S-phase. Time lapses show DIC (left pan-

els) and GFP-Pcn1 (right panels) during mating of wild-type and mutant cells. GFP-Pcn1

puncta (red arrowhead) form in wild-type, mei2Δ, sme2Δ, and mei4Δ zygotes but not in mei3Δ
and mei3Δmei2Δ zygotes.

(MOV)

S10 Movie. Mating behavior correlates with the cell cycle phase in mei2Δ zygotes. Time lapse

of mating mei2Δ cells. Zygotes that persist in G1 (yellow outlines) form prominent mating projec-

tions (yellow arrowhead). Zygotes that progress through S-phase (blue outlines), evident from
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GFP-Pcn1 puncta (blue arrowhead), largely repress shmoo formation and instead divide.

(MOV)

S11 Movie. Forced cell cycle progression decreases mating behaviors of mei3Δmei2Δ
zygotes. Time lapses show mating of control mei3Δmei2Δ cells (top) and mei3Δmei2Δ cells

that express Puc1 from the zygote-specific pmei3 promoter. GFP-Pcn1 (right panels) forms

puncta (red arrowheads) in Puc1-expressing zygotes (blue outlines). The control G1-arrested

zygotes form prominent mating projections and frequently lyse unlike Puc1-expressing

zygotes which show little or no growth (yellow outlines) and reduced lysis.

(MOV)

S12 Movie. Zygotes lacking nonessential cyclins undergo refertilization. DIC time lapse

shows mating of cycΔ5 cells, which undergo refertilization (yellow outlines).

(MOV)

S13 Movie. Mei2 blocks zygotic mating independently of cell cycle progression. DIC time-

lapses show mating mixtures of SMS cycΔ5 cells (right panel), which induce Mei2 post-fertili-

zation, and control cells that lack Mei2 (left panels). Mei2 expression prevents zygote lysis and

re-fertilization.

(MOV)

S14 Movie. Mei2 prevents zygotic growth. Time lapses show DIC (left) and Scd2-GFP (right)

in mating mixtures of SMS cycΔ5 cells (bottom), which induce Mei2 postfertilization, and con-

trol cells that lack Mei2 (top). Note that the Scd2 signal dissipates after fusion in zygotes

expressing Mei2 but trails the growth projection in the zygotes lacking Mei2.

(MOV)

S1 Table. Strains used in this study.

(PDF)

S2 Table. Description of all genetic markers introduced in strains in this study.

(PDF)
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