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Monte-Carlo di�usion simulations are a powerful tool for validating tissue
microstructure models by generating synthetic di�usion-weighted magnetic
resonance images (DW-MRI) in controlled environments. This is fundamental for
understanding the link between micrometre-scale tissue properties and DW-MRI
signals measured at the millimetre-scale, optimizing acquisition protocols to
target microstructure properties of interest, and exploring the robustness
and accuracy of estimation methods. However, accurate simulations require
substrates that reflect the main microstructural features of the studied tissue. To
address this challenge, we introduce a novel computational workflow, CACTUS
(Computational Axonal Configurator for Tailored and Ultradense Substrates), for
generating synthetic white matter substrates. Our approach allows constructing
substrates with higher packing density than existing methods, up to 95%
intra-axonal volume fraction, and larger voxel sizes of up to 500µm3 with rich
fibre complexity. CACTUS generates bundles with angular dispersion, bundle
crossings, and variations along the fibres of their inner and outer radii and
g-ratio. We achieve this by introducing a novel global cost function and a fibre
radial growth approach that allows substrates to match predefined targeted
characteristics andmirror those reported in histological studies. CACTUS improves
the development of complex synthetic substrates, paving the way for future
applications in microstructure imaging.

KEYWORDS

microstructure imaging, di�usion MRI, brain imaging, white matter, Monte-Carlo

simulations, numerical phantom, synthetic substrates, high packing density

1. Introduction

Diffusion-weightedmagnetic resonance imaging (DW-MRI) is a non-invasive technique
used to study the microscopic structure of biological tissues in vivo. It is sensitive to the
ensemble of water molecules (wherein each molecule follows a random motion pattern)
as they interact with cellular surfaces (Simpson and Carr, 1958; Stejskal and Tanner, 1965;
Bihan, 1995). This technique provides a valuable tool to study brain microstructure and its
alterations following injury (Parizel et al., 2005; To et al., 2022) and neurological disease (van
Gelderen et al., 1994; Budde and Frank, 2010; Narvaez-Delgado et al., 2019).
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White matter is a crucial component of the brain, composed
of highly organized axon bundles that interconnect cortical
regions and subcortical regions (Brückner et al., 1996; Sporns,
2011). Various imaging techniques have been considered to
characterise the white matter tissue microstructure in different
species. For example, axon diameters have been measured in
some white matter regions of the macaque monkey brain using
histology and DW-MRI (Caminiti et al., 2013), and optical
microscopy (Innocenti and Caminiti, 2017). These studies show
that the estimated distribution of axon diameters is long-
tailed, with a mean of around one micrometre. Recent studies
that used high-resolution three-dimensional (3D) synchrotron
X-ray nano-holotomography (Andersson et al., 2020) and 3D
electron microscopy (Lee et al., 2019) found that axons are
non-cylindrical and exhibit environment-dependent variations
in diameter and trajectory. Alongside axon diameters, another
relevant feature is the intracellular volume the axons occupy in a
predetermined region. In histological postmortem data, the white
matter intracellular space volume has been estimated as ranging
between 60 and 85% of the brain volume for macaques (Stikov
et al., 2015) and human adults (Syková and Nicholson, 2008).
Interestingly, it goes as high as 70–95% in mice, as reported
by light microscopy (Tønnesen et al., 2018), and cryo and
chemical fixations (Korogod et al., 2015). It is speculated that this
range might be influenced by the shrinkage of the extracellular
space due to the fixation process (Dam, 1979; Bolduan et al.,
2020).

Given the importance of studying white matter tissue
microstructure in vivo, several DW-MRI models have been
proposed (e.g., Murday and Cotts, 1968; Neuman, 1974; van
Gelderen et al., 1994; Söderman and Jönsson, 1995; Stanisz et al.,
1997; Assaf et al., 2004, 2008; Assaf and Basser, 2005; Alexander
et al., 2010; Dyrby et al., 2011; Drobnjak et al., 2016; Jelescu and
Budde, 2017; Kakkar et al., 2018; Novikov et al., 2018, 2019; Lee
et al., 2020; Veraart et al., 2020, 2021; Harkins et al., 2021). However,
validating these non-invasive techniques requires physical and
numerical phantoms with a well-known microstructure (Campbell
et al., 2005; Fieremans et al., 2008; Tournier et al., 2008; Fillard
et al., 2011; Lavdas et al., 2013; Maier-Hein et al., 2017; Zhou
et al., 2018; Schilling et al., 2019; Andersson et al., 2020; Lee et al.,
2020; Rafael-Patino et al., 2020; Warner et al., 2023). Phantoms, in
the context of this paper, are geometrical models of brain tissue
structures that serve as a proxy or reference for evaluating the
performance of imaging techniques. While physical phantoms have
been widely used, they are often limited by their high costs and
the impracticality of replicating axons’ sizes and complex spatial
arrangement. Therefore, numerical phantoms have emerged as the
most popular validation technique for studying the complexities
of diffusion phenomena in cases where analytical solutions are
unavailable; because they only require a substrate that mimics the
tissue of interest to simulate the displacements of water molecules
and corresponding DW-MRI signal (Close et al., 2009; Côté et al.,
2013; Neher et al., 2014). Nevertheless, the difficulty in Monte-
Carlo simulations lies in accurately mimicking the geometry of
white matter tissue (Hall and Alexander, 2009; Nilsson et al., 2012,
2017; Baxter and Frank, 2013; Plante and Cucinotta, 2013; Grussu
et al., 2019; Truffet et al., 2020).

Various studies have proposed to generate numerical phantoms
approaching the tissue’s morphological complexity and density.
For instance, two popular tools, MEDUSA (Ginsburger et al.,
2019) and CONFIG (Callaghan et al., 2020), focus on generating
specialized voxel-wise phantoms with microstructural geometries
that replicate the properties of white matter. Recently, a tailored
modification of Close et al. (2009) framework was used to build
challenging substrates for the DiSCo challenge (Rafael-Patino
et al., 2021), aimed to test fibre-tracking and connectivity methods
on large-scale synthetic datasets from DW-MRI Monte-Carlo
simulations. While these methods have provided valuable tools to
characterise and simulate DW-MRI signals in numerical substrates,
they still have important limitations regarding the maximum
packing density and substrate size achieved. For instance, state-of-
the-art frameworks can generate synthetic substrates with packing
densities up to 75% (Ginsburger et al., 2019; Callaghan et al.,
2020; Rafael-Patino et al., 2021), whereas the density found in
histological data goes up to 95% in some regions (Korogod
et al., 2015; Tønnesen et al., 2018). Moreover, they cannot sample
substrate beyond 100µm3, which in turn restricts the sampling
diversity achieved for morphological features (Romascano et al.,
2018; Rafael-Patino et al., 2020). Therefore, the DW-MRI signals
generated from these substrates may not accurately mimic the
brain signals measured in white matter regions with higher packing
densities.

To overcome these limitations, we introduce a novel
computational workflow, CACTUS (Computational Axonal
Configurator for Tailored and Ultradense Substrates), to generate
synthetic fibres with rich microstructure characteristics. Expanding
on previous methods (Close et al., 2009; Ginsburger et al., 2019;
Rafael-Patino et al., 2020), we develop a novel numerical phantom
generator for white matter substrates. CACTUS solves the high-
density packing problem and achieves up to 95% intracellular
volume fractions while efficiently generating substrate sizes up
to 500µm3. Furthermore, CACTUS is highly customisable,
capable of generating synthetic substrates with a wide range of
characteristics, such as single-bundle (Stikov et al., 2015), bundle
crossings (Tuch, 2004; Tournier et al., 2007; Schilling et al., 2017;
Canales-Rodr-guez et al., 2019), orientation dispersion (Zhang
et al., 2012; Daducci et al., 2015), gamma-distributed axon
radii (Assaf et al., 2008; Sepehrband et al., 2016), non-constant
longitudinal fibre-radii (Andersson et al., 2020), substrates with
non-cylindrical fibres and tortuous surfaces (Lee et al., 2019), and
myelin compartments (Mackay et al., 1994; Stikov et al., 2015;
Canales-Rodr-guez et al., 2021). Through these features, CACTUS
expands on the capabilities of existing substrate generation
methods, providing a flexible and versatile tool for studying white
matter microstructure in controlled environments.

2. Methods

CACTUS generates synthetic substrates in three steps (see
Figure 1): a) substrate initialisation, b) joint fibre optimisation, c)
fibre radial growth (FRG).

Firstly, in the substrate initialization step, synthetic straight
cylindrical fibres are initialized and parameterized inside a cuboid.
In CACTUS, a single fibre population (bundle) is a group of fibres
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FIGURE 1

Example of the CACTUS method steps to create a synthetic substrate. (A) The substrate initialization orients fibres in a bundle to achieve a predefined
mean angular dispersion (e.g., 15◦). (B) The joint fibre optimization step removes fibre overlaps by adapting their trajectories and local radii. In the
case of bundle crossings, the trajectories are trimmed to the centre of the crossing. (C) The fibre radial growth step further increases the
fibre-packing density while keeping the predefined target radius distribution.

arranged cohesively along one main orientation. A bundle has two
main properties: the average global dispersion, which is the mean
angle between the main orientation of each fibre and the bundle,
and the target radii distribution, from which the fibre radii are
sampled.

In the second step, the joint fibre optimization, CACTUS
extends previously proposed frameworks (Close et al., 2009;
Ginsburger et al., 2019) based on local optimization. In our
case, we aim to minimise a cost function that penalises some
essential fibre properties such as overlapping, high curvature,
increase in length, and promote compactness. Moreover, CACTUS
introduces a new fibre parameterization based on capsules, which
reduces the number of parameters needed to characterise fibre
trajectories and handles fibre overlapping more efficiently. The
resulting optimization problem is solved via a gradient descent
algorithm (Duchi et al., 2011). During optimization, CACTUS
prioritises removing fibre overlapping, while the penalization of
curvature, length and promotion of compactness maintains a
coherent fibre structure at all time-points.

Finally, the fibre trajectories are used to mesh the fibre
surfaces in the fibre radial growth (FRG) step. The FRG also
increases the packing density while keeping the correspondent

fibre’s parameterization structure using a discrete grid to seed, to
grow, and to rearrange the fibre into the final substrates. The grid
discretization defines the fibres’ isosurface needed to compute the
final surfaces with amarching cube algorithm (Lewiner et al., 2003).

2.1. Substrate initialization

Our substrate initialization algorithm enhances the circle
two-dimensional (2D) packing algorithm proposed by Hall and
Alexander (2009) to create a 3D packing of bundles. The algorithm
creates a single bundle by initializing the fibres inside a cuboid of
dimensions L × L × H. The endpoints of the fibres are contained
within the L× L squared faces, while the orientation of the cuboid’s
height H and the bundle are aligned to the Z-axis. The algorithm
packs 2D circles in the opposite faces of the cuboid, sampling radii
from a gamma Ŵ(α,β) distribution (Assaf et al., 2008; Sepehrband
et al., 2016), until the target density is met. At the same time,
the algorithm packs the two opposite 2D circles to create an
initialization such that the bundle reach the specified mean angular
dispersion η. In scenarios where the target density exceeds 75%, an
adjustment is made by shrinking the radii of the distribution. This
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allows the algorithm to continue packing until reaching a density
of 75%. It is important to note that the radii will subsequently
grow non-uniformly back to their original size during the execution
of the algorithm while simultaneously achieving the desired final
target density. In order to create a substrate with two bundles
crossing at an inter-bundle angle of θ , two different bundles are
initialized in their respective cuboids and subsequently rotated and
translated are applied. Figure 1 shows examples of a single bundle
and a bundle crossing initialization. Finally, we parameterise each
fibre’s skeleton as the trajectory of its centre of mass. This trajectory
is defined by several control points connecting the two endpoints
sampled during the packing algorithm, where each point has a
corresponding radius.

2.2. Joint fibre optimization

Once the substrate is initiated as described in Section 2.1,
fibres may overlap. CACTUS employs an optimization method to
readjust the fibre trajectories and disentangle overlaps by defining
several cost functions. These cost functions, inspired by Close
et al. (2009) and Ginsburger et al. (2019), help to regularise and
obtain coherent fibre structures with the specified target properties.
Ordered by priority of penalization, these target properties are
as follows: (i) fibre overlapping (see Section 2.2.1), (ii) high
curvature, (iii) increased fibre length, (iv) changes in radii, and
(v) compactness. The optimization algorithm alternative between
two steps: first minimises the overlapping cost function, then
the subsequent step aimed at minimizing the remaining cost
functions. An algorithm requirement is to identify a solution
that exhibits no overlaps. Once a solution without overlaps is
achieved, the algorithm iterates further to reduce (when possible)
the penalization associated with the remaining cost functions while
maintaining the absence of overlaps.

In the following subsection, we introduce the novel
parameterization and overlapping cost function based on
capsules, which is a key contribution of our work. As the remaining
cost functions are relatively straightforward and similar to
those in previous studies, we have provided their definitions in
Supplementary material (section joint fibre optimization).

2.2.1. Fibre capsule-parameterization
Fibres are parameterized as skeletons made of 3D control

points. In the overlapping cost function, every pair of consecutive
points in the skeleton forms a capsule, defined with the set of
parameters

[

p0, p1, r0, r1
]

, where p0, p1 ∈ R
3 are the initial/ending

points of the capsule, and r0, r1 ∈ R are their respective radius (see
Figure 2A). In our scenario, the length of a capsule (distance form
pi to pi+1) is not restricted, but we suggest the ranges between

1
2 ri

up to 2ri, and the change sampling frequency increases as the radii
decrease.

In this framework, a fibre parameterization can be defined
as a chain of capsules (see Figure 2B). The fibre S

a, with
ma control points, is composed of the capsules determined by
the subsequent point pairs as

[

xai , x
a
i+1, r

a
i , r

a
i+1

]

with control

points
{

x0
a, x1a, . . . xma−1

a
}

⊂ R
3 and associated radius

{

ra0 , r
a
1 , . . . r

a
ma−1

}

⊂ R.

2.2.2. Overlapping cost function
The overlapping cost function handles the fibre collision

by identifying overlaps from two capsules from two different
fibres. In CACTUS, the detection step of capsule intersection
is a generalization of the cylinder-to-cylinder collision
detection (Van Verth and Bishop, 2015). We define the overlapping
cost function between two capsules by computing the overlapping
of the closest spheres centred in the capsules, as Figure 2C
shows. Formally, the closest points between two given capsules
[p0, p1, rp0 , rp1 ], [q0, q1, rq0 , rq1 ], with p0, p1, q0, q1 ∈ R

3

and , rpi , rqj ∈ R, are the points centred in the capsule
(

(1− tp)p0 + tpp1
)

and, ((1 − tq)q0 + tqq1), where tp, tq are
found by the following minimization problem:

g(ta, tb; p0, p1, q0, q1) = ‖(1− ta)p0 + tap1 − (1− tb)q0 − tbq1‖2

(1)

tp, tq : = argmin
ta ,tb

s.t. 0≤ta ,tb≤1

g(ta, tb; p0, p1, q0, q1), (2)

which has a closed-form solution.
After finding the values tp, tq that define the closest centre

points between two capsules of different fibres, their overlapping
cost function is defined as:

f1
(

p0, p1, q0, q1, rp0 , rp1 , rq0 , rq1 ; tp, tq
)

=
{

D2‖p0 − p1‖‖q0 − q1‖rprq, if D ≥ 0

0, if D < 0
(3)

where,

D : =
(

1−
‖c1 − c2‖
rp + rq

)

, (4)

c1 : = (1− tp)p0 + tpp1, (5)

c2 : = (1− tq)q0 + tqq1, (6)

rp : = (1− tp)rp0 + tprp1 , (7)

rq : = (1− tq)rq0 + tqrq1 , (8)

and tp, tr are the minimal values from the function in
Equation 2.

Consequently, the total overlapping cost function in a substrate
is computed by adding the evaluated cost of all possible pairwise
capsule combinations. If capsules overlap, a penalization is added;
otherwise, it is set to zero.

2.2.3. Implementation details
At last, we mention the technical implementation details

of the joint-fibre optimization algorithm, including strategies
for reducing computational complexity and the use of specific
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FIGURE 2

(A) Capsule example, whose parameters are two points and a radius at each control point. (B) Example of fibre as a chain of capsules. Two adjacent
capsules share a control point (position and radius parameters). (C) Illustrative example of the key components within the overlapping cost function.
It showcases the intersection of two capsules, with two spheres representing the intersection region between the capsules.

data structures. Firstly, in the total overlapping cost function,
the capsule-to-capsule comparison is a O(n2) problem. To
improve computational time, we implemented a fixed-radius-
cell data-structure (Turau, 1991) for nearest neighbours queries,
reducing the problem to O(n). Since all the cost functions are
analytical, we calculated their analytical derivatives for the gradient
descent algorithm (see Supplementary material, section joint fibre
optimization). We used the adaptative gradient Adagrad (Duchi
et al., 2011), iterating until there were no overlapping fibres.
All the cost functions, queries, and gradients calculations were
implemented in C++ (Stroustrup, 1999) and parallelized with
OpenMP (Chandra et al., 2001). To handle bundle crossings, we
trim the optimized fibre trajectories to keep only a subregion with
fibres that truly belong to the crossing, as shown in Figure 1. This
step eliminates boundary fibres that may not fully represent the
crossing characteristics.

2.3. Fibre radial growth

2.3.1. FRG description
After completing the substrate initialization and joint fibre

optimization steps, it follows to compute the fibre mesh. Previous
studies have managed to achieve a fibre density up to 75%
(Altendorf and Jeulin, 2011; Mingasson et al., 2017) with
cylindrical-shaped fibres and gamma-distributed diameter, and up
75% with non-cylindrical shaped fibres (Callaghan et al., 2020).
In this study, we propose a new method, called Fibre Radial
Growth (FRG), to obtain higher packing density and complex axon
morphologies beyond the cylindrical shape. The FRG algorithm
discretises the 3D space that the fibres occupy to define individual
masks for each fibre in it. The FRG algorithm begins to generate
the fibre masks by randomly placing seed points within all capsule
fibres. These seed points grow iteratively by adding neighbouring
points to the fibre mask, employing a breadth-first-search approach
through the grid. The seeds grow for a fixed number of iterations
as long as they do not interfere with other fibres’ boundaries. The
propagation through random initializations avoids uniform growth

and adds irregularities to the fibre shape, allowing tortuous surface
reconstructions in the fibre surfaces. Since the seeding is done
inside capsules, the final axon radius in the mesh is related to
the radii used in the capsules. We employ two distinct seeding
strategies to manage the radius variation effect in our study. The
first one depends on the strategy of seeding in the FRG, which
depends on how we seed points within the capsule and then grow
the seeding points. We can achieve radii variations in intervals like
[−ri/2,+ri/2] or (−ǫ,+ǫ) depending onwhether we decide to seed
more randomly or uniformly within the capsule.

In the second case, when we aim to increase the radii variation
further in the (−ri/2, ri/2) range, we modify the fibre initialization
step. We can define specific patterns in the radii of the fibres’
capsules. For example, to incorporate a radii periodicity oscillation,
we can set the radii at the start of the capsule to be 1µm and
increase the end radii to 2µm. Then, in the subsequent capsule, we
can choose to maintain the radii at 2µm or revert them to 1µm,
based on the desired frequency of change specified by the user.

Once the FRG step is completed, the fibre density of the
particular configuration inputted is maximized. We generate
the fibre’s outer surface mesh using the marching cubes
algorithm (Lewiner et al., 2003; Pedregosa et al., 2011) applied
to the fibre mask. This algorithm produces a mesh object
consisting of vertices and triangles. Then, we applied a Laplacian
smoothing (Herrmann, 1976; Sorkine et al., 2004; Sullivan and
Kaszynski, 2019) to remove sharp angles, and finally decimate
the mesh to reduce the number of triangles without affecting the
morphology of the substrates (Shekhar et al., 1996). Subsequently,
we generate a new mesh representing the fibre’s inner surface by
eroding the previously estimated outer grid and following the same
procedure for the meshing. The space between these two surfaces
defines the myelin volume.

2.3.2. Implementation details
Finally, we would like to elaborate on the technical

implementation details of the FRG algorithm to mention the
specific design choices we made to ensure its computational
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efficiency. FRG is implemented in Python (Van Rossum and Drake,
2009), parallelized with its multiprocessing ibraries (McKerns
et al., 2012), and compiled with Numba (Lam et al., 2015). Image
3D processing and meshing are done using van der Walt et al.
(2014), Sullivan and Kaszynski (2019), and Hess (2010). Moreover,
the FRG is designed to run a ball-tree structure (Moore et al.,
2003) from the Sklearn library (Pedregosa et al., 2011) as a
preprocessing to store fibres and their interactions. The fine-tuned
FRG algorithm’s design allows for the independent execution of
fibre growth and meshing on multiple computers in a distributed
manner, eliminating the need for multi-thread or computer
synchronization.

3. Experiments

To evaluate the performance of CACTUS, we designed a
comprehensive set of substrates with specific geometries. Each
experiment below involves several metrics essential for quantifying
the microstructure properties of the brain white matter. The
metrics include the axon volume fractions, the radius distribution
per substrate, the radii change along the fibres, the myelin volume,
the g-ratio, the orientation dispersion and bundle crossings. Finally,
we conducted testing on the generated substrates and performed
Monte-Carlo diffusion simulations to assess their usability and
explore the signal decay characteristics associated with these
substrates.

3.1. Maximum fibre volume fraction

In our first experiment, we aim to explore the macro-structural
parameters of substrates, such as substrate size (i.e., the voxel size
in MRI experiments), fibre dispersion, two bundle crossings, and
the ability to create high-density packing substrates. We assess the
maximum fibre volume fraction that CACTUS achieves in two
scenarios: a single bundle and two bundles. In the single bundle
case, we generated six substrates with mean angle dispersions of
0, 5, 10, 15, 20, and 25◦, respectively. In the two bundles case, we
generated five crossing substrates with inter-bundle angles of 30, 45,
60, 75, and 90◦, and the fibres of each bundle were initialized with
a mean angle dispersion of 5◦ around the main bundle orientation.

3.2. Substrates targeting predefined
microstructure features

The following two paragraphs describe experiments
conducted to explore the ability of CACTUS to replicate
desired microstructural parameters into its synthetic substrates.
These parameters include the axon volume fraction (AVF),
myelin volume fraction (MFV), g-ratio, and radii distribution.
We compare the reference values taken from previous histological
studies and those achieved by CACTUS.

In the second experiment, we created a series of synthetic
substrates that emulate the histological values reported by Stikov
et al. (2015) in various white matter regions. Specifically, the
target characteristics are the fibre volume fraction, myelin volume

fraction, and aggregated g-ratio, g =
√
1−MVF/FVF (Stikov

et al., 2015). In our scenario, the axon volume fraction (AVF) is
the volume of the fibre inner surface. The myelin volume fraction
(MVF) represents the volume of the space between the inner and
outer fibre surfaces. The fibre volume fraction (FVF) is the sum of
AVF and MVF.

In the third experiment, we investigated the effect of substrate
size on radii distribution. To measure the radii distribution for
each fibre, we cut the mesh skeleton in an orthogonal plane at
regular 1µm intervals and calculated the cross-sectional area of the
polygon defined by the plane. The equivalent fibre radius is defined
as the radius of a circle with the same area as the polygon (Lee et al.,
2019). The global radii distribution per substrate was computed
using the mean radius for each fibre.

3.3. CACTUS substrates usage for
Monte-Carlo simulations

The final experiment aims to evaluate the usability of CACTUS
substrates in Monte-Carlo diffusion simulations. Synthetic DW-
MRI data is generated using meshes obtained from previous
experiments. This experiment aims to assess the feasibility and
reliability of utilizing CACTUSmeshes inMonte-Carlo simulations
and examine the resulting DW-MRI signals of such substrates.

To simulate diffusion within non-permeable tissue, we utilized
the MCDC Simulator (Rafael-Patino et al., 2020). In this context,
the diffusion process within distinct biological structures was
assumed to contribute independently to the DW-MRI signal. As
a result, the intracellular and extracellular signals were generated
separately and combined to generate the overall signal.

The four substrates simulated are composed of ∼8,500 fibres.
The fibres’ outer diameter ranges from 0.5 to 4 um, sampled from a
gamma distribution with parameters θ = 1.1, κ = 0.5. Each fibre’s
inner diameter is calculated from the following log-curve found in
Lee et al. (2019).

The simulation substrates have a 300µm3 volume, split in an
image size of (42× 42× 42) voxels of 7.14µm resolution. Within
each voxel, the signal is simulating using random particle sampling
with a density of one particle per cubic micrometre Rafael-Patino
et al. (2020, 2021) and Romascano et al. (2018) showed that it is a
sufficient number of particles to obtain a robust estimation of the
diffusion signal in complex fibre geometries.

Particles initiated within the inner diameter of the fibres and
outside the outer diameter of the fibres were used to generate
the DW-MRI signal. The particles initiated between the outer and
inner diameters were discarded because, in this case, we are not
simulating the diffusion in the myelin compartment. This was done
as previously in the DiSCo Challenge (Rafael-Patino et al., 2021),
where no diffusion contrast is assumed in the myelin compartment,
however T2 effects could be considered if necessary. The diffusion
coefficient, which is user-defined, was fixed to D = 0.6× 10−3 mm2

s
(corresponding to an ex-vivo diffusivity), for intra and extracellular
compartments.

The DW-MRI protocol is based on the protocol of HCP (Fan
et al., 2016). It contains four shells of 50 directions with b-values
of (1,000, 2,000, 3,000, and 4,000) s

mm2 , and five directions (to
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FIGURE 3

(A–D) Mesh’s renders of cross-sections with dimensions of (100µm)2 to visualize the internal morphology of four substrates with a single bundle,
each with di�erent mean angular dispersion. For all cases, the outer surface volume is colored black. The inner surface volume is superimposed over
the outer volume and colored gray. White represents the extracellular space, i.e., the volume not occupied by any fibre. All bundles are vertically
aligned, and the substrates were built to have a mean angular dispersion of (A) 0◦, (b) 5◦, (C) 10◦, and (D) 20◦, respectively.

TABLE 1 Substrate characteristics, including the number of bundles, mean dispersion angle, mean inter-bundle crossing angle, number of fibres per

substrate, and fibre volume fraction (in per cent), respectively.

Nbr of Bundles Bundle dispersion (η) Crossing angle (θ) Nbr of fibres FVF

1 0◦ - 31,954 94.7%

1 5◦ - 31,023 93.4%

1 10◦ - 30,241 92.6%

1 15◦ - 30,412 92.2%

1 20◦ - 31,161 91.8%

1 25◦ - 31,863 90.8%

2 5◦ 30◦ 30,026 93.9%

2 5◦ 45◦ 30,712 93.3%

2 5◦ 60◦ 31,023 93.5%

2 5◦ 75◦ 31,152 92.3%

2 5◦ 90◦ 30,245 92.2%

The top and bottom panels correspond to the substrates with a single bundle and two bundles. Each row represents a different substrate.

calculate parallel and radial decay) with 20 b-values uniformly
distributed from (500 to 10,000 ) s

mm2 . The protocol values are fixed
for TE = 0.057 s, 1 = 21.8 ms, and δ = 12.9 ms.

4. Results

4.1. Maximum fibre volume fraction

Figure 3 shows the internal morphology of four substrates
consisting of a single bundle with a dispersion of 0, 5, 10, and 20◦,
respectively. All the substrates were generated with dimensions of
500µm3. Table 1 (top panel) reports the substrate characteristics,
including the number of fibres, the obtained fibre volume fraction,
and the dispersion parameters. We note that the maximum fibre
volume fraction decreased from 94.7 to 90.8% as the dispersion
increased from 0 to 25◦.

Results from the experiment generating bundle crossings with
different inter-bundle angles are depicted in Figure 4 and Table 1
(bottom panel). Figure 4 displays a cross-section of the substrates,
where each bundle has a distinctive color for visualization purposes.

Although local perturbations in fibre trajectories (on the order of
5◦) may occur in the substrates due to the high fibre packing,
the average bundle orientation is sustained. The bottom panel of
Table 1 reports the fibre volume fraction of these bundle crossing
substrates with inter-bundle angles of 30, 45, 60, 75, and 90◦. For all
the evaluated substrates, the fibre volume fraction remains nearly
constant at∼93% (92.2− 93.9%).

4.2. Substrates targeting predefined
microstructure features

4.2.1. Axon volume fraction, myelin volume
fraction, and g-ratio

We simulated various substrates of a single bundle to mimic
microstructure properties previously reported in Stikov et al.
(2015). The histological values used as a reference are the
myelin volume fraction (MVF), fibre volume fraction (FVF),
axonal volume fraction (AVF=FVF-MVF), and g-ratio. The values
achieved by CACTUS are shown in Table 2. The difference between
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FIGURE 4

(A–E) Mesh renders of cross-sections with dimensions of (100µm)2 portraying the internal morphology of five substrates consisting of two bundles
with di�erent inter-bundle angles. In all cases, the outer surface volume of bundle 1 and bundle 2 is displayed in black. The inner surface volume is
superimposed over the outer volume and colored light gray for bundle 1 and dark gray for bundle 2. The extracellular space, representing the volume
not occupied by any fibre, is colored white. The dark gray fibres are aligned parallel to the X axis, and the light gray fibres crossed at angles of (A) 30◦,
(B) 45◦, (C) 60◦, (D) 75◦, and (E) 90◦. The outer volume, which is defined by the outer surfaces minus the inner volume, is colored in black for both
bundles. Extra axonal space is colored in white.

the target and obtained substrate properties was lower than 2% in
all cases. Examples of the generated substrates and histology data
are shown in Figure 5. Electronmicroscopy images were generously
provided by Prof. Nikola Stikov and Dr. Jennifer Campbell, and are
used to highlight the geometric similarities of synthetic fibre shapes.
On average, for these substrates of 300µm3, themeshes had around
46 million vertices and 92 million faces, and the file size is of 5.1
Gigabytes.

4.2.2. Radii distribution and substrate size
Figure 6 show the CACTUS substrates with different sizes,

ranging from 30 to 500µm3, and the target and empirical radius
distributions obtained for each substrate. The empirical radius
distributions closely replicated the targeted ones for substrates
equal to or bigger than 200µm3. The optimization algorithm step
ran for ∼4 h for the largest substrate (right panel) on a node with
64 cores (2.4 GHz) and 400 Mb of RAM. The reconstruction time

of the FRG algorithmwas∼1min per fibre, using one core with 500
Mbs of memory per core.

We extracted three representative fibre segments from the
substrates shown in Figure 5 and displayed them in Figure 7. The
top panel of the figure exhibits the cross-sections of the outer and
inner surfaces of the fibre, along with the cross-sections of their
diameters. The bottom panel shows the diameter distribution of
each axon.We observed that, regardless of the tortuosity of the fibre
trajectory, the diameter distribution of both the inner and outer
diameters of all three cases was centred around the target diameter.

4.2.3. Monte-Carlo di�usion simulations
The generated signals for the four substrates from Table 2

depicted in Figure 8. In terms of the parallel diffusivity signal decay,
Figures 8A, B demonstrate that the four substrates exhibit similar
behavior, making it challenging to distinguish them even at b-values
around 8,000 s

mm2 . However, when examining the radial diffusivity
signal decay in Figures 8C, D, distinct curves are observed for
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TABLE 2 Target microstructure histological properties (left) reported in Stikov et al. (2015), and corresponding properties of the substrates generated by

CACTUS (right).

Target Achieved

Substrate AVF MVF FVF g-ratio AVF MVF FVF g-ratio

(a) 25 35 60 64.5 26.0 36.0 62 64.7

(b) 25 43 68 60.6 26.3 43.6 69.9 61.3

(c) 31 44 75 64.2 32.2 43.8 76.07 65

(d) 39 37 76 71.6 41.2 35.0 76.0 73.5

The axon volume fraction (AVF) is the volume of the inner axon surface. The myelin volume fraction (MVF) represents the volume of the space between the inner and outer axon surfaces. The

fibre volume fraction (FVF) is the sum of AVF and MVF. The aggregated g-ratio, g =
√
1−MVF/FVF is equal to the mean inner and outer axon radius ratio for all the fibres in the substrate.

FIGURE 5

Cross-sections of the synthetic substrates constructed to match the statistics of the histological values reported in Table 2. The substrate dimension
is 300µm3. For visualization purposes, the axonal space is colored blue, and the myelin is red, and extra axonal space is colored white. (a–d)
Correspond to the same substrates shown in Table 2. The bottom panel shows the representative histological images courtesy of Prof. Nikola Stikov
and Dr. Jennifer Campbell. The EM images are used to show the similarities in fibre shape and packing.

each substrate. Notably, the logarithmic plot reveals a characteristic
tail, indicating the non-Gaussian nature of the diffusion process
occurring in the plane perpendicular to the fibre orientations.

5. Discussion

Over the last 20 years, Monte-Carlo diffusion simulations have
been used to optimise DW-MRI data acquisition protocols and

validate microstructure models. Nevertheless, doubts have been
raised regarding the accuracy of the simple geometries used to
construct the diffusion substrates.

Various tools have been developed to address the challenges
associated with substrate complexity, such as MEDUSA
(Ginsburger et al., 2019) and CONFIG (Callaghan et al.,
2020), each offering distinct approaches to substrate generation.
MEDUSA primarily focuses on creating substrates with multiple
compartments, including axons, oligodendrocytes, and astrocytes,
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FIGURE 6

Four 3D substrates of varying sizes: (A) 503, (B) 1003, (C) 2003, and (D) 5003 (µm)3, with 341, 1,316, 4,859, and 33,478 fibres, respectively. The
empirical and target radii distributions are displayed on the bottom of each substrate. The empirical distribution better approximates the target
distribution as substrate size increases.

and also models their interactions within the substrate. The
axon compartment encompasses features such as axon diameter
distribution, bundle dispersion, local tortuosity, myelin presence,
Ranvier nodes, and beading. The oligodendrocytes and astrocytes
compartments incorporate parameters such as total diameter
distribution, body diameter distribution, number of branchings
(processes), and a balancing factor. On the other hand, CONFIG
employs biologically motivated rules to model the intricate
interactions among axons during growth. Parameters within
CONFIG include axon mean radius, standard deviation of
radius, bundle dispersion, and packing density. Additionally,
it encompasses parameters related to axon growth, such as
chemoattraction, fiber collapse, cell-adhesion, and fasciculation.

In this work, we introduced CACTUS, a novel framework to
produce numerical substrates mimicking white matter tissue with
high volume packings, richmicrostructural features and geometries
that closely matching the desired input parameters. Among
the controllable parameters in CACTUS we include the target
distribution for the fibre radii, radii variation per fibre, a myelin
compartment, target g-ratio, bundle dispersion, bundle crossings,
fibre tortuosity, and packing density. The high versatility of
CACTUS is founded on its efficient computational implementation
and its mathematical formulation divided into three algorithmic
steps (substrate initialization, joint fibre optimization, and fibre
radial growth) composed of various competing terms controlling
different substrate parameters.

To generate the substrates with CACTUS, we introduced a new
algorithm to initialise fibre bundles with a target mean degree of
orientation dispersion. Moreover, we introduced a novel capsule-
based parametrization for optimizing fibre structures. Compared to

circle parametrizations (Close et al., 2009; Ginsburger et al., 2019),
the capsule parameterization requires fewer parameters, reducing
the complexity of the optimization problem. We adapted the cost
functions inspired by Close et al. (2009) and Ginsburger et al.
(2019) for capsules and provided analytical derivatives, making the
optimization faster and computationally more efficient. Finally, we
proposed the fibre radial growth algorithm, which increases the
fibre packing density in white matter substrates.

CACTUS was able to enhance the complexity of the fibre
microstructure. In particular, our results showed CACTUS can
produce substrate with fibre volume fraction beyond the 75%
previously achieved. CACTUS reached high fibre volume fractions,
up to 95% in its substrates (Table 1). Moreover, it consistently
reached fibre volume fractions superior to 90% at all the various
levels of bundle dispersion and crossing angles (Table 1, Figure 4).

In the single bundle case, the fibre volume fraction was the
highest at 94.7% when fibres were aligned and decreased to 90.8%
with increasing mean angular dispersion. Conversely, the fibre
volume fraction remained consistently around ∼93% in the two-
bundle cases, regardless of the crossing angle. However, we note
that the packing complexity of substrates with a single bundle
and two bundles crossing differs. The former mimics the spatial
arrangement of thousands of fibres with different crossing angles,
which may produce more empty pockets between fibres and less
densely packed substrates.

Another important feature of CACTUS is that it can create
substrates with statistical characteristics informed by histological
data. Indeed, we can closely adhere to the target statistics of axon
volume fraction, myelin volume fraction, and g-ratio reported in
histological studies (Stikov et al., 2015; see Figure 5). In all cases,
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FIGURE 7

Representative group of three fibres extracted from the substrate shown in Figure 5. In the top panel, we display the fibres with varying diameters and
tortuous trajectories. The straightest fibre is presented on the left, while the most tortuous one is displayed on the right. We display each fibre’s outer
surface in red and its inner surface in blue. We also show the fibre’s skeleton in black and cross-sections orthogonal to the fibre’s skeleton. The
diameter is measured every 1µm along its trajectory. The cross-section cut of the outer surface is shown in red, and the cross-section cut of the
inner surface is shown in blue. The bottom panel presents the violin plots of the outer and inner diameters measured. The red (blue) dotted line
represents the target outer (inner) diameter of the three fibres.

the difference between the target and obtained substrate properties
was lower than 2% (see Table 1). Notably, CACTUS is the first tool
incorporating the g-ratio as a target characteristic and successfully
matching it for large-scale substrates.

Also, CACTUS has the capability to generate substrates with a
targeted radii distribution. In our experiments, the approximation
of the target distribution improves as substrate size increases, as
illustrated in Figure 6, underscoring the importance of generating
large substrates. Furthermore, we have the availability to measure
fibre geometry accurately. For instance, as seen in Figure 7, the

generated fibres have a non-constant longitudinal radius and non-
circular cross-sections. Despite the tortuous trajectories of the
fibres, the diameter distribution remains centred around the target
mean outer (inner) diameter of 1.5µm (1.1µm). Additionally, the
diameter distribution presented replicates the diameter variations
observed in 3D synchrotron images (Andersson et al., 2020),
including longitudinal changes and a lack of skewness.

Finally, while previous works were able to achieve substrate
sizes between 30 and 100µm3, CACTUS demonstrated
a substantial improvement in the generation of larger
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FIGURE 8

Synthetic DW-MRI signals of substrates generated in Table 2 and shown in Figure 8. The X-axis represents the b-value used for measurement, while
the Y-axis represents the normalized signal. (A) Parallel signal decay measured along the direction parallel to the substrate fibers (Z-axis). (B) Parallel
signal decay plot with a logarithmic scale on the Y-axis. (C) Radial signal decay averaged over four di�erent di�usion directions orthogonal to the
orientation of the fibers. (D) Radial signal decay plot with a logarithmic scale on the Y-axis.

substrates (Ginsburger et al., 2019; Callaghan et al., 2020). As
shown in Figure 6, CACTUS generated substrate sizes ranging
from 50 to 500µm3, all with up to a 95% fibre volume fraction.
Our tool’s ability to generate larger substrate sizes is advantageous
for Monte-Carlo diffusion simulations in DW-MRI as it has
been shown in previous studies (Rafael-Patino et al., 2020), that
substrate sizes larger than 200µm3 can reduce the sampling bias
caused by smaller substrate sizes, potentially leading to more
accurate DW-MRI numerical simulations (Romascano et al.,
2018; Rafael-Patino et al., 2020). In addition, the ability to generate
large substrate sizes is advantageous as DW-MRI modelling is
moving toward incorporating more microstructure features such
as somas, astroglia, and vascularity (Dyer et al., 2017; Lin et al.,
2018; Schneider-Mizell et al., 2021). This makes the generation of
large substrates essential for capturing these additional features and
moving toward more accurate and comprehensive microstructure
imaging.

5.1. Limitations and future work

Although CACTUS incorporates complex microstructural
features required to mimic some of the most relevant white matter

geometrical properties, it still requires fibre-modelling assumptions
to reduce the computational burden. Also, CACTUS generates
substrates with characteristics resembling those from healthy white
matter, but generating pathological tissue requires additional work,
which we reserve for future studies.

Additionally, CACTUS focuses solely on generating white
matter fibre structures. However, its capacity to generate large
substrate sizes expands the potential for including other tissue
components in future studies, such as astrocytes, oligodendrocytes,
microglia, and capillaries.

Finally, although CACTUS output substrates are suitable for
simulators like the MCDC (Rafael-Patino et al., 2020), a thorough
analysis is necessary to comprehend the influence of mesh quality,
like the number of triangles, on the DW-MRI signals generated
by Monte-Carlo simulation. Such analysis is crucial for developing
computationally viable simulations.

5.2. Applications beyond di�usion MR

The applications of CACTUS are not limited to studying white
matter microstructure using DW-MRI. For instance, it can be
applied in DW-MRI studies outside the brain (Adelnia et al., 2019),
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where muscle fibres are organized into fascicles. The microscopic
arrangement of muscle fibres can vary between different muscle
groups, regions of the same muscle, and multiple pathological
conditions (Berry et al., 2018). Moreover, the fibre meshes
generated by CACTUS could be used in other applications, like
Polarized Light Imaging (PLI; Menzel et al., 2015; Amunts and
Axer, 2019, a technique used to infer the local fibre orientation in
histological brain sections based on the birefringent properties of
the myelin sheaths. The limitations of the birefringence PLI model
were investigated in Menzel et al. (2015) by generating synthetic
PLI data from a hexagonal bundle of straight parallel cylindrical
fibres. Although a more general fibre constructor was recently
proposed for validating 3D-PLI techniques (Amunts and Axer,
2019), the white matter substrates generated in our study could
provide more realistic geometries for conducting similar studies.

6. Conclusion

The generation of realistic substrates is critical for validating
DW-MRI models, as it allows researchers to simulate and analyse
the effect of microstructural changes on the DW-MRI signal.

In this work, we introduced CACTUS, a novel framework
for generating axonal-like substrates with predefined geometrical
features of interest. Our experiments show that CACTUS
can generate white matter substrates with the desired spatial
dimensions, fibre radii, g-ratio, non-circular cross-sections,
tortuous trajectories, smooth surfaces, predefined inter-fibre angles
and fibre dispersion. Notably, the generated fibre substrates reached
up to 95% fibre volume fraction, the highest density reported in
the literature to date, in agreement with previous histology studies.
We also generated the large substrates/voxels of up to 500µm3,
with dimensions similar to or higher than those used in preclinical
MRI scanners, reducing the gap between numerical and real
voxel sizes.

In conclusion, the CACTUS substrate generator tool
presented in this study has the potential to advance white
matter microstructure modelling. It provides a versatile and
customisable platform for generating fibre substrates with
quantifiable geometrical characteristics. It is open-source and
accessible to the broader research community at: http://cactus.epfl.
ch, facilitating the validation and comparison of current and future
DW-MRI models.
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