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a b s t r a c t

Simple multisensory manipulations can induce the illusory misattribution of external

objects to one's own body, allowing to experimentally investigate body ownership. In this

context, body ownership has been conceptualized as the result of the online Bayesian

optimal estimation of the probability that one object belongs to the body from the

congruence of multisensory inputs. This idea has been highly influential, as it provided a

quantitative basis to bottom-up accounts of self-consciousness. However, empirical evi-

dence fully supporting this view is scarce, as the optimality of the putative inference

process has not been assessed rigorously. This pre-registered study aimed at filling this gap

by testing a Bayesian model of hand ownership based on spatial and temporal visuo-

proprioceptive congruences. Model predictions were compared to data from a virtual-

reality reaching task, whereby reaching errors induced by a spatio-temporally mismatch-

ing virtual hand have been used as an implicit proxy of hand ownership. To rigorously test

optimality, we compared the Bayesian model versus alternative non-Bayesian models of

multisensory integration, and independently assess unisensory components and compare

them to model estimates. We found that individually measured values of proprioceptive

precision correlated with those fitted from our reaching task, providing compelling evi-

dence that the underlying visuo-proprioceptive integration process approximates Bayesian

optimality. Furthermore, reaching errors correlated with explicit ownership ratings at the

single individual and trial level. Taken together, these results provide novel evidence that
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body ownership, a key component of self-consciousness, can be truly described as the

bottom-up, behaviourally optimal processing of multisensory inputs.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
Banks, 2002a; Thurman & Lu, 2014). Instead, although

1. Introduction

Throughout our everyday experience, we are constantly

accompanied by the pre-reflexive feeling of being “here and

now”, experiencing the external world from the location and

perspective of a body that we perceive as our own. The

ensemble of these experiences has been termed bodily self-

consciousness (BSC) and is considered the minimal building

block of consciousness and self-awareness (Blanke et al., 2015).

BSC and the identification with our own body are so rooted

in our everyday experience that they are easily given for

granted as a part of our normal brain functioning. However, a

rich body of experimental studies suggests that BSC is a

continuously built, in fieri phenomenon, linked to specific

neural mechanisms. The manipulation of various aspects of

multisensory processing can alter key components of BSC,

such as body ownership, inducing self-attribution of an

external object (Botvinick & Cohen, 1998) or dis-embodiment

of an actual body part (Longo et al., 2008; Della Gatta et al.,

2016). These lines of evidence suggest that body ownership

is the result of the multisensory integration of tactile, pro-

prioceptive, and visual bodily stimuli in both the spatial and

temporal domains. Accordingly, an influential theoretical

view proposes that body ownership emerges when multi-

sensory bodily stimuli are congruent with the normally

experienced signals originating from one's own body and can

be altered otherwise (Armel & Ramachandran, 2003). In line

with Bayesian accounts of low-level multisensory integration

(Ernst & Banks, 2002a), it has been proposed that such prin-

ciple could be conceptualized as an inference-like process.

Ramachandran (Armel & Ramachandran, 2003) proposed that

the illusory ownership of a fake hand when stroked in syn-

chrony with one's own hand (the rubber hand illusion, RHI),

emerges from “Bayesian logic”. The idea was that, since the

repeated co-occurrence of visual and tactile stimulation

would be very hard to obtain by chance, the brain deems the

hypothesis that the fake hand and the real hand are the same,

i.e., one's own hand, as the most probable. Over the years,

such inference-based accounts have also included the inte-

gration of mental states (Moutoussis et al., 2014) and intero-

ceptive signals (Limanowski & Blankenburg, 2013; Seth, 2013;

Seth & Friston, 2016; Seth & Tsakiris, 2018), linking inference

on internal bodily and neural states to self-consciousness.

Arguably, one of the keys to the success of Bayesian ap-

proximations of brain function is that they constitute a

normative framework, i.e.: they find a clear evolutionary

motivation in the need to behave optimally in a noisy sensory

environment. In its initial field of application to low-level

multisensory integration processes, the validity of such

approach has been rigorously proven experimentally by

showing signatures of optimality in various setups and sen-

sory modalities (Alais & Burr, 2004; Butler et al., 2010; Ernst &
Bayesian descriptions of BSC have been popular for almost

two decades, most accounts are purely conceptual (Apps &

Tsakiris, 2014; Litwin, 2020; Noel et al., 2018; Seth, 2013; Seth

& Friston, 2016) or mathematical (Kilteni et al., 2015). Experi-

mental studies in their support, where modelling is paired

with ad hoc behavioural assessments, are still rather scarce

(Chancel et al., 2022; Fang et al., 2019; Samad et al., 2015) and

do not provide conclusive proofs of the optimality of behav-

iour, weakening the motivation for the use of a normative

model (see below for a detailed discussion).

Here, we aimed at extending the evidence base for

Bayesian theories of BSC. To do so, we focused on body

ownership as its key and arguably easiest component to be

quantified. We tested a Bayesian model of hand ownership by

means of a virtual reality-based reaching task, recently

introduced to manipulate visual and proprioceptive disparity

and derive an implicit measure of hand misattribution (Fang

et al., 2019) (see below). We validated this model by rigor-

ously assessing optimality through two alternative strategies:

by testing the Bayesian model against appropriate competing

models, and by separately measuring the unisensory visual

and proprioceptive components.

1.1. Body ownership as the result of Bayesian causal
inference

As previous Bayesian approaches to body ownership, the pro-

posed model has its roots in classical models of multisensory

integration (Ernst & Banks, 2002a). In such models, cues are

weighted according to the inverse of their precision, under the

assumption that they originate from the same physical source

(forced fusion models). However, in the real world, stimuli

occur simultaneously at multiple locations, and the brain

needs to figure outwhich ones come from the same source and

therefore have to be integrated (Shams & Beierholm, 2010). It

has been suggested that this problem may also be solved in a

probabilistic framework, i.e., Bayesian Causal Inference

(Bayesian CI), whereby the brain infers the likelihood that two

unisensory stimuli originate from the same cause, based on

their spatial and temporal congruencies (K€ording et al., 2007).

This approach can be applied to the processing of unisensory

bodily stimuli to explain how the feeling of owning a body as

one's own could emerge from their integration. Based on a

model of the expected mutual relations between the sensory

stimuli normally originating from thebody, theexistence of the

body itself would be inferred as their common physical cause.

Then, the feeling of such a body as one's ownwould emerge by

identifying with that “same old body always there” (James,

1890). This general principle has been translated into

different mathematical formulations to model the relevant

sensory variables (tactile, proprioceptive, visual cues etc.). As of

now, suchmodels have been experimentally tested only in two
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empirical studies with different experimental setups (Fang et

al., 2019; Samad et al., 2015).

Samad and colleagues (Samadet al., 2015) used a Bayesian CI

model to account for the RHI,whereby the estimated probability

of commoncause (Pcom) of visual and tactile inputs, asa function

of the congruency between tactile, real hand stimulation and

visual, rubber hand stimulation, is taken as a measurable esti-

mation of ownership for the rubber hand. According to the

model, Pcom varies as a function of the spatial and temporal

disparity between visual and proprioceptive cues about touch

location and timing. Samad was the first to empirically test a

specific prediction of a Bayesian model of body ownership.

Indeed, as predicted by themodel, the visual presentation of the

rubberhand (in a position congruentwith the participant's hand
andwithin the hand peripersonal space), even in the absence of

any tactile stimulation, was found to be sufficient to induce the

illusion, although to a lesser extent.

More recently, Fang and colleagues (Fang et al., 2019)

modelled ownership of a virtual hand as a function of visuo-

proprioceptive disparity during a reaching task, based on an

adaptation of classic paradigms of visuo-motor rotation

(Krakauer, 2009). In their experiment, macaques and human

participants had to reach targets with their real (proprioceptive)

hand, hidden from view and replaced by a virtual hand, pre-

sented with various degrees of visuo-proprioceptive disparity.

The error in the final reaching position induced by the virtual

hand increased as a function of its displacement within a given

range of visuo-proprioceptive disparity but decreased for larger

levels of disparity. Such behaviour was well modelled by the

predictions of a Bayesian CI model, inferring the probability of

visual information from a virtual hand and somatosensory in-

formation from the real hand originating from the same phys-

ical cause (Pcom). Since large visuo-proprioceptive disparities are

unlikely to be generated by the samephysical object (hand),Pcom
(and therefore, the probability that the virtual hand belongs to

the subject) decreases proportionally to disparity, leading to

attribute a lower weight to vision. Explicit ownership ratings in

humans covaried with Pcom, suggesting that this parameter

might provide an implicit measure of subjective ownership

probability at a trial-by-trial level.

1.2. Looking for a signature of optimality e limitations
of previous studies

The works from Samad and Fang indeed constituted a major

advancement. They first demonstrated that the Bayesian CI

can be applied to model some aspects of body ownership in

experimental setting. Furthermore, they developed the para-

digms that made this possible. In particular, through Fang's
virtual reality (VR) paradigm it is possible to parametrize the

degree of visuo-proprioceptive disparity and to easily collect

unprecedented amounts of data for modelling. However,

despite such important achievements, these previous works

do not provide conclusive evidence on whether body owner-

ship can be truly described as the result of the optimal inte-

gration of multisensory signals for the following reasons.

As already anticipated, Bayesianmodels assume optimality

as a normative constraint to brain function. Typically, opti-

mality is defined as the behaviour minimizing squared errors

on multisensory estimates (in this case: position estimates)
depending on a set of (unknown) free parameters (in this case:

unisensory precisions). In the two previous studies, the match

between behaviour and model predictions was used as a proof

of optimal integration. Predictions from Bayesian CI are in line

with classical principles of multisensory integration, stating

that stimuli are integrated across modalities only if they are

presented close in space and time (Cuppini et al., 2018; Stein

et al., 2014; Stein & Stanford, 2008), i.e.: the “binding window”

is spatio-temporally constrained. In order to show that those

principles truly arise from Bayesian CI, the model should be

tested against concurrent models implementing such spatio-

temporal constrains outside the Bayesian framework. Until

then, the pattern of decreasing visuo-proprioceptive integra-

tion with increasing spatio-temporal disparity observed by

Fang and colleagues cannot be considered as an exclusive

signature of optimality. Previous studies, instead, performed

no model comparison, or only tested Bayesian CI against a

forced fusion model, which also gives the Bayesian hypothesis

for granted. Moreover, such model does not constitute a

satisfactory competing model. Indeed, regardless of the

Bayesian or non-Bayesian nature of the phenomenon, it is

obviously wrong at large disparities due to the just mentioned

spatio-temporal constrains on multisensory integration.

An alternative way to show that multisensory integration

principles arise from Bayesian CI would be to directly link

multisensory behaviour and its unisensory components. To

do this, it is necessary either to manipulate the unisensory

parameters in a controlled manner, or to directly measure

them (Rohde et al., 2016). Compelling evidence in favour of

optimal Bayesian CI would then be, for example, that the size

of the spatial and temporal windows for integration vary with

the amount of sensory noise consistently with model pre-

dictions. This was the strategy used in a very recent preprint

by Chancel and colleagues (Chancel et al., 2022), who manip-

ulated the amount of visual noise during the RHI. The authors

found evidence in favour of a BCI model compared to a model

that did not take into account the sensory manipulation.

Alternatively, thewindows for the integration ofmultisensory

stimuli could be predicted from (independently measured)

unisensory precisions. Such comparison was not possible in

previous studies, where the unisensory parameters were

either taken to be fixed values from the literature (Samad

et al., 2015), or fitted from behavioural data (Fang et al., 2019).

In sum, we argue that rigorously testing the optimality

assumption is crucial to support the normative justification of

Bayesianmodels for BSC. This can bedoneeither throughmodel

selection against appropriate alternative models, or by inde-

pendently measuring/manipulating unisensory components.

1.3. Our approach

In the present work, we aimed at providing empirical evidence

for the hypothesis that body ownership emerges from a

Bayesian inference process, as a key component of quantitative

bottom-up accounts of self-consciousness. To do this, we

extended and revised the existing models and behavioural val-

idations, focussing on spatial and temporal features of visual

and proprioceptive inputs. We introduced a virtual reality

adaptation of the reaching task used by Fang and colleagues e

i.e., visuo-proprioceptive disparity task (VPD, Fig. 1a)e as a base

https://doi.org/10.1016/j.cortex.2023.06.019
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for the assessment of the Bayesian CI model predictions. Note

that, since the VPD task is based on an active reaching move-

ment, both visuo-proprioceptive and visuo-motor congruencies

are manipulated. However, for simplicity, we will refer only to

visuo-proprioceptive congruency throughout the text.

Compared to the most used multisensory illusions, such as the

RHI, this approach has two main advantages. First, the quanti-

tative nature of the variables at play allows collecting granular

data which is especially suitable for modelling. Second, the use

of an active motor task (as opposed to the RHI or to a passive

proprioceptivedriftmeasure), allows to collect the large number

of trials that is needed for the rigorous validation of a compu-

tational model.

In our approach, the link between subjective ownership and

the Bayesian CI model can be only assessed indirectly, by

correlating proprioceptive drift measures and subjective rat-

ings. The linkbetweenproprioceptive drift andbodyownership

is an object of debate, as a correlation is not observed in all

experimental setups (Abdulkarim& Ehrsson, 2016; Rohde et al.,
Fig. 1 e Experimental tasks andmodel rationale. In the visual-pr

angle disparity a and temporal delay Dt are introduced between

towards a set of visual targets. The red hand represents the vis

proprioceptive feedback from the real hand, while the green ha

integration. The relative weight attributed to the visual and the

the final position of the reaching movement. Hand position est

function of spatial and temporal disparities between the visual

bottom row summarizes the set of tasks assessing each unisen

proprioceptive judgement task (PJ) (c) a virtual hand (red) is disp

real hand (blue), the perceived position of the hand has been de

algorithm. In the open-loop (OL) reaching participants reach targ

(e): in the midline judgement task (MJ), participants have to rep

visual field, is at their bodymidline. Temporal precision (f): in the

synchrony between the onset of their voluntary reachingmovem

reality with a variable delay in the visual feedback. A visual mor

the accuracy in the encoding of the visual features of ones' ow
2011). The lack of a perfect overlap between body ownership

ratings and proprioceptive drift may reflect the multicompo-

nent nature of bodily experience, which includes both the

feeling of a body part as belonging to one's own body as well as

occupying a specific location in space (and in time). These are

considered different, yet related components of bodily self-

consciousness (Blanke et al., 2015; Blanke & Metzinger, 2009;

Serino et al., 2013). In linewith theapproach introducedbyFang

and colleagues, we chose to validate our model on proprio-

ceptive drift as it is an implicit and objectivemeasure that does

not suffer the well-known limitations of explicit ratings and

questionnaires. We tried to generalize such computational

framework to body ownership in a second, separate step, by

testing thecorrelationbetweenproprioceptivedrift andexplicit

ownership ratings. We argue that the advantages in terms of

easiness of data collection and data granularity outweigh the

lack of a direct model validation on ownership ratings.

In order to investigate different features of the Bayesian CI

integration process, in addition to the spatial manipulation of
oprioceptive disparity task (multisensory task, a), a variable

the real and the virtual hand during reaching movements

ual feedback from the virtual hand, the blue hand the

nd is the final estimate resulting from visuo-proprioceptive

proprioceptive feedback determines the amount of error in

imates (b) according to the Bayesian CI model (green) as a

-virtual (blue) and proprioceptive-real (red) hands. The

sory component. Proprioceptive precision: in the

layed in virtual reality at the left or the right of participants'
termined using a two-alternative forced-choice converging

ets without visual feedback of the hand (d). Visual precision

ort when they feel that a visual cue, moving across their

simultaneity judgement task (SJ), participants evaluate the

ents and the displacement of the hand presented in virtual

phing task (VM, not in the figure) has been used to measure

n hand, as part of the prior.
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visuo-proprioceptive disparity as in Fang and colleagues, we

also modulated the temporal disparity, by adding different

levels of delay between the participant's movement and vir-

tual reality visual feedback. The addition of a temporal mod-

ulation strengthens the interpretation of the behaviour

observed in the VPD task and the underlying model. Indeed,

ownership (or disownership) has to be a perceptually unitary

phenomenon, regardless of whether it arises mainly from

spatial or temporal cues. However, in a purely spatial task,

reaching bias can be explained as the result of visuo-

proprioceptive integration, with ownership being a mere

epiphenomenon. If our temporal manipulation also induced

the same reaching bias as the spatial manipulation, this

simplistic explanation would be ruled out, and support the

idea that ownership can be truly measured from reaching

errors as the hidden variable linking spatial and temporal

biases.

1.4. Main hypotheses of the study

In order to investigate whether body ownership can be

modelled as a bottom-up process, whereby sensory informa-

tion is integrated in a behaviourally optimal way, we have.

I) Validated a Bayesian CI model of an implicit measure of

body ownership, as the reaching bias induced by the tem-

poral and spatial manipulation in the multisensory

reaching task (Hypothesis I).

II) Assessed if the implicit measure modelled by the Bayesian

CI model also accounts for the subjective feeling of

ownership, as assessed through explicit questions

(Hypothesis II).

Hypothesis I. We aimed at performing a rigorous model

validation by tackling the two main limitations of previous

studies. That is, we compared our Bayesian CImodel to a set of

truly concurrent models (model selection) and compared

model estimates to independently assessed unisensory pa-

rameters (unisensory correlations).

The first approach requires that a Bayesian CI model, tak-

ing into account both the spatial and temporal (BCIST)

manipulation, should outperform an appropriate set of con-

current alternative models (Hypothesis Ia). First, we tested it

against the forced fusion model (FF) (replicating Fang et al.,

2019) and a model including only spatial disparity (BCIS).

Crucially, we further tested our data against two heuristic,

non-Bayesian models, designed to well describe experimental

data within a non-Bayesian framework (Heuristic and semi-

FF, see methods for a detailed description). These models

simply describe a continuous transition from integration to

segregation, in line with basic multisensory integration prin-

ciples but outside a Bayesian framework.

The second approach to validate the BCIST model is to

independently investigate unisensory components to assess

optimality. As mentioned, this can be done by either manip-

ulating or measuring independently unisensory precisions.

Here we chose the latter method due to the difficulty of

accurately manipulating unisensory noise for both vision and

proprioception in healthy humans during the VPD, multisen-

sory task. Indeed, while manipulating only visual precision
would be possible in our setup, manipulating proprioception

with the same reliability is problematic. Here, we aimed at

mapping the contribution of the different unisensory modal-

ities to the multisensory process with comparable resolution,

andwe therefore chose tomeasure, rather thanmanipulating,

unisensory precisions. This approach is particularly relevant

in light of future applications of the proposed methodology to

clinical populations suffering deficits that can affect any

sensorymodality. The Bayesian CImodel provides predictions

of the reaching bias as a function of both spatial and temporal

disparity, depending on four free parameters: sv, the uni-

sensory visual precision, sp, the unisensory proprioceptive

precision, the temporal precision st and a global prior about

ownership of the virtual hand Pp. The free parameters have

been fitted from experimental data at the individual level by

finding the parameter set that maximizes the match between

model predictions and reaching bias. These parameters have

been then independently extracted from a set of dedicated

tasks (Fig. 1) and correlated with those fitted from the multi-

sensory task, thus assessing if reaching errors, and therefore

the size of the binding/ownership window, are coherently

predicted by unisensory precisions (Hypothesis Ib).

Both model selection (Hypothesis Ia) and unisensory cor-

relations (Hypothesis Ib) can be considered as compelling

signatures of optimality. Therefore, we chose to consider

model validation as achieved in case at least one of these two

methods proves to be successful.

Hypothesis II. In order to establish a full link between

Bayesian integration and subjective body ownership, we hy-

pothesize that explicit evaluation of the ownership feeling

during the VPD task should match the probability of multi-

sensory integration (Pcom), estimated by the Bayesian CImodel

both in the spatial and temporal domain. To test this hy-

pothesis, subjective ratings have been collected and put in

relationwith reaching bias to ascertain its link with subjective

ownership.

In summary, this study provides evidence to validate or

reject the hypothesis that body ownership arises from a

Bayesian CI process, supporting the quantitative approach to

the investigation of BSC (see Table 1).
2. Materials and methods

2.1. Transparency statement

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study.

2.2. Bayesian CI model

Following several successful approaches to model multisen-

sory integration in probabilistic terms (Fang et al., 2019;

K€ording et al., 2007; Rohe & Noppeney, 2015; Samad et al.,

2015), we modelled the process of visuo-proprioceptive inte-

gration in a Bayesian Causal Inference (Bayesian CI)

https://doi.org/10.1016/j.cortex.2023.06.019
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Table 1 e Summary of preregistered hypotheses, sampling and analysis plan, and outcome interpretations.

Question Does a Bayesian CI process combining visual and proprioceptive

information in the temporal and spatial domain account for

implicit body ownership?

Does subjective body ownership, as

assessed through explicit questions,

emerge from the same visuo-

proprioceptive integration process?

Hypothesis Hypothesis Ia

The proposed spatio-temporal BCIST
model, fitted to reaching errors in the

VPD task, should outperform all the

other alternative models (FF, BCIS,

Heuristic, Semi-FF).

Hypothesis Ib

The parameters estimated from the

unisensory tasks (sp, sv, st, Pp) should

correlate with the correspondent

parameters extracted from the

multisensory task through the BCIST
model.

Hypothesis II

The subjective ownership ratings are

reflected by the estimated probability

of a common source of visual and

proprioceptive information about the

hand (Pcom) in both the spatial and

temporal domain.

Sampling plan (e.g.,

power analysis)

Based on our Monte Carlo simulations,

and Fang's previous study, a sample

size of 22 subjects should be sufficient.

Based on Monte Carlo simulations, a

sample of 35 participants should be

sufficient to obtain a statistical power

above 90%.

Assuming a true R value of .82, based

on Fang's 2019 study, a 90% power with

a significance threshold of .02 can be

obtained with 10 participants.

Analysis Plan We used BIC as an approximation for

model evidence and compute the

exceedance probability to test the

BCIST model against all the alternative

models.

We used the model fitting procedure

described in the Analysis plan to

extract unisensory parameters from

the VPD task (sp, sv, st, Pp). Then, we

assessed the significant correlations of

those parameters with the

corresponding parameter extracted

from unisensory tasks (OL, PJ, MJ, SJ,

VM).

Pearson correlation scores between

the standard deviation of the bivariate

Gaussian fitted on ownership ratings

and the width of Pcom extracted from

the VPD in both the spatial and

temporal dimensions. The scores are

expected to be significantly positive.

Interpretation given

to different

outcomes

Hypothesis Ia should be accepted if the

BCIST model outperforms all the

alternative models with exceedance

probability >.95.

Hypothesis Ib should be accepted if

any of the correlations with

unisensory parameters is significant

after Bonferroni correction (p < .01).

Hypothesis II should be accepted if

both correlation tests yield the

expected results.

Otherwise, subjective ownership and

reaching errors in the VPD task emerge

from different phenomena.

Then, the subjective feeling of

ownership can be meaningfully

modelled by modelling reaching errors

in the VPD. If Hypothesis I also holds,

this means that subjective body

ownership is well modelled by the

BCIST model.

Hypothesis I (and the underlying research question) should be accepted if either

Hypothesis Ia or Hypothesis Ib holds. Then, the binding of visual and

proprioceptive information leading to implicit ownership would show a clear

signature of Bayesian processing.

Otherwise, regardless of the Bayesian or non-Bayesian nature of the binding

process, we conclude that the BCIST model cannot provide predictions that are

refined enough to be informative for body ownership.
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framework. Early Bayesian models of multisensory integra-

tion, called forced fusion models, postulated that the brain

estimates the position of a stimulus by simply combining

unisensory estimates with a weight that is inversely propor-

tional to their variance, quantified as mean squared error.

Behaviour under suchmodels is optimal (i.e.: it minimizes the

mean squared error of position estimates) only under the

condition that the sensory inputs considered in the different

modalities always have the same physical source. Clearly, in

real-life situations, where several stimuli are presented to

different modalities simultaneously, this assumption is not

granted. Therefore, before integrating unisensory estimates,

the brain needs to infer whether and which stimuli need to be

combined at all. Bayesian CI models account for this addi-

tional level of complexity by incorporating this inference in a

probabilistic framework, in which the likelihood that two

stimuli in different modalities have the same physical source

is estimated from their features. In our case, this framework
was applied to the integration of visual and proprioceptive

inputs about the hand, focussing on the specific factors that

we expect to intervene in our multisensory task. As already

extensively documented at the qualitative level by behav-

ioural studies, the main factors contributing to hand owner-

ship in a visuo-motor task are spatial and temporal visuo-

proprioceptive congruencies. Therefore, to derive the equa-

tions of the BCIST model, we started from describing the

generative model of the sensory stimuli underlying those

congruencies, that is, the joint probability distribution of

physical stimuli and their associated neural representation. In

particular, in the case of our reaching task, the physical

stimuli of interest are the hand position defined by visual and

proprioceptive stimuli (sv and sp, expressed in degrees from

the shoulder), and their relative timing with respect to the

reaching movement (tv and tp, expressed in seconds). First of

all, the visual and proprioceptive inputs may have one (C ¼ 1)

or two (C ¼ 2) causes, that is, whether the virtual hand is or is

https://doi.org/10.1016/j.cortex.2023.06.019
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not the participant's hand. C is drawn from a Bernoulli dis-

tribution with probability Pp

PðC¼ 1Þ¼Pp (1)

Then, we model the joint probability distribution of visual

and proprioceptive inputs in the spatial and temporal domain,

conditional on whether C ¼ 1 or C ¼ 2. Given the radial nature

of our task, we use the angle from target origin as the most

natural coordinate for positions. If C ¼ 1, then the visual and

proprioceptive position of the hand is the same sv ¼ sp ¼ s and

is drawn from a uniform distribution on the �90/90� range,

approximating the set of reachable angles. Previous works

(Fang et al., 2019; Samad et al., 2015) used a Gaussian centred

in 0 and with very large standard deviation (s ¼ 10,000) to

approximate a uniform distribution. While simpler to treat

analytically, this choice is problematic since the value chosen

for the width of the positional prior influences the fitted value

of the common cause prior Pp. This is because, while when the

Gaussian is large enough it can always be approximated to a

uniform distribution, the exact value of its standard deviation

still influences model predictions through the normalization

constant (see Supplementary material for the detailed calcu-

lation). In our case, by explicitly choosing a uniform distri-

bution, the value of the normalization constant is naturally

constrained by the reachable range and is thus less arbitrary.

Similarly, the timing of visual and proprioceptive inputs

related to the movement is the same, tv ¼ tp ¼ t, and is drawn

from a uniform distribution. The range of the distribution was

fixed at 0e30 sec, as a plausible value of the average interval

between different movements. If C ¼ 2, sv, sp are drawn

independently from the same uniform distributions. As

routinely done in Bayesian modelling, in order to simulate

variability in sensory inputs, we assume that the true posi-

tions and timings of the sensory inputs are corrupted by un-

biased Gaussian noise to generate their internal

representations xv ¼ sv þ N(0, sv), xp ¼ sp þ N(0, sp), tv ¼ tv-

þ N(0, sty ), tp ¼ tp þ N(0, stp ). The first two variables refer to

visual and proprioceptive-motor positions, and the other two

to visual and proprioceptive-motor timing of movements,

respectively. Then, the Bayes theorem allows to compute the

posterior distributions for the positions of the stimuli and the

number of underlying causes that an ideal observer would

compute, provided that she/he knows the distribution of in-

ternal representations conditioned on the true positions and

number of causes. Starting from the number of causes of the

observed stimuli, we have:
P
�
C¼ 1

��xp; xv; tp; tv
�¼ P

�
xp; xv; tp; tv

��C ¼ 1
�
PðC ¼ 1Þ

P
�
xp; xv; tp; tv

��C ¼ 1
�
PðC ¼ 1Þ þ P

�
xp; xv; tp; tv

��C ¼ 2
�
PðC ¼ 2Þ (2)
Excluding for simplicity the region outside the �90/90 and

0/30 sec range, where the contribution to the integral is

negligible, the likelihood functions defined by our generative

model are:
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where a is the normalization constant, ds and dt denote spatial

and temporal disparities respectively, and s2s and s2t are short

forms for the sum of spatial and temporal variances. See

Supplementary material for details about the approximation

in equation (4). When there are two separate causes, we

simply have:

P
�
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��C¼2
�¼ 1

302�1802
(5)

Therefore, the probability of common cause is given by:

Pcom ¼ P
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�¼ Pp
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(6)

The final estimate of hand position is obtained by

combining the forced fusion and proprioceptive estimates,

weighting them by the probability of common and separate

causes, respectively:

csp ¼ P
�
C¼1

��xp; xv; tp; tv
�s2

pxv þ s2
vxp

s2
pþs2

v

þ P
�
C¼ 2

��xp; xv; tp; tv
�
xp (7)

Then, we explored BCIST model predictions about sense of

ownership (Pcom) in a spatio-temporal disparity setup through

numerical simulations. To illustrate model predictions, shown

in Fig. 2, we selected plausible parameters for the unisensory

precisions and the prior, and a set “ground truth” temporal and

spatial disparities, representing the actual physical spatial and

temporal disparity between visual and proprioceptive inputs.

Then, we added Gaussian noise of variance ss and st respec-

tively, in order to obtain samples from the noisy internal rep-

resentation of the stimuli. As noted in K€ording et al. (2007), this

procedure is the only correct mean of simulating behavioural

experiments within Bayesian models of brain function. The

process was repeated 1000 times and the probability of com-

mon cause Pcom was extracted following equation (6) and

averaged across the 1000 trials. We show how Pcom varies as a

function of spatial and temporal disparity in Fig. 2a. Coherently
with expectations and qualitative findings from behavioural

studies, the analysis resulted in a region of very high owner-

ship probability when spatio-temporal incongruences are

below a certain threshold. This can be seen as the
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Fig. 2 e Model predictions and simulated experimental results for typical values of sv, sp, st, Pp. Panel (a) shows the average

probability of common cause as a function of spatial and temporal disparity, obtained after simulating BCIST model

predictions for 1000 trials (in order to obtain a virtually noiseless prediction). The red half-circle denotes the area where the

probability of common cause is above 95% and can be seen as the region corresponding to a subjective experience of

complete ownership. Only positive values of temporal disparity are plotted, as they are the only that can be achieved in our

experimental setup, but model predictions are symmetrical with respect to time. Panel (b) shows the (averaged,

approximately noiseless) simulated results for a participant with the same typical parameters in the visual-proprioceptive

disparity task. The y axis indicates the proprioceptive drift in the reachingmovement, so that movements completely based

on proprioception would have drift equal to 0, and movements completely based on vision would have drift equal to the

shown disparity. Different degrees of green denote different values of temporal delay, increasing from dark to light green.

Panel (c) is the result of the same simulation as panel (b), run with spatio-temporal disparities and number of trials

matching the experimental design of our VPD task to obtain data from one surrogated participant. The 2D heat map in (d)

shows how model predictions based on parameters fitted from noisy simulated experimental data match results based on

the ground truth parameters used in panels (a), (b), (c). Values of sv, sp, st and Pp were obtained by fitting the BCIST model on

the simulated data shown in panel (c) and used to recover the expected probability of common cause as done for panel (a).

The overall shape of Pcom as a function of spatial and temporal disparity is very similar to the one obtained from ground

truth parameters. Inside the black circles we show “empirical” Pcom values, defined as the ratio between simulated drift and

the forced fusion estimate, so a drift coinciding with the forced fusion estimate would correspond to Pcom ¼ 1, and no drift

with Pcom ¼ 0. This analysis was only performed for visualization purposes and is not used to extract model parameters, as

they are recovered more robustly by directly fitting reaching errors from the VPD task.
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mathematical counterpart of the empirical notion that in the

case of little or no disparity, as in normal conditions, the

feeling of ownership is granted and constant. We then simu-

lated the expected results from our VPD task, for the same set

of parameters. For each spatio-temporal disparity, we simu-

lated 1000 trials (a number large enough to render sampling

noise negligible) by adding Gaussian noise to the real positions
and timings. Then, we extracted the hand position estimate

according to BCIST model and computed the average reaching

bias as a function of the spatial and temporal disparity. Finally,

to illustrate how model predictions can be recovered from

noisy behavioural data at the single participant level, we per-

formed the same simulation, with the limited subset of spatio-

temporal disparities and the number of trials of our actual
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experiment. Fig. 2d shows the ownership probability, as

extracted from our simulated behavioural experiment and

Fig. 2c shows the reaching bias associated with the spatio-

temporal disparities explored in our setup.

2.3. Alternative models

As a first model validation, we tested the spatio-temporal

Bayesian CI (BCIST) model against the forced fusion model

(FF), to replicate the analysis presented by Fang and col-

leagues. Using the same notation as in the previous para-

graph, the forced fusion estimate is simply:

xFF ¼
s2
pxv þ s2

vxp

s2
pþs2

v

(8)

Additionally, we tested it against a Bayesian CI model

including only the effect of spatial disparity in the estimate of

Pcom(BCIS). This is very similar to the original model proposed

by Fang:
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�¼ Pp

1
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1
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1802

(9)

As stated in the introduction, we also aim at challenging

the BCISTmodel through alternativemodels that, unlike the FF

model, are specifically designed to well fit experimental data

and are outside the Bayesian framework. Only if the BCIST
model also outperforms them, it can yield predictions that are

subtle enough to advance our understanding of the link be-

tween body ownership and multisensory integration. Practi-

cally, we challenged the BCIST model with two models that

heuristically implement the combination of visual and pro-

prioceptive information through the notion of a spatial and

temporal binding window in multisensory integration, as

known from classical literature (Cuppini et al., 2018; Stein

et al., 2014; Stein & Stanford, 2008).

The first model is completely non-Bayesian, and we will

hence refer to it as the Heuristicmodel.We assume that visual

and proprioceptive information are combined according to

weights that do not depend directly on unisensory precisions.

We then implement the spatial rule of multisensory integra-

tion by imposing that the visual weight decreases as a func-

tion of spatial and temporal disparity following a bivariate

Gaussian, peaking at zero disparity. A Gaussian random error

is added to the estimate to model neural noise.

csp ¼ sp þ svwve
�d2s
2a2s

� d2
t

2a2
t

1þ sve
�d2s
2s2s

� d2
t

2s2
t

þNð0;sεÞ (10)

here Wv denotes the weight of visual information at zero

disparity, and the proprioceptive weight is set to 1 by defi-

nition, as the final estimate only depends on their ratio. as

and at respectively indicate the spatial and temporal width

of the “binding window”. Note that the estimate is based on

the true position of the physical stimuli (sp and sv) instead

of their noisy neural representation (xp and xv), since the

model is purely heuristic, and the stochasticity of neural

processing is rendered by the Gaussian error term added to

the estimate.
The secondmodel is based on the forced fusionmodel, and

it therefore employs noisy internal representations as a

starting point. However, unlike in the Bayesian CI model, the

transition between the integration and the segregation regime

is not governed by optimal inference, but again by the heu-

ristic principle of a spatial and temporal binding window

which is not optimised on unisensory precisions. In other

words, the forced fusion estimate is obtained according to

classical optimal integration, and it is then combined with the

purely proprioceptive estimate with a weight that decreases

as a Gaussian function of spatial and temporal disparity.

Crucially, the spatial and temporal width of such binding

window do not depend on unisensory precisions. We will

therefore refer to this model as the semi-forced fusion model

(Semi-FF).
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� d2
t

2a2
t xFF þ
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2a2s

� d2
t

2a2
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As shown in Fig. 3, the predictions of both the Heuristic and

semi-FF models on the average error as a function of disparity

are very similar to those of the BCIST. The key difference is

that, unlike in the BCIST model, the parameters governing the

average disparityeerror relation are partially or completely

independent of the parameters governing the dispersion of

individual reaching errors around the average. Therefore,

both the Heuristic and Semi-FF models yield subtly but

consistently different predictions, allowing disentangling the

different underlying functions by model comparison on

behavioural data (see Sampling plan) to assess the presence of

a Bayesian signature in the integration process.

2.4. Materials and general procedure

The battery of tasks is administered via the Oculus Rift S

Virtual Reality system, comprising an Oculus Rift S head-

mounted display (HMD) and two Oculus Touch, or motion

controllers. visual morphing (VM) is implemented in Python,

while all the other tasks are implemented in Unity and are

compatible with other virtual reality systems allowing 6 axis

hand and head tracking (e.g., HTC Vive). A virtual reality

implementation of our setup was preferred to a physical

implementation for several reasons. First of all, the tracking

accuracy achieved by modern HMDs, albeit still inferior to

dedicated kinematics recording systems (e.g., Vicon optical

camera system), allows to record kinematics with a precision

that should be largely sufficient for our tasks (<1 cm) (Jost

et al., 2019; Spitzley & Karduna, 2019). Second, the usage of a

commercial, readily available apparatus, allows a quick and

standardized replication of the tasks for large-scale data

collection and sharing. Third, the use of an immersive envi-

ronment allows to fully control and standardize visual inputs,

while enhancing the vividness of the task experience.

The behavioural experiment consisted of amain task (VPD)

and five complementary tasks. The VPD task yields an esti-

mate of ownership of a virtual hand as the tendency to inte-

grate its visual position with proprioception while estimating

one's hand position. It consists of the repetition of a reaching

movement while a variable angular disparity or temporal

delay is introduced between the movement of participants'
real hand and a virtual hand displayed in immersive VR. The

https://doi.org/10.1016/j.cortex.2023.06.019
https://doi.org/10.1016/j.cortex.2023.06.019


Fig. 3 e Comparison of BCIST, Heuristic and Semi-FF model predictions. Panels (aec) show the induced drift in the VPD task

for a simulated subject in the three models respectively. Model parameters were set to plausible values, and the data was

simulated first for the BCIST model. Then, such data was fitted with the Heuristic and Semi-FF model to obtain the set of

corresponding parameters able to generate the most similar results in the two alternative models. Those parameters were

then used for panels (bec). This way, the three models can be compared in the case where their predictions are the most

similar. For simplicity, only the zero temporal lag was included in the figure. The mean drift (solid line) is rather similar

across the three models, but the dispersion around it is different at all disparities between the BCIST and Heuristic models,

while the difference is present mainly at intermediate disparities between the BCIST and the Semi-FF models. As shown in

our Sampling plan, this difference should be enough to disentangle the different models with the planned sample size.

Panels (dee) show the full distribution of simulated drifts for the three models at ¡26.6� degrees of disparity, where the

difference between the BCIST and the other models is most evident, in that only the BCIST model predicts a skewed

distribution. The red asterisks show 24 simulated reaching errors (the same number of trials of our actual task), to

qualitatively demonstrate that the difference can be appreciated in our experiment.
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other tasks assessed independently the relevant parameters

included in the BCIST model (i.e., sp, sv, st and Pp).

To assess the proprioceptive unisensory precision (sp) we

considered several options. Position matching tasks are

commonly used in literature to assess proprioception.

However, these tasks present some difficulties, as they may

require a memory component (Rincon-Gonzalez et al., 2011),

or the computation of a symmetric target location compared

to a reference position in the contralateral space [i.e., a

mirror-matching task (Dukelow et al., 2010)]. Another

important disadvantage in using a mirror-matching task

would be that the proprioceptive precision of the active

body part (in our case, the right hand) cannot be
disentangled from the precision of the target body part (in

our case, the left hand). This issue is especially relevant

since this model and the associated tasks may be applied in

the future to the study of clinical populations with lateral-

ized deficits (e.g., stroke patients suffering a contralesional

upper limb impairment).

For this reason, we searched the literature for previous

studies in which the proprioception precision was assessed

unilaterally (Desmurget et al., 2000; Haggard et al., 2000; Jones

et al., 2010; Longo & Haggard, 2010). We devised a proprio-

ceptive judgement task (PJ, Fig. 1c) in virtual reality in which

the felt position of the hand is assessed through a forced

choice converging algorithm. However, the parameter sp
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estimated through the model from the multisensory task

likely incorporates motor components that are not captured

by a purely proprioceptive task. Therefore, in addition to the

PJ, an open-loop reaching task (OL) was used to isolate the

combination of motor and proprioceptive components which

can determine the end-point precision in a reaching task

(Fig. 1d). In this task, participants performed the same

reaching movements towards virtual visual targets as in the

multisensory task (VPD), but in the absence of visual feedback

about hand position.

Concerning visual precision, it is worth noting that, despite

visual acuity is extremely high compared to proprioceptive

precision in humans (Jones et al., 2010; Kniestedt & Stamper,

2003), the final accuracy in visually determining the hand's
position does not depend on visual acuity alone. Indeed, when

coordinating vision and proprioception in a motor task, it is

necessary to transform the extremely accurate retinotopic

visual information in body-centred coordinates, through a set

of computations involving gaze angle and head orientation

(Buneo et al., 2002). In this view, we believe that participants'
precision in visually determining their body midline, as

assessed by a midline judgement (MJ) task (Fig. 1e), can be

used as the closest approximation to isolate the contribution

of visual information to position estimates in our task.

The temporal precision is the third main parameter of our

model. This componentwasmeasured through a simultaneity

judgement task (SJ), whereby participants evaluated the syn-

chrony between the onset of a voluntary reaching movement

and the displacement of the hand displayed in virtual reality

(Fig. 1f).

The purely “bottom-up” Bayesian approach focussing on

visuo-tactile congruencies, initially used to model body

ownership, has been extended in conceptual models to

incorporate also “top-down” cognitive constraints, given by

the posture and the visual appearance of the body (Tsakiris,

2010; Tsakiris et al., 2010; Tsakiris & Haggard, 2005). These

(Armel & Ramachandran, 2003; Ehrsson, 2005; Makin et al.,

2008; Tsakiris, 2010; Tsakiris et al., 2010; Tsakiris &

Haggard, 2005) have been described as the result of another

inference process, comparing incoming visual features with

an internal model of the body to estimate the probability that

they originate from one's own body (Apps & Tsakiris, 2014;

Kilteni et al., 2015; Tsakiris, 2017). Nevertheless, the role of

visual appearance has not yet been studied quantitatively

within a Bayesian framework. Although the problem is too

complex and high dimensional to be explicitly modelled in a

Bayesian CI model, its influence is reflected in the global

“prior” as the marginal probability of all the factors that are

not modulated during the experiment and included in the

other parameters' computation. Based on previous accounts

(Tsakiris, 2010) and as suggested by Fang's study (Fang et al.,

2019), most of the variance in such “prior” is likely explained

by high-level visual features of the stimulus. In the attempt

to quantify their role, we implemented a VM task, based on

the continuous morphing of pictures of the participant's real

hand into other peoples' hands. Similarly to what was plan-

ned for the visual and proprioceptive precision in the spatial

and temporal domain, wemeasured participants' accuracy in

recognizing their own hand against other realistic hands.

Note that we deliberately chose not to test their recognition
ability against virtual hand avatars (as the ones used in the

VPD task), in order to make the task more challenging, ac-

cording to internal pilots. Furthermore, this would allow to

demonstrate that the visual recognition ability predicts

behaviour in a general, rather than an idiosyncratic manner,

allowing a more compelling validation of the Bayesian CI

model. If the inter-individual differences in discriminating

the visual appearance of one's own hand play a quantifiable,

probabilistic role in determining ownership, we expect that

the accuracy in the VM task should correlate with prior

probability of cue combination fitted from the multisensory

task.

2.4.1. Visual-proprioceptive disparity (VPD) task
Participants are requested to sit in front of a chest-height

table, with their arm placed in front of them. Participants

wear a head-mounted display (HMD) and hold a motion

controller in their right hand. During the experiment, partic-

ipants cannot see their real hand, but a realistic hand is dis-

played in virtual reality using the tracking of the motion

controller. During the task, the spatial congruency between

visual and proprioceptive information is manipulated as an

angular disparity between the real (proprioceptive) and a vir-

tual (visual) hand. Moreover, a delay is introduced between

the onset of the real and the displayed movement in order to

alter the temporal congruency of the stimuli (Fig. 1a).

Participants are asked to make reaching movements to

targets in virtual reality (white spheres with 3 cm diameter)

from a fixed starting position. The starting point is a sphere of

15 cm diameter, fixed 15 cm away from the participant's
sternum. Target positions are arranged on an arc centred on

the resting position. The arc radius is set according to each

participant's maximum reaching distance, calibrated at the

beginning of the experiment.

The task consists of three experimental blocks with

slightly different designs. In the first three blocks, 7 targets

(from T1 to T7) are equally spaced between �45 and 45� with

respect to the participant's sternum. Across trials, the visual

hand is randomly rotated with a given angular disparity from

the participants' proprioceptive hand, with their sternum as

the (vertical) rotation axis. Additionally, a temporal delay of 0,

100, 250 or 400 msec is added between the onset of the

movement and the displacement of the virtual hand. For the

0 msec delay condition, 7 spatial disparities are used: 0�,
±13.3�, ±26.6� or ±40� (þ: clockwise, CW; �: counterclockwise,

CCW). For 100, 250 and 400 msec delay conditions, 6 spatial

disparities, uniformly distributed on the same range, are used:

±8�, ±24� or ±40. This was done to increase the variability of

the explored disparities, and to avoid collecting uninformative

trials at zero spatial disparity. All the possible combinations

between target position, temporal and spatial disparity

[7*(7 þ 6*3)] are tested in randomized order for a total of 175

trials in each of the first three blocks. In the fourth block, in

which subjective ratings of ownership are also collected (see

below), only 3 targets are presented to keep the total duration

constant, and again one trial is collected for each combination

of target, disparity and delay (75 trials in total). Each block

lasts approximately 15 min, and 600 trials were collected over

approximately 75 min (including 5 min breaks between

blocks).
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Participants are requested to place their hand on the

starting position to initiate a trial. At the beginning of the trial,

the virtual hand is rotated by one of the possible disparity

angles during 1 sec, and the target appears. This mismatch

between the real (proprioceptive) and the virtual (visual) hand

is maintained for 1.5 sec as the preparation period. In order to

make apparent the temporal delay along with the angular

disparity during the preparation period, participants are

instructed to make a movement of prono-supination of the

hand at a speed of approximately 1 Hz while fixating the vir-

tual hand. After the preparation period, the target is turned

green as a “go” signal. Movement of the hand outside the

resting position at any time before the “go” cue automatically

restarts the trial. Participants are instructed to reach the target

with their real (proprioceptive) hand and return to the resting

position within 1.5 sec, ending the trial. The spatial and

temporal mismatch is maintained throughout the whole trial

along with the hand movement.

Additionally, in the fourth block participants are requested

to report their subjective feeling of ownership for the virtual

hand through the virtual interface, evaluating their agree-

mentwith the statement [adapted to VR from Fang et al., 2019]

“I felt as if the virtual hand was my hand” on a 1e10 Likert

scale, by pointing to the answer with the motion controller.

2.4.2. Proprioceptive judgement (PJ) task
The set-up of this task is similar to the VPD (Fig. 1c). Partici-

pants' real hand is not displayed in virtual reality. The

experimenter passively moves participants' real hand to one

out of 7 possible target position (from T1 to T7) arranged at 0�,
±15, ±30, ±45� with respect to participants' sternum on an arc

with radius equal to each participant maximum reaching

distance. Target position is selected randomly trial by trial. A

two-alternative forced-choice converging algorithm is used to

find the position in which the participants perceive their

hand. At the beginning of each trial, a virtual hand is displayed

at þ30� (right) or �30� (left) with respect to participants' real
hand. The sign of the initial angle is randomized trial by trial.

Participants then report whether they feel that the displayed

hand is located to the left or right of their real, unseen hand. In

the following step, the position of the virtual hand is moved

halving the angle and mirroring it in the opposite direction

with respect to participants' previous answer. In five steps, the

algorithm converges towards a certain angle at which partic-

ipants have an equal probability of reporting left or right. The

proprioceptive-based estimation is computed as the inter-

mediate hand position between the last displayed position

and the next position that would have been displayed by the

algorithm according to the participant's last answer. Each

target position is tested 4 times in randomized order, for a

total of 28 trials.

2.4.3. Open-loop reaching task (OL)
The set-up of this task is similar to the VPD task (Fig. 1d),

besides the fact that the virtual hand is not displayed;

therefore, participants do not receive any visual feedback

about their hand for the entire duration of the experiment.

From a fixed starting position, participants are asked tomake

a reachingmovement to one out of seven visual targets (from

T1 to T7), arranged at 0�, ±15, ±30, ±45� with respect to
participants' sternum. Target position is selected randomly

trial by trial. Participants are required to place their hand on

the starting position for 1.5 sec to initiate a trial. After the

initiation period, one of the targets appears. The reaching

target is then turned green as a “go” signal. Movement of the

hand outside the resting position at any time during the

initial resting period automatically restarts the trial. Partici-

pants have to reach the target with their real hand and come

back to the resting position within 1.5 sec, ending the trial.

Each participant is asked to complete 10 trials for each target

(10*7 ¼ 70 trials).

2.4.4. Midline judgement task (MJ)
In this task, participants are asked to sit on a chair keeping

their head and trunk aligned while wearing an HMD. On each

trial, a white sphere with 3 cm diameter moves horizontally

across participants' field of view at a speed of 10�/s, starting
from ±45�, ±40�, ±35�, and ±30� from the body midline, on an

arc centred on participants' sternum, with a radius equal to

their maximum reaching distance, as in the VPD (Fig. 1e).

Participants have to report when they feel that the visual cue

is aligned with the midline of their body by pressing a

response button, with the possibility to subsequently ask the

experimenter to manually adjust the judgement. The starting

positions of the visual cue are randomized across trials. 24

trials in total are collected.

2.4.5. Simultaneity judgement task (SJ)
This task consists of a series of reachingmovements in virtual

reality towards 10 targets (from T1 to T10) equally spaced

between �45� and þ45� with respect to participant's sternum

(Fig. 1f). On each trial, the displacement of the hand in virtual

reality is delayed by a variable amount with respect to the

onset of the movement of the real hand, spanning 8 values

equally spaced between 0 and a maximum of 175 or 350 msec

(see below). 10 trials are collected per temporal disparity, with

each target repeated once. The order of targets and delays was

randomized across the task. On each trial, participants are

asked to report whether their movement and the displace-

ment of the virtual hand occurred at the same time answering

the question “did you notice a delay between the virtual hand

and your hand?”. The answer is recorded as a binary variable

by the experimenter.

A practice session was conducted to let participants

familiarize with the task and to determine for each subject the

maximum delay for the experiment. The practice session

consisted in 15 trials: five for each of the 0, 175 and 350 msec

delays. If the participant noticed the delay (when present) in at

least 9 out of 10 trials, themaximumdelaywas set at 175msec

and 350 msec otherwise.

2.4.6. Visual morphing task (VM)
At the beginning of the task, 3 digital pictures of the partici-

pant's right hand are taken, with 3 different postures with

varying distance between the fingers (narrow, medium and

large). The pictures are converted to black andwhite, scaled to

300*400 pixels, and the background is removed. Each picture

is morphed towards 10 target hands from a fixed database of

hands (5 male and 5 female lab members). The morphing was

performed using an automated feature mapping software
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(Liao et al., 2017). Ten intermediate morphing steps are

created for each target, each frame representing a 10% incre-

mental change from participant's hand to a target hand or

from 100% self to 0% self. A random rotation and translation

(uniform on the�10/10� and�10/10 pixels range, respectively)

are added to each image to prevent the participant from

learning specific orientations-positions of the hands. The

morphing of each image is checked by visual inspection prior

to the task, and generates 100 morphing steps, uniformly

distributed between 0 (i.e., 0% self) and 100 (100% self). For

each of the 10 target images, 15 steps of morphing are

selected, in such a way that sampling is more frequent for

intermediate (harder to recognize) levels of morphing. In the

end frames number 1, 17,28, 36, 41, 45, 48, 50, 52, 55, 59, 64, 72,

83, and 100 are selected. One frame for each target image and

level of morphing is selected based on the quality of the

morphing (e.g., absence of deformations, discontinuity of the

margins, etc.). Hence, a set of 100 images is created. Partici-

pants sit in front of a screen, with their hand occluded from

view. At each trial, one of the 100 possible images is presented

on a computer screen, while the question “is this a picture of

your hand?” is displayed at the top of the image. Participants

answer to the question by pressing a left or a right button, for

negative and positive answers respectively, and their

response and reaction times are recorded.

2.5. Sampling plan

2.5.1. Inclusion criteria and missing values
According to the power analysis described below, 40 right-

handed participants were recruited. Inclusion criteria were:

no history of neurological, vestibular or psychiatric disorder,

normal or corrected to normal binocular vision for VR. Par-

ticipants were informed about the inclusion criteria before-

hand and asked to apply only if no criteria are violated.

Therewas no outlier removal in the collected data. If at any

point technical issues arose during an experiment interfering

with the experiment's procedure or data-logging, the partici-

pant was excluded from the experiment in which the issue

emerged. Issues rated as interfering with the experiment's
procedure include any type of freezing of the displayed virtual

environment or any other faulty distortion of the presented

virtual environment. Technical issues were recognized by the

experimenter, who monitored the procedure of all experi-

ments on a separate display. If a participant wanted to stop

the experiment due to motion sickness or any other discom-

fort, he/she was excluded from the experiment. Each task was

considered complete if the participant performed at least 80%

of the trials. Participants who failed to complete more than

one task were be excluded from the experiment. In addition,

any participant with less than 80% of the trials in the VPD task

was excluded. All excluded participants due to the above

reasonswere replacedwith another participant. These criteria

were established before data collection.

2.5.2. Monte Carlo simulations approach
Due to the complexity of the planned analysis, and the scar-

city of published empirical data using a similar setup, we

could not perform a power analysis through standard tech-

niques for most hypotheses of our study. Therefore, in order
to determine the optimal sample size, we relied on a custom

method combining Monte-Carlo simulations and previous

data to estimate the chances of observing the hypothesized

effect. In short, we used model fits from Fang's (Fang et al.,

2019) largest experiment to infer a plausible distribution of

the main model parameters, and we simulated behavioural

results from 500 surrogate participants, assuming that the

BCIST model, described in Section 2.2, is correct. Then, our

analysis pipeline was repeatedly run on several random

samples of surrogate participants of different sizes, and the

fraction of resamples yielding significant results were

computed. This should provide an unbiased estimate of the

probability of observing an effect, assuming that the BCIST
model is correct.

2.5.3. Hypothesis Ia: model validation through model
selection
Concerning the hypothesis that the BCIST model would

outperform both the BCIS model and FF model, since real data

from a similar experiment is available, we based ourselves on

the sample of the largest experiment performed by Fang on

humans. A sample size of 22 participants was largely suffi-

cient to select the best model with fewer trials per participant.

In order to assess the probability of the BCIST model to

outperform the Heuristic and Semi-FF models, we fitted the

surrogated participants (simulated with the BCIST model as

ground truth) also with these two alternative models, and

compared them to the BCIST model by computing the ex-

ceedance probability over resamples. We explored sample

sizes ranging from 5 to 60 in steps of 5. For each sample size N,

subsets of N participants were randomly selected 10,000 times

(with replacement) from our pool of 500 simulated partici-

pants, and the fraction of resamples yielding significant re-

sults was computed. The models yielded a good fit compared

to the FF model (R2 BCIST: .911 ± .0016; Heuristic: .884 ± .002;

Semi-FF: .893± .002; FF: .854 ± .003). Nevertheless, when tested

by computing the exceedance probability, the BCIST model

overwhelmingly outperformed both alternative models even

with 5 participants (power¼ 100%). The average log-likelihood

difference in favour of the BCIST model was very large:

65.3 ± 43.4 (SD) against the Heuristic model, and 47.66 ± 30.7

(SD) against the Semi-FF model. Indeed, the brain is expected

to only approximately perform Bayesian CI, while our simu-

lations are based on an exact implementation of the model.

Nevertheless, our analysis shows that the predictions of the

different models differ quite radically. If the brain approxi-

mates optimal Bayesian CI closely enough to render the

Bayesian hypothesis meaningful within this context, our

model comparison pipeline should be able to detect it with 40

participants.

2.5.4. Hypothesis Ib: model validation through unisensory
correlations
The above-describedMonte-Carlo approachwas then used for

assessing the correlations between model parameters

extracted from VPD task (sp, sv, st), and unisensory precisions

extracted from the PJ and OL (sp), MJ (sv) and SJ tasks (st).

First of all, ground truth values for the parameters sp and sv

were drawn from a distribution modelled on the parameters

extracted from our pilot for 500 surrogate participants.
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Therefore, values of sp were drawn from a Gaussian of mean

5.56, while values of sv drawn from a Gaussian of mean 5.23.

The means of the randomly generated parameters were the

same as what was obtained in Fang's (Fang et al., 2019) VPD

experiment with 22 participants, the largest similar dataset

available. The standard deviation of the Gaussians was set to

2�. A lower and upper cut-off of 3 and 8� were set on both

values to avoid unrealistic extreme values. For st, since it was

not possible to collect pilot data, we assumed a distribution

based on literature about the perception of delay in a visuo-

motor task. Fitting our model of the SJ on data extracted

from figures in the only previous study that was well adapted

to this goal (Farrer et al., 2008) indicates a value of st of about

85 msec (see Supplementary material for details). To cover a

plausible and wide range of temporal precisions, we assumed

st to be uniformly distributed in the range 50e120msec, which

is symmetrical around 85 msec. In order to be conservative,

the power analysis was performed only with the longer delays

(0e350 msec), which should guarantee that in the actual

experiment the values of st should be extracted with equal or

greater precision than in our simulations. Finally, values of Pp
were uniformly distributed between .4 and 1, symmetrical

around the average reported value of .7. Then, the VPD, PJ, OL,

MJ and SJ tasks were simulated for each participant.

In order to simulate the VPD task, we simply applied the

same procedure used to simulate the trials at a given amount

of visuo-proprioceptive disparity, used for model fitting and

described in the previous section. In order to simulate the

reached position in the OL task, or the judged position in the PJ

task, we added Gaussian noise of standard deviation sp to the
Fig. 4 e Power analyses. Panel (a) shows the results of the pow

Hypothesis Ib. We plot the probability of observing a significant

the number of participants. The red, cyan, blue and grey dots de

sp, st as extracted from the multisensory task (VPD) and its un

estimated probability of observing a significant correlation betw

by fitting in the VPD task. Probabilities for each sample size we

estimating the 95% c.i. due to the sampling procedure. Panel (b)

parameters used in simulations and fitted values, over 10,000 ra

different parameters is the same as in panel (a). Panel (c) show

extracted from unisensory tasks and true parameters used in s

confidence intervals obtained by applying the Fisher transform

inverse transformation to the confidence intervals on the Z sco
target position for each trial. Similarly, for the MJ task, we

generated 24 normally distributed values, with standard de-

viation sv. Finally, we used the same procedure developed for

model fitting to simulate the SJ task.

After the data was generated, we extracted the unisensory

parameters from the multisensory and unisensory tasks as

described in the Analysis plan (Section 2.6.5). Then, we eval-

uated the probability of observing significant effects as a

function of sample size through repeated resampling, as

described previously. As a final outcome, we chose the sta-

tistical significance of the Pearson correlation between the

values of sp, sv, st obtained by fitting the BCIST model on the

multisensory task, and their unisensory counterparts from

the other five tasks, with a threshold of p ¼ .004.

This procedure allowed us to identify the major sources of

uncertainty in model fitting, especially for the multisensory

task, where all parameters are estimated at once, and opti-

mize the experimental design accordingly. The final combi-

nation of spatial and temporal disparities presented in the

previous sections was selected between several possible de-

signs, as the one maximizing power while keeping the ex-

pected duration of the multisensory task below 90 min.

Similarly, the number of repetitions in the unisensory tasks

was defined by heuristically optimizing the trade-off between

task duration and statistical power, based on the expected

precision in measuring the relative model parameter as seen

in Fig. 4c. As summarized in Fig. 4a, the analysis shows that a

sample of 35 participants should be sufficient to obtain a

power above 90% for all the three correlations with a signifi-

cance threshold of .004 (92.7% for the MJ task with 15
er analysis conducted by Monte-Carlo simulation for

effect after Bonferroni correction (p < .004) as a function of

note respectively the correlations between the values of sv,

isensory correspondents. The black dots indicate the

een the slope of the VM task and the value of Pp extracted

re computed over 10,000 random draws, with error bars

shows the average Pearson correlation value between true

ndom draws of simulated participants. The colour-coding of

s the same average correlations between parameters

imulations. Error bars in panels (b) and (c) denote 95%

ation to correlation coefficients and then applying the

res obtained in such a way.
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participants, 94.8 with 15 participants for PJ, 96.4% with 10

participants for OL and 93.4% with 35 participants for SJ).

Finally, as no simple mathematical model can be used to

describe the expected relation between the VM task and the

prior on common cause in the visuo-proprioceptive disparity

task (Pp), we relied on more conventional methods, based on

the assumed value of the correlation. Our simulations indicate

that the expected correlation between the true prior and the

value fitted from the VPD task should be R ~ .777.We assumed

the morphing slope value would have the same correlation

with the true value of Pp. For each sample size N, we selected

10,000 times N surrogated participants and generated n

random vectors with an imposed correlation coefficient of

.777 with respect to the true value of Pp. The obtained values

were then correlated with the fitted value of Pp, and a signif-

icance test was performed with a ¼ .004. After computing the

fraction of significant correlations, we found that a sample

size of 35 would allow to reach a power of 92%.

2.5.5. Hypothesis II: link with subjective ownership
Concerning the hypothesis that subjective ratings should

correlate with reaching biases, we based sample size estima-

tion on the previous work by Fang (Fang et al., 2019), who

performed a very similar analysis with fewer trials per

participant. Assuming a true R value of this correlation to be

equal to .82, a 90% power can be obtainedwith 10 participants.

In summary, based on the hypothesis that requires the

largest sample size, we estimate that 35 participants should be

sufficient formeeting our statistical power target of 90%. To be

conservative, we oversampled to 40 participants.

2.6. Analysis plan

Overall, the main hypothesis of our study is the validity of the

Bayesian CI model in both the spatial and temporal domains

(BCIST) as a potential mechanism for body ownership. This

was done in two steps: model validation (Hypothesis I) and

linking the model predictions to subjective ownership

(Hypothesis II).

2.6.1. Hypothesis Ia: model validation through model
selection
We fitted the BCIST, FF, BCIS, Heuristic and semi-FF on our

multisensory reaching task (VPD), and then test the BCIST
model against the concurrent models by evaluating the ex-

ceedance probability (original code available from: https://

github.com/sjgershm/mfit).

For all models, the fitting approach is similar to the one of

Fang and colleagues (Fang et al., 2019). For each spatial and

temporal disparity, we simulated 5000 trials, and maximize

the likelihood of the data given the simulated model pre-

dictions, with respect to the set of fitted parameters (e.g., sv,

sp, st, Pp, for the Bayesian CImodel). The fittingwas performed

through the BADS Matlab optimization tool (https://github.

com/lacerbi/bads) (Acerbi & Ma, 2017). To avoid convergence

problems or poor optimization, the fitting procedure was

repeated 5 times with different randomly selected starting

parameters, and the fit with the highest log-likelihood was

selected. No pre-processing step was performed on the data,

except for the removal of systematic biases in reaching
(possibly due to tracking or VR calibration). This was done by

subtracting, for each participant, the mean reaching bias at

zero spatial and temporal disparity.

2.6.2. Hypothesis Ib: model validation through unisensory
correlations
As an alternative model validation, we proposed to compare

individual parameters extracted from the multisensory task

through the BCIST model with their unisensory correspondents

measured through independent tasks. Such tasks were

designed to match the VPD setup, to capture the relevant uni-

sensory components as accurately as possible. However, this

independentmeasure necessarily implies some variations, and

a strict 1 to 1 correspondence between the measured and the

fitted parameters cannot be guaranteed. Still, a correlation be-

tween themeasured unisensory and the fitted parameters is to

be expected if the multisensory task relies on the proposed

Bayesian CI process. Therefore, we assessed whether the pa-

rameters extracted from the unisensory tasks positively

correlatewith the ones extracted from themultisensory task by

performing significance tests on Pearson correlation scores.

Regarding proprioception, the correlation of the sp fitted by the

model with the proprioceptive precision extracted from either

of the two proprioceptive tasks (PJ and OL) was considered

valid. The detailed extraction of unisensory parameters is

described below (Section 2.6.5).

2.6.3. Hypothesis II: link with subjective ownership
Finally, we compared model predictions about Pcom with

subjective ratings about ownership. We fitted a bivariate

Gaussian to the average subjective ratings as a function of

spatial and temporal disparity, in order to extract the values of

the tolerated spatial and temporal disparities as the standard

deviation of the fitted Gaussian. Those values were correlated

with the values obtained by performing the same fit on Pcom
values extracted from model fitting on the reaching task. To

obtain Pcom values for each subject, we simulated 5000 trials

for each spatio-temporal disparity, using the parameters fitted

from the VPD task, and take the average value of Pcom, simi-

larly to what done in Fig. 2d. Since, obviously, negative tem-

poral disparities cannot be sampled, we mirrored the ratings

and Pcom values symmetrically with respect to the spatial axis,

so to be able to perform the fits. We then performed signifi-

cance tests on Pearson correlation scores. The Gaussian fit has

six free parameters: the spatial and temporal standard devi-

ation (our parameters of interest), the spatial and temporal

means, a normalization constant and a global offset.

2.6.4. Interpretation of possible outcomes
Model validation (Hypothesis I) was considered achieved if

we could demonstrate the presence of optimality by con-

firming Hypothesis Ia or Hypothesis Ib. Model selection

(Hypothesis Ia) was considered successful if the BCIST out-

performed all the alternativemodels (exceedance probability

>.95 against FF, BCIS, Heuristic, semi-FF). Regarding the

unisensory correlations (Hypothesis Ib), a significant corre-

lation, after Bonferroni correction (5 parameters, p < .01),

between at least one of the unisensory estimates and the

corresponding model parameter was considered sufficient.

Indeed, despite our careful planning, it is possible that one or

https://github.com/sjgershm/mfit
https://github.com/sjgershm/mfit
https://github.com/lacerbi/bads
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more unisensory tasks do not measure the appropriate uni-

sensory function involved in the putative Bayesian CI pro-

cess taking place in themultisensory task. On the contrary, if

the BCIST is not valid, the chances of a significant correlation

between the independent estimates of a unisensory preci-

sion with the corresponding model parameter is extremely

low. In any case, even if all of the unisensory tasks fail to

capture the relevant unisensory component, model selection

should still be able to demonstrate the validity of the pro-

posed model, as it is performed purely on the multisensory

task.

Hypothesis II was accepted if the correlation described in

Section 2.6.3 was significant.

2.6.5. Extraction of unisensory parameters
Regarding OL task, where the source of variability in reaching

movements is proprioceptive-motor noise, we expect:

xr ¼xt þN
�
0; sp

�
(12)

where xr denotes the reached position, and xt the target

position.

Then, in order to extract sp, we simply need to fit xt ~ xr, and

extract the root mean square error of the fit. The same

reasoning holds for the PJ task, by replacing reached positions

with individual proprioceptive judgements. In order to control

for possible active movements of the hand during the task,

trials inwhich participants' hand show a displacement >5mm

[i.e., a valuewhich takes into account the reported precision of

the motion tracking system (Jost et al., 2019)] were discarded

from the analysis.

Similarly, in our MJ task, we expect:

xj ¼ xm þNð0; svÞ (13)

where xj denotes the judged midline position, and xm the true

midline position. Then again, sv can be simply extracted as the

root mean square error of midline judgements.

The analyses are slightly more complicated for the

extraction of st. Participants do not directly report judgements

about timing, as this would be hard to do practically and

possibly introduce cognitive biases, but instead they express

judgements about simultaneity. In a Bayesian framework, this

is best described as another causal inference process. The

causal inference equations are very similar to the ones

described for inferring Pcom, the main difference being that

they extend only to the temporal domain. Psim, the inferred

probability that the motor command and the observed

movement are simultaneous given a perceived amount of

delay is
Psim ¼ P
�
tp ¼ tv

��tp; tv�¼ P
�
tp; tv

��tp ¼ tv
�
P
�
tp ¼ tv

�
P
�
tp; tv

��tp ¼ tv
�
P
�
tp ¼ tv

�þ P
�
xp; xv; tp; tv

��tps
Assuming that participants report stimuli to be simulta-

neous when Psim is larger than a given threshold b, the

expression can be used to predict the shape of the psycho-

metric curve obtained in our simultaneity judgement. Then

the value of st can be recovered by fitting through a process

similar to the one used in our multisensory task. It is impor-

tant to note that, as verified by simulations, the fitted value for

st depends only on the slope of the psychometric curve and is

not affected by the values of the prior on simultaneity or the

response criterion (see Supplementary material).

Finally, since the VM task cannot be connected mathe-

matically to the Bayesian CI model in a straightforward

manner, we chose an empirical criterion for assessing its

impact. We performed a logistic fit on the judgements

expressed as a function of the percentage of morphing ac-

cording to the following model.

ln

 
py

1� py

!
¼b0 þb1xþ ε (15)

where py denotes the probability of replying “yes” in the VM

task, x denotes the morphing percentage (with 0 meaning 0%

self, and 100 meaning 100% self), b0 and b1 are fit parameters

and ε is the error term. Then, the subjective equivalence point

is be given by e b0/b1, and the slope at that point by b1/4.

We used such value of the slope as a proxy of accuracy in

visually discriminating one's own hand. In principle, partici-

pants are expected to be stricter in embodying the virtual

hand, which does not look like their own.We therefore expect

a significant positive correlation between values of Pp and

slopes of the psychometric function.

2.7. Timeline

Pending limitations deriving from the COVID-19 pandemic,

data collection can be initiated immediately upon Stage 1

acceptance in principle, and the study can be completed

within 4months since then. Approximately onemonthwill be

needed for data collection, two months for data analysis and

one month for writing and editing.

2.8. Pilot data

To confirm the possibility of translating the task developed by

Fang and colleagues to immersive virtual reality, and test our

model fitting procedure, we collected pilot data from 10

healthy participants (4 females, aged 24.1 ± 2.4 years, age

range 21e29). The task was a close replication of Fang's task

(including the spatial, but not the temporal manipulation of
tv
�
P
�
tpstv

�¼ Ps
1
a
e

�d2
t

2s2
t

Ps
1
a
e

�d2
t

2s2
t þ ð1� PsÞ 1

302

(14)
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visuo-proprioceptive disparity). Besides the experimental

design in terms of spatial (angular) disparities, the task was

the same as described in Section 2.4.1. For each participant,

three experimental blocks with slightly different designs were

collected. In the first two blocks, we collected a total of 49 trials

with 7 disparities (at 0�, ±13.3�, ±26.6� or ±40�). Each disparity

was presented 7 times, each time with a different target out of

7 equally spaced targets between �45 and 45�. Only 5 repeti-

tions per disparity were collected in the third block, with 5

targets equally spaced on the same range. Target positions

and spatial disparities were randomized within each block.

The results of the reaching task, shown in Fig. 5a, are

qualitatively in line with what reported by Fang, confirming

that the experimental setup can be successfully exported to

an immersive virtual reality environment. We then tested

whether our data were well modelled by a Bayesian CI model

(BCIS) by applying a fitting procedure very similar to the one

proposed by Fang and colleagues to extract model parameters

(see Analysis plan for details). As done in Fang (Fang et al.,

2019), we then compared BCIS model to the FF model pre-

dictions (fixed weights to vision and proprioception at all

disparities). We used model Bayesian information criterion as

an approximation of model evidence, and computed the

model's exceedance probability (Wozny et al., 2010) (original

code available from: https://github.com/sjgershm/mfit). We

found this analysis to favour the BCIS model with an exceed-

ance probability¼ .894, in line with the value reported by Fang

(Fang et al., 2019) in his second experiment with 8 human

participants (.954), showing that data fromour VPD task is also

quantitatively in line with this previous study. We then used

the distribution of the extracted parameters as a basis for our

power analysis.

We also performed a smaller pilot study on two healthy

participants (2 males, aged 24 and 28 years) to test the
Fig. 5 e Pilot data for a purely spatial (a) and spatio-temporal (b,

pilot study on 10 participants with the VPD task, with no tempor

proprioceptive disparities, defined as the virtual hand angle min

The y axis indicates the proprioceptive drift defined as the target

left of a target experiences a proprioceptive drift towards the rig

the expected drift in the case of a purely proprioceptive or visua

the predicted drift from a FF model of visual-proprioceptive inte

predictions of the BCIS model, in close agreement with average

Panels (b) and (c) show results for two pilot participants from the

conditional means, and the colours code represents the differen

expected, drift values increased at increasing temporal delays.
practical feasibility of combining both spatial and temporal

disparities during the task, as this was never done before

(Fig. 5b and c). The experimental design was exactly as

described in the methods, except that, for temporal delays

larger than zero, 6 disparities have been tested, uniformly

distributed between �33.3� and 33.3� instead of �40�/40�. The
design was changed as further simulations showed that this

proposed design to be slightly better in terms of statistical

power. Both participants were able to execute the task

correctly, and the effect of temporal delay is present in both

participants in line with our expectations. We used these pilot

data to test our analysis pipeline and parameter extraction via

model fitting. The fit converged for both participants and

accurately modelled the data (R2 ¼ .940 and .905 respectively),

yielding values of the parameters in linewith our expectations

(S01: sv ¼ 7.1, sp ¼ 4.63, st ¼ .118, Pp ¼ .938, S02: sv ¼ 9.64,

sp ¼ 5.98, st ¼ .101, Pp ¼ .826).
3. Results

As planned, data from 40 healthy participants was collected

for our study. Due to technical issues during data collection

(failure of the morphing algorithm), data for the VM task was

not collected for two participants. According to the pre-

registered criteria, these participants were still included in

the analyses involving all the other tasks.

3.1. Hypothesis I

Hypothesis I consisted in the validation of a Bayesian CImodel

describing participants' behaviour in a multisensory reaching

task (VPD) under visuo-proprioceptive disparity as the result

of the optimal integration of visual and proprioceptive
c) disparity setup. Panel (a) shows the results from a larger

al delay (as in Fang et al., 2019). The x axis indicates visuo-

us the real hand angle (positive angles being on the right).

's angle minus the real hand's angle (a participant reaching

ht, and vice versa). The blue and red dashed lines represent

l dominance, respectively. The grey dashed line represents

gration, while the black dashed line shows the averaged

d experimental results represented by the green solid line.

new spatio-temporal disparity setup. Solid lines represent

t temporal delays tested (T disparity; as in Fig. 1b). As

https://github.com/sjgershm/mfit
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information in both the spatial and temporal domain (BCIST).

We aimed at demonstrating our hypothesis through two

approaches.

(i) model selection, i.e., by comparing the BCISTmodelwith

four competing models (Hypothesis Ia).

(ii) by showing that BCIST model predictions about uni-

sensory precisions matched those measured through a

set of dedicated tasks (Hypothesis Ib).

All models yielded good fits for reaching errors (R2 BCIST:

.901 ± .049 SD; Heuristic: .9 ± .053 SD; Semi-FF: .902 ± .052 SD; FF:

.895 ± .053 SD). However, when computing the exceedance
Fig. 6 e Model comparison. Panel (a) shows the average reachin

dashed lines, for all the 5 models we compared. Note that the fi

account not only the mean reaching error but the dispersion of

not be the ones best approximating the mean, probably leadin

Panels (b) and (c) show the full data and model distribution for

exemplary subjects at zero temporal disparity. In the first (b), th

(c), it outperformed the heuristic but not the Semi-FF. The fitted

dashed black line. The solid black line represents the data avera

BCIST and Semi-FF model mainly differ in the transition betwee

proprioceptive dominance, which is much sharper in the and B

Fig. 3d). In participants in which these subtle differences are no

BCIST due to the greater flexibility granted by its fully independ
probability (EP), the BCIST outperformed the FF (BCIST ¼ .999,

FF ¼ .001), BCIS (BCIST ¼ .984, BCIS ¼ .016), and heuristic model

(BCIST ¼ .984, Heuristic ¼ .016), but not the Semi-FF, which

instead slightly outperformed the BCIST model (BCIST ¼ .04,

Semi-FF ¼ .96). At the single subject level, amongst our 40 sub-

jects, the BCIST model outperformed the FF in 35 participants,

the BCIs in 26 participants, the Heuristic in 26 participants and

the Semi-FF in 16 participants. We show the average fits for all

models, as well as for two exemplary participants, in Fig. 6.

Regarding the unisensory correlations (Fig. 7b), the fitted

proprioceptive precision (sp) significantly correlated with the

proprioceptive precision, as measured by both the PJ task

(r ¼ .43, p ¼ .005, p ¼ .027 after Bonferroni correction) and the
g errors in solid lines, and the corresponding model fits in

tting is based on the full data distribution, taking into

individual trials around the mean. Hence, the best fits may

g to small discrepancies between fitted and actual data.

the three key models (BCIST, Heuristic, Semi-FF), for two

e BCIST outperformed all alternative models, in the second

data density is encoded in the colour, and its average in the

ge and red dots individual trials. As visible in the plots, the

n low-disparity visual dominance and high-disparity

CIST and leads to an almost bimodal distribution (see also

t observable, the Semi-FF model ends up outperforming the

ent parameters.

https://doi.org/10.1016/j.cortex.2023.06.019
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Fig. 7 e Pre-registered analyses. (a) Shows the average proprioceptive drift (left plot), subjective ownership ratings (centre

plot), and estimated Pcom (left plot) for the VPD task in 40 participants. The colour code represents the different temporal

delays tested. Dashed lines represent model fits. (b) Shows the correlation between the unisensory precisions fitted by the

BCIST model from reaching errors at the multisensory task (VPD) and those measured by the unisensory tasks, with each

plot representing a different unisensory task. (c) Shows the correlation between the implicit (as extracted from reaching

errors) and explicit (as extracted from ownership ratings) window for ownership. The top plot represents the spatial

window, the bottom plot the temporal window.

c o r t e x 1 6 7 ( 2 0 2 3 ) 2 4 7e2 7 2 265
OL (r ¼ .43, p ¼ .006, p ¼ .031 after Bonferroni correction); in

contrast, neither the fitted visual (sv) nor the fitted temporal

(st) precisions correlated with the corresponding unisensory

precisions measured by the MJ (r ¼ .26, p¼ .1 uncorrected) and

SJ task (r¼ .18, p¼ .26 uncorrected) respectively. No significant

correlation was found between Pp and the ability to discrim-

inate the higher order visual features of the hand, as

measured by the VM task (r ¼ .041, p ¼ .8 uncorrected). These

results were replicated with a different choice of the flat priors

in the BCIST model (see Supplementary material).

In summary, Hypothesis Ib can be considered satisfied,

and, according to the pre-registered analysis plan, Hypothesis

I can be therefore accepted despite Hypothesis Ia not being

fully satisfied.
3.2. Hypothesis II

With Hypothesis II, we aimed at demonstrating that reach-

ing errors in the VPD task, as modelled by our BCI model,

truly reflect the subjective experience of body ownership. To

do so, we extracted from reaching errors the probability of

ownership as a function of both spatial and temporal

disparity and computed the spatio-temporal extent of the

tolerated window for implicit ownership by fitting a

Gaussian function to Pcom values. We hypothesized that the

size of such implicit ownership window would positively

correlate with the size of the explicit ownership window,

extracted through the same method from explicit owner-

ship ratings.

https://doi.org/10.1016/j.cortex.2023.06.019
https://doi.org/10.1016/j.cortex.2023.06.019


Fig. 8 e Proprioceptive precision and body ownership. Panel (a) shows the correlation between the implicit window for

ownership in the spatial domain and the unisensory proprioceptive precision extracted from the PJ task. The plots in panel

(b) show the average proprioceptive drift in each of the tested delays for lower (dark blue) and higher (light blue)

proprioceptive precisionmeasured by the PJ task. Panel (c) shows the correlation between average ownership ratings at zero

disparity and proprioceptive precision (PJ).
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We found that neither the size of the spatial, nor the one of

the temporal windows for implicit ownership were correlated

with their explicit counterpart (respectively: R ¼ .07, p ¼ .67;

R ¼ �.26, p ¼ .098, Fig. 7c). Therefore, Hypothesis II cannot be

considered to be satisfied according to the pre-registered

analysis plan.

However, when investigating in detail the different steps

of the analysis with empirical data, we found a computa-

tional issue in the parameters used for Gaussian fits on Pcom
values, which yielded noisy fitted values (see 6.3.2 for de-

tails). We hypothesized that such fitting instability might

explain the observed lack of the correlation predicted by

Hypothesis II (see Supplementary material for details).

Therefore, we performed the conceptual replication of

Hypothesis II after resolving such technical issue, as detailed

in the exploratory analyses.

3.3. Exploratory analyses

3.3.1. Relationship between unisensory precisions and body
ownership
Model selection showed that the of BCIST performed worse

than the Semi-FF (see Section 3.1). Conceptually, the main

difference between these two models is that the first assumes

the spatial and temporal binding windows to be optimised on

unisensory precisions, while in the latter these are considered

independent. To assess more directly the existence of a rela-

tionship between unisensory precisions and the ownership

window, we investigated the correlation between the width of

Pcom extracted by the BCIST in both the spatial and temporal

dimensions and unisensory precisions extracted from the

unisensory tasks. We found a positive correlation between sp

measured by the PJ task and sPcom in the spatial domain

(R ¼ .33, p ¼ .035, Fig. 8a). This is directly visible by splitting

reaching errors as a function of disparity for between high and

low sp subjects (Fig. 8b). In contrast, sPcom did not correlatewith
the sp measured by the OL in the spatial domain (R ¼ .13,

p¼ .43) nor with st measured by the SJ in the temporal domain

(R ¼ .043, p ¼ .79).

Another interesting model prediction is that natural hand

ownership, which in our setup is simulated by ratings at zero

spatio-temporal disparity, should negatively correlate with

proprioceptive precision. This may be especially relevant to

the study of ownership alterations in patients with somato-

sensory deficits. Indeed, a less precise proprioception leads to

higher visuo-proprioceptive incongruences in neural encod-

ing, and less certainty that the hand is one's own even when

the underlying physical stimuli are aligned. This was indeed

the case in our data, where a significant negative correlation

between sp (PJ) and ownership ratings at zero disparity was

observed (R ¼ .52, p ¼ .0006, Fig. 8c).

3.3.2. Hypothesis II analyses with improved fit quality
As mentioned in Section 3.2, we identified a technical issue

leading to poor quality of the Gaussian fits on Pcom values,

which is a crucial step for the validation of Hypothesis II.

Essentially, the issue derived from the presence of three un-

necessary free parameters in the fit of Pcom values: the spatial

and temporal location of the peak of the Gaussian, and a

constant offset added to the Gaussian function. These pa-

rameters are necessary to fit explicit ratings, which could in

principle peak at non-zero spatio-temporal disparity and may

not reach zero even at very large disparities due to inter-

individual differences. For simplicity, they were left free also

when fitting Pcom values, although themodel used to compute

the Pcom values in the first place imposes per se these param-

eters to be zero. As detailed in the Supplementary material,

this led to extremely poor quality of Pcom fits, as in several

subjects the fitted values largely variedwhen repeating the fits

with different starting parameters and could be therefore

considered almost meaningless. The issue is completely

resolved by fixing the unnecessary free parameters to zero. In

https://doi.org/10.1016/j.cortex.2023.06.019
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Fig. 9 e Hypothesis II revised. Panel (a) shows the correlation between the implicit and explicit window for ownership, after

resolving fitting issues. The left plot represents the spatial window, the right plot the temporal window. Panel (b) shows the

correlation between residual drift and residual ownership measures, with each subplot corresponding to one of the 40

participants. Panel (c) shows individual Pearson correlation coefficients between implicit and explicit ownership ratings.

Subjects in red show a significant correlation at p < .05. Panel (d) illustrates the result on raw data in a paradigmatic subject.

The solid blue line indicates the average drift for each disparity and dots the individual reaching errors. Therefore, trials

between the line and zero have negative residual drift (more proprioceptive weight), and vice versa. The colour of the dots

indicates the ownership rating (1e10) associated to that trial. Higher ownership ratings are associated with more weight

attributed to the virtual hand.
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addition, we discovered that the fitting quality could be

further improved by increasing the iterations of the BCIST fit to

100,000 (see Supplementary material).

We performed further analyses after implementing such

improvements in the fitting procedures. First, we confirmed

that all results from Hypothesis I are left virtually unchanged

by the modifications (see Supplementary material). Then, we

tested whether the failure to confirm Hypothesis II could be

determined mainly by such computational issue, by repli-

cating the key correlation analysis, using the improved fits as

an input. Indeed, since the modifications to the analysis pro-

cedure only improve the numerical quality of the fit, the

conceptual and statistical meaning of the analysis is left

unchanged.

We found that, in the spatial domain, there was a sig-

nificant (R ¼ .32, p ¼ .041, Fig. 9a, left) and positive correla-

tion between the explicit and implicit window for

ownership, as expected according to Hypothesis I. There-

fore, participants who integrated the virtual hand in their

reaching movement up to larger spatial disparities also re-

ported higher levels of ownership up to larger spatial dis-

parities. Surprisingly, we found a significant negative

correlation (R ¼ �.35, p ¼ .029, Fig. 9a, right) in the temporal

domain. This result is indeed puzzling and counterintuitive,

and may depend on computational artifacts in the fitting, or

other uncontrollable factors. Indeed, the overall effect of the

temporal manipulation on reaching errors is small

compared to the one of the spatial manipulation, leading to

less reliable estimates of the dependence of Pcom on tem-

poral disparities. This is reflected by the large and unreal-

istic fitted values for the temporal window, as well as by the

lack of correlation between fitted and measured st. There-

fore, interpretation of the negative correlation should be

approached with caution.

3.3.3. Trial-by-trial correlation between ownership and
reaching errors
Since both pre-registered and exploratory analyses

addressing Hypothesis II yielded mixed results, we decided

to further explore the link between subjective ratings at the

individual trial level, which was not possible with the

experimental design used by Fang et al., who collected

explicit ownership ratings only by blocks. This way, we

aimed to test the conceptual question of Hypothesis II in a

way that is less affected by computational issues of nu-

merical stability and can benefit from the higher statistical

power of conducting analyses at the individual trial level. If

reaching errors truly reflect the subjective ownership feeling

at the implicit level, we would expect that trials with higher

explicit ownership would be associated with a higher weight

attributed to the virtual hand even at fixed spatio-temporal

disparity. To test this hypothesis, we computed “residual”

explicit ownership ratings at the individual level, by sub-

tracting to each rating the average ownership rating at the

same spatio-temporal disparity. Similarly, residual drift (i.e.:

putative implicit ownership) values were obtained by sub-

tracting to the reaching error its average value for each

disparity. In order for positive residual drift values to always
indicate a larger visual weight and vice versa, residual drift

values were multiplied by the sign of the spatial disparity.

Zero disparity values were excluded as they yield no

meaningful information in this analysis. Then, we tested

whether residual drift and ownership values were corre-

lated by means of a linear mixed model. Regardless of the

structure of random effects used, we found a strong effect of

residual drift values on residual ownership values (p < .001).

Indeed, a correlation between residual ownership and drift

values can be observed in almost all subjects individually,

with 31 out of 40 participants showing a significant corre-

lation at p < .05 (see Fig. 9bed). The average correlation

coefficient was .381 ± .032 S.E., significantly larger than 0 at

p < .001. This result strongly suggests that individual

reaching errors reflect subjective ownership for the virtual

hand as reported by the participant within the same trial.
4. Discussion

In this work, we aimed at rigorously assessing whether the

emergence of body ownership from spatial and temporal

visuo-proprioceptive congruency carries the signature of

optimal Bayesian inference. To do so, we measured the pro-

prioceptive drift induced in reaching movements by a spatio-

temporally incongruent virtual hand and compared it to pre-

dictions of a Bayesian Causal Inference (BCIST) model. The

validation of the model developed over two pre-registered

hypotheses. With Hypothesis I, we aimed at demonstrating

that the model not only well fits experimental data, but that

the data shows compelling evidence of Bayesian processing.

This was done by comparing themodel with appropriate non-

Bayesian alternative models and by directly comparing the

unisensory precisions fitted from the multisensory reaching

task (VPD) to independent measures of unisensory precisions.

With Hypothesis II, we aimed at demonstrating that the

reaching errors induced by the virtual hand can be considered

as an index of implicit ownership and reflect subjective rat-

ings of ownership (explicit ownership), by assessing the rela-

tionship between these two measures.

Hypothesis I was accepted according to the pre-registered

analysis plan. A significant correlation was observed be-

tween the proprioceptive precision fitted from the VPD task

andmeasured through unisensory static (PJ) and dynamic (OL)

task. While there is a significant overlap between the VPD and

OL task (both involving active reachingmovements), the static

PJ task is orthogonal to the VPD task and provides a more

compelling signature of Bayesian optimality. No significant

correlation was found between measured and fitted temporal

precision (st), visual precision (sv) and common cause prior Pp.

Model comparison also favoured the BCIST model, which

outperformed all but one of the alternative models, as we will

discuss in more detail later.

Hypothesis II, instead, was not validated according to our

pre-registered analysis plan, as no significant correlation was

observed between sizes of the spatial or temporal windows for

implicit and explicit ownership. Nevertheless, detailed

investigation of the fitting procedures involved in the analysis

https://doi.org/10.1016/j.cortex.2023.06.019
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with the full sample of empirical data revealed a purely

computational issue which affected the quality of the results.

After resolving it, a significant positive correlation emerged

between the sizes of the spatial windows for implicit and

explicit ownership, confirming the results by Fang and col-

leagues (Fang et al., 2019). Surprisingly, a negative and sig-

nificant correlation emerged in the temporal domain. Since

the temporal manipulation was only partially successful and

led to noisy estimates of st, we believe this result may be due

to numerical artifacts and should be taken with caution. To

further investigate the question raised in Hypothesis II, we

performed an alternative exploratory analysis at the single

trial level, revealing a strong correlation between variability in

ownership ratings and reaching errors. Trials in which the

virtual hand biased the reaching movement more strongly

than on average were associated with ownership ratings

higher than the average. Such correlation was significant not

only at the group level, but also at the single subject level for

31 out of 40 (77.5%) participants.

In sum, our results suggest that visuo-proprioceptive

integration and the sense of body ownership both carry the

signature of Bayesian, uncertainty-based processing, and can

be well described by a Bayesian Causal Inference model.

It is worth noticing that the analysis plan was thought to

detect any signature of Bayesian processing, with different

alternative outcomes being considered sufficient for vali-

dating Hypothesis I. This is already an important advance-

ment with respect to most previous studies, whose

experimental design did not allow to rigorously demonstrate

such feature. Still, not all experimental results were in line

with the initial hypotheses, strictly following all the pre-

registered analyses. Since unsuccessful analyses can be as

informative as successful ones, we will discuss these limita-

tions extensively, in line with the philosophy of pre-registered

reports.

First, three out of the five expected correlations between

the fitted and measured parameters were not significant. The

simplest explanation is that the unisensory tasks do not

capture model parameters or do so with insufficient precision

to reach the necessary statistical power. In our view, this is the

most likely explanation for the absence of correlation between

the fitted and measured sv and Pp. Indeed, although both pa-

rameters routinely appear in similar studies (Fang et al., 2019;

K€ording et al., 2007; Samad et al., 2015), they are conceptually

difficult to measure independently, which is arguably a com-

mon limitation in Bayesian models of brain function. In

contrast, the definition of temporal precision within the

context of our experimental task seems less ambiguous, and

the absence of correlation is more surprising. Indeed, the

comparison with the purely spatial BCI model shows that the

temporal manipulation does affect behaviour. However, such

modulation is weaker than expected (likely also affecting the

stability of the fit of the underlying parameter, see Fig. S6) and

not coherent with model predictions. Possibly, this is due to

the fact that the brain may optimise behaviour in a task-

dependent way (Limanowski & Friston, 2020), an aspect

which was not included in our model. Since the focus of the

task is to maximise spatial accuracy, while attentional and

computational resources are limited, spatial parameters may

be optimised more accurately than temporal ones.
Another key aspect in Hypothesis I is that model selection

showed that the BCIST model is outperformed by the Semi-FF

model, in which unisensory precisions determine the relative

weight of vision and proprioception, but not the size of the

spatial and temporal windows of integration. This may seem

surprising, and contradictory to the presence of correlations

between measured and fitted unisensory precisions. Never-

theless, it is important to notice that the Semi-FF model was

constructed post-hoc with the sole purpose of providing the

best fit of already known empirical data. This way, it benefits

from the absence of any theoretical constraint, but for the

same reason it lacks any deeper insight into the underlying

mechanism. More conceptually, Bayesian approaches to brain

function start from the hypothesis that the brain approximates

optimal inference, and arguably share the limitation that they

do not provide predictions about how good the approximation

will be. Whether an ad-hoc model can outperform a Bayesian

model is therefore more an empirical question than a con-

ceptual one. Thus, while this does not hinder the Bayesian

brain hypothesis conceptually, it may limit its practical utility.

On the one hand, the Semi-FF model cannot account for the

observed correlations between unisensory and fitted param-

eters, suggesting that it does not provide the most exhaustive

description of brain function. On the other hand, the fact that

a non-Bayesian model can outperform a reasonably sophis-

ticated Bayesian model confirms the difficulty of accurately

reproducing subtle aspects of behaviour within the Bayesian

framework (as those visible in Figs. 3d and 6bec). This con-

firms the need of refining current models through rigorously

paired theoretical and experimental research.

Coming back to Hypothesis II, taken together our results

suggest that reaching errors induced by visuo-proprioceptive

disparity do reflect subjective ownership feelings. In this

sense, the last exploratory analysis (shown in Fig. 9) is espe-

cially interesting, as it shows a strong connection between

random fluctuations of proprioceptive drift and subjective

ownership. This is perfectly in line with a Bayesian account of

body ownership, in which noisy and constantly fluctuating

sensory information leads to subjective ownership through an

online inference process. Such analysis is also relevant for the

recent debate about demand characteristics of tasks used to

assess body ownership (Lush et al., 2020). While it is possible

to imagine that subjects may provide lower ownership ratings

in the presence of incongruence, due to demand characteris-

tics, our finding directly link the residual reaching errors and

ownership ratings, after removing the average main effect of

disparity. Such quantities require a complex mathematical

computation to be obtained and are therefore cognitively

inaccessible and arguably immune to demand characteristics.

Furthermore, compared to explicit paradigms such as the RHI,

our VR adaptation of Fang's task allows to easily collect a

greater amount of quantitative data points while para-

metrically exploring several modulating factors.

Our paradigm does not directly apply the causal inference

framework to subjective ownership ratings. This is instead the

approach used by a recent work (Chancel et al., 2022). Their

main finding is that trial-by-trial variations of noise in visual

information are taken into account in rating ownership in a

rubber hand setup, since the tolerance to temporal delays in

visuo-tactile stimulation increases with levels of sensory
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noise rather than being constant. This is a strong hint that

uncertainty-based inference is taking place. However, these

results cannot be taken as a quantitative demonstration of

causal inference in body ownership, since the effect of sen-

sory noise on unisensory precision is not independently

quantified [as e.g., in Ernst & Banks (2002b)] and could not be

compared to model fits.

In sum, we provided novel evidence that body ownership

arises from visuo-proprioceptive integration through a pro-

cess that can bemodelled in a quantitative framework, whose

main ingredients are the relative precisions of unisensory

inputs. Crucially, we developed methods which are effective

in independently measuring these key parameters of the

model. These tasks can be especially useful in explaining ab-

normalities in the sense of body ownership in clinical pop-

ulations, such as patients with acquired brain lesions

(Garbarini et al., 2013, 2014; Romano & Maravita, 2019), or

within the autistic (Cascio et al., 2012; Paton et al., 2012) and

schizophrenic spectrum (Peled et al., 2000). In this sense, the

correlation between zero-disparity ownership, a proxy of

ownership for the real hand, and proprioceptive precision,

provides a hint that natural hand ownership and the quality of

(potentially deteriorated) proprioceptive inputs may be

related. Previous studies attributed body ownership alter-

ations to different steps of the multisensory integration pro-

cess, represented by distinct parameters of the causal

inference model. Apparent inconsistencies in some of these

results (Buma et al., 2010; Burin et al., 2015; Germine et al.,

2013; Llorens et al., 2017; Shaqiri et al., 2018; White & Aimola

Davies, 2017) may be better investigated in the light of our

quantitative framework, where the independent assessment

of model parameters can help disentangle the unisensory and

multisensory contributions to alterations in body ownership.

On the theoretical side, our results showhowbody ownership,

a key component of bodily self-consciousness, emerges from

the optimal Bayesian integration of unisensory inputs, linking

a higher order cognitive function to a well-established quan-

titative framework. Therefore, they provide a precious insight

in how self-awareness may emerge from the evolutionary

need to optimally combine sensory inputs relating the

external world and our physical body.
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