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How do the fitness effects of several mutations combine? Despite its simplicity, this 
question is central to our understanding of multilocus evolution. Epistasis —the 
interaction between alleles at different loci— influences evolutionary predictions1,2, 
“almost whenever multilocus genetics matters”3, in particular epistasis for fitness 
traits (reproduction, survival). Yet, very few models4,5 have sought to predict 
epistasis and none has been empirically tested. Here, we show that the distribution 
of epistasis can be predicted from the distribution of single mutation effects, based 
on a simple fitness landscape model6. We show that this prediction closely matches 
the empirical measures of epistasis that have been obtained for the bacterium 
Escherichia coli7 and the RNA virus VSV8. Our results suggest that a simple fitness 
landscape model may be sufficient to quantitatively capture the complex nature of 
gene interactions. This model may offer a simple and widely applicable alternative 
to complex metabolic network models, in particular to include epistasis in 
evolutionary predictions. 

 
Recent technical improvements in genetics have enabled to measure epistatic 

interactions in a very precise way. Large amounts of empirical evidence, stemming from 
the study of development, metabolic networks5, or quantitative traits analyses9, have 
accumulated to show that epistasis is a widespread feature of genetic systems. However, 
despite numerous examples of epistatic interactions between particular pairs of loci, 
relatively little is known on the overall distribution of epistasis among random sets of 
mutations scattered across the genome. A few studies have sought to directly measure 
this distribution in model systems such as the bacterium Escherichia coli7, RNA 
viruses8,10,11, or the brewing yeast Saccharomyces cerevisiae12. These studies revealed 
that the variance of epistatic interactions was large compared to their mean, which was 
always relatively close to zero10. 

Unfortunately, theoretical developments have not gone hand-in-hand with these 
recent empirical advances and, in particular, no theory is yet available to explain, predict, 
or generalize these observations. Fitness epistasis among mutations at enzymatic loci has 
been modeled using Metabolic Control Theory4 or Flux Balance Analysis (FBA)5. The 
former assumes idealized metabolic pathways and specific metabolism-fitness 
relationships, whereas the latter models a much more precise and complete metabolic 
network based on genomic data from model organisms. These approaches propose a clear 
and valuable mechanistic basis for gene interaction, and FBA has even been successfully 
tested13, although only for the extreme case of single gene knockouts. However, FBA 
requires extensive knowledge of the metabolism of particular organisms in particular 
environments so it cannot be applied to a wide range of biological systems. Perhaps more 
importantly, the predicted patterns of epistasis remain to be directly confronted to 
empirical data. 

Despite the relatively minor role that Fisher attributed to epistasis in adaptation, 
his geometrical model of adaptation14 provides a general, yet unexplored, framework to 
predict epistasis among mutations. This model assumes stabilizing selection on n 
phenotypic traits. The effect of a mutation is modeled as a random displacement in this n-
dimensional phenotypic space. Although it has been very useful in rejuvenating the 
theory of adaptation15, Fisher’s model is often merely viewed as a heuristic picture for 
mutational effects. However, by avoiding a mechanistic description of the relationship 
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between particular mutations, phenotypes, and fitness, it allows a global description of 
mutational effects, without an exhaustive knowledge of the underlying genetic details. 
This generality is what makes it attractive16. In addition, many of the underlying 
assumptions in Fisher’s original model are, in fact, quite realistic17 or can easily be 
relaxed6,18. 

Here, we used an extended version of Fisher’s geometric model6, which allows 
for arbitrary mutational and selective interactions between traits determining fitness (Fig. 
1 illustrates the model and its assumptions). Any model of stabilizing selection (selection 
for a given optimum) naturally generates epistasis for fitness, even when mutations act 
additively on the underlying phenotype, because the relationship between phenotype and 
fitness is non-linear, as illustrated for our particular model on Figure 1. The model is 
formulated in terms of measurable quantities (focusing on mutant fitness W instead of 
underlying phenotype z, Fig. 1), which makes it directly comparable to observation. A 
Gaussian fitness function (relating phenotype to fitness) was chosen because (i) it 
approximates any smooth function in the vicinity of an optimum and (ii) it qualitatively 
predicts observed patterns in empirical data, like the gamma distribution of mutational 
effects in benign environments6, and the effect of environmental harshness on  the 
mutational mean and variance in fitness19. Finally, the model can be easily generalized to 
describe epistasis among more than two mutations (Supplementary Methods). 

From this model, three testable predictions were derived (see details and 
interpretation in Methods). Log(wi) denotes the log-fitness of a mutant bearing mutation i, 
relative to that of the non-mutated initial genotype (eq. (1)). Epistasis among a pair of 
mutations i and j, eij, is defined (eq. (2)) as the difference between the log-fitness of the 
double mutant and that expected if mutations acted multiplicatively: eij ª log(wij) – log(wi 
wj). The model first predicts that the probability density function of eij is well 
approximated by a Gaussian with mean zero and variance 2vs*, where vs* = Var(log(wi)) 
is the variance of single mutation effects measured in an environment to which the initial 
genotype is well-adapted (eq. (3)). The second prediction of the model is that epistasis 
among pairs of beneficial mutations should be both biased and skewed towards negative 
values. Third, the model predicts that when the initial genotype is at or near the optimum, 
the distribution of log-fitnesses among mutant lines with k mutations (all deleterious) can 
be approximated by a Gamma distribution Γ(β, α) with a constant shape (β) and a scale 
(α) proportional to k. 

These three predictions have been tested with data from two widely different 
species, the bacterium E. coli7 and vesicular stomatitis virus (VSV)8(see Fig. 2). The two 
first lines of Table 1 report the tests for the first prediction. For each species three 
predictions have been tested (eq. (3)): among all pairs of mutations, E(eij) = 0, Var(eij) = 
2vs*, and eij ~ N(0,2vs*). None of these hypotheses was rejected. As already outlined in 
the original studies, E(eij) does not significantly depart from 0 in both E. coli and VSV. 
Furthermore, the observed Var(eij) are very close to the predictions (< 5% difference) if 
synthetic lethals are discarded. Finally, overall, the distributions are not significantly 
different from the predicted Gaussian N(0,2vs*) (Table 1 and Fig. 2). The power curves 
for these tests (see Supplementary Fig. 3) also indicate that even if small departures 
from the null hypotheses could not be detected, the “true” differences between 
observations and predictions are likely to be relatively small (except perhaps for the E(eij) 
value observed for E. coli). 
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The second prediction was tested with the subset of beneficial mutations that were 
analyzed in the VSV experiments. The model does not provide an analytical expression 
for the distribution of eij among beneficial mutations and therefore, the test was 
performed by confronting the observed epistasis with a simulated distribution, with 
parameters inferred from the distribution of single mutant fitnesses. Table 1 summarizes 
these tests, and Fig. 3 illustrates the agreement of the empirical and predicted 
distributions (note that among the subset of beneficial mutations, E(eij) < 0 is expected 
and observed). None of the predictions regarding the mean, variance, or distribution of eij 
were rejected, and the power of these tests was reasonably good (Supplementary Fig. 3). 
However, this comparison has obvious limitations, being based on only 15 double 
mutants constructed from six distinct beneficial mutations. 

Testing the third prediction requires fitting gamma distributions to the log-fitness 
of mutant lines carrying a known number k of mutations, to check whether the change in 
shape (βk) and scale (αk) with k conforms to the prediction. We used an extensive 
collection of E. coli genotypes differing in the location and number of transposon-
insertions7 (see Methods). This dataset consists in log-fitness measures of genotypes 
carrying either k = 1, 2, or 3 random insertions, with 75 different combinations per k 
value. To estimate the log-fitness distributions for each k value, independent gamma 
distributions were fitted to the data by maximum-likelihood (model 1 of Table 2, see 
Methods), discarding four synthetic lethals. These estimates were compared to alternative 
data fits where α and/or β are constrained according to k values, following alternative 
predictions. Table 2 gives the Akaike’s Information Criterion (AIC)20 for several 
alternative models, and the parameter estimates for the best-fitting models. The model 
imposing exactly our theoretical expectation (eq. (A.5) of Supplementary Methods: βk = 
β1 and αk = kα1) is the most adequate one (lowest AIC, model 4). When directly 
estimated (model 1), the parameters are indeed very close to the model prediction 
(Supplementary table and Fig. 4). Thus, the form of epistasis and its impact on log-
fitness distributions seems accurately captured by the model. 

Overall, the distribution of epistasis for fitness predicted from a simple fitness 
landscape model adequately accounts for empirical distributions among both pairs and 
triplets of non-lethal mutations (including between beneficial ones). To our knowledge, 
this is the first empirical support given for a general model of epistasis. The inherent 
simplicity in this model allows making testable predictions, which are rarely available at 
this degree of generality in other models connecting genotype to phenotype to fitness, and 
offers an alternative to the more complex and specific metabolic network models recently 
developed5. The quantitative accuracy and generality of the predictions, which are 
independent of the adaptation level, number of traits or phenotypic correlations, could be 
useful in many evolutionary predictions (e.g., the evolution of sex21,22). Finally, the fit 
between this general model and data from two remarkably different species suggests that 
the observed empirical patterns may apply to other species as well. In particular, among a 
set of random mutations, the average epistasis is small (close to zero) with a large 
variance (twice that of single effects at the optimum), whereas among only beneficial 
mutations, average epistasis is negative. The generality of these patterns remains an 
empirical issue, and being fairly quantitative, they are open to further test, especially in 
higher eukaryotes. 
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METHODS 
 
Model. Following Lande23, the fitness W(z) of a phenotype z (of dimension n, the number 
of phenotypic traits under selection) is given by a multivariate Gaussian function W(z) ≡ 
exp(−½ zT·S·z) where T denotes transposition, and S is an arbitrary nän symmetric 
positive semi-definite matrix that describes all the selective interactions between 
phenotypic traits. Note that the fitness function may therefore be flat on some directions 
of the landscape (if S has some null eigenvalues). The initial non-mutated genotype’s 
phenotype vector is denoted zo, and its level of adaptation is measured by so ≡ −logW(zo) 
= ½ zo

T·S·zo. The phenotypic effect of a mutation i is given by the vector dzi, so the 
mutant phenotype is zo + dzi, and its log-relative fitness is6 
 
 log(wi) = log(W(dzi + zo)/W(zo)) = −zo

T·S·dzi − ½ dzi
T·S·dzi. (1) 

 
Note that the dzi here refers in fact to genotypic values (averaged over replicates 

of a given line) not to individual replicate phenotypes (which are also influenced by 
micro-environmental effects). It can be shown (ref. 24 and  Supplementary Note) that if 
fitness W(z) is a Gaussian function of individual phenotypes, then log-relative fitness is 
necessarily a quadratic function of genotypic values as used here, so that environmental 
effects on phenotype can be ignored. This model has received indirect support from 
empirical distributions of single mutation effects6,19. The effects of mutations on 
phenotype were assumed additive, so that the joint effect of mutations i and j is dzij = dzi 
+ dzj. Importantly, the model is robust to this fairly strong assumption (see 
Supplementary Fig. 2). From eq. (1), if wij ª W(zo + dzij)/W(zo) is the relative fitness of 
the double mutant, then pairwise epistasis, defined as eij ª log(wij) – log(wi wj), is given 
by 
 
 eij = −dzi

T·S·dzj. (2) 
 
From eq. (2), it appears that fitness epistasis between two given mutations does not 
depend on zo, the position of the wild-type in phenotypic space (i.e. of its degree of 
adaptation to the environment). This stems from the fact that we assumed a Gaussian 
fitness function. Indeed, epistasis eij depends on the curvature of the log-fitness function 
(logW(z), see Fig. 1), and this curvature is the same for all z with a quadratic log-fitness 
(or Gaussian fitness). 

To predict the distribution of eij from eq. (2), assumptions must be made on the 
distribution of mutation effects on phenotype (the dz). We assume that dz is drawn into a 
multivariate Gaussian distribution with mean 0 and arbitrary covariance matrix M. Then, 
eij is a bilinear form in Gaussian vectors25 whose moments can be related to those of the 
distribution of single effects, log(wi) given in eq. (1). At the optimum (so = 0 and zo = 0 in 
eq. (1)), the variance vs* of log(wi) is6 vs* = Var(−½ dzi

T·S·dzi) = ½ Tr((S·M)2), where 
Tr(·) denotes matrix trace. Now, from eq. (2) and because dzi and dzj are independent 
(Cov(dzi,dzj) = 0), we find, for eij, a mean μe ≡ E(eij) = E(−dzi

T·S·dzj) = 0 and, because 
the phenotypic effects dzi are multivariate Gaussian, the variance of epistasis is given by 

 
 ve ≡ Var(eij) = Var(−dzi

T·S·dzj) = Tr((S·M)2) = 2vs*. (3) 
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For the same reasons, the distribution of eij has also no skewness so that the 

Gaussian N(0, 2vs*) provides a simple and accurate approximation to the distribution of 
eij (see Supplementary Fig. 1.a), depending on a single parameter (vs*). When the initial 
genotype is not at the optimum (so>0), the variance of log(wi) is not equal to vs* but must 
be corrected6 with a measure of so, as vs* º Var(log(wi))/(1 + 2so/ s ), where s = E(log(wi)) 
is the mean effect of single mutations on log relative fitness. This correction was used for 
the VSV dataset. 

The prediction ve = 2 vs* in eq. (3) is fairly general. In particular, as eq. (2) does 
not depend on zo, this relation is valid for any distance to the optimum so. Similarly, as 
eq. (3) is valid for any M and S, it does not depend on the details of the phenotypic 
landscape: the number of traits n (dimension of M and S), or their mutational and 
selective correlations (elements of M and S). Although these parameters do influence 
distributions of single mutation fitness effects6, they do not alter the relationship between 
single and multiple mutant fitnesses. 

Similarly, the distribution of eij among only beneficial mutations can be obtained 
for a given fitness landscape (though only by numerical simulations). This landscape is 
well characterized6 by an ‘effective trait effect’ λe (that depends on the distribution of the 
eigenvalues of S·M) and an ‘effective number of dimensions’ ne. The distribution of eij 
(eq. (2)) in the original landscape (S, M) is well approximated by its corresponding 
distribution in the equivalent landscape, for which S = λeIne and M = Ine, where Ine 
denotes the identity matrix of dimension ne. As for single mutation effects6, the 
approximation fits the two first moments of the whole distribution of eij among all 
mutations, but it is also accurate for the subset of beneficial ones (as shown by 
simulations on Supplementary Fig. 1.b). Since both λe and ne can be estimated from a 
dataset of single mutation effects6, eij among beneficial mutations can be numerically 
simulated for the same dataset, as was done wit the VSV dataset (see Fig. 3).  

Epistasis among beneficial mutations tends to be negatively biased in this fitness 
landscape. This fact stems from the non-linear relationship between phenotype and 
fitness. In the phenotypic landscape described in Figure 1, two beneficial mutations 
necessarily point to very similar directions (i.e. towards the optimum). However, because 
the fitness function is concave, there is a diminishing return of W on z, along this 
direction. Therefore, two steps towards the optimum result in a lower fitness than what 
would be expected from the addition of the fitness effects of each mutation, which 
corresponds to negative epistasis. More precisely, consider the expression of eij as given 
in eq. (2), but in the equivalent landscape (where S = λeIne). If dxi and dxj are the vectors 
of effects of mutations i and j in the equivalent landscape, then from eq. (2), eij can be 
written eij = − λe dxi

Tdxj. Therefore, the sign of eij is the sign of minus the cosine of the 
angle between dxi and dxj. Because two beneficial mutations tend to point to a similar 
direction (the optimum), their angle is small so their cosine is positive. For this reason, eij 
between beneficial mutations tends to be negatively biased. Furthermore, this bias 
increases when the distance to the optimum decreases (simulations not shown). This is 
simply due to the fact that the possible directions of dz resulting in beneficial mutations 
are more constrained when closer to the optimum, which results in smaller angle between 
these mutations, and therefore more negative epistasis.  
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The model can also easily be extended to lines carrying more than two mutations 
(see Supplementary Methods). When so º 0, the distribution of log-fitnesses among 
lines carrying k mutations has mean E(log(w|k)) = −k s  and variance Var(log(w|k)) = 
k2vs*, where s and vs* are the mean and variance of log-fitnesses among single mutants (k 
= 1), when so = 0. Using the same approach as in ref. 6, the log-fitness distributions were 
approximated by a negative gamma matching the two first moments of the exact 
distribution given above. If we denote αk and βk the scale and shape parameters of the 
gamma approximation for log(w|k), we then obtain: αk = kα1 and βk = β1. This simple 
approximation shows good accuracy, as illustrated by simulations in Supplementary 
Figure 1.c. In the absence of epistasis (additive log-fitness effects), the alternative 
prediction is given by: αk = α1 and βk = kβ1 (see Supplementary Methods). 

All our predictions stem from three necessary and sufficient assumptions 
(summarized in Fig. 1): (i) a Gaussian fitness function W(z), (ii) additivity of the effects 
of mutations on phenotype (z) and (iii) Gaussian distribution of these mutation effects 
with no bias (zero mean). Together, (i) and (ii) lead to eq. (2), while the remaining 
predictions require also (iii) to be valid, but are fairly robust to the additivity assumption 
(ii) as shown in Supplementary Figure 2. Note also that assumption (iii) is overly 
restrictive: as the definition of traits is arbitrary, what is in fact needed is that there exist a 
transformation of ‘real’ phenotypic traits such that mutational effects on these 
‘transformed’ traits can be approximated by a Gaussian6. 
 
Data 
To test our predictions, we chose the largest available epistasis datasets. However, we 
discarded studies based on standing genetic variation instead of newly arisen mutations, 
including a very large study measuring the whole distribution of epistasis in HIV-111. 
Indeed, the model is meant to describe newly arisen mutations, and its assumptions (e.g. 
symmetrical phenotypic distributions) may be invalidated by past selection altering the 
distribution of phenotypes. Several studies have measured (more or less directly) the 
mean of eij among random mutations in model species such as Drosophila 
melanogaster26, yeast12 or RNA viruses10: many found either a small or no departure 
from our expectation that E(eij) = 0 (reviewed in refs. 3 and 10). However, fewer studies 
directly measured its distribution by estimating individual epistasis coefficients among 
individual pairs of random mutations (not only those conferring visible phenotypes), of 
known effect, and in homozygous or haploid state (to avoid the confounding effect of 
dominance), which is what is required to fully test the predictions. To our knowledge, the 
datasets presented below are the only ones doing so, and with enough replicates to ensure 
that the power of the statistical analyses is not too low (see Supplementary Fig. 3). 
 
E. coli dataset 1: This dataset (Fig. 3 of ref. 7) consists of fitness estimates in E. coli 
genotypes bearing one or two transposons (mini-Tn10) insertions. Log relative fitness 
was estimated for the 27 possible pairs constructed from 9 distinct bacterial genotypes 
bearing a single mini-Tn10 insert with known fitness effect, yielding a complete set of 
log(wi) and log(wij) estimates. In this dataset the variance of single fitness effects vs* is 
directly available since the initial genotype was well adapted to the test environment. 
This initial genotype has indeed evolved for 10,000 generations in this environment27 
and, correspondingly, not a single beneficial mutation was detected among 225 insertions 
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tested in that same environment28. vs* was therefore directly measured from Var(log(wi)) 
among the whole set of single mutants used to produce the double mutants. 
 
E. coli dataset 2: This dataset (Fig. 2 of ref. 7), corresponds to fitness estimates 
(replicated three times) for genotypes bearing either k = 1, 2 or 3 random mini-Tn10 
inserts, with 75 distinct mutant genotypes per k value, and a corresponding fitness 
estimate of the non-mutated genotype (replicated 195 times). It is the largest dataset 
available for the effect of random mutations, in combination or isolated, that we found in 
the literature. For the same reason as for VSV dataset, we discarded the non-viable 
genotypes from our analysis (one for k = 2 and three for k = 3). 
 
VSV dataset: In this dataset, single and double mutants were created on an infectious 
cDNA by site directed mutagenesis and recovered after transfection of susceptible cells 
with the mutant plasmids8. As discussed in ref. 29, this recombinant  virus was not well 
adapted to the measure environment, resulting in a proportion (º 5%) of mutations with 
beneficial effects (of up to log(wi) = 0.095), so that so > 0. so was measured by maximum 
likelihood fitting of a displaced gamma distribution6 on the distribution of log(wi) of the 
mutations used to construct the double mutants. The resulting estimate of so = 0.11 (SE = 
0.01) was used to infer vs* = Var(log(wi))/(1 + 2so/ s ) where s =E(log(wi)) is the mean 
fitness effect6 (see above). The estimated shape β = 1.94 (SE = 0.47) and the scale α = 
0.095 (SE. = 0.02) of this distribution were used to infer ne = 2.5 and λe = 0.06 (using eqs. 
6.a and 6.b of ref. 6), that were needed (along with so) to numerically predict the 
distribution of eij among beneficial mutations for this dataset. Note that among the 62 
double mutants studied, 3 were non viable (synthetic lethals, wij = 0), and were removed 
from the dataset as the model cannot account for lethal mutations. Note also that in ref. 8, 
the results are presented separately for pairs of beneficial and deleterious mutations (15 
and 44 pairs, respectively, synthetic lethals excluded), whereas the whole set of random 
mutations (a total of 44 + 15 = 59 pairs) must be used to test the above first prediction 
(Fig. 2 and Table 1). 

Different methods were used in each species to produce mutations (transposons 
for E. coli vs. point mutations for VSV) but reviews of the empirical literature suggest 
that this should not result in strong differences for mutation effects on phenotype30 or 
fitness traits6. The present model directly depends on phenotypic effects of mutations, not 
on their genetic nature, which may explain why it seems to accurately account for both 
the VSV and E. coli datasets. 
 
Statistical analyses. To test the third prediction on VSV dataset 2, three negative gamma 
distributions were simultaneously adjusted to the relative fitnesses of single, double and 
triple mutants taking into account the variance in fitness estimated per line (from three 
independent replicate measures). Measurement error were assumed to be normally 
distributed, so that the fitness of each mutant j was drawn from N(μj, σj). It was also 
assumed that μj values were drawn from a negative gamma distribution Γ(βk, αk) where 
subscript k (= 1, 2, 3) refers to single, double and triple mutants, respectively. On raw 
data, there is a strong dependence between measurement error and the magnitude of 
fitness effects (the three repeated fitness measures of strongly deleterious mutants tend to 
show much larger variance). To account for this strong heteroscedasticity, a linear 
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dependence of σ on μj was assumed. More specifically, σi was modelled as σ + aμj, 
where a and σ are estimated from the data. Then the likelihood of the data given the 
parameters (α1, α2, α3, β1, β2, β3, σ, a) was maximized according to the likelihood 
function given in eq. (A.6) of Supplementary Methods. Alternative models were 
constructed by constraining αj and βj values (models 1-5 in Table 2). Models were 
compared based on their AIC20 score and/or by likelihood ratio tests. This analysis 
confirmed the existence of a strong dependency of measurement error on the magnitude 
of fitness effects (e.g. in model 1, a = 0.21, support limits {0.19, 0.25}). 
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Figure Legends 
Figure 1 Fitness landscape model of epistasis between mutations, based on three main 
assumptions (listed on the left (i), (ii) and (iii)). An example of the fitness landscape is 
given with only two phenotypic traits determining fitness, and two mutations i and j (both 
beneficial here). Fitness W(z) decreases as a multivariate Gaussian function of the 
distance to the optimum on both traits, with arbitrary interactions between traits 
(assumption (i)). From an arbitrary initial phenotype (zo), distinct mutations (at different 
loci) produce random perturbations of phenotypic traits (dzi,dzj), which act additively on 
phenotype when combined together (dzij) (assumption (ii)). Although mutation effects on 
z are additive, epistasis measured on log relative fitness (eij) is naturally generated by the 
non-linear mapping from phenotype z to fitness W(z). With stabilizing selection, the 
curvature of W(z) produces a diminishing return of fitness on phenotype, so that two 
mutations which effects add up for phenotype, do not add up for fitness (here, the 
outcome is negative eij). The more precise quantitative predictions regarding eij 
distributions depend on the type of distribution chosen for the dzi: in our model, a 
multivariate Gaussian with arbitrary mutational covariances (assumption (iii)). 
 
Figure 2 Observed and predicted distributions of fitness epistasis between random pairs 
of mutations. The observed distribution of epistasis for log-fitness is presented for two 
model species (E. coli dataset 17 and VSV dataset8), together with the predicted Gaussian 
distribution N(0, 2vs*), where vs* is the variance of single fitness effects (at the optimum, 
so = 0) estimated directly (E. coli) or inferred (VSV, using the correction for so ≠ 0, see 
Methods). As an illustration, the dashed line gives the kernel density estimate of the data 
(a smoothed equivalent of a histogram) with a Gaussian smoothing kernel. The model 
and data are in very good agreement in both species. 
 
Figure 3 Observed and predicted distributions of epistasis between VSV beneficial 
mutations8 (15 epistasis estimates). The predicted distribution (continuous line) is 
obtained by simulations calibrated with the estimates of ne, so, and λe from single mutant 
log-fitnesses (see Methods and Table 1): 1500 mutant phenotypic effect vectors, dxi, 
were drawn into a standard multivariate Gaussian of dimension n = ne = 3 which is the 
closest integer to ne = 2.5 estimated from the VSV data. A vector of the multivariate 
distance to the optimum, xo, was drawn into the same distribution and scaled so that −½ 
λe log(xo

T.xo) = so (with so = 0.11 and λe = 0.06, from the data). The epistasis coefficient 
between pairs of mutations (i,j) is computed as eij = − λe dxi

T·dxj, and we only kept the 
subset of simulated mutants with beneficial single effect (i.e. dxi such that log(wi) = 
−λe(xo

T·dxi + ½dxi
T·dxi) >0), the resulting distribution is that of eij among all possible 

pairs of beneficial mutations for this simulation. This was repeated 20 times to account 
for the effect of variation of the direction of xo for a given so. The predicted distribution 
(plain line), obtained by the overall distribution of eij among the 20 replicated 
simulations, is close to the empirical distribution (histogram). 
 
Figure 4 Observed and predicted change of the distribution of log-fitness with the 
number of mini-Tn10 insertions in E. coli: gamma approximation. Parameters of a 
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gamma distribution (its rate 1/α on panel a., and its shape β on panel b.) estimated by 
maximum likelihood on E. coli dataset 27, for each subset of mutants (single, double and 
triple). The estimated values where obtained by independently fitting gamma 
distributions on each subset (model 1, Table 2). The predicted values where obtained by 
constraining the parameters of the gamma across subsets to follow our prediction (model 
4, Table 2): α proportional to the number of mutations per line in each subset (one, two 
or three), and constant β across subsets. Bars give the support limits for the estimates 
(given in Supplementary Table). The unconstrained fit is not significantly better than 
the fit imposing our prediction (model 4 vs. model 1, χ2 = 2.32, 4 d.f., P = 0.68). 
 
 

Tables 
Table 1 Pairwise epistasis in VSV and E. coli: fit to predictions 
 

Species ref. (nb. of obs.) 
Input 

parameters 
(nb. of obs.) 

Epistasis variance 
ve obs (SE) 
ve pred (SE) 

ve obs / ve  pred 
F-test 

Epistasis mean 
μe  obs (SE)  

t-test 
KS test 

E. coli7 (n = 27) 
(all mutations) 

vs* = 0.033 
(n = 54) 

ve obs = 0.0652 (0.017) 
ve pred = 0.0670 (0.013) 

F26,53= 97% 
P = 0.94 

μe  obs = −0.033 (0.05) 
μe  pred = 0 

t26 = −0.66, P = 0.51 

D = 0.18 
P = 0.30 

VSV8 (n = 59) 
(all mutations) 

vs* = 0.0047 

so = 0.11a 

(n = 118) 

ve obs = 0.0089 (0.0016) 
ve pred = 0.0094 (0.0012) 

F58,117 = 95% 
P = 0.86 

μe obs = 0.004 (0.012) 
μe  pred = 0 

t58 = 0.31, P = 0.75 

D = 0.085 
P = 0.76 

VSV8 (n = 15) 
(beneficial mutations) 

ne = 3a

λe = 0.06a

so = 0.11a 

(n = 118) 

ve obs = 0.0043 (0.0016) 
ve pred = 0.0045 (.) 

obs/pred  = 96%
χ²14 = 13.4 

P =0.99 

μe obs = −0.075 (0.023) 
μe  pred = -0.059 

t9 = −0.95, P = 0.36 

D = 0.27 
P = 0.22 

 

a estimates from the fit of the VSV dataset (displaced gamma), with n = ne = 3 in 
simulations (Fig.3) closest integer to the estimated ne = 2.5. 

 
Test of the fit to predictions: observed (ve obs) and predicted (ve pred) variances were 

compared with two-tailed F-tests, as the prediction (ve pred = 2vs*) is itself based on an 
independent estimate of vs*. For beneficial mutations in VSV (third line), the simulated 
prediction (see Methods) was considered exact (a conservative approach), so that a two-
tailed χ² test was used. Observed (μe obs) and predicted (μe pred) means were compared 
using two-tailed t-tests. Distributions were not significantly different from a Gaussian 
(Shapiro-Wilks test: p = 0.45 (E. coli), p = 0.44 (VSV, all mutations), p = 0.59 (VSV, 
beneficial mutations). The predicted and observed overall distributions were also 
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compared using Kolmogorov-Smirnov (KS) tests (one sample tests with N(0, 2vs*), or 
two sample test with the simulated prediction for beneficial mutations in VSV). The 
second column gives the value of the input parameters used in the prediction, estimated 
independently from the log-fitness distributions of the single mutants from which the 
double mutants were derived. None of the observed distributions differ significantly from 
the predictions. The ratios of variances (in bold) show that the prediction is always within 
5% of the estimation. Power curves for the t and F-tests are illustrated on 
Supplementary Figure 3. 
 
 
Table 2 Effect of the number of mutations in E. coli: model comparison. 
 

Model Constraints df Dev AIC 
1 a α1, α2, α3   | β1, β2, β3 8 0 16 
2 α1, α2 , α3 | β1 =β2 = β3 6 0.08 12.08 
3 α1 = α2 = α3 | β1, β2, β3 6 8.24 20.24 

4 b α2 = 2α1, α3 = 3α1 |  β1 = β2 = β3,   4 2.32 10.32 
5 α1 = α2 = α3 |  β1 = β2 = β3 4 21.8 29.8 

  

a estimate: shape β and scale α fitted independently for each mutant subsets. 
b our prediction: constant shape β and increasing scale αk = kα1. 
 
Models fitted for E. coli dataset 27. βk and αk refer to the shape and scale of the gamma 
distributions fitted to the log-fitness distributions of distinct mutant sets (carrying k = 1, 2 
or 3 mini-Tn10 insertions). Models are spelled out by the constraints imposed among 
these parameters in the fitting process. For each model are indicated, the number of fitted 
parameters (df), the residual deviance (Dev) and the Akaike Information Criterion (AIC). 
Model 1 is unconstrained and provides the direct estimation of βk and αk, the distributions 
for k = 1, 2 or 3 are fitted independently. Its fit is not significantly better (χ2 = 2.32, 4 d.f., 
P = 0.68) than that of Model 4 (more constrained) which corresponds to our prediction 
(constant shape β and increasing scale αk = kα1 , see Supplementary Methods) and 
which is the most adequate model (lowest AIC). Similarly, model 2 (constraining shapes 
to be identical) is not significantly better than model 4 (χ2 = 2.24, 2 d.f., P = 0.33). Model 
3 corresponding to multiplicative fitness effects (eij = 0, see Supplementary Methods) 
and model 5 (all distributions equal) are both rejected, showing that the analysis has 
enough statistical power to reject inaccurate models. 

15/15 



Supplementary Methods: Mutational epistasis for fitness 
Martin G., Elena S.F., Lenormand T. 

Supplementary Methods: epistasis in genotypes bearing more 
than two mutations 

 
I) Distribution of log-fitness with an arbitrary number of mutations 

In this appendix, we compute the mean E(log(w|k)) and variance Var(log(w|k)) of 
the log relative fitness among lines carrying exactly k mutations. Denote {dzi}i∈[1,k], the 
set of vectors describing the effect of each of the k mutations on phenotype. Assuming 
that mutations act additively on phenotypic traits, the resulting mutant phenotype is the 
sum of each effect: z = . Under the Gaussian fitness function assumed in our 

model, the log-fitness of this mutant is log(W(z)) = −½ zT·S·z where T denotes 
transposition. Then, the log-relative fitness of the mutant (log(W(z)/W(zo)) carrying the k 
mutations with effects {dzi}i∈[1,k] is then given by: 

o 1

k
ii=

+∑z dz

o

j

z

1 ij

 

 , (A.1) 
( ) ( )( ) ( )( )o 1

T
1 1 1

log ( ) log logk
ii

k k k
i ii i j i

w W W

s

=

= = = +

= + −

= −

∑
∑ ∑ ∑

z z dz

dz .S.dz

 
where si = log(wi) = −zo

T·S·dzi − ½ dzi
T·S·dzi is the single log-fitness effect of mutation i 

(see Methods), denoted si below. Rewriting (A.1) with our definition of epistasis based 
on log-fitness, eij = −dzi

T·S·dzj, we get the relative fitness of a mutant bearing k mutations 
with individual effects {si} i œ [1,k]: 
 
 

1 1
log( | ) k k k

ii i j i
w k s e

= = = +
= +∑ ∑ ∑ . (A.2) 

 
Therefore, with a Gaussian fitness function and additive mutation effects on 

phenotype, there is no epistasis of order higher than two (eijk). In addition, because the dzi 
are independently drawn into a multivariate Gaussian distribution, for any i ≠ j 
Cov(dzi,dzj) = 0, so that there are no covariances between the terms in the sums in (A.2). 
Indeed, under these assumptions, Cov(dzi, dzi’

T·S·dzj’) = 0 and Cov(dzi
T·S·dzj , dzi

T·S·dzj’) 
= 0 for any pair {i,j}≠{i’,j’}. This implies that Cov(si, sj) = Cov(si, ei’j’) = Cov(eij, ei’j’) = 
0. Because of this independence, we can apply the expectation and variance operators on 
each term of the sums in (A.2). Define s  = −E(si), the average log-fitness effect of single 
mutations, vs = Var(si) their variance, and ve = Var(eij) the variance of epistasis among 
random pairs of mutations. Then, using (A.2) and the fact that the average epistasis is 
zero (E(eij) = 0) gives the mean and variance of log(w|k), 
 

 
( )( )

( )( ) ( )
log |  

1
log |  

2s e

E w k k s

k k
Var w k k v v

= −

−
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. (A.3) 
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Furthermore, if the initial phenotype is well adapted to the environment where 
fitness is measured (so º 0), then vs = vs* by definition, and as we have shown that ve = 
2vs* (see Methods), (A.3) simplifies to 
 
 ( )( )log |E w k k= − s  and vs*. (A.4) ( )( ) 2log |Var w k k=
 
Matching these exact moments to those of a negative gamma distribution with scale and 
shape αk and βk, gives E(log(w|k)) = −αk βk, Var(log(w|k)) = αk

2βk , which, by 
identification with (A.4) gives 
 

 
2

1
*   and  

*
s

k k
s

vk k
s v

α α 1
sβ β= = = =  (A.5) 

 
From that, it is straightforward to derive the simple relationships between the rate 
parameter (1/αk), the shape (βk) and k used to fit the E. coli dataset 2 (Fig. 4 and model 4 
of Table 2 and Supplementary table). Conversely, when epistasis is neglected, ve = 0 in 
(A.3), so that E(log(w|k)) = k s  and Var(log(w|k)) = k vs*, yielding another relationship 

between k and the parameters: 
2*  and  
*

s
k k

s

v k
s v

α β= = s . This relationship was used for 

model 3 of Table 2 but with less constraint: a constant α was fitted across mutant subsets 
(k = 1, 2, 3), while β was estimated independently for each k value. The exact constrained 
model (i.e. β increasing linearly with k) is even worse, and was not implemented. 
 
 
II) Maximum-likelihood analysis of the fitness distribution of single, double and 
triple mutants 

The log-likelihood of the log relative fitnesses (w) of single, double and triple 
mutants on VSV dataset 2 was computed as 
 

 ( ) ∑∑ ∫ ∏
=

∞

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+Γ=

3

1 0  

);,();,(ln,,,Prln
k j μ i

ijkkk dwaNa μμσμμαβσαβw  (A.6) 

 
where );,( xαβΓ  and );,( xN σμ denote the probability density function of the Gamma 
distribution (with shape β and scale α) and of the Normal distribution with mean μ and 
standard deviation σ (increasing linearly with the mean: coefficient a), respectively. The 
log-relative fitness of a mutant line (log(W(z)/W(zo)) is noted wijk (note the minus sign 
snext to wijk because log-fitness is negative and the gamma is positive). Index k refers to 
simple, double and triple mutants (k = 1, 2, 3), index j to the mutant lines and index i to 
the repeated fitness measures for a given line j. Vectors β ={βk}k œ [1,3] and α ={αk}k œ [1,3]  
refer to the parameters of the gamma distribution for each mutant subset. 

For the estimation of the parameters (model 1 in Table 2), each parameter (α1, 
β1, α2, β2, α3, β3, μ, a) were fitted independently. For the alternative models (2-5), 
distinct constraints (detailed in Table 2) were imposed on α and β as a function of k. 
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Supplementary Note: Fitness as a function of phenotypes vs. of 
genotypic values 

 
At first glance, our model ignores the environmental variance on phenotypes and 

its impact on fitness estimation. Yet, some micro-environmental effects among replicates 
of the same line should alter the phenotypes z, and in turn introduce a bias in the log 
fitnesses logW. In quantitative genetics (see e.g. ref. 1), this problem is overcome by 
defining the fitness function not in terms of phenotypes z but in terms of genotypic 
values. Following this approach, vector zi = zo + dzi in our model represents the 
genotypic value of a mutant line i (with mutation phenotypic effect dzi), which is an 
average over replicated fitness measures of mutant line i (like in the datasets we used). 
We show below that provided environmental effects are independent of genotypes, the 
assumptions of a Gaussian fitness function of phenotype and of genotypic values are 
equivalent in terms of the log-fitness functions logW(.). 

If we denote by vector pij  the phenotype of the jth replicate of line i then this 
phenotype is the sum of the genotypic value of line i (zi) plus a contribution of the 
environment for this particular replicate j (vector ξij). We assume, as is usual1, that this 
contribution is independent of the genotype (i.e. of zi) and multivariate Gaussian with 
mean vector 0 and arbitrary covariance matrix Ve. We first write fitness W(.) as a 
Gaussian function of phenotype  
 

 T 11( )
2ij ij ijW exp −⎛= −⎜

⎝ ⎠
p p W ⎞

⎟p , (B.1) 

 
where W is a symmetric positive-definite matrix. In this case, by taking the expectation 
of W over the distribution of environmental effects ξij for a given genotype zi, it can be 
shown1 that fitness W is also a Gaussian function of genotypic values z,  
 

 T 11( )
2i iW exp −⎛= −⎜

⎝ ⎠
z z Vs i

⎞
⎟z , (B.2) 

 
where Vs = W + Ve. Therefore, as long as the fitness values used are averaged over 
several replicates per lines (which is our case) we can use a Gaussian fitness function 
directly on genotypic values z, thus getting rid of the effect of the environment.  

The argument is still valid in the more general case (assumed in this paper) of 
semi-definite matrices, for which W-1 in (B.1) may not exist. However, it is so only when 
considering log-relative fitness functions (as we do here), not absolute fitness. Let us 
consider our general fitness function replacing W-1 by S in (B.1), for the phenotype – 
fitness function, and assuming S is only semi-definite. Using the fact that pij = zi + ξij, we 
can express the log fitness of the jth replicate of genotype i as 
 

 
TT

T  log ( )  
2 2

ij iji i
ij i ij i ijW = + = − + +

ξ S ξz S zp z ξ z S ξ . (B.3) 
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Like for (B.2), we can express the fitness function in terms of genotypic instead of 
phenotypic values by taking the expectation of logW over the distribution of 
environmental effects ξij for a given genotype zi, which gives 
 

 
( )

TT
T

T

e

  log ( ) log |  ( )
2 2

 1 ( . )
2 2

ij iji i
i i i

i i

W E W E E
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⎝ ⎠

= − −

ξ S ξz S zz z z S ijξ

z S z S V

, (B.4) 

 
where Tr(.) denotes matrix trace (recall that E(ξij) = 0). Therefore we also retrieve a log-
quadratic function, modulo a constant: – ½ Tr(S.Ve) in (B.4). When we consider the log-
relative fitness (as done in our model): log(W(z) / W(zo)) = logW(z) – logW(zo), the 
constant in (B.4) disappears, since it contributes to the log fitness of both the wild-type 
(zo) and the mutant (z). Then, using zi = zo + dzi, we retrieve eq. (1) (main text) for the 
log-relative fitness of mutant i. Note that, as E(logW) in (B.4) is slightly different from 
log(E(W)) as derived from (B.2), the equivalence between quadratic log-fitness for 
phenotype and for genotypic values is only approximate (with weak selection 
coefficients), when S is only semi-definite, while it is exact when S is definite. 
 
 
 
References: 
 
1. Burger, R. Chapter V 1.2. in The mathematical theory of selection, 

recombination, mutation pp 158 - 160 (John Wiley & Sons Ltd, Chichester, UK, 
2000). 
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Supplementary table: Parameter estimation for the MCMC fit 
 
 

ML Estimates E(1/α) E(β) 

number of mutations k 1 2 3 1 2 3 

model 1 40.7 16.8 16.1 0.76 0.71 0.76 

support limits (2 log L) (30.2 – 50.9) (12.5 - 22.1) (12.0 – 21.1) (0.59 - 0.94) (0.57 - 0.87) (0.61 - 0.92)

model 4 39.2 19.6 13.1 0.73 0.73 0.73 

support limits (2 log L) (33.1 - 46.0) n/a n/a (0.63 - 0.82) (0.63 - 0.82) (0.63 - 0.82)

model 4 / model 1 96% 117% 81% 96% 103% 96% 
 
Maximum likelihood (ML) estimates of the parameters of the gamma distributions Γ(β, α) 
describing the fitness of E. coli genotypes with k = 1, 2 or 3 mini-Tn10 insertions7 (see also 
Table 2 and Fig. 4). 1/α is the rate parameter (1/scale) and β is the shape parameter of the 
Gamma distribution. The estimates are given for model 1 (distributions fitted independently 
for each k values) and model 4 which constrains for a constant shape and a scale α 
proportional to k (or rate proportional to 1/k, our prediction). Support limits correspond to the 
region within 2 units of log-likelihood from the maximum. The ratios of estimates between 
model 1 and 4 (expressed in %) are all close to one, showing the good agreement between the 
unconstrained fit (model 1, estimate of the parameters) and the model constrained to follow 
our prediction (model 4). 
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Supplementary Figure 1: agreement of the predicted approximate 

distributions with simulations 
 
 
a) Pairwise epistasis: Gaussian approximation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
b) Pairwise epistasis among beneficial mutations: Equivalent landscape approximation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) Distribution of log-fitness for k mutations: gamma approximation 
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a) 
The distribution of eij = log(wij) − log(wi wj) is simulated by drawing 5000 vectors of mutation 
effects (dzi) into a multivariate Gaussian of dimensions n = 100 phenotypic traits, with 
strongly heterogeneous effects for both mutation and selection following the method in ref. 6. 
The selective and mutational covariance matrices are drawn randomly from a Wishart 
distribution (a classic null model of covariance matrix6), and scaled so that the average effect 
of single mutations is s = 0.025. The resulting effective number of dimensions ne is strongly 
reduced (indicated on the figure). The initial phenotype from which mutations arise is not 
perfectly adapted: a vector zo is drawn into a multivariate Gaussian so that so = 0.07.  

The figure shows that, even away from the optimum (so>0), the agreement between 
simulations and the approximation of the pdf by a centered Gaussian N(0,2vs*) is always 
fairly good, although it can be significantly lessened for very small ne values (right panel). 
 
b) 
Same as a) (right and left panels) but focusing only on epistasis between beneficial mutations. 
In this case we have no analytic prediction, but only the distribution obtained by simulations 
of the equivalent landscape (red line). Simulations of the equivalent landscape were repeated 
by drawing several vectors of the distance to the optimum xo with the same so (as for the VSV 
data in Figure 3). This allows to average-up the effect of the direction of xo in the landscape 
(for a given distance so). 
 
c) 
The distribution of log-fitness for mutants carrying k mutations is shown for k = 3 and 6. Each 
single mutation’s effect vector dzi is simulated as in Supplementary Figure 1. a., except that 
so = 0, and a given mutant carries k such mutations with additive effects on phenotype, 
resulting in a single phenotypic vector

1

k
ii=

=∑dz dz .  
The figure shows that the gamma approximation given in Supplementary Methods 

and used to fit the E. coli dataset 2 (Figure 4) is in good agreement with exact simulations. 
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Supplementary Figure 2: Robustness of the model to non-

additivity in the phenotypic effects of mutations. 
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The distribution of fitness epistasis, eij = log(wij) − log(wi wj), is simulated as in 
Supplementary Figure 1.a), with ne = 3. Simulated distributions are shown for three cases: 
purely additive effects of mutations on phenotype such that dzij = dzi + dzj, or random non-
additive interaction between mutations, such that dzij = aij (dzi + dzj), where aij is randomly 
drawn into either a Gaussian or a uniform distribution, which probability densities are given 
on the figure (right panel).  

As long as the distribution of aij is not too variable or biased, the resulting distribution 
of eij (epistasis for fitness) is little affected by non-additivity between the phenotypic effects 
of mutations. 
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Supplementary Figure 3: Power curves for the tests shown in Table 1. 
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The lines correspond to the power curves of the tests given in Table 1 for 
different alternative hypotheses H1, regarding the ratio of variance for F-test or the 
difference of means for t-tests (x-axis). (a) Tests on VSV for all mutations; (b) tests on 
E.coli, and (c) tests for VSV beneficial mutations. Note that we used a χ2 test in the latter 
case for comparing variances, but this is similar to an F-test with an infinite number of 
degree of freedom on the denominator, so that we report it on the same figure. The grey 
bar shows the point estimate in each case and its 95% confidence interval (either ve obs/ve 

pred or μe obs – μe pred). The dashed lines correspond to our prediction. 
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