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Abstract. We study the decay properties of Wigner kernels for Fourier
integral operators of types I and II. The symbol spaces that allow a nice
decay of these kernels are the Shubin classes Γm(R2d), with negative order
m. The phases considered are the so-called tame ones, which appear in
the Schrödinger propagators. The related canonical transformations are
allowed to be nonlinear. It is the nonlinearity of these transformations
that are the main obstacles for nice kernel localizations when symbols
are taken in the Hörmander’s class S0

0,0(R
2d). Here we prove that Shubin

classes overcome this problem and allow a nice kernel localization, which
improves with the decreasing of the order m.
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1. Introduction

The protagonist of this study is the Wigner distribution, one of the most pop-
ular time-frequency representations. It was introduced by Wigner in 1932 [34]
in the framework of Quantum Mechanics and later applied to signal processing
and time-frequency analysis by Ville, Cohen and many other authors, see, e.g.,
[3,4,33] and the textbooks [18,21,25].

Definition 1.1. Consider f, g ∈ L2(Rd). The cross-Wigner distribution W (f, g)
is

W (f, g)(x, ξ) =
∫
Rd

f(x +
t

2
)g(x − t

2
)e−2πitξ dt, (x, ξ) ∈ R

2d. (1)

If f = g we write Wf := W (f, f), the so-called Wigner distribution of f .

Wigner used the above representation to analyse the action of the
Schrödinger propagator. We may extend the Wigner approach in [34] as fol-
lows: given a linear operator T : S(Rd) → S ′(Rd), we consider an operator K
on S(R2d) such that
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W (Tf, Tg) = KW (f, g), f, g ∈ S(Rd). (2)

Its integral kernel k is called the Wigner kernel of T :

W (Tf, Tg)(z) =
∫
R2d

k(z, w)W (f, g)(w) dw, z ∈ R
2d, f, g ∈ S(Rd). (3)

As an elementary example of the effectiveness of the Wigner distribution,
consider the Schrödinger propagator Tτ , for a fixed time τ ∈ R, of the free
particle equation

Tτf(x) =
∫
Rd

e2πi(xξ−τξ2)f̂(ξ)dξ, x ∈ R
d.

We have

W (Tτf)(x, ξ) = Wf(x − τξ, ξ)

with Wigner kernel

k = δz−χ(w), w, z ∈ R
2d, (4)

where, if we write w = (y, η), then χ(y, η) = (y + τη, η). This striking result is
due to the peculiar action of W on the phase Φ(x, ξ) = xξ − τξ2. It general-
izes to quadratic Φ(x, ξ), corresponding to quadratic Hamiltonians and linear
symplectic map χ in (4), see for example [20].

Our aim is to extend this analysis to more general operators, namely
Fourier integral operators of the form

TIf(x) =
∫
Rd

e2πiΦ(x,ξ)σ(x, ξ)f̂(ξ)dξ, f ∈ S(Rd), (5)

with phase Φ and symbol σ in suitable classes. A preliminary step was pre-
sented in [12], with T a pseudodifferential operator σ(x,D), i.e., Φ(x, ξ) = xξ
in (5). The case of a quadratic Φ and a general σ was considered in [9] and in
[8], where a generalization of (4) was obtained by combining a linear symplectic
map χ with the kernel of a pseudodifferential operator.

In the present paper we focus on the case of nonlinear symplectic map-
pings χ corresponding to non-quadratic Φ, which we call tame, see Sect. 2
below for their definition.

As a counterpart of (4) we look for estimates of the type

|k(z, w)| � 1
〈z − χ(w)〉2N

, (6)

where 〈z〉 := (1 + |z|2)1/2, in the spirit of the estimates for Gabor kernels,
which have been widely investigated in the literature, classical references are
[2,10,15,16,26,27], see also [18, Chapter 5].

There are two obstructions to the validity of (6). The first, evident from
(4) and also in the linear case, is that k(z, w) is not point-wise defined for
z = χ(w). This can be easily rephrased by a rescaling of regularity. The second
obstruction is of deeper nature, and it concerns only the nonlinear symplectic
map χ. In fact, it is well known that the Wigner transform may produce the so-
called ghost frequencies. As observed in [9,13], they are exactly preserved for
Schrödinger propagators for linear χ, i.e., quadratic Φ, but this is not the case
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for nonlinear χ. Namely, highly oscillating terms may appear in the expression
of the kernel k(z, w) outside the graph of z = χ(w).

As a first attempt for eliminating ghost frequencies and re-establishing
the validity of (6), we shall consider in the sequel symbols σ of low order in
Shubin classes [32]. Unluckily, this framework does not allow a direct applica-
tion to Schrödinger equations, for which we address a future work, following a
different smoothing procedure.

Let us outline the contents of the paper. Our starting point, in Sect. 3,
will be the following abstract definition, along the lines of [15].

Definition 1.2. Consider a tame symplectic diffeomorphism χ (cf. Definition
2.3 below). For N ∈ N+, N > d, we say that the operator K in (2) is in
the class FIO(χ, N) if its Wigner kernel k in (3) satisfies, for z = (z1, z2),
w = (w1, w2) ∈ R

2d,

|k(z, w)| � 1
〈z − χ(w)〉2N

. (7)

Examples of operators which fall in the above class are pseudodifferential
operators σ(x,D) (the Kohn-Nirenberg form), defined by

σ(x,D)f(x) =
∫
Rd

e2πixξσ(x, ξ)f̂(ξ) dξ, (8)

with a symbol σ in the Shubin classes Γm(R2d), m < −2(d+N), whose Wigner
kernel kσ satisfies

|kσ(z, w)| � 1
〈z − w〉2N

. (9)

Here χ = I, the identity mapping, cf. Section 2 below. More generally, Fourier
integral operators of type I (cf. (5)) and II, having symbols in the same Shubin
classes above and tame canonical transformations, fall in the class above, as
we shall show in Sects. 4 and 5.

Let us state here the preliminary results of Sect. 3, which are the core of
this study and may be collected as follows.

Theorem 1.3. (Properties of the class FIO(χ, N))

(i) Boundedness. T ∈ FIO(χ,N) is bounded on L2(Rd).
(ii) Algebra Property. If Ti ∈FIO(χi, N), i=1, 2, then T1T2 ∈FIO(χ1χ2, N).
(iii) If T ∈ FIO(χ,N) then its adjoint T ∗ is in FIO(χ−1, N).

In Sect. 4 we shall show the Fourier integral operators of type I in (5),
having symbols in suitable Shubin classes Γm(R2d) and tame phase functions
are in the class FIO(χ, N).

The last Sect. 5 is devoted to the L2-adjoint of the FIO I in (5), which
can be written explicitly in the form

TIIf(x) =
∫
R2d

e−2πi[Φ(y,ξ)−xξ]τ(y, ξ)f(y)dydξ, f ∈ S(Rd),
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where τ(y, ξ) ∈ S ′(R2d) is the symbol. Using tools from metaplectic Wigner
distributions implemented in [8,9] we are able to compute the Wigner kernel
of the FIOs II above and prove that, under suitable assumptions on their
symbols, they belong to FIO(χ,N) as well. We underline that these results
are valid for the whole class of tame phase Φ defined in Sect. 2.3, of particular
interest is the case Φ non quadratic which gives rise to nonlinear symplectic
transformations χ, which were not treated in [8].

We believe that such theoretical study will pave the way to a better
understanding of Wigner kernels for Fourier integral operators, with possible
applications to dynamical versions of Hardy’s uncertainty principles [23,28,35–
37], see also the recent contribution [22].

2. Preliminaries

Notation. We define t2 = t·t, t ∈ R
d, and, similarly, xy = x·y. The space S(Rd)

is the Schwartz class and S ′(Rd) its dual (the space of tempered distributions).
The brackets 〈f, g〉 means the extension to S ′(Rd)×S(Rd) of the inner product
〈f, g〉 =

∫
f(t)g(t)dt on L2(Rd) (conjugate-linear in the second component).

We define by Sym(2d,R) the group of 2d×2d real symmetric matrices. A point
in the phase space is denoted by z = (x, ξ) ∈ R

2d. We call (time-frequency
shift) the operators

π(z)f(t) = e2πiξtf(t − x), t ∈ R
d. (10)

GL(d,R) denotes the group of real invertible d × d matrices.

2.1. The symplectic group Sp(d,R), metaplectic operators and Wigner dis-
tributions

The standard symplectic matrix is

J =
(

0d×d Id×d

−Id×d 0d×d

)
. (11)

The symplectic group is defined by

Sp(d,R) =
{
A ∈ GL(2d,R) : AT JA = J

}
, (12)

where AT is the transpose of A. We have det(A) = 1.
For L ∈ GL(d,R) and C ∈ Sym(2d,R), define:

DL :=
(

L−1 0d×d

0d×d LT

)
and VC :=

(
Id×d 0
C Id×d

)
. (13)

The matrices J , VC , and DL generate the group Sp(d,R).
The Schrödinger representation ρ of the Heisenberg group is given by

ρ(x, ξ; τ) = e2πiτe−πiξxπ(x, ξ),

for all x, ξ ∈ R
d, τ ∈ R. For every A ∈ Sp(d,R), ρA(x, ξ; τ) := ρ(A(x, ξ); τ)

defines another representation of the Heisenberg group that is equivalent to ρ,
that is, there exists a unitary operator Â : L2(Rd) → L2(Rd) such that

Âρ(x, ξ; τ)Â−1 = ρ(A(x, ξ); τ), x, ξ ∈ R
d, τ ∈ R. (14)
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This operator is not unique: if Â′ is another unitary transformation satisfying
(14), then Â′ = cÂ, for some c ∈ C, with |c| = 1. The set {Â : A ∈ Sp(d,R)} is
a group under operator composition and has the metaplectic group Mp(d,R)
as subgroup. It is a realization of the two-fold cover of Sp(d,R). The projection

πMp : Mp(d,R) → Sp(d,R) (15)

is a group homomorphism with kernel ker(πMp) = {−idL2 , idL2}.
Here, if Â ∈ Mp(d,R), the matrix A will be the unique symplectic matrix

satisfying πMp(Â) = A. Some examples of metaplectic operators we will use
in the following are detailed below.

Example 2.1. Consider the matrices J , DL and VC defined in (11) and (13).
Then, if we denoted by F the Fourier transform,
(i) πMp(F) = J ;
(ii) if TL := |det(L)|1/2 f(L·), then πMp(TL) = DL;

The relation between time-frequency shifts and metaplectic operators is
the following:

π(Az) = cA Âπ(z)Â−1 ∀z ∈ R
2d , (16)

with a phase factor cA ∈ C, |cA| = 1 (see, e.g., [20,24]).

Metaplectic Wigner distributions. In the study of FIOs of type II we will use
tools from the theory of metaplectic Wigner distributions. Here we list the
basic elements for this study. For Â ∈ Mp(2d,R), the metaplectic Wigner
distribution associated to Â is defined as

WA(f, g) = Â(f ⊗ ḡ), f, g ∈ L2(Rd). (17)

The most important time-frequency representations are metaplectic Wigner
distributions. The τ -Wigner distributions, τ ∈ R, defined by

Wτ (f, g)(x, ξ) =
∫
Rd

f(x + τt)g(x − (1 − τ)t)e−2πiξtdt, (x, ξ) ∈ R
2d,

(18)

for f, g ∈ L2(Rd), are metaplectic Wigner distributions. The case τ = 1/2
is the cross-Wigner distribution, defined in (1). τ -Wigner distributions are
metaplectic Wigner distributions:

Wτ (f, g) = Âτ (f ⊗ ḡ),

with

Aτ =

⎛
⎜⎜⎝

(1 − τ)Id×d τId×d 0d×d 0d×d

0d×d 0d×d τId×d −(1 − τ)Id×d

0d×d 0d×d Id×d Id×d

−Id×d Id×d 0d×d 0d×d

⎞
⎟⎟⎠ . (19)

In particular, we recapture the Wigner case when τ = 1/2:

Wf = W1/2(f, f) = Â1/2(f ⊗ f̄), f ∈ L2(Rd). (20)
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Â1/2 can be split into the product

Â1/2 = F2TL, (21)

with

L =
(

Id×d
1
2Id×d

Id×d − 1
2Id×d

)
.

Hence

Â1/2F (x, ξ) =
∫
Rd

F (x + t/2, x − t/2)e−2πiξtdt, F ∈ S(R2d),

and

Â−1
1/2 = TL−1F−1

2 ,

where

L−1 =
(

1
2Id×d

1
2Id×d

Id×d −Id×d

)
,

so that

Â−1
1/2F (x, ξ) =

∫
Rd

F (x/2 + ξ/2, y)e2πi(x−ξ)ydy, F ∈ S(R2d). (22)

2.2. Shubin and Hörmander classes [18,30,32]

In our study we shall consider the following weight functions

vs(z) = 〈z〉s = (1 + |z|2) s
2 , s ∈ R, (23)

Definition 2.2. Fix m ∈ R. The Shubin class Γm(R2d) is the set of functions
a ∈ C∞(R2d) satisfying

|∂α
z a(z)| ≤ Cαvm−|α|(z), z ∈ R

2d, α ∈ Z
2d
+ ,

for a suitable constant Cα > 0, where vs(z) = 〈z〉s is defined in (23).

The Hörmander class S0
0,0(R

2d), consists of smooth functions σ on R
2d

such that

|∂α
x ∂β

ξ σ(x, ξ)| ≤ cα,β , α, β ∈ N
d, x, ξ ∈ R

d. (24)

2.3. Tame phase functions and related canonical transformations

Definition 2.3. We follow the notation of [8,15]. A real phase function Φ(x, η)
is named tame if it satisfies the following properties:

A1. Φ ∈ C∞(R2d);
A2. For z = (x, ξ) ∈ R

2d,

|∂α
z Φ(z)| ≤ Cα, |α| ≥ 2; (25)

A3. There exists δ > 0:

|det ∂2
x,ηΦ(x, ξ)| ≥ δ. (26)
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Solving the system
{

y = Φη(x, η),
ξ = Φx(x, η), (27)

with respect to (x, ξ), one obtains a map χ

(x, ξ) = χ(y, η), (28)

with the following properties:

A4. χ : R2d → R
2d is a symplectomorphism (smooth, invertible, and preserves

the symplectic form in R
2d, i.e., dx ∧ dξ = dy ∧ dη.)

A5. For z = (y, η),

|∂α
z χ(z)| ≤ Cα, |α| ≥ 1; (29)

A6. There exists δ > 0:

|det
∂x

∂y
(y, η)| ≥ δ for (x, ξ) = χ(y, η). (30)

Conversely, as it was observed in [15], to every transformation χ satisfying
the three hypothesis above corresponds a tame phase Φ, uniquely determined
up to a constant.

2.4. Properties of the Wigner Kernel

The Wigner kernel of a continuous, linear operator T : S(Rd) → S ′(Rd) was
introduced and studied in [8]. We recall its definition and the properties useful
for our framework.

Definition 2.4. The Wigner kernel of a continuous, linear operator T : S(Rd) →
S ′(Rd) is the distribution k ∈ S ′(R4d) satisfying

〈W (Tf, Tg),W (u, v)〉 = 〈k,W (u, v) ⊗ W (f, g)〉, f, g, u, v ∈ S(Rd). (31)

Observe that if k ∈ S(R4d) the integral formula (3) holds true. The results
of Theorem 3.3 and 4.3 in [8] can be rephrased as follows:

Theorem 2.5. Consider T as above and let kT ∈ S ′(R2d) be its kernel. There
exists a unique distribution k ∈ S ′(R4d) such that (31) holds. Hence, every
continuous linear operator T : S(Rd) → S ′(Rd) has a unique Wigner kernel.
Furthermore,

k = TpWkT , (32)

with TpF (x, ξ, y, η) = F (x, y, ξ,−η).
In particular, if T ∈ B(L2(Rd)) has Wigner kernel k, then its adjoint

T ∗ ∈ B(L2(Rd)) has Wigner kernel k̃(z, w) = k(w, z), z, w ∈ R
2d.
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3. Properties of FIO(χ, N)

This section is devoted to prove Theorem 1.3 in the introduction. This requires
several steps, developed in what follows.

Theorem 3.1. An operator T ∈ FIO(χ,N), is bounded on L2(Rd).

Proof. For f ∈ L2(Rd) we recall [18, Chapter 1] that the Wigner Wf ∈
L2(R2d) and Moyal’s identity ‖Wf‖L2(R2d) = ‖f‖2

L2(Rd).

Using (3), Definition 1.2, for any f ∈ L2(Rd),

‖Tf‖2
L2(Rd) = ‖W (Tf)‖L2(R2d),

and

‖W (Tf)‖L2(R2d) �
∥∥∥∥
∫
R2d

1
〈z − χ(w)〉2N

Wf(w) dw

∥∥∥∥
L2(R2d)

�
∥∥∥∥
∫
R2d

1
〈χ−1(z) − w〉2N

Wf(w) dw

∥∥∥∥
L2(R2d)

�
∥∥∥∥
(

1
〈·〉2N

∗ Wf

)
(χ−1(z))

∥∥∥∥
L2(R2d)

�
∥∥∥∥
(

1
〈·〉2N

∗ Wf

)
(z)

∥∥∥∥
L2(R2d)

≤
∥∥∥∥ 1

〈·〉2N

∥∥∥∥
L1(R2d)

‖Wf‖L2(R2d)

≤ CN‖f‖2
L2(Rd),

where in the last row we used Young’s inequality (observe that N > d) and,
in the last but one, the change of variables z′ = χ−1(z) which, for any F ∈
L2(R2d),

‖F (χ−1·)‖2
L2(R2d) =

∫
R2d

|F (χ−1(z))|2 dz =
∫
R2d

|F (z′)|2 det |Jχ(z′)|dz′

≤ CN‖F‖2
L2(R2d),

by (29). Hence ‖Tf‖L2(Rd) ≤
√

CN‖f‖L2(Rd), that is T ∈ B(L2(Rd)). �

Theorem 3.2. If Ti ∈ FIO(χi, N), i = 1, 2, then T1T2 ∈ FIO(χ1χ2, N).

Proof. Using the Wigner representation in (3) we can write

W (T1T2f, T1T2g)(z) =
∫
R2d

kI,1(z, w)W (T2f, T2g)(w) dw, (33)

where kI,1(z, w) is the Wigner kernel of the operator T1, satisfying (7) with
symplectic transformation χ1. Similarly,

W (T2f, T2g)(w) =
∫
R2d

kI,2(w, u)W (f, g)(u) du,
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with kI,2(w, u) being the Wigner kernel of T2 satisfying (7) with symplectic
transformation χ2. Substituting the expression of W (T2f, T2g)(w) in (33) we
obtain

W (T1T2f, T1T2g)(z) =
∫
R4d

kI,1(z, w)kI,2(w, u)W (f, g)(u) du dw, (34)

with kI,i(z, w) satisfying (7), i = 1, 2. Interchanging the integrals in (34) (ob-
serve that the assumptions of Fubini Theorem are satisfied) we can write

W (T1T2f, T1T2g)(z) =
∫
R2d

(∫
R2d

kI,1(z, w)kI,2(w, u) dw

)
W (f, g)(u) du

(35)

so that the Wigner kernel kI,12 of the product T1T2 is given by

kI,12(z, u) :=
∫
R2d

kI,1(z, w)kI,2(w, u) dw.

Using the Wigner kernel’s estimates in (7), we obtain

|kI,12(z, u)| ≤
∫
R2d

|kI,1(z, w)||kI,2(w, u)|dw

�
∫
R2d

1
〈z − χ1(w)〉2N 〈w − χ2(u)〉2N

dw

�
∫
R2d

1
〈z − χ1(w)〉2N 〈χ1(w) − χ1χ2(u)〉2N

dw

�
∫
R2d

1
〈z − χ1(w)〉2N 〈χ1(w) − χ1χ2(u)〉2N

dw

=
∫
R2d

1
〈χ1(w) − z〉2N 〈χ1χ2(u) − χ1(w)〉2N

dw

=
∫
R2d

1
〈w′ − z〉2N 〈χ1χ2(u) − w′〉2N

|det Jχ−1
1 (w)|dw′

where we used the change of variables χ1(w) = w′ so that dw = |det Jχ−1
1 (w)|

dw′ since |det Jχ−1
1 (w)| ≤ C by (29), we obtain

|kI,12(z, u)| �
∫
R2d

1
〈w′ − z〉2N 〈χ1χ2(u) − w′〉2N

dw′

=
∫
R2d

1
〈v〉2N 〈χ1χ2(u) − z − v〉2N

dv

= (〈·〉−2N ∗ 〈·〉−2N )(χ1χ2(u) − z)

� 1
〈z − χ1χ2(u)〉2N

where in the last row we used the weight convolution property 〈·〉s ∗ 〈·〉s � 〈·〉s

for s < −2d (observe N > d). Thus, we obtain the desired estimate

|kI,12(z, u)| � 1
〈z − χ1χ2(u)〉2N

,
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that is T1T2 ∈ FIO(χ1χ2, N). �

Theorem 3.3. If T ∈ FIO(χ,N), then T ∗ ∈ FIO(χ−1, N).

Proof. Theorem 3.1 gives that T ∈ B(L2(Rd)). Let k be integral kernel of T ,
then Theorem 2.5 says that the adjoint T ∗ ∈ B(L2(Rd)) has kernel k̃ given
by

k̃(z, w) = k(w, z).

This means it satisfies (cf. (7))

|k̃(z, w)| = |k(w, z)| � 1
〈w − χ(z)〉2N

. (36)

Since χ is a bi-Lipschitz transformation, |w − χ(z)| � |z − χ−1(w)| so that
〈w − χ(z)〉2N � 〈z − χ−1(w)〉2N and we obtain

|k̃(z, w)| � 1
〈z − χ−1(w)〉2N

. (37)

Hence T ∗ ∈ FIO(χ−1, N), as desired. �

4. FIOs of type I

Here we focus on the analysis of Wigner kernels for FIOs of type I:

TIf(x) =
∫
Rd

e2πiΦ(x,ξ)σ(x, ξ)f̂(ξ)dξ, f ∈ S(Rd). (38)

Recall that the Schwartz Kernel Theorem guarantees that every continuous
linear operator T : S(Rd) → S ′(Rd) can be expressed in the form T = TI ,
with a given phase Φ(x, ξ) and symbol σ(x, ξ) in S ′(R2d).

These operators have been widely investigated in the framework of PDEs,
both from a theoretical and a numerical point of view; the literature is so huge
that we cannot report all the results but limit to a very partial list of them,
cf. [5–7,14,17,19,31].

If we assume that T is a continuous linear operator S(Rd) → S ′(Rd) and
χ satisfies conditions A4, A5, and A6 in Definition 2.3 then T = TI,Φχ,σ (FIO
of type I), with symbol σ and phase Φχ.

A first result related to the Wigner kernel of a FIO I was obtained in
[8, Theorem 5.8]. There, FIOs of type I with symbols in the Hörmander class
S0

0,0(R
2d) were considered. Since Γm(R2d) ⊂ S0

0,0(R
2d) whenever m ≤ 0, we

can rephrase it in our context as follows.

Theorem 4.1. Let TI be a FIO of type I defined in (38) with symbol σ ∈
Γm(R2d), m < 0. For f ∈ S(Rd),

K(W (f, g))(x, ξ) = W (TIf, TIg)(x, ξ) =
∫
R2d

kI(x, ξ, y, η)W (f, g)(y, η)dydη,

(39)
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with Wigner kernel kI given by

kI(x, ξ, y, η) =
∫
R2d

e2πi[ΦI(x,η,t,r)−(ξt+ry)]σI(x, η, t, r)dtdr, (40)

and, for x, η, t, r ∈ R
d,

ΦI(x, η, t, r) = Φ(x +
t

2
, η +

r

2
) − Φ(x − t

2
, η − r

2
), (41)

σI(x, η, t, r) := σ(x +
t

2
, η +

r

2
)σ(x − t

2
, η − r

2
). (42)

We have now all the tools to estimate the Wigner kernel of TI .

Theorem 4.2. Consider TI the FIO of type I in (38). Fix N ∈ N, N > d, and
assume that the symbol σ ∈ Γm(R2d), with m < −2(d + N). Let kI be the
associated Wigner kernel in (40). Then,

|kI(x, ξ, y, η)| � 〈(x, η)〉2N+m

〈(x, ξ) − χ(y, η)〉2N
, x, ξ, y, η ∈ R

2d. (43)

Proof. Since Φ is smooth, we can expand Φ(x + t
2 , η + r

2 ) and Φ(x − t
2 , η − r

2 )
into a Taylor series around (x, η). Namely,

Φ
(

x +
t

2
, η +

r

2

)
= Φ(x, η) +

t

2
Φx(x, η) +

r

2
Φη(x, η) + Φ2(x, η, t, r), (44)

where the remainder Φ2 is given by

Φ2(x, η, t, r) =
∑

|α|=2

∫ 1

0

(1 − τ)∂αΦ((x, η) + τ(t, r)/2) dτ
(t, r)α

23α!
. (45)

Similarly,

Φ
(

x − t

2
, η − r

2

)
= Φ(x, η) − t

2
Φx(x, η) − r

2
Φη(x, η) + Φ̃2(x, η, t, r), (46)

with Φ̃2 defined as

Φ̃2(x, η, t, r) =
∑

|α|=2

∫ 1

0

(1 − τ)∂αΦ((x, η) − τ(t, r)/2) dτ
(t, r)α

23α!
. (47)

Inserting the phase expansions above in (40) we obtain

kI(x, ξ, y, η) =
∫
R2d

e−2πi[t·(ξ−Φx(x,η))+r·(y−Φη(x,η))]σ̃(x, η, t, r) dtdr (48)

where σ̃ is defined as

σ̃(x, η, t, r) = e2πi[Φ2−Φ̃2](x,η,t,r)σ(x +
t

2
, η +

r

2
)σ(x − t

2
, η − r

2
), (49)

For N ∈ N, u = (t, r) ∈ R
2d, using the identity:

(1 − Δu)Ne−2πi[(ξ−Φx(x,η),y−Φη(x,η))·(t,r)]

= 〈2π(ξ − Φx(x, η), y − Φη(x, η))〉2Ne−2πi[(ξ−Φx(x,η),y−Φη(x,η))·(t,r)],
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we integrate by parts in (48) and obtain

kI(x, ξ, y, η) =
1

〈2π(ξ − Φx(x, η), y − Φη(x, η))〉2N

∫
R2d

e−2πi[(ξ−Φx(x,η),y−Φη(x,η))·(t,r)]

× (1 − Δu)N σ̃(x, η, t, r) dtdr.

The factor

(1 − Δu)N σ̃(z, u), z = (x, η), u = (t, r)

can be expressed as

e2πi[Φ2−Φ̃2](z,u)
∑

|α|+|β|+|γ|≤2N

Cα,βγp(∂
|α|
u (Φ2 − Φ̃2)z(u)(∂β

uσ)(z + u/2)(∂γ
uσ)(z − u/2),

where p(∂|α|
u (Φ2 − Φ̃2)z)(u) is a polynomial made of derivatives w.r.t. u of

Φ2 − Φ̃2 of order at most |α|. By assumption,

|(∂β
uσ)(z + u/2)(∂γ

uσ)(z − u/2)| � 〈z + u/2〉m−|β|〈z − u/2〉m−|γ|,

which implies

|(1 − Δu)N σ̃(z, u)| �
∑

|α|+|β|+|γ|≤2N

〈u/2〉|α|〈z − u/2〉m−|β|〈z + u/2〉m−|γ|

�
∑

|β|+|γ|≤2N

〈u/2〉2N−|β|−|γ|〈z − u/2〉m−|β|〈z + u/2〉m−|γ|

� CN 〈z − u/2〉2N+m〈z + u/2〉2N+m.

Using the change of variables u′ = u/2 − z, du = 22ddu′,∫
R2d

〈z − u/2〉2N+m〈z + u/2〉2N+mdu = 22d

∫
R2d

〈u′〉2N+m〈(−2z) − u′〉2N+m

� 〈z〉2N+m

where, for vs = 〈·〉s, we used the weight convolution property vs ∗ vs � vs, for
s < 2d, cf. [25, Lemma 11.1.1]. Hence,

|kI(x, ξ, y, η)| ≤ 1

〈2π(ξ − Φx(x, η), y − Φη(x, η))〉2N

∫
R2d

|(1 − Δu)N σ̃(x, η, t, r)| dtdr

� 〈z〉2N+m

〈2π(ξ − Φx(x, η), y − Φη(x, η))〉2N

� 〈z〉2N+m

〈χ1(y, η) − x, χ2(y, η) − ξ〉2N
.

This gives the claim. �

As a consequence,

Corollary 4.3. Under the assumptions of Theorem 4.2, the estimate (7) holds
true, hence TI ∈ FIO(χ,N).

Proof. It is an immediate consequence of Theorem 4.2, since 2N + m < 0 so
that 〈(x, η)〉2N+m ≤ 1, for every x, η ∈ R

d. �
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5. FIOs of Type II

In this section we focus on the L2-adjoint of a FIO of type I, which is a FIO
of type II, written formally as

TIIf(x) =
∫
R2d

e−2πi[Φ(y,ξ)−xξ]τ(y, ξ)f(y)dydξ, f ∈ S(Rd). (50)

First, we shall work with symbols τ in the Hörmander class S0
0,0(R

2d), referring
to [1] for their L2-boundedness.

Proposition 5.1. Consider a FIO of type II as in (50), with τ ∈ S0
0,0(R

2d).
Then, for all f, g ∈ S(Rd),

(TIIf ⊗ ḡ)(x1, x2) = T2(f ⊗ ḡ)(x1, x2),

x = (x1, x2) ∈ R
2d, where T2 is the FIO of type II given by

T2F (x) =
∫
R4d

e−2πi[Φ2(y,ξ)−xξ]τ2(y, ξ)F (y)dydξ, F ∈ S(R2d),

y = (y1, y2), ξ = (ξ1, ξ2) ∈ R
2d, and Φ2 is the tame phase on R

4d given by

Φ2(y, ξ) = Φ(y1, ξ1) + y2ξ2; (51)

whereas the symbol τ2 is in S0
0,0(R

4d) and given by

τ2(y, ξ) = τ(y1, ξ1) ⊗ 1(y2, ξ2). (52)

Proof. Let f, g be in S(Rd). Using the Fourier inversion formula on g:

g(x2) =
∫
R2d

g(y2)e2πi(x2−y2)ξ2dy2dξ2

we can write

(TIIf ⊗ ḡ)(x1, x2) =
( ∫

R2d

e−2πi[Φ(y1,ξ1)−x1ξ1]τ(y1, ξ1)f(y1)dy1dξ1

)
g(x2)

=
∫
R4d

e−2πi[Φ(y1,ξ1)+y2ξ2−(x1ξ1+x2ξ2)]f(y1)g(y2)

× τ(y1, ξ1)dy1dy2dξ1dξ2.

Observing that

x1ξ1 + x2ξ2 = xξ,

we can write

Φ(y1, ξ1) + y2ξ2 = Φ2(y1, y2, ξ1, ξ2),

which is (51). Note that Φ2 ∈ C∞(R4d) and satisfies (25) and (26), since

∂2
y,ξΦ2 =

⎛
⎜⎜⎝

∂2
y1,y1

Φ 0d×d ∂2
y1,ξ1

Φ 0d×d

0d×d 0d×d 0d×d Id×d

∂2
y1,ξ1

Φ 0d×d ∂2
ξ1,ξ1

Φ 0d×d

0d×d Id×d 0d×d 0d×d

⎞
⎟⎟⎠ . (53)

This means that Φ2 is a tame phase function.
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Finally, since both τ and the function constantly equal to 1 are in the
Hörmander class S0

0,0(R
2d), it immediately follows that τ2 belongs to S0

0,0(R
4d).

�

Using the same arguments as in the previous proposition, one can prove
the issue below.

Proposition 5.2. Under the same assumptions of Proposition 5.1, for all f, g ∈
S(Rd),

(f ⊗ TIIg)(x1, x2) = T ′
2(f ⊗ ḡ)(x1, x2),

x = (x1, x2) ∈ R
2d, where the operator T ′

2 is the FIO of type II:

T ′
2F (x) =

∫
R4d

e−2πi[Φ′
2(y,ξ)−xξ]τ ′

2(y, ξ)F (y)dydξ, F ∈ S(R2d),

y = (y1, y2), ξ = (ξ1, ξ2) ∈ R
2d and Φ′

2 is the tame phase

Φ′
2(y, ξ) = −Φ(y2,−ξ2) + y1ξ1,

whereas the symbol τ2 ∈ S0
0,0(R

4d) is given by

τ ′
2(y, ξ) = 1(y1, ξ1) ⊗ τ(y2,−ξ2).

Next, we study the composition of the FIOs T2 and T ′
2.

Proposition 5.3. Consider the FIOs T2 and T ′
2 defined in Propositions 5.1 and

5.2. Then their product T2T
′
2 can be written as the following FIO of type II:

T2T
′
2F (x) =

∫
R4d

e−2πiΦ(y,ξ)−xξT (y, ξ)F (y) dydξ, x ∈ R
2d, (54)

for every F ∈ S(R2d), with tame phase on R
4d:

Φ(y1, y2, ξ1, ξ2) = Φ(y1, ξ1) − Φ(y2,−ξ2) (55)

and symbol

T (y1, y2, ξ1, ξ2) = τ(y1, ξ1)τ(y2,−ξ2) ∈ S0
0,0(R

4d). (56)

Proof. Let F ∈ S(R2d). We compute

T2T
′
2F (x1, x2)

=

∫
R4d

e−2πi[Φ(y1,ξ1)+y2ξ2−x1ξ1−x2ξ2]τ(y1, ξ1)T
′
2F (y1, y2)dy1dy2dξ1dξ2

=

∫
R4d

e−2πi[Φ(y1,ξ1)+y2ξ2−x1ξ1−x2ξ2]τ(y1, ξ1)

∫
R4d

e−2πi[−Φ(z2,−η2)+z1η1−y1η1−y2η2]

× τ(z2, −η2)F (z1, z2)dz1dz2dη1dη2dy1dy2dξ1dξ2

=

∫
R8d

e−2πi[Φ(y1,ξ1)−Φ(z2,−η2)+z1η1+y2ξ2−x1ξ1−x2ξ2−y1η1−y2η2]

× τ(y1, ξ1)τ(z2, −η2)F (z1, z2)dzdηdydxξ.

Using the well-known formulae∫
R2d

e−2πiη1(z1−y1)e−2πiξ2(y2−x2)dη1dξ2dz1dy2 = δy1(z1)dz1δx2(y2)dy2,
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we obtain

T2T
′
2F (x1, x2) =

∫
R4d

e−2πi[Φ(y1,ξ1)−Φ(z2,−η2)−x1ξ1−x2η2]τ(y1, ξ1)τ(z2,−η2)

× F (y1, z2)dy1dz2dξ1dη2,

which is (54). It is straightforward to check that the phase Φ in (55) is tame,
that is, it satisfies the properties of Definition 2.3.

Since τ ∈ S0
0,0(R

d), then T ∈ S0
0,0(R

4d). �

Theorem 5.4. Consider the type II FIO TII in (50), with symbol τ ∈ S0
0,0(R

2d)
and tame phase Φ. Then

W (TIIf, TIIg)(x, ξ) =
∫
R2d

kII(x, ξ, s, z)W (f, g)(s, z)dsdz, f, g ∈ S(Rd),

where

kII(x, ξ, y, η) =
∫
R2d

e−2πi[Φ(y+ r
2 ,ξ+ t

2 )−Φ(y− r
2 ,ξ− t

2 )]e2πi(tx+rη) (57)

× τ(y +
r

2
, ξ +

t

2
)τ(y − r

2
, ξ − t

2
)dtdr.

Proof. Consider f ∈ S(Rd) and use Proposition 5.3 and Remark 22 to compute

W (TIIf, TIIg)(x, ξ)

= Â1/2T2T
′
2Â

−1
1/2W (f, g)(x, ξ)

=

∫
Rd

(T2T
′
2Â

−1
1/2W (f, g))(x +

t

2
, x − t

2
)e−2πiξtdt

=

∫
Rd

(∫
R4d

e−2πi[Φ(y1,η1)−Φ(y2,−η2)−(x+t/2)η1−(x−t/2)η2]τ(y1, η1)τ(y2,−η2)

× (Â−1
1/2W (f, g))(y1, y2)dy1dy2dη1dη2

)
e−2πiξtdt

=

∫
Rd

(∫
R4d

e−2πi[Φ(y1,η1)−Φ(y2,−η2)−(x+t/2)η1−(x−t/2)η2]τ(y1, η1)τ(y2,−η2)

×
(∫

Rd

W (f, g)(y1/2 + y2/2, z)e2πi(y1−y2)zdz

)
dy1dy2dη1dη2

)
e−2πiξtdt

=

∫
R6d

e−2πi[Φ(y1,η1)−Φ(y2,−η2)−xη1− t
2 η1−xη2+

t
2 η2−y1z+y2z+ξt]τ(y1, η1)τ(y2,−η2)

× W (f, g)(y1/2 + y2/2, z)dzdy1dy2dη1dη2dt.

The change of variables y1/2 + y2/2 = s gives

W (TIIf, TIIg)(x, ξ)

= 2d

∫
R6d

e−2πi[Φ(2s−y2,η1)−Φ(y2,−η2)−xη1− t

2
η1−xη2+ t

2
η2−(2s−y2)z+y2z+ξt]

× τ(2s − y2, η1)τ(y2, −η2)W (f, g)(s, z)dzdsdy2dη1dη2dt.

Next, observing that
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∫
Rd

e−2πi(
η2
2 − η1

2 +ξ)tdt =
∫
Rd

e−2πi(η2−η1+2ξ) t
2 dt = 2d

∫
Rd

e−2πi(η2−η1+2ξ)t′
dt′,

= 2d

∫
Rd

e−2πiη2t′
Mη1−2ξ1(η2)dt′ = 2dTη1−2ξ1̂(η2)

= 2dTη1−2ξδ(η2).

we obtain

W (TIIf, TIIg)(x, ξ) = 22d

∫
R4d

e−2πi[Φ(2s−y2,η1)−Φ(y2,2ξ−η1)+2(ξ−η1)x+2(y2−s)z]

× τ(2s − y2, η1)τ(y2, 2ξ − η1)W (f, g)(s, z)dzdsdy2dη1

=
∫
R2d

kII(x, ξ, s, z)W (f, g)(s, z)dsdz,

where

kII(x, ξ, s, z) = 22d

∫
R2d

e−2πi[Φ(2s−y2,η1)−Φ(y2,2ξ−η1)+2(ξ−η1)x+2(y2−s)z]

× τ(2s − y2, η1)τ(y2, 2ξ − η1)dy2dη1.

Next, we make the change of variables s − y2 = r/2 and ξ − η1 = −t/2 so that

kII(x, ξ, s, z) =
∫
R2d

e−2πi[Φ(s+ r
2 ,ξ+ t

2 )−Φ(s− r
2 ,ξ− t

2 )]e2πi(tx+rz)

× τ(s +
r

2
, ξ +

t

2
)τ(s − r

2
, ξ − t

2
)dtdr,

which is (57). �
Theorem 5.5. Consider TII the FIO of type II in (50). Fix N ∈ N, N > d,
and assume that the symbol τ ∈ Γm(R2d), with m < −2(d+N). Let kII be the
associated Wigner kernel, given by (57). Then,

|kII(x, ξ, y, η)| � 〈(y, ξ)〉2N+m

〈(y, η) − χ(x, ξ)〉2N
, x, ξ, y, η ∈ R

d. (58)

Proof. We follow the pattern of the proof of Theorem 4.2. By (57) and using
the Taylor expansions in (45) and (47) we obtain

kII(x, ξ, y, η) =
∫
R2d

e2πi[r·(η−Φy(y,ξ))+t·(x−Φξ(y,ξ))]τ̃(y, ξ, r, t)drdt, (59)

where

τ̃(y, ξ, r, t) = e−2πi[Φ2−Φ̃2](y,ξ,r,t) × τ(y +
r

2
, ξ +

t

2
)τ(y − r

2
, ξ − t

2
),

and the reminders are given by:

Φ2(y, ξ, r, t) =
∑

|α|=2

∫ 1

0

(1 − τ)∂αΦ((y, ξ) + τ(r, t)/2)dτ
(r, t)α

23α!

and

Φ̃2(y, ξ, r, t) =
∑

|α|=2

∫ 1

0

(1 − τ)∂αΦ((y, ξ) − τ(r, t)/2)dτ
(r, t)α

23α!
.
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Again, for N ∈ N and setting u = (r, t) ∈ R
2d, we have:

(1 − Δu)Ne2πi(η−Φy(y,ξ),x−Φξ(y,ξ))·(r,t)

= 〈2π(η − Φy(y, ξ), x − Φξ(y, ξ))〉2Ne2πi(η−Φy(y,ξ),x−Φξ(y,ξ))·(r,t).

Integrating by parts in (59), we get:

kII(x, ξ, y, η) =
1

〈2π(η − Φy(y, ξ), x − Φξ(y, ξ))〉2N

∫
R2d

e2πi(η−Φy(y,ξ),x−Φξ(y,ξ))·(r,t)

× (1 − Δu)N τ̃(y, ξ, r, t)drdt.

The same estimates of Theorem 4.2 yield to:

|kII(x, ξ, y, η)| ≤ 1

〈2π(η − Φy(y, ξ), x − Φξ(y, ξ))〉2N

∫
R2d

|(1 − Δu)N τ̃(y, ξ, r, t)|drdt

� 〈(y, ξ)〉2N+m

〈(y, η) − χ(x, ξ))〉2N
.

�

From [12] we deduce

Corollary 5.6. Under the assumptions of Theorem 5.5, the estimate (7) holds
true, hence TII ∈ FIO(χ,N).

Proof. It follows from (58), since 2N + m < 0 so that 〈(y, ξ)〉2N+m ≤ 1, for
every y, ξ ∈ R

d. �
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Transm. 2, 61–74 (1948)

[34] Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys.
Rev. 40(5), 749–759 (1932)

[35] Zhang, Z. C.: Uncertainty Principle for the Free Metaplectic transformation.
Submitted

[36] Zhang, Z. C.: Linear Canonical Wigner Distribution Based Noisy LFM Signals
Detection through the Output SNR Improvement Analysis. Submitted

[37] Zhang, Z., He, Y.: Free Metaplectic Wigner Distribution: Definition and Heisen-
berg’s Uncertinty Principles

Elena Cordero, Luigi Rodino and Mario Valenzano
Dipartimento di Matematica
Università di Torino
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