
Hoop: Offloading HTTP(S) POSTs from User Devices onto Residential
Gateways

Kévin Huguenin
EPFL

Lausanne, Switzerland

Erwan Le Merrer
Technicolor

Rennes, France

Nicolas Le Scouarnec
Technicolor

Rennes, France

Gilles Straub
Technicolor

Rennes, France

Abstract—Mobile users generate ever-increasing
amounts of digital data, such as photos, which they
upload, while on the go, to online services. 3G con-
nectivity enables mobile users to upload their data
while on the go but drains the battery of their devices
and overloads mobile service providers. Wi-Fi data
offloading overcomes the aforementioned issues for
delay-tolerant data, at the cost of constrained mo-
bility for users as they are required to stay within a
given area while the data is uploaded. The up-link
of the broadband connection of the access point is
a bottleneck and incurs significant waiting times. In
this paper, we advocate the exploitation of the storage
capabilities of common devices located on the Wi-
Fi access point LAN, typically residential gateways,
to decrease the waiting time. We propose Hoop, a
system for offloading upload tasks onto such devices.
Hoop operates seamlessly on http(s) post, making it
highly generic; it also requires limited changes on the
gateways and on the web server and none to existing
protocols or browsers. Hoop is secure and, in a typical
setting, reduces the waiting time by up to a factor of
46. By correlating mobility traces with the positions
of the Wi-Fi access points of a major community
network, we show that Hoop drastically decreases the
delay between the time a photo is taken and the time
it is uploaded, compared to regular Wi-Fi offloading.

I. Introduction

With the advent of mobile devices, users generate
ever-increasing amounts of digital data while on the
go. For instance, they take photos and videos with
their smartphones and produce or edit possibly large
documents on their tablets and laptops. The data is
then uploaded to online services, typically through web
applications or native apps. In many cases, the upload is
performed through http(s) post operations (e.g., using
a browser, or with apps relying on http-based APIs).
To upload the data they produce while on the go, users

rely on the connectivity of their mobile devices, namely
3G and Wi-Fi. To do so, they are offered essentially two
options. Cellular connectivity enables mobile users to
upload their data from anywhere (and while moving) but
drains the battery of their devices [1], [2] and overloads
mobile Internet service providers, which, in response, im-

pose data caps (and either, block the traffic, reduce the
bandwidth or over-charge the traffic beyond the limit)
much to the detriment of the users. Data offloading
at Wi-Fi access points (or 3G DropZones [3]), be they
public (e.g., AT&T WiFi), business (e.g., Starbucks)
or community (e.g., FON [4]) hotspots or personal or
corporate access points, overcomes the aforementioned
issues for delay-tolerant data. This, however, comes at
the cost of constrained mobility and/or significant delays
for users. Indeed, the users are required to stay in the
close vicinity of the access point while the data is being
uploaded. A determining factor of the upload time is
the up-link speed of the Wi-Fi access point’s Internet
connection (typically 1 Mbps [5]) which constitutes a
bottleneck compared to the Wi-Fi connection (typically
50 Mbps). The waiting time can reach ten minutes for
20 HD photos uploaded on a 1 Mbps Internet link.

In this paper, we propose to leverage on the processing
and storage capabilities of common devices located on
the Wi-Fi access point’s local area network (LAN) to
implement a sort of store-and-forward http(s) proxy,
thus decreasing the waiting time to the point where
the Wi-Fi connection of the access point becomes the
bottleneck. First-class candidates to implement such
a scheme include always-on residential gateways [6],
[7], routers, network-attached storage (NAS) units, and
set-top boxes. One major design challenge, which is
paramount for a wide adoption, is to provide a solution
that is completely transparent for the users and that
requires as-small-as-possible changes to existing software
and protocols. We proposeHoop, a system for offloading
upload tasks onto devices such as gateways in a secure
and seamless way. In a nutshell, when a user reaches
an html upload form on a Hoop-enabled website, her
browser looks for a device running Hoop on the local
network (say a gateway) to offload the uploading task.
If such a device is found, the user’s browser, instead of
directly uploading the file to the online service, encrypts
and uploads the file to the gateway, together with an
authentication token, at a speed determined by the Wi-
Fi connection of the access point. At this point, the user
can disconnect from the access point, and potentially

2014 IEEE International Conference on Web Services

978-1-4799-5054-6/14 $31.00 © 2014 IEEE

DOI 10.1109/ICWS.2014.96

654

2014 IEEE International Conference on Web Services

978-1-4799-5054-6/14 $31.00 © 2014 IEEE

DOI 10.1109/ICWS.2014.96

654

move and switch off her device, while the file is being
asynchronously uploaded by the gateway.
Hoop operates on http(s) post and relies only on

existing web standards (e.g., JavaScript) and network
protocols, thus making it widely applicable. More specif-
ically, it can be used by any application that relies on
http(s) post to upload data (e.g., html forms, Java
uploaders, native apps). Hoop requires limited changes
on the gateways and on the web server and none at the
client side (i.e., at the mobile OS and browser). Hoop is
secure and significantly reduces the users’ waiting time.
We analyze the security of Hoop and we show that

Hoop guarantees the confidentiality and the integrity
of the uploaded data. In addition, we show that Hoop
does not create new opportunities for an attacker to
disrupt the upload or attack the online service. We
evaluate the performance of Hoop in two scenarios.
We consider a static user uploading data at a Hoop-
enabled Wi-Fi access point and show experimentally
that the waiting time is reduced by a factor of 46,
compared to regular Wi-Fi data offloading. We consider
a mobile user who produces and uploads data, through a
major community network of hotspots, while moving and
we show that Hoop significantly decreases the upload
delays. We demonstrate the practicality of Hoop by im-
plementing it on a set-top box and on a wireless router,
and on various websites including a minimal html form-
based uploader, the Flash and html 5 uploaders of the
Gallery [8] web photo organizer, and the Java uploader
of the ResourceSpace [9] web data management service.
The rest of the paper is organized as follows. In Sec. II,

we survey the related work. In Sec. III, we introduce
the system model and we give some background about
http(s) uploads. In Sec. IV, we present and describe
Hoop. We analyze the security of Hoop and we report
on its performance evaluation in Sec. V. Finally, we
discuss the incentives and the economics behind Hoop
in Sec. VI and we conclude the paper in Sec. VII.

II. Related Work
The problem of mobile data upload has received a

great deal of attention from the research community
over the last few years. Balasubramanian et al. first
proposed [10] to augment the 3G capacity in mobile
scenarios by exploiting Wi-Fi access points. They imple-
ment a software solution for delaying data exchanges and
fast-switching between 3G and Wi-Fi, and they assess
the potential of their approach. In [1], Lee et al. perform
a large-scale experimental evaluation of data offloading
over Wi-Fi that demonstrates the benefits of this ap-
proach, both in terms of the amount of data offloaded
from 3G and of battery power. In [3], Trestian et al.
study the data generation and upload patterns of mobile
users and advocate the use of cells with disproportionally
upgraded bandwidth, called Drop Zones, for offloading

the content generated by mobile users. In addition, they
tackle the problem of the optimal placement and of the
dimensioning of the Drop Zones. In all these piece of
work, it is assumed that the data is offloaded directly
over Wi-Fi, at the speed of the access point’s connection
to the Internet, which is a bottleneck. Although Hoop
relies on the same approach, i.e., offloading traffic at Wi-
Fi access points, it goes beyond by exploiting the storage
capacity at the access points to fully take advantage of
the Wi-Fi connectivity for delay-tolerant uploads.
Several pieces of work, e.g., [6], [7], advocate the use

of the storage capacity of gateways–and other always-on
devices–to offload data transfer from user devices. Tech-
nical solutions have been proposed and implemented
on gateways, set-top boxes and networked area storage
units. For instance, many such devices offer http down-
load services and run BitTorrent clients. Closer to our
work, the Fonera [11] enables users to asynchronously
upload files to a number of web services (including
YouTube and flickr) by simply copying them to a specific
folder. Unlike Hoop, such solutions have major draw-
backs: The device is trusted with the users’ credentials
for these web services; the device is given the users’ data,
in clear, which it can alter; the solution is dependent on
the web service (as it relies on proprietary APIs) and it
requires explicit user interactions, as opposed to Hoop.

III. System model and background
We consider a system composed of the following en-

tities: (1) a local area network (LAN) connected to the
Internet, (2) a mobile device and (3) a web service, as
described in Figure 1. The local network is composed of
a router (typically a gateway) that connects the different
devices to the Internet, a device with processing and
storage capabilities to run Hoop (typically a set-top box
or the gateway), and an access point that allows users
with wireless-equipped devices to connect to the local
network. The user connects to the Internet (through the
LAN) with her device and makes use of web services
through her browser and native apps. We consider a web
service that allows users to upload data through https1
post operations, from an html form (potentially with
Ajax), a Flash uploader, or a native app. Throughout
the paper, we focus on the case of html forms, the
other cases being in fact simpler as the service provider
controls the application, whereas for html forms the
service provider does not control the browser.
In a typical html scenario (without Hoop), a user

connects to a web service and requests the upload page,
through http(s), from her browser. The web service
returns a html page including a form (e.g., see Figure 2)
that contains at least a form element to select the data

1We focus on https throughout the paper: The case of http can
be solved with a IP-level proxy; this is not possible for https, as
TLS protections rely on session keys that are periodically renewed.

655655

Broadband Internet connection
(up-link 1-5 Mbps)

Mobile devices
Internet router

Gateway
HTTPS Web service
w/ upload capabilities

Other devices (e.g., set-top box, NAS)

MobiM bi
rnet router

Gateway

Other Oth devicesd i ((e.g., set-top box, NAS)

Local Area Network

ile deviceil d i e
r

G
Inter

G

eses

Wi-Fi n (up to 300 Mbps)
Ethernet (100-1000 Mbps)

Figure 1. Setup of Hoop.

(typically some files, e.g., photos) to be uploaded, some
extra information (e.g., a caption), an authentication
token, and the target page (https://www.service.com/
post.php) to which the data will be posted. The user
then selects the file(s) to upload and submits the form
by clicking on the corresponding button, and the data is
posted. The user must stay connected until the data is
uploaded. Once the data is uploaded, the target pages
checks that the user is authenticated (e.g., based on a
token stored in a hidden field of the form) and it retrieves
and processes the data (e.g, adds the photos to the user’s
profile). The whole process is depicted in Figure 3.

<form id=’upload_form’ action=’post.php’ method=’post’>
<input type=’file ’ name=’data’>
<input type=’text’ name=’caption’>
<input type=’hidden’ value=’...’ name=’token’>
<input type=’button’ value=’Upload’

id=’upload_button’ onclick=’upload_form.submit();’>
</form>

Figure 2. HTML upload form.

Consider the typical scenario of a native mobile appli-
cation, written in Java, for the Android platform. The
application communicates with the web service through
http(s) in order to use the same interface as for the
website: The application collects data from the local file
system, as well as from various elements of the graphical
user interface (GUI); the application embeds the data in
an http(s) request that it posts to the target URL by
using a dedicated library (e.g., org.apache.http.client).

IV. Hoop
In this section, we describe Hoop, a system for of-

floading upload tasks onto devices located on the same
LAN as the user’s mobile device in a store-and-forward
fashion. Hoop involves three different entities as de-
scribed in the system model: a software component on
the device running Hoop (say a gateway), the appli-
cation running on the user’s mobile device, and the
web service. We describe the functioning of Hoop by
explaining the operations performed by each of the three
aforementioned entities. Hoop operates as follows: the
mobile device (be it a script executed by the browser
or a native app) searches for a device running Hoop on

the local network and, if any such device is found, it
processes (i.e., re-formats and encrypts) the data to be
sent and directs the upload to this device (instead of to
the web service). The device running Hoop stores the
data received from the mobile device and asynchronously
uploads it to the web service that handles the data as for
a regular upload. We describe the general functioning of
Hoop, depicted in Figure 5; and we describe the specifics
of its implementation on the mobile device as a web
application running in a browser and as a native app.

A. System Description

TheHoop component running at the gateway consists
of a daemon acting as both an http server bound to
a fixed pre-defined port and an http client. At the
startup, the Hoop component registers the hostname
hoop.local on the local network through the DHCP pro-
tocol. The http server implemented by the Hoop com-
ponent can be accessed at http://hoop.local/ and offers
two services: test (accessible at http://hoop.local/test)
that allows devices to detect its presence and test its
availability, and offload that implements the store-and-
forward operation. In order to allow scripts originating
from Hoop-compatible web services to connect to the
gateway’s http services, the latter implements a cross-
origin resource sharing (CORS) policy by adding Access-
Control-Allow-Origin:* to the http header.
The Hoop-compatible web service hosts, in addition

to the traditional page post.php, a page post_hoop.php
that handles the uploads which are offloaded to and
forwarded by the gateway. Although these two pages
differ in the way they retrieve and pre-process the up-
loaded data, they process this data in the same way by
relying on the same php function. Thus, the modifica-
tions required at the web service are limited. The web
service has a secret key Kws for symmetric authenticated
cryptography. Upon login, the mobile device obtains an
authentication token T from the web service. When an
upload operation is initiated, the mobile device obtains a
fresh random secret key K for symmetric authenticated
encryption, together with a version of the key encrypted
with the secret key of the web service, i.e., EKws(K)
where E denotes the encryption operation (typically
AES in OCB, CCM or EAXmode), from the web service.
The mobile device (i.e., a web-application run-

ning in the browser, a Flash application, or a na-
tive app) searches for a device running Hoop on
the local network by sending an http request to
http://hoop.local/test. If the request returns success-
fully (i.e., the host hoop.local is resolved and found,
and the request returns the http success code 200–
the gateway returns the http service unavailable 503
code if its upload buffer is full), the mobile device sets
the target URL to http://hoop.local/offload, so as to
offload the upload to the device running Hoop, sets

656656

User’s mobile device (trusted) Gateway (not trusted) HTTPS Server (trusted)
https://www.service.com/

GET https://www.service.com/ (trusted)

POST data + token TO https://www.service.com/post.php

User’s mo

click
select files

Figure 3. System overview without Hoop.

a get parameter to the target URL of the web ser-
vice (i.e., http://www.service.com/post_hoop.php),
and generates the following encrypted post data:
Z = EKws(K) || EK(T || D), where T is the authenti-
cation token provided by the web service, and D is
the data the user wants to upload (e.g., a photo and
a caption). Note that as the content sent by the mobile
device to the device running Hoop and by the device
running Hoop to the web service is encrypted, there is
no need to use TLS encryption (i.e., http suffices); this
alleviates the need for certificate management at and for
the gateway. Finally, the mobile device posts the data Z
to http://hoop.local/offload. As the mobile device and
the device running Hoop are on the same local network,
the speed at which the data is transferred is determined
by the technology used on the LAN (typically 100/1000
Mbps Ethernet or Wi-Fi g/n/ac) but is independent
from the speed of the Internet connection.
When the gateway receives a request to its off-

load service, it first extracts the target URL of
the web service from the get parameters (i.e.,
http://www.service.com/post_hoop.php). Then it ex-
tracts the post data (i.e., EKws(K) || EK(T || D)) and
passes this data to its http client that (re-)posts it to
the target URL of the web service.
The post_hoop.php page hosted by the web service

parses the post data. It first obtains the symmetric key
K by decrypting EKws(K) with its secret keyKws. Then,
it decrypts the data and the authentication token by
using the key K and passes them to the script used
to handle regular uploads (i.e., which do not make use
of Hoop). Note that when decrypting the post data,
the script checks its integrity and drops the request
if it fails. Figure 4 gives a simplified version2 of a
typical post_hoop.php page (note that any language,
e.g., Python, can be used for implementing post_hoop).
Note that the web service relaxes its CORS policy for
the post_hoop.php page by accepting any origin.

2For the sake of clarity, we omit error-handling code as well as
diverse optimizations from the snipets.

function hoopReceive(){
$fd = fopen(’php://input’, ’ r ’)
$k = hoopReadAndDecipherSessionKey($kws,$fd)
$data = hoopDecipher($k,$fd)
list ($_POST, $_FILE) = hoopMultipartDecode($data)

}
hoopReceive();
include("post.php");

Figure 4. Hoop upload php script.

B. Implementation
The implementation of Hoop as a native app on

the mobile device is straightforward: sending http re-
quests is achieved by using a dedicated library such as
org.apache.http.client for Java on Android; the encryp-
tion is performed by using a dedicated library such as
javax.crypto. The authentication token and the encryp-
tion key are obtained from web service through https.
The implementation of Hoop as a web application

however, is challenging as the web application runs
within the browser over which the developer has no
control. The code executed by the browser is pro-
vided by the web service as a JavaScript (over https).
The script contains, in two variables, the symmetric
key K and its encrypted version EKws(K). When the
JavaScript is loaded, it searches for a device running
Hoop by making an asynchronous XMLHttpRequest
to http://hoop.local/test. If the request returns suc-
cessfully, the JavaScript modifies the upload form in
order to offload the upload to the device running Hoop.
This is achieved by setting the target URL of the html
form (i.e., its action attribute) to the empty string, and
by setting instead, through the onsubmit attribute of
the submit button, a JavaScript function to be executed
when the form is submitted (see Figure 6). This function
reads the data from the files through the html 5 File
API, performs the encryption by using a JavaScript
library3 (e.g., crypto-js [13]), and sends the encrypted
post data to the gateway at http://hoop.local/offload

3While web applications usually rely on protocol-layer encryp-
tion, they increasingly use application-layer encryption: for this
reason W3C is working on the specification and the implementa-
tion of a JavaScript cryptography API named WebCryptoAPI [12].

657657

User’s mobile device (trusted) Gateway running Hoop (not trusted)
https://hoop.local/

HTTPS Server (trusted)
https://www.service.com/

GET https://www.service.com/ (trusted)

POST data + token TO https://www.service.com/post.php

GET http://hoop.local/test

OK (HTTP 200) or Error (e.g., HTTP 503)

hoopSetup()

click

If OK
(Hoop)

If Error
(no Hoop)

POST Z = ek + EK(data, token) TO http://hoop.local/offload?
dest=http://www.service.com/hoop_post.php

POST Z TO http://www.service.com/hoop_post.php
hoopReceive()

include(‘post.php’)

Figure 5. System overview with Hoop

by making an XMLHttpRequest with the get parame-
ter set to the URL of the web service (see Figure 7).

button = document.getElementById(’upload_button’);

function hoopSetup(){ // search for a device running Hoop
req = new XMLHttpRequest();
req.open(’GET’, ’http://hoop.local/test’ , true) ;
req.onreadystatechange=function(){

if (req.readyState==4 && req.status==200)
button.onClick = ’hoopSend();’; // switch to Hoop offload

}
req.send();

}

Figure 6. Hoop JavaScript function for activating Hoop.

k = ’ ... ’ ; ek = ’ ... ’ // symmetric key (in clear and encrypted)
dest = ’http://www.service.com/post_hoop.php’
form = document.getElementById(’upload_form’);

function hoopSend(){
data = hoopMultipartEncode(form) // extract the data
cipher = hoopCipher(data, k) // encrypt the data
req = new XMLHttpRequest();
req.open(’POST’, ’http://hoop.local/offload?dest=’ +

urlencode(dest), false) ;
req.send(ek + cipher);

}

Figure 7. Hoop JavaScript function for preparing and offloading
the data to a device running Hoop.

C. Additional Features
In addition to its core offload functionality, Hoop

offers side features that enable users to monitor their
offloaded uploads, at the gateway and at the web
service. Upon a successful offload onto the gate-
way, the user is provided with a link of the form
hoop.local/monitor?ID=..., where ID is a random iden-
tifier assigned to the offload, to monitor the (re-)posting
of the uploaded data. The operator of the local network

can make the monitoring service accessible from outside
the LAN; in this case, the local hostname must be
replaced by a fully qualified hostname. The monitoring
service can be implemented at the web service as well:
When an upload is offloaded to a device running Hoop,
the web service is notified by the user’s mobile device
through an https request including the key K and the
meta-data (e.g., the caption and the names of the files).
The user can subsequently monitor, through her account
on the web service, the list of her offloaded uploads and
monitor/control (i.e., pause, resume, stop) them.

V. Evaluation
We evaluate Hoop with respect to its security (e.g.,

the confidentiality and the integrity of the user’s data),
its efficiency (e.g., technical feasibility of Hoop), and its
efficacy (e.g., in terms of its offload potential).

A. Security
We look at the security of Hoop by considering differ-

ent adversaries. As Hoop is designed for a deployment
in the public domain, neither the gateway nor the user
is trusted, thus they constitute potential adversaries. In
addition, we consider adversaries such as a jammer, an
eavesdropper, or another user connected to the LAN.
Confidentiality and integrity of the users’ data.
The confidentiality and the integrity of the data (users’
data, as well as the key K, and the JavaScript or html
codes) exchanged directly between the user’s mobile
device and the web service is guaranteed by the TLS
encryption of the https connection: Neither the router
nor an eavesdropper can read or stealthily tamper with
this data. The confidentiality and the integrity of the
data exchanged between the user’s mobile device and
the web service, with Hoop through the gateway (over

658658

http), is guaranteed by the application-layer authen-
ticated encryption (that implements integrity check),
the encryption key K being known only to the user
and to the web service as it is exchanged over https.
Therefore, an adversary, such as a malicious gateway,
cannot tamper with the data (D||T) in the post data.
Security of the gateway. An adversary can perform
a denial-of-service (DoS) attack against the gateway by
issuing a large number of offloading requests. It is in
general difficult to defend against DoS, yet they are not
specific to the use of Hoop; this means that traditional
protection mechanisms can be used and that Hoop does
not create new opportunities to attack the gateway.
Security of the web service. Relaxing the CORS pol-
icy for the hoop_post.php page exposes the web service
to cross-site scripting attacks (XSS), e.g., a third-party
website stealthily posting data to this page by relying
on an existing cookie in the user’s browser. However, as
the hoop_post.php page authenticates users based on
the token T encrypted with the secret key K instead of
using cookies, such attacks cannot succeed. Finally, an
adversary can carry out a DoS attack against the web
service, through Hoop, by offloading a large number of
requests on a gateway that runs Hoop. Such an attack,
however, does not give more power to the adversary as
it is equivalent to making the requests from the LAN.

B. Efficiency

We evaluate the efficiency of the Hoop components
running on the mobile device and on the gateway based
on a real implementation on various platforms.
Mobile device: encryption. We considered both
OpenSSL and CryptoJS libraries for symmetric AES-
256 encryption and we showed (see [14]) that encryption,
along with file access and communication, do not consti-
tute a bottleneck on modern smartphones and laptops as
it is possible to saturate a Wi-Fi connection at 300 Mbps.
Gateway component: offload and upload. We im-
plemented the gateway component in charge of receiving
and (re-)posting offloaded data on two different devices:
a wireless router running OpenWRT and a set-top box
(see Table I for the configuration). The set-top box has
similar hardware to a typical NAS. We implemented the
Hoop component in C and compiled it to a standalone
native executable. The implementation has ∼350 source
lines of code (excl. the libraries) that compile to a binary
of ∼60 KB (excl. a dynamic library of ∼250 KB) on both
platforms. The wireless router embeds a Wi-Fi 802.11n
access point and the set-top-box is connected to the
router/AP through a 100 Mbps Ethernet link.
We conducted our experiments with Hoop running

either on the router or on the set-top box and with
a laptop connected to the local network either over
100 Mbps Ethernet or over Wi-Fi 802.11n (the actual

Dev. Arch. Proc. RAM HDD
Router MIPS Atheros AR7241@400 Mhz 32 MB USB 320 GB
Set-top x86 Intel Atom@1.66 Ghz 1 GB SATA 250 GB

Table I
Specifications of the devices used for the evaluation.

negotiated link speed was 78 Mbps). Our experiments
with a wired connection between the mobile device and
the gateway enable us to assess the performance of the
Hoop component running at the gateway (as a wireless
connection could have constitute a bottleneck), whereas
our experiments with a wireless connection enable us to
assess the global performance of Hoop as a whole.
We evaluate the performance of the Hoop component

running on the gateway, in a wired setting, with respect
to the offload speed (as a function of the size of the post,
for different concurrency levels4). It can be observed
on Figure 8 that for small posts (e.g., 50-200 KB)
offloaded onto the set-top box, sending concurrent re-
quests improves the offload speed as the requests are
processed concurrently, thus amortizing the connection
delays. For large posts (i.e., > 1 MB), which constitute
the main use-case of Hoop, both the router and the set-
top box saturate the LAN connection (i.e., Ethernet at
100 Mbps∼12 MBps) at 10 and 11 MBps respectively.
The bandwidth overhead of Hoop (cryptography and
headers) is negligible compared to the size of the files.

0
2
4
6
8

10
12

100 1000 10000

O
ffl

oa
d

sp
ee

d
(M

B
/s

)

Size of a POST (KB)
(a) Offload speed (router)

100 1000 10000
Size of a POST (KB)

conc.=1
conc.=5

conc.=20

(b) Offload speed (set-top)

Figure 8. Performance of the Hoop component at the gateway.

C. Efficacy
We evaluate the efficacy of Hoop: first experimentally

in a static setting where the users do not move and stay
connected to the same access point, and then through
trace-driven simulations in a mobile setting.

1) Experimental Results: We experimentally assess
the global performance of Hoop in terms of the time
needed to complete an offload, based on our implemen-
tation on a laptop/router (see Section V-B). This metric
reflects the immediate gain of a user in a static setting, as
it corresponds to the time after which the user can switch
off her mobile device and/or start moving out of the

4Browsers can issue requests in parallel by opening up to 6-8
concurrent connections.

659659

range of the Wi-Fi access point. For the web service, we
enhance the Gallery [8] web photo organizer with Hoop
compatibility5, and we host it on a server connected to
the Internet through a dedicated symmetric connection
at 100 Mbps. The local network is connected to the
Internet through an ADSL broadband connection syn-
chronized at 12 Mbps (down)/1.15 Mbps (up). Neither
the LAN link nor the broadband link has background
traffic (i.e., other applications that use the links). Fig-
ure 9 shows the results for different post sizes in wired
and wireless settings, with and without Hoop. It can
be observed that Hoop significantly outperforms regular
Wi-Fi offloading (i.e., without Hoop): The offload time
is reduced by up to a factor of 85 in a wired setting
and by up to a factor of 46 in the wireless settings.
These factors roughly correspond to the ratios between
the LAN and the broadband link speeds (100/1.15≈84
for Ethernet; the observed speed for Wi-Fi 802.11n is
consistent with the actual speed of a link at 78 Mbps
taking into account the MAC and TCP overheads).

0.1

1

10

100

1000

5 15 25 35 45

O
ffl

oa
d

tim
e

(s
)

Size of a POST (MB)
5 15 25 35 45
Size of a POST (MB)

w/ Hoop
w/o Hoop

Figure 9. Global performance of Hoop compared to the baseline
in a wired (left) and wireless (right) setting.

2) Trace-Driven Simulations Results: We evaluate the
efficacy of Hoop in the scenario of a mobile user moving
in a region covered by a network of Wi-Fi access points
and a 3G network. When the user is in the range of
an access point, it connects automatically to it; this
is usually done by the OS (e.g., through EAP-SIM for
AT&T Wi-Fi [15]) or by a dedicated app (e.g., the FON
app [4]). In addition, the user could have 3G plan that
enables her to connect to the Internet from anywhere.
The APs have an unlimited storage capacity.
Dataset. The evaluation is based on a dataset of Wi-Fi
access points from the FON community network [4]. The
access points composing the FON network are mostly
routers and set-top boxes provided and operated by
the ISPs that hold total control over them (through
automatic firmware updates); as such, they constitute
first-class candidates to run Hoop. In order to build
connectivity traces, we correlate the coordinates of the
Wi-Fi access points with mobility traces from users

5We implemented Hoop on ResourceSpace [9] as well to demon-
strate Hoop’s feasibility for Java-based uploaders.

moving in the Paris area, France. Our dataset comprises
two types of traces: touristic paths and commuter paths.
The first corresponds to pedestrians who shot photos at
points of interests while exploring the city by hopping
from one point of interest to another (including the
Eiffel Tower, Notre-Dame, and the Arc de Triomphe);
the latter corresponds to workers who edit documents
while commuting between their homes and their work
places using buses and trams. More details can be found
in [14]. We consider the following scenarios:
• Wi-Fi only (always mobile): Users always move
according to their mobility trace and upload their data
over Wi-Fi whenever they are connected.

• Wi-Fi + 3G (always mobile): Users always move
according to their mobility trace and upload their
data over Wi-Fi whenever they are connected, and
otherwise over 3G.

• Wi-Fi (mobile + static): Users move according to
their mobility traces and upload their data over Wi-Fi
whenever they are connected. When connected, users
wait until their upload buffer is empty before moving.

Results. Figure 10 shows the cumulative distribution
functions (CDF) of the delay in the different connectivity
scenarios. For the commuter trace, the CDF is not visible
for the “w/o Hoop, always mobile” scenario as the de-
lays are very long. This is because the Wi-Fi connection
sessions are too short to enable the user to upload a
single document. It can be observed that the delays are
drastically reduced with Hoop. Surprisingly, we observe
shorter delays “w/ Hoop always mobile” scenario than
for the “mobile + static” (i.e., Wait) scenarios. This is
because in the mobile scenario, users offload the different
files in their buffers to different access points. Hence, the
files are uploaded simultaneously, whereas in the wait
scenario, the files are uploaded sequentially as they are
all offloaded at the same access point. Finally, the results
show that 3G connectivity helps reducing the delays.
This is because it enables the user to upload some of
the files as soon as they are produced while the user
stays at a point of interest with no Wi-Fi coverage.

0
0.2
0.4
0.6
0.8

1

0 2000 4000

C
D

F

Delay (s)
0 50 100

Delay (s)

w/ Hoop 3G
w/ Hoop Wait

w/ Hoop
w/o Hoop 3G

w/o Hoop Wait
w/o Hoop

Figure 10. Delay between the content generation and the upload
for the touristic (left) and the commuter (right) traces.

We now look at the active time (i.e., the time spend
uploading/offloading data over Wi-Fi or 3G). Figure 11

660660

summarizes the results for different scenarios: it can be
observed that Hoop consistently decreases the active
time while increasing the amount of data offloaded. This
is consistent with the increase of the amount of data sent
over Wi-Fi. This translates into energy savings as the
consumption per MB is lower for Wi-Fi than for 3G [2].
Note that the results from the two traces are not directly
comparable as the traces have different durations, and
that the users generates files of different sizes, at different
rates. Note also that for the same trace, the duration of
the experiment is longer in the “Wait” scenario.

0

10,000

20,000

30,000

40,000

0

1,000

2,000

3,000

Ti
m
e
(s
)

D
at
a
(M

B
)

Active Time
Data Wi-Fi

Data 3G

0

500

1,000

w/ Hoop

w/o Hoop

w/ Hoop 3G

w/o Hoop 3G

w/ Hoop W
ait

w/o Hoop W
ait

0

20

40

Ti
m
e
(s
)

D
at
a
(M

B
)

Figure 11. Time spent sending data and amount of data uploaded
over Wi-Fi/3G for the tourists (top) and the commuters (bottom).

VI. Discussion
Hoop is beneficial for the users and does not require

any user intervention. As such, Hoop increases the
brand value (1) of gateway/NAS manufacturers, (2) of
the ISPs that provide gateways to their subscribers,
and (3) of Wi-Fi access point operators. The cost of
deploying Hoop on such devices is minimal: The imple-
mentation is simple and can be deployed via automatic
firmware updates or via applications repositories (e.g.,
Synology’s third-party packages [16]). The fact that
Hoop is generic alleviates the need for the manufac-
turers and application developers to implement ad-hoc
solutions for each service (e.g., YouTube, flickruploaders
implemented on the Fonera [11]). Hoop constitutes an
interesting marketing argument for service providers as
well and offers them an efficient ready-to-use solution
that requires only limited changes to the web service.

VII. Conclusion
In this paper, we presented Hoop, a system for of-

floading data uploads on devices with storage capabili-
ties, e.g., gateways, in a store-and-forward fashion. Our
system enables mobile users to fully exploit the Wi-Fi
link by relaxing the speed constraints due to the link
that connects the LAN to the Internet. Unlike existing

systems, Hoop operates transparently and provides a
ready-to-use, secure and generic solution to data uploads
offloading: The mobile users are not required to trust
the gateway with their credentials and the gateway can
neither see nor alter their data. We reported on our
performance evaluation of Hoop, which demonstrate
its efficiency and its efficacy: Hoop can run on devices
with very limited capabilities and decreases the waiting
time by up to a factor of 46. We intend to conduct a
real-world field experiment to further assess the upload
performance of Hoop as well as the energy savings.

VIII. Acknowledgments
The authors are very grateful to Olivier Heen and

Julien Herzen for their insightful comments.
References

[1] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mo-
bile Data Offloading: How Much Can WiFi Deliver?”
IEEE/ACM Trans. on Netw., vol. 21, pp. 536–550, 2013.

[2] N. Ristanovic, J.-Y. Le Boudec, A. Chaintreau, and
V. Erramilli, “Energy Efficient Offloading of 3G Net-
works,” in MASS, 2011, pp. 202–211.

[3] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci,
“Taming the mobile data deluge with drop zones,”
IEEE/ACM Trans. on Netw., vol. 20, pp. 1010–23, 2012.

[4] “FON,” http://www.fon.com, Last visited: oct. 2013.
[5] M. Dischinger, A. Haeberlen, K. P. Gummadi, , and
S. Saroiu., “Characterizing Residential Broadband Net-
works,” in IMC, 2007, pp. 43–56.

[6] S. Defrance, A.-M. Kermarrec, E. Le Merrer, N. Le
Scouarnec, G. Straub, and A. Van Kempen, “Efficient
peer-to-peer backup services through buffering at the
edge,” in P2P, 2011, pp. 142–151.

[7] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and
P. Rodriguez, “Greening the Internet with Nano Data
Centers,” in CoNext, 2009, pp. 37–48.

[8] “Gallery: open source web-based photo organizer,” http:
//gallery.menalto.com, Last visited: oct. 2013.

[9] “ResourceSpace: an open source asset management,”
http://www.resourcespace.org/, Last visited: oct. 2013.

[10] A. Balasubramanian, R. Mahajan, and A. Venkatara-
mani, “Augmenting mobile 3G using WiFi,” inMobiSys,
2010, pp. 209–222.

[11] “Fonera 2.0n,” http://www.fon.com/en/product/
fonera2nFeatures, Last visited: oct. 2013.

[12] W3C Working Draft, “Web Cryptography API,” http:
//www.w3.org/TR/WebCryptoAPI/, jun. 2013.

[13] “CryptoJS,” https://code.google.com/p/crypto-js/.
[14] K. Huguenin, E. Le Merrer, N. Le Scouarnec,

and G. Straub, “Hoop: HTTP POST Offloading
from User Devices onto Residential Gateways,”
Technicolor, Tech. Rep., 2013. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00873774

[15] “AT&T WiFi,” http://www.att.com/gen/general?pid=
5949, Last visited: oct. 2013.

[16] “Synology DSM 4.3 Packages,” https://www.synology.
com/dsm/dsm_app.php, Last visited: oct. 2013.

661661

