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Abstract
Background: Costly structures need to represent an adaptive advantage in order to be
maintained over evolutionary times. Contrary to many other conspicuous shell ornamentations of
gastropods, the haired shells of several Stylommatophoran land snails still lack a convincing adaptive
explanation. In the present study, we analysed the correlation between the presence/absence of
hairs and habitat conditions in the genus Trochulus in a Bayesian framework of character evolution.

Results: Haired shells appeared to be the ancestral character state, a feature most probably lost
three times independently. These losses were correlated with a shift from humid to dry habitats,
indicating an adaptive function of hairs in moist environments. It had been previously hypothesised
that these costly protein structures of the outer shell layer facilitate the locomotion in moist
habitats. Our experiments, on the contrary, showed an increased adherence of haired shells to wet
surfaces.

Conclusion: We propose the hypothesis that the possession of hairs facilitates the adherence of
the snails to their herbaceous food plants during foraging when humidity levels are high. The
absence of hairs in some Trochulus species could thus be explained as a loss of the potential adaptive
function linked to habitat shifts.

Background
Evolutionary theory predicts that costly structures must
convey a fitness advantage to their bearers in order to be
maintained over evolutionary time [1]. Flightlessness in
birds and insects, limblessness in lizards and sightlessness
in cave-dwelling organisms are some prominent examples
of phenotypic regression due to the loss of adaptive func-
tion (reviewed in [2]). Molluscs in general and gastropods
in particular display a fascinating diversity of elaborate

shell structures [3,4] and have attracted considerable
research efforts to explain them in adaptive terms [5-7].
The proposed roles invoked mechanical stability [8],
defence against predators [9], sexual selection [10] and
climatic selection [11]. However, the potential selective
advantage of hair-like shell ornamentation of certain land
snail species remains unknown.
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Unrooted consensus tree of 90,000 trees sampled by the Markov-chain in Bayesian analysis for the COI-fragmentFigure 1
Unrooted consensus tree of 90,000 trees sampled by the Markov-chain in Bayesian analysis for the COI-frag-
ment. Numbers on nodes indicate the Bayesian posterior probability.
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These hairs can reach varying densities (up to 20 per
squaremilimetre) and lengths (up to three millimetres).
In some cases hardly visible, they confer an almost furry
impression to the shell in others. These semi-rigid struc-
tures are part of the periostracum, a thin protein layer
(conchiolin) secreted by the snail to cover the calcareous
shell [12]. Building hairs requires the snail to have special-
ised glandular tissue and complex strategies to form them.
Consequently, this trait can be assumed to be costly and
should thus present a selective advantage to its bearers in
order to be conserved.

Haired shells occur in several species of the Stylommato-
phoran families Polygyridae, Helicidae and Hygromiidae.
These families are only distantly related [13], suggesting
that this features has evolved several times independently.
Haired shells are almost exclusively observed in species
living in moist microhabitats, like layers of fallen leaves,
broad-leaved vegetation, damp meadows or wet scree
[14]. Such a correlation suggests an adaptive significance
of the trait in such a habitat [1]; it was thus speculated that
the hygrophobic hairs facilitate the movement in wet
environments by relieving surface tension [14,15]. A cor-
relation between haired shells and humid habitats is thus
expected. In order to test this, we employed the recent
Bayesian extensions of the comparative method, allowing
to take mapping and phylogenetic uncertainty simultane-
ously into account [16]. With a diversity hotspot in South
Germany, Eastern France and Switzerland, the land snail
genus Trochulus s. str. (common name: Hairy snails) is par-
ticularly suited to address our question: its species exhibit
variability in both hairiness and ecology. This study
present the first comprehensive molecular phylogeny for
the genus Trochulus Chemnitz, 1786 (until recently
Trichia, Hartmann 1840) based on mitochondrial and
nuclear loci. Finally, we tested experimentally whether the
possession of haired shells indeed facilitates locomotion.

Results
Lineage identification and phylogenetic relations
The initial phylogenetic analysis on a COI data set of the
presumed Trochulus species resolved 18 terminal clades,
each with 0.99 posterior probabilities or higher (Figure
1). The uncorrected sequence divergence among those
clades ranged from 0.029 to 0.173 (Table 2). Out of these
lineages, nine could be assigned to existing taxa, because
the species were sampled from the type locality and/or
were morphologically unmistakable. The nine remaining
clades, however, could not be unequivocally attributed to
a taxonomic name. All eighteen identified lineages were
used as molecularly defined operational taxonomic units
in the subsequent analyses [17].

The Bayesian phylogenetic analysis of the entire data set
(COI, 16S and ITS-1) showed the monophyly of the genus

Trochulus within the Hygromiinae with high posterior
probability, except for T. lubomirskii, which seems to be
only distantly related to this genus (Figure 2). In addition
to the early branching T. villosus/alpicolus clade, the genus
is composed of three well supported subclades: first, a
clade containing the T. striolatus/plebeius-like lineages
together with T. villosulus, a second clade with ecologically
divers species confined to the Jura mountains and the
neighbouring Mittelland-plain and finally, a T. hispidus/
sericeus-like clade, containing also T. biconicus and a new
species.

Correlation of shell hairiness with habitat
The PCA on habitat humidity describing variables
resulted in two meaningful axes, representing 79.7% and
13.4% of the total variation. The first component opposed
sampling sites in shady woods and sites in sun exposed,
open areas. This axis can therefore be interpreted as an
evaporation gradient. The second axis is a gradient of the
summer precipitation on one hand and the humidity
demand of the vegetation on the other (Figure 3). It can
thus be considered as a humidity gradient. The sampling
sites appear as two distinct clusters that could be classified
as either moist or dry (Table 1). The outlier (TA) was also
considered to be humid, according to its high humidity
levels. For each population, at least ten adult individuals
were scored for the presence or absence of hairs (mixed
populations were not found). Non-haired populations
exclusively corresponded to species described in the liter-
ature as having smooth shells (Table 1). When plotting
the hairiness of each population on the PCA, a complete
congruence between humidity and hairiness became
apparent: haired shells tended to occur at sites with low
evaporation and/or high precipitation while smooth
shells were found at places with high evaporation and/or
lower precipitation (Figure 3).

Character state evolution
As the occurrence in moist habitats was systematically
linked to the presence of hairs in Trochulus s.str., only a
single analysis was necessary for both characters. The
Bayesian analysis of character evolution suggested with
high posterior probability that the most recent common
ancestor of the genus Trochulus most likely possessed hairs
and lived in a moist habitat (Figure 4). The analysis also
revealed considerable mapping- and/or phylogenetic
uncertainty in the reconstruction of crucial ancestral
nodes (nodes 1–3 in Figure 4). The average Bayesian
parameter estimate for the character change ratio was 2.50
± 0.11 (mean ± s.d.), indicating that a loss of hairs associ-
ated with a transition from wet to dry habitats occurred
more frequently than vice versa. This was in concordance
with the parsimony reconstruction of character state
changes on all different topologies of the 99% credibility
set of trees. A minimum number of three independent
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Table 2: Pairwise uncorrected COI sequence divergence among lineages and species (mean ± s.d.).

A B C villosulus montanus clandest. caelatus D E F G H I biconicus nov. spec. villosus

B 0.111 ± 
0.015

striolatus/
plebeius

C 0.118 ± 
0.015

0.091 ± 
0.013

clade

villosulus 0.104 ± 
0.014

0.073 ± 
0.013

0.091 ±
0.014

montanus 0.143 ± 
0.017

0.144 ± 
0.017

0.138 ±
0.017

0.117 ± 
0.016

clandestinus 0.135 ± 
0.017

0.129 ± 
0.016

0.140 ±
0.017

0.125 ± 
0.016

0.083 ± 
0.014

Jura 
clade

caelatus 0.144 ± 
0.016

0.152 ± 
0.018

0.141 ±
0.017

0.130 ± 
0.016

0.092 ± 
0.014

0.093 ± 
0.013

D 0.146 ± 
0.017

0.105 ± 
0.016

0.125 ±
0.016

0.127 ± 
0.017

0.142 ± 
0.017

0.126 ± 
0.016

0.138 ± 
0.017

E 0.148 ± 
0.017

0.109 ± 
0.016

0.135 ±
0.016

0.117 ± 
0.016

0.134 ± 
0.016

0.104 ± 
0.014

0.107 ± 
0.015

0.079 ± 
0.013

sericeus/
hispidus

F 0.152 ± 
0.017

0.112 ± 
0.015

0.126 ±
0.015

0.119 ± 
0.016

0.146 ± 
0.016

0.113 ± 
0.015

0.114 ± 
0.015

0.072 ± 
0.013

0.029 ± 
0.008

clade

G 0.142 ± 
0.017

0.139 ± 
0.017

0.136 ±
0.018

0.109 ± 
0.016

0.132 ± 
0.017

0.117 ± 
0.016

0.147 ± 
0.016

0.120 ± 
0.017

0.111 ± 
0.016

0.105 ± 
0.015

H 0.164 ± 
0.017

0.153 ± 
0.018

0.170 ±
0.017

0.169 ± 
0.018

0.162 ± 
0.017

0.126 ± 
0.015

0.147 ± 
0.017

0.116 ± 
0.015

0.100 ± 
0.014

0.101 ± 
0.014

0.128 ± 
0.016

I 0.150 ± 
0.017

0.151 ± 
0.017

0.155 ±
0.017

0.144 ± 
0.017

0.148 ± 
0.016

0.124 ± 
0.015

0.133 ± 
0.016

0.106 ± 
0.014

0.102 ± 
0.014

0.099 ± 
0.013

0.106 ± 
0.014

0.061 ± 
0.010

biconicus 0.158 ± 
0.018

0.136 ± 
0.017

0.141 ±
0.018

0.128 ± 
0.018

0.164 ± 
0.020

0.154 ± 
0.018

0.167 ± 
0.019

0.145 ± 
0.017

0.145 ± 
0.018

0.145 ± 
0.018

0.143 ± 
0.018

0.179 ± 
0.018

0.167 ± 
0.017

nov. spec. 0.153 ± 
0.017

0.137 ± 
0.017

0.151 ±
0.017

0.142 ± 
0.017

0.151 ± 
0.016

0.128 ± 
0.015

0.137 ± 
0.016

0.100 ± 
0.015

0.082 ± 
0.014

0.081 ± 
0.013

0.106 ± 
0.015

0.080 ± 
0.013

0.057 ± 
0.011

0.161 ±
0.018

villosus 0.144 ± 
0.018

0.139 ± 
0.018

0.154 ±
0.018

0.152 ± 
0.018

0.160 ± 
0.018

0.153 ± 
0.018

0.160 ± 
0.018

0.168 ± 
0.019

0.149 ± 
0.018

0.151 ± 
0.018

0.173 ± 
0.019

0.171 ± 
0.019

0.165 ± 
0.018

0.163 ±
0.019

0.168 ± 
0.019

villosa/
alpicola

alpicolus 0.142 ± 
0.016

0.141 ± 
0.015

0.151 ±
0.018

0.153 ± 
0.017

0.159 ± 
0.014

0.151 ± 
0.019

0.162 ± 
0.019

0.167 ± 
0.018

0.147 ± 
0.016

0.150 ± 
0.019

0.173 ± 
0.019

0.173 ± 
0.020

0.162 ± 
0.016

0.161 ±
0.020

0.170 ± 
0.020

0.006 ±
0.004
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losses of hairs / habitat transitions had a higher probabil-
ity (0.59) than the only other observed pattern of two
losses/one gain or three losses/no gain (0.41).

Functional analysis
The analysis of variance showed that on a water-covered
leaf surface, hairy shells required a significantly higher

minimum force to overcome the adhesion (F = 720, d.f. =
2, p < 0.00001). There was no difference on a dry surface
(F = 0.47, d.f. = 2, p = 0.37; Figure 5).

Discussion
Considering the limited number of sites sampled, we
found a relatively large number of lineages, most of which

Consensus tree of 90,000 trees sampled by the Markov-chain in Bayesian analysis for the total data set (1383 bp of COI, 16S and ITS1)Figure 2
Consensus tree of 90,000 trees sampled by the Markov-chain in Bayesian analysis for the total data set (1383 
bp of COI, 16S and ITS1). Numbers on nodes indicate the Bayesian posterior probabilities.
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could not be attributed to described species. This suggests
that many other more or less morphologically similar
entities may exist throughout the range of the genus. The
existence of cryptic lineages could explain at least in part
the current taxonomic uncertainty in Trochulus [18-20].
For example, several subspecies have been described for T.
striolatus [21], which may well represent distinct evolu-
tionary lineages such as described here. Given that the
sequence divergence among the nine unidentified line-
ages is of the same magnitude as among described, mor-
phologically and ecologically distinct species (Figure 1,
Table 2), it can be reasonably assumed that the cryptic lin-
eages within the striolatus/plebeius and hispidus/sericeus
clades correspond to good species. Even under the
assumption of an exceptionally fast molecular clock in
land snails of up to 5% sequence divergence per one mil-
lion years [22], the lineages in the striolatus/plebeius clade,
for example, persisted for at least two million years as
independent evolutionary entities. The existence of more
or less cryptic lineages or species is not an unusual finding
in land snails [23-25]. In contrast to the high divergence
of the unidentified lineages, the comparatively small
genetic distance between T. villosus and T. alpicolus indi-
cated a questionable specific distinction between these
two taxa. Detailed phylogeographic analyses in addition
to morphometric and ecological studies will be necessary
to disentangle the species limits of these cryptic Trochulus
complexes, clarify the taxonomy and reveal their evolu-
tionary history. In addition, the species T. lubomirskii,

which was placed by Schileyko [26] into the subgenus Pli-
cuteria, may not belong to the genus Trochulus at all.

A haired shell appears as the ancestral state in the genus
Trochulus. This inference is strengthened by the observa-
tion that some of the hair-less species do possess some as
juveniles. During the evolutionary history of the genus
Trochulus, hairs appear to have been lost several times
independently (Fig. 3, Table 1) and this was always corre-
lated with a shift in habitat (i.e. hairs are only present in
moist habitats, mostly woodlands). This suggests that
hairs potentially have an adaptive function in humid hab-
itats and once the presumed selective pressure for the
maintenance of these costly protein structures is relieved,
they are lost. Such a correlation makes certain potential
adaptive explanations for hairiness unlikely: defence
against predators or mechanical stability have no obvious
reasons to co-vary with the humidity characteristics of a
habitat.

The facilitation of locomotion by decreasing the adhesion
to water films in humid environments had been previ-
ously hypothesised to be the selective advantage of a
haired shell [14,15]. However, the results of our experi-
ments have shown that the opposite is true. The presence
of hairs significantly increased the minimum force neces-
sary to move shells over wet surfaces. Having thus shown
that the initial hypothesis [14] is at least in this case not
applicable, we propose an alternative: haired shells may
confer an selective advantage by increasing the adhesion
to the water film on the unstable, moving leaves of their
feeding plants during foraging (Figure 5). Indeed, snails
are mostly active during phases of high ambient humidity
[27] when leaves are covered with a water film due to rain,
fog or dew. This water film is usually in contact with the
shell during locomotion (Figure 6). Observation shows
that Trochulus species in moist habitats preferentially for-
age on large-leaved herbaceous plants like Adenostyles,
Urtica, Homogyne or Tussilago [28]. Hence, falling off the
leaf and needing to crawl up again to this feeding site (that
can be one meter above ground) represents a considerable
effort given the exceedingly costly and ineffective locomo-
tion of land snails [29]. In dry habitats on the contrary,
snail species avoid the hard plant matter typical for this
habitat and preferentially feed on dead material lying on
the ground [28,30], where a mechanism increasing shell
adhesion offers no obvious advantage to its bearer. This
interpretation is supported by the fact that phylogeneti-
cally distantly related haired species, such as Helicodonta
obvoluta and Isognomostoma isognomostoma, are found in
the same habitats and have in general similar life-styles
[31]. However, as long as the positive effect of increased
adherence to food plants on the individual fitness is not
proven, this remains a hypothesis and does not preclude

Two first components of the PCA of the sampled localities over 9 environmental variablesFigure 3
Two first components of the PCA of the sampled 
localities over 9 environmental variables. Black dots: 
populations with haired individuals. Open squares: popula-
tions with hair-less individuals. Sampling sites above the dot-
ted line are considered moist whereas those under it are dry.
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additional or even other adaptive functions of haired
shells.

Conclusion
The present comparative analysis suggested that hairs on
the shell confer a selective advantage in humid habitats
only and are thus lost in drier habitats. In other words, the
variability of hairiness within the genus Trochulus could be
explained in terms the loss of its adaptive function in a
selectively different environment.

Methods
Taxon sampling
Analyses were undertaken on twelve of the about 15 cur-
rently recognised species presumed to belong to the genus
Trochulus s. str. Chemnitz, 1786 (Hygromiidae, Stylom-
matophora). However, the exact number of existing spe-
cies is not known, because the species limits of the widely
distributed T. hispidus and T. sericeus on the one hand and
T. plebeius and T. striolatus on the other are equivocal
[19,20], the validity of several described taxa is disputed

Table 1: Table of sampling sites, presumed taxon, habitat characterisation and presence or absence of hairs.

Sampling site Abbreviation Geographical 
position

Presumed taxon Habitat Humidity Hairs

Burgsinn, Bayern, Germany D3 50°09' 31"N 
09°40'34"E

T. striolatus/plebeius wood moist yes

Habichtstal, Bayern, Germany D4 50°02'54"N 
09°25'41"E

T. striolatus/plebeius wood moist yes

Dommershausen, Rheinland-Pfalz, Germany D5 50°07'45"N 
07°23'47"E

T. striolatus/plebeius wood moist yes

Bingen, Rheinland-Pfalz, Germany D6 49°55'56"N 
07°58'57"E

T. striolatus/plebeius wood moist yes

Eltville, Hessen, Germany D7 50°0059"N 
08°04'28"E

T. striolatus/plebeius 
T. sericeus/hispidus

wood moist yes

Büchsenberg, Baden-Württemberg, Germany D8 48°04'55"N 
07°37'23"E

T. striolatus/plebeius wood moist yes

St. Seine l'Abbaye, Côte d'Or, France MdO 47°26'04"N 
04°46'55"E

T. sericeus/hispidus wood - yes

La Neirigue, Fribourg, Switzerland CH3 46°42'16"N 
06°55'12"E

T. clandestinus riverbank vegetation moist no

Barrage des Rossens, Fribourg, Switzerland CH6 46°43'33"N 
07°06'55"E

T. sericeus/hispidus wood moist yes

Gorges de la Jogne, Fribourg, Switzerland CH8 46°36'45"N 
07°07'10"E

T. sericeus/hispidus gorge moist yes

Ste Croix, Vaud, Switzerland CH10 46°50'44"N 
06°32'02"E

T. montanus open wood dry no

La Côte aux Fées, Neuchâtel, Switzerland CH11+12 46°50'74"N 
06°32'42"E

T. montanus grassland dry no

Col des Mosses, Vaud, Switzerland CH13 46°25'49"N 
07°08'22"E

T. villosus wood moist yes

Vallée du Rhône, Vaud, Switzerland CH15 46°19'43"N 
06°13'39"E

T. sericeus/hispidus wood moist yes

Sensetal, Bern, Switzerland CH18 46°49'46"N 
07°19'19"E

T. clandestinus riverbank vegetation dry no

Birseschlucht, Bern, Switzerland CH21 47°17'54"N 
07°23'00"E

T. caelatus cliff dry no

Birseschlucht, Bern, Switzerland CH24 47°16'56"N 
07°23'13"E

T. sericeus/hispidus wood moist yes

Château d'Oex, Vaud, Switzerland CHAT 46°16'23"N 
07°21'42"E

T. nov. spec. alpine meadow dry no

Bannalppass, Nidwalden, Switzerland TA 46°53'40"N 
08°27'15"E

T. alpicolus alpine meadow moist yes

Bannalppass, Nidwalden, Switzerland TB 46°53'43"N 
08°27'21"E

T. biconicus alpine meadow dry no

Velká Javořina, Velká nad Veličkou, Czech 
Republic

TVJ 48°51'26"N 
17°39'11"E

T. villosulus wood moist yes

Bohuslavice u Zlína, Czech Republic PLB 49°09'19"N 
17°37'29"E

T. lubomirskii meadow - yes
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[18,32] and newly discovered species are not yet formally
described (Pfenninger, unpublished data). Since initial
analyses showed the existence of cryptic lineages, several
populations for each of the putative species were sampled
(Table 1). Four species from other genera of the subfamily
Hygromiinae and two species of the family Helicidae were
used as potential outgroups [33] (GenBank accession
numbers AY546263, AY546343, AY546303, AY546284,
AY546364, AY546324, AY546283, AY546363,
AY546323, AY546291, AY546371, AY546331).

DNA sequencing, lineage identification and phylogenetic 
analysis
Entire snails were crushed and vortexed in 10% w/v laun-
dry detergent solution for storage at room temperature
and tissue digestion [34]. For 78 individuals, a 512 bp seg-
ment of the cytochrome oxidase subunit I gene (COI) was
amplified with PCR and sequenced. For selected individ-
uals representing the major evolutionary lineages inferred
in the previous analysis, a 362 bp fragment of the large
subunit mitochondrial ribosomal gene (16S) and 509 bp
of the internal transcribed spacer 1 (ITS-1) from the
nuclear ribosomal cluster were additionally amplified and
sequenced. An amount of 0.2 to 1 ng total DNA (quanti-

fied on a 1% agarose gel using a λ Hind III marker) were
used as template in polymerase chain reaction (PCR).
Specific PCRs were performed with the primers, amplifica-
tion conditions and temperature profiles shown in Table
2. Primers were used for both specific PCR and subse-
quential automated direct sequencing. PCR products were
purified using E.N.Z.A. Cycle Pure Kit (peqlab, Erlangen,
Germany). Ten ng per sample were subjected to cycle
sequencing using the ABI Prism Big Dye terminator kit
(Perkin-Elmer, Norwalk, CT, USA). Sequencing reactions
were electrophoresed on an ABI 377 automated DNA
sequencer. In order to verify the results, gene products
were sequenced in both directions and the two strands
were aligned with SEQUENCE NAVIGATOR 1.0.1 (Per-
kin-Elmer, Norwalk, CT, USA). Sequences were deposited
in GenBank under accession numbers DQ217794-
DQ217831. The orthologous DNA sequences were ini-
tially aligned using the default settings of CLUSTAL X [35]
and optimised by eye. The most likely models of sequence
evolution and their parameters according to the Akaike
information criterion were inferred for each DNA data
partition using MODELTEST v. 3.4 [36]. In an initial anal-
ysis, we used the COI data set to identify evolutionary lin-
eages. A 99.9% credible set of phylogenetic trees was
estimated with the program MRBAYES [37] by sampling
the tree space using a Metropolis coupled Monte Carlo
Markov chain, implementing a TN+I+Γ model of COI
sequence evolution (where TN denotes Tamura-Nei, Γ is
the shape parameter of the gamma distribution and I the
proportion of invariant sites). Initial runs as well as a pos-
terior inspection of the likelihoods in the final run
showed that a burn-in phase of 10,000 generations was
largely sufficient for both analyses to allow the likelihood

Mean (+/- s.d.) minimum necessary force to move haired and smooth shells on wet and dry leaf surfacesFigure 5
Mean (+/- s.d.) minimum necessary force to move haired and 
smooth shells on wet and dry leaf surfaces.
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Bayesian reconstruction of ancestral states (hairs/no hairs, moist/dry habitat, respectively) on the topology of the Baye-sian consensus tree (restricted to the Trochulus-clade).Figure 4
Bayesian reconstruction of ancestral states (hairs/no hairs, 
moist/dry habitat, respectively) on the topology of the Baye-
sian consensus tree (restricted to the Trochulus-clade).
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values to reach convergence. The chain was run for
10,000,000 generations and sampled every 100th genera-
tion. An unrooted majority consensus tree was computed
from the sampled trees, excluding the trees sampled in the
burn-in phase. The procedure was repeated for the phylo-
genetic data set where the Markov chain was run with sep-
arate models of sequence evolution for each data partition
(GTR (general time reversible)+I+G for 16S and TVM
(transversional model)+ Γ for ITS-1). Outgroup status was
assigned to Helixaspersa [33].

Correlation of habitat humidity with shell hairiness
The direct estimation of humidity levels for sampling sites
is difficult without long-term observation. However, the

precipitation regime, habitat structure and vegetation at a
sampling site can give clues on the degree of humidity
experienced by the snails. For this behalf, five variables
were recorded for all but one population belonging to Tro-
chulus s.str. species. To characterise the microhabitat con-
ditions, the mean light- and humidity indicator values
[38] of the three most abundant herbaceous plant species
at each sampling site were recorded (variables LIGHTIND
and HUMIND). The evaporation regime is strongly influ-
enced locally by the exposure to sun and wind, which was
accounted for by characterising each sampling site as
either i) entirely shadowed (2), partially or sometimes
shadowed (1) and never shadowed (0) (variable
SHADOW) and either ii) situated in a closed wood (2),
open wood or forest edge (1) or not in a wood (0) (varia-
ble WOOD). Ultimately, the humidity conditions of a site
depend on the precipitation in the area. As Trochulus spe-
cies are active mainly during summer, we have recorded
the average long-term precipitation from April to Septem-
ber (variable SUMMERPREC). This information was
extracted from the climate layers with a spatial resolution
of 0.5 min implemented in the computer program DIVA-
GIS version 4.2 for the spatial analysis of biodiversity [39].
The variables were summarised in a principal component
analysis (PCA).

For all Trochulus s.str. populations investigated, the pres-
ence or absence of hairs on the shell of at least 10 adult
individuals was recorded. As the hairs may wear off during
adulthood (although rarely completely), the lack of the
typical hair pits in the fine sculpture of the shell was taken
as evidence for their principal absence. The presence or
absence of hairs of the respective populations was then
plotted on the PCA ordination.

Table 3: Primers used for specific PCR and direct sequencing, amplification conditions and temperature profiles.

Primer Sequence amplification conditions temperature profile

COI universal [43] 5'-
GGTCAACAATCATAAAGATAT
TGG-3' 5'-
TAAACTTCAGGGTGACCAAA
AAATCA-3'

total volume 25 µl with: 0.17 mM 
dNTPs 3 mM MgCl2 in 1 × PCR 
buffer 0.13 µM of each primer 1 
unit Taq polymerase (Invitrogen)

1 cycle of 2.5 min at 94°C
40 cycle 30s at 90°C
1 min at 48°C
1 min at 72°C
1 cycle of 10 min at 72°C

16S universal [44] 5'-CGGCCGCCTGTTT 
ATCAAAAACAT-3' 5'-
GGAGCTCCGGTTTGAACTCA
GATC-3'

total volume 15 µl with: 0.1 mM 
dNTPs 2.5 mM MgCl2 in 1 × PCR 
buffer 0.2 µM of each primer 0.5 
unit Taq polymerase (Invitrogen)

1 cycle of 2.5 min at 90°C
10 cycles of 50s at 92°C
30s at 44°C
40s at 72°C
36 cycles of 30s at 92°C
40s at 48°C
40s at 72°C
1 cycle of 3 min at 72°C

ITS-1 mollusc specific [45] 5'-
TAACAAGGTTTCCGTAGGTG
AA-3' 
5'GCTGCGTTCTTCATCGATG
C-3'

total volume 15 µl with: 0.3 mM 
dNTPs 2.5 mM MgCl2 in 1 × PCR 
buffer 0.18 µM of each primer 0.5 
unit Taq polymerase (Invitrogen)

1 cycle of 3 min at 94°C
40 cycles of 30s at 92°C
30s at 52°C
1 min at 72°C
1 cycle of 5 min at 72°C

Active T. villosus foraging on a leafFigure 6
Active T. villosus foraging on a leaf. Note that the water-
film on the leaf is adhering to the shell.
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Bayesian estimation of ancestral character states
In a first approach, we derived the posterior probability
distribution of ancestral character states and their rate of
change from 3000 trees sampled at random from the
99.9% credibility set of phylogenetic trees, using the Baye-
sian approach as implemented in the program MULTI-
STATEBAYES [40]. Applying an uninformative (uniform)
prior on the rate parameter distribution, a Markov chain
was run for 1,000,000 generations after it reached conver-
gence. The estimated rate parameter ratio for both direc-
tions of character change as well as the reconstructed
ancestral states for each internal node of the tree investi-
gated was sampled every 200th generation. This procedure
estimates i) the probability that the ancestral node existed
in the first place and ii) the probabilities of both character
states at the respective node. These three probabilities sum
up to 1, thus simultaneously taking phylogenetic and
character mapping uncertainty into account. In a second
approach, the most parsimonious number of character
state changes was reconstructed for each of the 99.9%
credibility set of phylogenetic trees using the ANCESTRAL
STATE RECONSTRUCTION module in MESQUITE [41].
The different reconstructions were then weighted accord-
ing to the posterior probability of the corresponding tree
[42].

Adhesion experiments
The minimum force necessary to move Trochulus shells
(upwards oriented apex) with or without hairs over dry
and wet, horizontal leaf surfaces was measured. For this
behalf, we have chosen the largest species, T. villosus. It
would have been desirable to use shells of other lineages
as well, however, it was not possible to measure the force
necessary to move smaller shells with the necessary accu-
racy. Twelve T. villosus shells were glued to thin nylon
strings. The strings were led over a roll with a small alu-
minium basket fastened on the other end. Small weights
were incrementally added to the basket until the shell
began to slide. This was replicated five times for each shell
on both water film covered and on dry surfaces. Then, the
hairs were mechanically removed to obtain smooth shells
and the procedure was repeated. For each condition, dif-
ferences in minimum force needed to move the shells
with or without hairs were tested for significance with an
ANOVA design.
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