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Methylmalonic aciduria (MMA) isaninborn error of metabolism with
multiple monogenic causes and a poorly understood pathogenesis,
leading to the absence of effective causal treatments. Here we employ
multi-layered omics profiling combined with biochemical and clinical
features of individuals with MMA to reveal a molecular diagnosis for

177 out of 210 (84 %) cases, the majority (148) of whom display pathogenic
variants in methylmalonyl-CoA mutase (MMUT). Stratification of these
datalayers by disease severity shows dysregulation of the tricarboxylic
acid cycle andits replenishment (anaplerosis) by glutamine. The relevance

of these disturbances is evidenced by multi-organ metabolomics of
a hemizygous Mmut mouse model as well as through identification
of physical interactions between MMUT and glutamine anaplerotic
enzymes. Using stable-isotope tracing, we find that treatment with
dimethyl-oxoglutarate restores deficient tricarboxylic acid cycling.
Our work highlights glutamine anaplerosis as a potential therapeutic
intervention pointin MMA.

Inborn errors of metabolism (IEMs), first described by Archibald Gar-
rod’, areinherited diseases resulting from the inadequate function of
metabolic proteins. IEMs represent a group of nearly 1,500 diseases
with a combined incidence of approximately 1:800 births. They pre-
sent a clinically and genetically heterogeneous picture making them
inherently difficult to diagnose®*. Beyond their diagnostic challenges,
the pathomechanisms of many IEMs are not well understood; hence
most IEMs lack rationalized treatment approaches®.

Methylmalonic aciduria (MMA) is a prototypic IEM that may be
caused by defects in approximately 20 genes’. Classical isolated MMA
isanautosomal recessive disorder caused by pathogenic variantsin the
genes MMUT, MMAA and MMAB, with a prevalence of approximately
1:90,000 births®. The gene products of MMAA and MMAB convert
intracellular vitamin B,, (cobalamin, Cbl) into its cofactor form (adeno-
sylcobalamin, AdoCbl), which is used by methylmalonyl-CoA mutase
(MMUT) for the breakdown of methylmalonyl-CoA to succinyl-CoA as
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part of propionate catabolism. Dysfunction of any of these proteins
leads tothe accumulation of the eponymous metabolite methylmalonic
acid and others. Clinically, individuals with classical isolated MMA
frequently present with failure to thrive and acute life-threatening
episodes in the neonatal period, involving vomiting and impaired
neurological function (comatose state and metabolic stroke) accom-
panied by biochemical disturbances (metabolic acidosis and hyperam-
monemia)’. Surviving patients with MMA are affected by long-term
complications that mainly include neurological abnormalities (move-
mentdisorder andintellectualimpairment), kidney failure and anemia/
neutropenia’. Eventhough the (dys)function of MMUT has been studied
extensively®* ™, the main metabolic disturbances and pathomechanisms
in MMA remain an open question and curative treatment options are
notavailable.

Technological advances in genomics and mass spectrometry,
leveraging datasets of whole molecule classes (omics), have recently
led to a paradigm shiftin their use as diagnostic tools. For example,
single-layer WGS has achieved diagnostic rates of 30-50% in rare dis-
ease cohorts™™, while dual-layer combination with RNA sequencing
(RNA-seq) can improve this by 10-35%" "%, Despite these advances,
a substantial number of patients with IEM remain undiagnosed
and disease course prediction remains poor, mainly due to a lack
of pathomechanistic understanding and often unclear genotype-
phenotype relationships.

Multi-layered omics data have the potential to not only increase
diagnosis rates of IEMs but also to uncover mechanistic insights into
disease pathophysiology', thus potentially indicating new therapeutic
targets. Such a combinatorial approach is key to moving beyond the
traditional ‘one gene, one disease’ view of these disorders, which fails
to explain phenotypic heterogeneity based on genetic variation only;
however, the simultaneous application of multi-omics technologies
for this purpose has not been rigorously tested and their true utility,
bottlenecks and knowledge gaps remain unknown.

By combining whole-genome sequencing (WGS), whole tran-
scriptome sequencing (RNA-seq) and proteotyping information
(data-independent acquisition mass spectrometry (DIA-MS)) with
phenotypic features, we identified disease-causative and pathogenic
featuresin a cohort of MMA-affected individuals. We revealed under-
lying damaging variants and differentially expressed transcripts and
proteins directly related to anaplerosis of the tricarboxylicacid (TCA)
cycle.Moreover, follow-up studies utilizing untargeted metabolomics
and [U-2C]glutamine tracing revealed a depletion of TCA cycle anaple-
rosis in line with the identified dysregulation of glutamate dehydro-
genase and oxoglutarate dehydrogenase enzymes, which we found
to physically interact with a complex of proteins, including MMUT.
Beyond unveiling these metabolic disturbances in MMUT deficiency,
our findings enable abetter biological understanding of TCA cycle ana-
plerosis. Furthermore, the anaplerotic TCA cycle insufficiency in MMA
may be apotential therapeuticintervention point, asdemonstrated by
boosting TCA cycle intermediate pools and reducing MMA-specific
toxic metabolites by dimethyl-oxoglutarate treatment.

Results

Monogenic disease variant detection through multi-omics

To extend the understanding of MMA from the causative genomic
lesions to the affected biochemical processes, we performed
high-quality WGS, RNA-seq and DIA-MS-based proteotyping on
fibroblasts taken from 230 individuals (210 affected by MMA and
20 unaffected), representing a mainly European cohort collected over
25years (Fig.1a and Extended Data Fig.1). Biochemical assay of propi-
onate incorporation (PI)*°and MMUT enzyme activity® was strongly
correlated across all samples (rho = 0.73, P< 0.0001) (Extended Data
Fig. 2a). Fibroblasts from 150 individuals with MMA had reduced
MMUT activity (MMUT-deficient), including 123 that did not
increase upon cofactor supplementation (Extended Data Fig. 2b,c),

whereas those of 60 individuals had MMUT activity similar to controls
(other MMA) (Fig. 1b).

Inthe MMUT-deficient samples, we searched the WGS dataset for
disease-causing variationsinthe MMUT gene and identified the molecu-
lar cause of diseasein148 out of 150 individuals (Supplementary Table1).
Pathogenic variants constituted 165 missense alleles, 105 truncating
alleles, 21 splicing alleles, 2 alleles with in-frame deletions and 3 alleles
containing copy-number variants (Fig. 1c,d and Extended Data Fig. 2d),
of which41variants were new (Supplementary Table1). RNA-seqiden-
tified reduced MMUT RNA expression in cells from MMUT-deficient
individuals compared to the other groups (Fig. 1e). Individuals with
strongly reduced RNA expression were enriched for splicing and/
or truncating variants, consistent with nonsense-mediated decay
(Extended Data Fig. 2e). DIA-MS-based proteome measurements
revealed reduced MMUT protein levels in MMUT-deficient primary
fibroblasts (Fig. 1f), which were distributed across all variant types
(Extended DataFig.2e). Consistent withits disease-causing role, MMUT
RNA and protein levels were positively and significantly associated with
Pland MMUT activity (Extended Data Fig. 2f), without truncating or
splicing alleles driving this correlation (Extended Data Fig. 2g). MMUT
represented the most significantly dysregulated RNA and protein of
MMUT-deficient samples when compared to all other samples (Fig.1g
and Extended Data Fig. 2h).

In the remaining 60 samples, we identified bi-allelic disease-
causing variants for 22 individuals in genes other than MMUT: ACSF3
(17 individuals) (Fig. 1h), TCN2 (3 individuals), SUCLA2 (1 individual)
and MMAB (1individual) according to the ACMG classification (Supple-
mentary Table1). By searching RNA-seq for aberrantly expressed genes
using OUTRIDER? (Extended Data Fig. 3), we identified two individuals
withvery low ACSF3 expression; two with aberrant SUCLA2 expression,
in whom we confirmed predicted splicing and copy-number variants
atthe genomiclevel (Supplementary Table 1); two with very low MMAA
expression, confirmed by complementation analysis; and one with
low MMAB transcript, also confirmed by complementation analysis.
Therefore, we identified amolecular cause for 29 out of 60 remaining
individuals (48%), including 18 pathogenic mutations, of which10 were
new (Supplementary Table1). Insummary, we found a diagnosis for 177
out of 210 (84%) affected individuals (Fig. 1i), including 150 with defi-
ciency of MMUT and 19 with damaging variants in ACSF3, accounting
for the largest cohort of ACSF3 deficiency.

Phenotypicdescription and association with disease severity
We expected that the genetic underpinnings identified above would
only partly predict the clinical and biochemical phenotypes of affected
individuals as other genetic (for example, the combination of patho-
genicalleles and gene regulation) or non-genetic factors (forexample,
protein-protein interactions) might influence the manifestation of
MMA disease. We therefore aimed at establishing a quantitative assess-
ment of disease severity by converting the catalog of mostly semantic
phenotypic traitsinto key numeric variables. In total we collected 105
phenotypic variables. Following exclusion of nine unspecific and/or
interdependent features (Methods; Cohort Selection), we generated
acorrelation matrix of phenotypic variables (n = 96), spanning clinical
symptoms at presentation and during disease course (n = 37), clini-
cal treatments and therapeutic response (n =22), clinical chemistry
of blood or tissues including metabolite measurements (n =21) and
invitrobiochemical parameters (n =13), revealed acluster of features
(MMUT activity, PI) that showed strong correlation across many vari-
ables (Fig.2a,b).

Astheidentified few variables are strongly associated with many
clinicalfeatures, we postulated that most disease characteristics might
bewell predicted by one oraselect few variables. Asaproof of principle,
we established a clinical severity score (CSS), which incorporated the
outcome of five typical clinical features’ (composition in Methods),
whereby a score of O represented the absence of these typical MMA
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Fig.1|Multi-faceted omics view enabled amolecular diagnosis in 84% of
individuals. a, Study overview with adepiction of the propionate pathway,
includingits precursors and the pathways catalyzed by MMUT. b, MMUT enzyme
activity per study sub-cohort (MMUT-deficient, n =150; other MMA, n = 60;
unaffected, n=3); Pvalues were calculated by Wilcoxon rank test, two-sided.

¢, Lollipop plot of all pathogenic variants found on the MMUT gene. d, Proportions
of variant types as identified on the MMUT gene. e f, Transcript and protein

levels of MMUT by study sub-cohorts (number of samples for the transcript and

protein plot, respectively: MMUT-deficient, n = 143/150; other MMA, n = 59/60;
unaffected, n=19/20). g, Gene ranks according to Pvalues as calculated by
gene-wise Welch’s t-test (two-sided) in the proteomics and transcriptomics

data. h, Lollipop plot of pathogenic variants identified in ACSF3. 1, Proportions
of affected genes identified in the whole cohort. Pvalues were calculated by the
Wilcoxon rank test. Boxplot elements represent center line, median; box limits,
upper and lower quartiles; whiskers, 1.5x interquartile range; and points, outliers
ineandf.Dotsinb,e frepresentbiologicallyindependent samples.

features, a score of 1indicated mild MMA and a score of 2 or higher
(maximum ) indicated moderate to severe MMA disease. Comparison
of the CSS against all phenotypic parameters demonstrated a signifi-
cant correlation with 49 individual variables (Fig. 2c), including many
classical phenotypic symptoms of MMAuria, such as acidosis, hyper-
ammonemia and muscular hypotonia, as well as the requirement for
dietary and pharmacological interventions (Extended Data Fig. 4a).
Notably, the CSS alsoinversely correlated with age of onset (Extended
DataFig.4b), aparameter that onits own has been used asanindication
of clinical severity®.

Multiple correlation analysis identified Pl in the presence of
hydroxocobalamin (PI+) to significantly correlate with 42 phenotypic
features, themost of any individual continuous variable (Fig. 2c). This
contrasts, for example, to age at onset, which was significantly corre-
lated with only 16 parameters (Fig. 2c). Closer inspection revealed PI+
to be inversely correlated with disease severity, including significant
positive correlation with, for example, pH or age at disease onset and
negative correlation with, for example, methylmalonic acid concen-
tration in plasma, presence of clinical interventions such as protein

restriction and the CSS (Fig. 2d and Extended Data Fig. 4c,d). Of note,
these relationships were preserved when all collected features were
included (Supplementary Fig. 1). Therefore, in line with its validity as
adiagnostic test for MMA?, the PI+ variable was used as an approxima-
tion of clinical disease severity in this study.

Disruption of the TCA cycle and associated pathways

To identify disease-associated expression alterations of genes, pro-
teins and pathways, we attempted a global assessment of transcript
and protein expression integrated with the quantitative phenotype
variablesidentified above. As patients with TCN2, SUCLA2 and ACSF3
deficiency lack most of the typical signs and symptoms of classical
MMA, we compared MMUT-deficient with all non-MMUT-deficient
samples (control).

Investigation of transcripts and proteins using differential correla-
tion patterns (Pearson correlation method), dimensionality reduction
via principal-component analysis and DESeq2 did not immediately
yield a clear grouping of the data nor obvious expression pattern
differences between the groups (Supplementary Fig. 2); however,
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Fig. 2| Phenomics analysis reveals two main surrogate markers of disease
severity (CSS and PI+activity). a, Correlation matrix of all continuous

numeric and discrete phenotype variables. b, Number of phenotypic traits
according to five phenotype subcategories. ¢, Panel of selected phenotypic
traits and their overall strength of representing the entirety of the phenomics
dataset (here termed disease severity) as assessed by linear modeling after log
transformation. Each point represents the result of linear regression against one
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multi-omics factor analysis®, integrating both genetic data layers
and proteotyping data, identified mitochondrial metabolic pathways
and, in particular, the electron transport chain and the TCA cycle to
be enriched in MMUT-deficient samples (Fig. 3a). In more detail, the
proteins SLC16A3, CS, MDH2 and OGDH were found to be the main driv-
ers of this particular factor’s variance in the proteotyping data within
the TCA-associated gene sets (Fig. 3b). Linear discriminant analysis of
genes shared between transcriptomics and proteotyping indicated
MMUT as the strongest and SUCLA2, OGDH and PDHB to be top drivers
of separation between MMUT-deficient and control samples (Fig. 3c).
Further, gene set enrichment analysis utilizing sample stratification by
disease severity, both by CSS and PI+, also identified oxidative phos-
phorylation and the TCA cycle as over-represented pathways in the
proteomics (CSS and PI+) and transcriptomics (CSS) datasets (Fig. 3d).

These changes were consistent with findings in a hemizygous
mouse model of MMA? (Fig. 3e). Untargeted metabolomics of brain,
heart, kidney, liver, plasma and urine confirmed elevated levels of
the eponymous metabolite methylmalonic acid in mutant animals,
whereas pathway enrichment analysis pointed to dysregulated TCA
cycle pathways in all tissues and urine (Fig. 3f). Transcriptomics
of brain tissue further confirmed the expected 50% reduction in
Mmut transcript of mutant mice, along with enrichment of electron
transport chain and oxidative phosphorylation pathways (Fig. 3g,
Supplementary Fig. 3).

MMUT deficiency leads to alterations in proximal TCA enzymes
As both data-driven and phenotypically stratified analyses indicated
TCA and associated pathways tobe disrupted in disease, we performed

a concerted investigation of the TCA cycle enzymes, including those
that metabolize anaplerotic (replenishing TCA cycle intermediates) and
cataplerotic (removing TCA cycle intermediates) reactions, fromwhich
we had both RNA and protein information. As controls, we included
isoforms of TCA enzymes that are not involved in these pathways
(Fig. 4a). Direct comparison of RNA and protein expression between
MMUT-deficient and control cells revealed MMUT to be significantly
dysregulated (Fig. 4a outer band).

Differential expression analysis, performed using a linear mixed
modeling approach?, identified the genes with the strongest effect
size and significance to be enriched for mitochondrial localization, as
listed in MitoCarta 3.0 (ref. *) (Supplementary Fig. 4). Closer exami-
nation (Fig. 4a,b middle band), identified MMUT to be significantly
downregulated in disease at both the RNA and protein level, whereas
ALDH2, which catalyzes the interchange between methylmalonate and
methylmalonate semialdehyde, was upregulated in both. A further
upregulated transcript was PDK4 (Fig. 4b), which is responsible for
the phosphorylation and, as a consequence, inactivation of the pyru-
vate dehydrogenase complex; however, the proteins with the overall
largest effect size were OGDH (downregulated in disease) and GLUD1
(upregulated in disease), both enzymes involved in the anaplerosis
of glutamine (Fig. 4b). In line with our findings, proteomics studies
in human MMA livers by others have equally identified upregulated
GLUDI1and ALDH2 (ref.?’) and targeted analysis of liver-derived isolated
mitochondria from a murine MMA model showed decreased OGDH
protein levels and enzyme activity®.

Examination of RNA-protein expression correlationinall samples
revealed alimited Spearman correlation of 0.14 at the gene level (4,318
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Fig.3|Untargeted integration of omics datalayers highlights the TCA cycle
and associated pathways as well as oxidative phosphorylation gene sets to
be dysregulatedin MMA. a, Gene set enrichment test using the multi-omics
factor analysis tool (MOFA). Benjamini-Hochberg adjusted P values (two-
sided) are shown. b, Detailed feature statistics of the top enriched gene sets
following MOFA in the proteomics data; P values calculated asin a. ¢, Linear
discriminant model (split to assign training and test data, 0.5) of transcripts
separates MMUT-deficient from control driven by MMUT and other genes
related to the TCA cycle. d, Gene set enrichment analysis based on ES ranking
derived from differential expression analysis (also Fig. 4b); Pvalues were
calculated with the fgsea R package. e, Breeding scheme of Mmut-deficient
mice. f, Untargeted metabolomics in mouse tissues and body fluids, depicting

boxplots for methylmalonic acid and metabolite set enrichment analysis based
on the complete metabolomics dataset. Significantly changingions between
mutant and control conditions were identified using a two-sample ¢-test. Pathway
analysis was performed using an annotated ion list ranked by P value significance.
Pathway enrichments were calculated using KEGG metabolic pathway definitions
and a hypergeometric test. g, RNA-seq on mouse brain tissue. Boxplots of the
relative Mmut transcript abundance and gene set enrichment analysis following
DESeq2 analysis; dot size represents the number of genes per set. Pvalues in fand
g (boxplot) are calculated by Wilcoxon rank test, two-sided. Boxplot elements
represent center line, median; box limits, upper and lower quartiles; and
whiskers, 1.5x interquartile range.

transcript-protein pairs) and 0.40 at the sample level (Fig. 4c and
Extended Data Fig. 5a), similar to findings by others®. RNA-protein
correlation in MMUT-deficient cells compared to controls revealed
that, while 1,158 pairs (26.8%) correlated significantly (P < 0.05) in
both genotypes (Fig. 4d all colored points and Extended Data Fig. 5b)
in accordance with previous studies®, the correlation of some genes
segregated depending on the genotype (MMUT-deficient versus con-
trol) (Fig.4d).Inparticular, OGDH, GLUD1, CS and GLS showed higher
RNA-protein correlation in MMUT-deficient samples than controls,
whereas SUCLA2 had reduced RNA-protein correlation (Fig.4a,d and
Extended DataFig.5c). OGDH and SUCLA2 were among the genes with
the strongest genotype-dependent RNA-protein correlation changes
(Fig.4d). Notably, we found poor RNA-protein correlation for MMUT
in both control and MMUT-deficient cells (Fig. 4a,d and Extended
DataFig. 5c).

Finally, MMUT protein levels positively correlated with protein
levels of many TCA and anaplerotic enzymes in control but not in
MMUT-deficient cells, whereas there waslittle or no protein expression
correlation between MMUT and non-TCA protein isoforms in either
genotype (Fig.4acenter and Extended Data Fig. 5d). Such arelationship
is exemplified by MMUT:ACO2 and MMUT:ACOI1 (Fig. 4a center and
Extended DataFig. 5e) and indicates that MMUT may be part of aso far
unknowninteraction network with these mitochondrial TCA cycleand
anaplerotic enzymes®. Examination of pairwise correlation between
all proteins and transcripts (Extended Data Fig. 5f,g) in these pathways
suggests that the TCA cycle and anaplerotic enzymes have a positive
correlation with each other, which is not altered in MMUT deficiency
unless MMUT isincluded inthe comparison. Overall, the above findings
suggest that disruption of MMUT RNA and protein expression drives
regulatory changesin certain TCA and anaplerotic enzymes.
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mixed modeling approach applied to the proteomics and transcriptomics data,
restricted to enzymes (or their encoding genes) localized in the mitochondria;
calculated Pvalues were two-sided. ¢, Histograms of Spearman correlations
across 4,318 transcript-protein pairs (left) and 221 samples (right). d, Scatter
plot of Spearman correlations in MMUT-deficient against control. Euclidean
distance from the diagonalis calculated based on the formula (MMUT-deficient
correlation—control correlation)/sqrt(2); calculated P values were two-sided.

Metabolomics highlights rewiring of TCA cycle anaplerosis

To examine the functional consequences of the above RNA and protein
expressionalterations, we performed untargeted metabolomic analysis
onaset of six MMUT-deficient fibroblasts, derived from patients, and
six control primary fibroblasts, derived from unaffected individuals
(selection criteria in Extended Data Fig. 6a and Methods). While the
total ion current was comparable in the MMUT-deficient and control
samples (Extended Data Fig. 6b), we found decreased glutamine and
alanine as well as increased hexoses, methylcitrate, oxoadipate, ami-
noadipate and pyruvate among the most significantly changed metabo-
lites (Fig. 5a). No strong pool-size changes of TCA cycle intermediates
were observed in these cells (Extended Data Fig. 6¢); however, many
ofthe altered metabolites represent anaplerotic precursors. Changes
in anaplerotic metabolites are consistent with observed changes in
RNA and protein expression in the matching model systems, indicat-
ing disruption of TCA cycle anaplerosis in MMUT deficiency (Fig. 5b).
They also suggest a potential knock-on effect to adjacent pathways,

asillustrated by the increased oxoadipate and aminoadipate (Fig. 5a).
These are upstream metabolites of the 2-oxoadipate dehydrogenase
complex, whichsharesits E2 (DLST) and E3 (DLD) components with the
2-oxoglutarate dehydrogenase complex (Extended DataFig. 6d), poten-
tially indicative of a preference for 2-oxoglutarate over 2-oxoadipate
metabolism in MMUT-deficient cells.

To study anaplerotic alterationsin-depth, we performed targeted
metabolomicsin293T cells with awild-type (WT), MMUT knockout (KO)
or DLST-KO geneticbackground, as validated by Western blotting analy-
sisand enzyme activity measurements (Supplementary Fig.5). DLST-KO
cellswere used as an additional control to mimic the reduction of OGDH
protein in MMUT deficiency. In MMUT-KO cells, we found markedly
reduced TCA cycle intermediates, indicating an overall reduced TCA
metabolite pool, whereas KO of DLST led to virtual absence of most TCA
cycle metabolites (Fig. 5¢). Inaddition, we found reduced pool sizes of
glutamine and glutamate (Supplementary Fig. 6a) comparable to the
patient fibroblasts (Extended Data Fig. 6c). These results point to an
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Fig. 5| Polar metabolomics and glutamine tracing studies in CRISPR/Cas9 KO
293T cells and primary patient fibroblasts highlight differential glutamine
anaplerosis. a, Volcano plot depicting differentially expressed metabolites.
Highlighted are those particularly relevant to this study. b, Schematic depiction
of the TCA cycle and relevant anaplerotic reactions. The color code indicates
dysregulations at the metabolite and protein levels; gray metabolites were

not detected. ¢, Pool sizes of metabolites in control and CRISPR/Cas9 KO

293T cells (error bars represent s.d., centered around the mean). d, Schematic
representation of labeling of TCA cycle and associated metabolites derived
from labeled glutamine via anaplerosis. Circles represent carbon atoms.

e, Relative abundance of isotopologs of TCA cycle metabolites after glutamine

labeling. f, Ratios of M + 5and M + 4 citrate isotopologs. g, Total pool sizes of TCA
cycle metabolites under different treatment conditions. Oxoglut., dimethyl-
oxoglutarate. h, Levels of propionylcarnitine in primary patient fibroblasts under
treatment. i, Ratios of M + 5and M + 4 citrate isotopologs under treatment in
primary fibroblasts; Pvalues were calculated by two-sided Wilcoxon rank test.
Boxplot elements represent center line, median; box limits, upper and lower
quartiles; and whiskers, 1.5x interquartile range. For experiments in293T cells
(c,e-g), n=3Dbiologically independent samples (WT), n=2 (MMUT-KO),n=2
(DLST-KO) over two independent experiments were measured. For experiments
in patient fibroblasts (h,i), n = 4 biologically independent samples per group
were measured.

adjusted reliance on the glutamine anaplerotic pathway in disease; a
hypothesis we tested further by assessing relative carbon incorpora-
tion derived from [U-C]glutamine into TCA cycle and associated
intermediates (Fig. 5d). To identify differential labeling patterns, we
studied the isotope distribution based on the relative incorporation
of glutamine-derived carbons (Supplementary Fig. 6b) into the TCA
cycle.Inthis experiment, immediate anaplerotic glutamine catabolism
results in M + 5 (glutamate and oxoglutarate) and M + 4 (succinate,
fumarate, malate and citrate) compounds, whereas oxidative cycles of
the TCA cycle willincorporate mostly unlabeled carbon (for example,
from glucose and methylmalonyl-CoA) and dilute glutamine-derived
BC. In MMUT-KO conditions, we found a tendency for increased pro-
portional fractions of M + 5 oxoglutarate and M + 4 isotopologs of all
studied TCA cycle metabolites, with reduced proportional fractions
of M + 0 foreach (Fig. 5e), as exemplified by succinate (Extended Data
Fig.7a). Thisimplies that cells withimpaired MMUT have anincreased
use of glutamine as an anaplerotic source. Moreover, consistent with
reduced OGDH activity, there was a relative preference for the reduc-
tive TCA cycle pathway, as indicated by anincreased M + 5/M + 4 ratio
for citrate (Fig. 5d)**** in MMUT deficiency (Fig. 5f). Applying the same

labelingtechniquein primary patient and control fibroblasts replicated
the observed TCA cycle rewiring (Extended Data Fig. 7b).

To test whether direct supplementation of core TCA-related
metabolites can correct the reduced pools of TCA cycle interme-
diates, we re-performed metabolomics studies either without
intervention or following supplementation with citrate, malate or
dimethyl-oxoglutaratein 293T cells and fibroblasts (Fig. 5 and Extended
DataFig.7c). Dimethyl-oxoglutarateisa membrane-permeable alterna-
tive to 2-oxoglutarate, previously used inamodel of OXPHOS dysfunc-
tion®?. Supplementation with citrate and malate increased pools of the
respective intracellular metabolites but did not have abroad impact on
other TCAintermediates (Fig. 5g and Extended Data Fig. 7c). Aswe did
notseparate mitochondrial and cytosolic pools, the majority of supple-
mented citrate may have remained cytosolic, consistent with the largely
enhanced total peak area of M + O citrate but no change to the amount
oflabeled citrate (Extended DataFig. 7d). Likewise, the slightly broader
effect of malate may reflect its partial entrance into the mitochondria,
although labeled malate pools were also relatively unchanged follow-
ing supplementation (Extended DataFig. 7e). Dimethyl-oxoglutarate,
in contrast, in addition to increasing oxoglutarate pools, increased
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succinate, malate and fumarate in 293T cells (Fig. 5g) as well as citrate
in primary patient fibroblasts (Extended DataFig. 7c). It can be specu-
lated that this is due to its high penetrance into the mitochondria by
masking the negative charges with methyl groups. These patterns
werereinforced by investigation of [U-*Clglutamine-derived labeling
patterns, whereby the addition of citrate and malate ablated the con-
tribution of glutamine to their respective pools, but did not strongly
affect the anaplerotic synthesis of other intermediates, whereas
dimethyl-oxoglutarate reduced the anaplerotic contribution of glu-
tamine to all intermediates detected (Extended Data Fig. 8a,b). Two
other observations make dimethyl-oxoglutarate an interesting treat-
mentcompound:in patient fibroblasts, dimethyl-oxoglutarate strongly
reduced pools of propionylcarnitine, an MMA disease biomarker and
derivative of the toxic metabolite propionyl-CoA (Fig. 5h), and it led
to a tendency to decrease the M + 5/M + 4 ratio for citrate in MMUT
deficiency (Fig. 5i), indicating a potential throttling and re-balancing
of reductive TCA cycling under this treatment.

MMUT physically interacts with other anaplerotic enzymes
The above-observed adjustments in glutamine anaplerosis have
an unclear regulatory etiology. On the basis of the strong protein
expression correlation between MMUT and proximal TCA cycle and
anaplerotic enzymes (Fig. 4a and Extended Data Fig. 5d), we hypoth-
esized that these proteins might be part of a shared metabolon
complex, potentially facilitating regulation of TCA cycle anaplero-
sis of glutamine by protein-protein interactions®. To gain insights
into this potential physical relationship, we took advantage of the
over-expression of C-terminally FLAG-tagged versions of functional
MMUT (Extended Data Fig. 9a), three pathway members involved in
MMUT cofactor (MMAA and MMAB) and substrate (MCEE) synthesis
expected to participate in any multi-protein complex containing
MMUT and three negative controls (empty vector (EV), VLCAD and
ACO02)in293T cells (Fig. 6a). Using cross-linking immunoprecipitation
(IP) followed by immunoblotting, we found that IP of over-expressed
MMUT, MMAB, MMAA and MCEE enabled detection of endogenous
MMUT and MMAB (Extended Data Fig. 9b), a result confirmed by
reciprocal detection of endogenous MMAB and MMUT (Extended
Data Fig. 9¢), indicating that these pathway members were indeed
part of acomplex. In contrast, IP following expression of EV, VLCAD
and ACO2 did not result in the detection of endogenous MMUT
and MMAB (Extended Data Fig. 9b), demonstrating that the
above-detected interactions are specific.

To examine a potential complex with TCA cycle and anaplerotic
enzymes, we performed IP coupled to mass spectrometry of the four
MMUT pathway proteins (MMUT, MMAA, MMAB and MCEE) and two
negative controls (EV and VLCAD). At 1.0% false discovery rate (FDR)
using two peptides minimum at 95% threshold, each of these ‘bait’
proteins pulled down atotal of 100-350 different ‘prey’ proteins over
threebiological replicates (Extended Data Fig.10a). Within thisinter-
section, we identified 37 prey proteins pulled down by MCEE, MMAA,
MMAB and MMUT but not by EV or VLCAD in any replicate, including
MMUT, OGDH, DLST and GOT2, as well as 20 proteins pulled down by
MCEE, MMAB and MMUT but not EV or VLCAD including MMAB and
GLUD1 (Fig. 6b). Analysis of variance (ANOVA) of the biological trip-
licates comparing MMUT with EV and VLCAD identified 22 proteins
to be significantly enriched (nominal P value <0.05) in the MMUT
sample (Fig. 6¢c and Supplementary Table 2). All proteins were des-
ignated by UniProt to have mitochondrial localization and included
GLUD1, GOT2 and DLST (Fig. 6¢). ANOVA comparing the intersection
of proteins confidently pulled down by at least three of MMUT, MMAA,
MMAB and MCEE but neither of EV or VLCAD identified 11interacting
proteins, including GLUD1 and GOT2; whereas the intersection of
two of MMUT, MMAA, MMAB and MCEE but neither negative control
identified 13 interacting proteins, including DLST (Fig. 6d and Sup-
plementary Table 2). Finally, complex formation between MMUT

and DLST was additionally confirmed by immunoblotting (Fig. 6e
and Extended Data Fig. 10b). These data indicate that MMUT is part
of a complex of proximal metabolic enzymes, including GLUD1 and
the oxoglutarate dehydrogenase complex component DLST and sug-
gests that disruption of these interactions may underlie their altered
regulationin disease.

Discussion

Inthis study, we used anintegrated multi-modal approach to diagnose
and uncover pathomechanisms of the IEM like MMA. Unique to this
investigation was the relatively large set of patient samples and corre-
sponding phenotypes available for such arare genetic disease and the
ability to coordinate aliquots from the same samples to generate data
atthreemolecular layers. The results of our study will encourage future
endeavors to use our approachinany setting of aninborn monogenic
disease. Moving forward, the datasets derived from our study can be
further exploited, for example, by applying network contextualization
tools*, integrating multi-omics and flux modeling® and reconstructing
genome-scale metabolic networks®, continuing to refine the pipeline
of amulti-modal study of IEMs.

Our findings reinforce the value of comprehensive and com-
plementary datasets to increase diagnostic yield and the under-
standing of the pathophysiological underpinnings of disease. Our
multi-modal profiling allowed the identification of causative genetic
variation in 84% of the cohort, including causative factors in the
samples without MMUT deficiency. We were able to widen the set
of genes beyond the classical MMA genes MMUT, MMAA and MMAB.
For example, the identification of ACSF3 damaging variants in our
cohortis particularly notable as they have recently been linked to
combined malonicand MMAY. The phenotype of patients with com-
bined malonicand MMA was indistinguishable from the remainder
of patients with MMA with normal MMUT activity, highlighting the
fact that IEMs present with widely overlapping phenotypes and
that they should be studied with large gene panels or with WGS
approaches to avoid biases toward known genes and to augment
the chances of diagnosis.

While the ability of clinical phenotypicinformationto predicta
molecular diagnosis was limited, phenotypic variables, both clinical
and biochemical, enabled sample stratification by disease severity
and consequently identification of multi-level alterations of meta-
bolicgenes/proteins that were not apparent following examination
of single omics layers. Such a move away from ‘data silos’ into true
integrative and mechanism-based, multi-layered analysis remains
challenging, as it requires new analytical and statistical methods
to combine these disparate datasets®. In this capacity, multi-omics
factor analysis® highlighted the disruption to transcripts and pro-
teins of the TCA cycle and related pathways, a finding verified by the
correlation with phenotypic data utilizing both Pl activity and a CSS.
Following multi-modal integration, we performed metabolomics
in select patient cells and further complemented the data with glu-
tamine tracing and protein-protein interaction studies in a second
cell model. In summary, these experiments showed decreased TCA
metabolite pools and an increased glutamine-derived anaplerosis.
Similar investigations in the MMA-related disorder propionic aci-
duriashowed limited flux derived from *C-labeled a-oxoglutarate®.
In addition, we found previously unidentified MMUT-interaction
candidates, among which DLST (OGDH complex component) and
GLUDL1 are directly involved in the anaplerotic glutamine path-
way. It is of note that such a tailored set of follow-up experimen-
tal approaches (orthogonal to multi-omics data) is invaluable for
molecular assessment of potential targets and the validation of their
biological significance.

Our results highlight the importance of the loss of
methylmalonyl-CoA as an anaplerotic source and indicate a rele-
vant reduction of TCA cycle intermediates in MMA. We show that
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Fig. 6| MMUT interacts physically with GLUD1, DLST and GOT2 as demonstrated
by FLAG-tag pull-down. a, Outline of experimental and control groups indicating
which protein was used witha FLAG-tag in a cross-linking affinity purification
experiment coupled to subsequent analysis of the pull-down samples by mass
spectrometry. b, Venn diagram of proteins pulled down by the different FLAG-
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anaplerotic insufficiency is a relevant pathomechanism of MMA
and addressed this phenomenon as a therapeutic target by treat-
ing both our cellular models with TCA cycle intermediates. Such
anaplerotic stimulating approaches have precedent in IEMs, includ-
ing the application of triheptanoin in long-chain fatty acid oxida-
tion disorders*° or citrate treatment of patients suffering from the
MMA-related disorder propionic aciduria*. Our findings now show
that dimethyl-oxoglutarate, a membrane-permeable alternative to
2-oxoglutarate, previously used in amodel of OXPHOS dysfunction®,
may represent a more promising therapeutic strategy. Studies to
further delineate the efficacy of such approaches in preclinical and

clinical models willbe important for the ongoing development of new
treatments for MMA and IEMs in general.

Here, we studied a unique cohort of a rare IEM. The cohort is
remarkable with regard to the number of included patients with rare
diseases, amount of phenotypicinformation collected and availability
of primary fibroblast cell lines for every individual in the cohort; how-
ever, future efforts arerequired toinclude every individual (including
an equal number of controls) in an unbiased way to avoid collider
bias and to collect phenotypic data in a complete, standardized and
longitudinal manner (for example, via rare disease registries); aims
that were not possible in our multinational, multi-decade cohort.
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Further, corroboration of our findings of TCA cycle rewiring in MMA
will be required in orthogonal models, including in vivo studies, to
assess their applicability in atherapeutic setting.

Methods

Cohort and patient-derived fibroblast samples

Primary fibroblast samples and corresponding disease-related infor-
mation, including clinical and diagnostic data, were collected from
1989 to 2015. The information obtained and the use of fibroblasts
remains under the ethics approval granted by the Ethics Committee of
the Canton of Zurich (KEK-2014-0211, amendment: PB_2020-00053).
Upon collection, primary fibroblasts were cultured using Dulbecco’s
modified Eagle’s medium (DMEM; Gibco, Life Technologies) with 10%
fetal bovine serum (Gibco) and antibiotics (GE Healthcare) and either
used immediately or exchanged with 90% fetal bovine serum and 10%
dimethyl sulfoxide and stored in cryovials under liquid nitrogen. A
frozenaliquot of each primary fibroblast cell culture was sent for WGS,
RNA-seq and DIA-MS analysis (Fig. 1a). RNA-seq and DIA-MS were
always performed from matched aliquots.

Cohortselection

Patient samples were referred to our center initially for enzymatic or
genetic diagnostic purposes. For this study, we selected affected indi-
viduals (n=210) based on the presence of methylmalonicacidinurine
or plasma. Patient samples were accompanied by a questionnaire filled
by the referring physician (Supplementary Document 1) containing
dataonthe patients’ clinicaland biochemical presentation. Phenotype
dataare providedinthe Source Data for Fig. 2. For the analyses shown
in Fig. 2, nine phenotypic variables (hypothermia, hyperventilation,
irritability, somnolence, vomiting, dehydration, feeding difficulties,
responsivetoacute treatment and estimated glomerular filtration rate)
were excluded due to their nonspecific nature, whereas the analyses
in Supplementary Fig. 1included complete phenotype information.
Control samples were obtained from healthy individuals or donors
without a biochemical defect whose diagnosis excluded MMA.

Clinical disease severity score

The clinical disease severity score was based on five typical clinical
signs/symptoms of MMA’, including age at disease onset, as well
as the presence of neurological abnormalities, kidney impairment,
hematological abnormalities and failure to thrive. Each patient was
assigned a score from 0-5, indicating increasing disease severity
(Source Datafor Fig. 2).

Biochemical activity assays

Plinto acid-precipitable material of primary fibroblasts was assessed
according to a protocol described previously** with modifications as
described”. MMUT enzyme activity assay was performedin fibroblast
crude cell lysates as originally described*** using recent modifica-
tions®. MMUT enzyme activity in HEK cells was measured using the
same protocol but without radiolabeled substrate (instead only 1 mM
of methylmalonyl-CoA was used, Sigma M1762) and final succinate
determination was performed by HPLC separation and electrospray
ionization (ESI) tandem mass spectrometry (MS/MS) detection (SCIEX
TripleQuad 5500 LC-MS/MS System).

WGS

Genomic DNA was isolated using QIAmp DNA Mini kit reagents (QIA-
GEN) following the protocol provided by the supplier. WGS libraries
were prepared with TruSeq DNA PCR-free library reagents (Illumina)
using 1 ug of genomic DNA following the protocol provided by the
supplier. The genomic DNA libraries were quantified using the KAPA
Library Quantification Complete kit (Roche) according to the protocol
supplied with the reagents. The quantified libraries were sequenced
on the NovaSeq 6000 sequencer (Illumina) using a 150-nucleotide

paired-end-run configuration following the protocol provided by
the supplier.

RNA-seq

Total RNA was isolated using the Rneasy Plus Mini kit (QIAGEN).
RNA-seq libraries were prepared using the TruSeq Stranded mRNA-seq
reagents (Illumina) using 200 ng of total RNA following the protocol
provided by the supplier. The quality of the total RNA and the RNA-seq
libraries was assessed on Fragment Analyzer (Agilent). The librar-
ies were sequenced on Illumina HiSeq 4000 using the 75-nucleotide
paired-end-run configuration following the protocol provided by
the supplier.

Sample preparation for mass spectrometry proteotyping
measurements

Samples were processed in blocks of eight, taking into considerationa
balance between disease types and control samples. All other factors
within ablock were randomized. A total of 230 samples were processed
in three batches. For sample processing, aliquots of primary fibro-
blast (-1 x 10° cells per vial) were washed twice inice-cold PBS (Gibco),
resuspended in lysis buffer (Preomics) at a ratio of 1:1 (vol pellet/vol
lysis buffer) and incubated at 95 °C for 10 min. Samples were sonicated
in a vial tweeter (Hielscher Ultrasound Technology) at 4 °C for three
cycles with an amplitude 100%, power 80% during 30 s. Then, 100 pg
of protein lysate were further processed with the iST kit (Preomics).
The purified peptides were resuspended in LCLoad buffer containing
iRT peptides (Biognosys) at a concentration of 1 pug pl™.

Spectrallibrary generation

For spectral library generation, three times 24 samples (3 x 8 sample
blocks) were pooled. Pooled sample batches were digested as described
above. Then, 100 pg of purified peptides were fractionated ona C18 col-
umn (YMC-Triart, C18,3 um, 250 x 0.5 mm internal diameter) according
topHonanAgilent HPLC 1260 system with a stepped 61-min gradient
ranging from 95 % buffer A (20 mM ammonium formate acid/H,0) to
85% buffer B(20 mM ammonium formate/90% ACN). Overall, 48 frac-
tions were collected per sample and subsequently pooled to 24 frac-
tions.Samples wereresuspendedin 5% ACN/0.1% FA and analyzed ona
Q-Exactive HF-X mass spectrometer (Thermo Fisher Scientific) in DDA
mode. The same nLC 1200 configuration and mobile phase gradient
elution conditions as for DIA were applied.

Full MS survey scans were acquired at a resolution of 60,000
with automatic gain control (AGC) target of 3 x 10® and a maxi-
mum injection time of 45 ms over a scan range of m/z 375-1,500.
A data-dependent top-12 method was used for HCD MS/MS with a
normalized collision energy of 28 at aresolution 0f15,000 and a fixed
first mass of m/z100. Precursorions wereisolated inal.4-Thwindow
and accumulated to reach an AGC target value of 1 x 10° with a maxi-
mum injection time of 22 ms. Precursor ions with a charge state of 1
and 6 as well asisotopes were excluded for fragmentation. Dynamic
exclusionwassetto15s.

DDA raw files were processed with Proteome Discoverer (v.2.2)
using a human UniProt database (release 201804) together with iRT
peptides (Biognosys) and common contaminants. The processing
workflow consisted of SequestHT* and Amanda*® nodes coupled with
Percolator”’. The following search parameters were used for protein
identification: (1) a peptide mass tolerance of 10 ppm; (2) an MS/MS
mass tolerance of 0.02 Da; (3) fully tryptic peptide search with up to
two missed cleavages were allowed; and (4) carbamidomethylation
of cysteine was set as fixed modification, methionine oxidation and
protein N-terminal acetylation were set as variable modifications.
Percolator was set at max deltaCN of 0.05, with target FDR strict of 0.01
and target FDR relaxed of 0.05. The spectral library from Proteome
Discoverer was imported into Spectronaut v.12 (Biognosys) using
standard parameters with 0.01 peptide spectrum match FDR.
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DIA-MS setup and data analysis

For DIA analysis, samples were measured on a Q-Exactive HF mass
spectrometer (Thermo Fisher Scientific). Mobile phase A consisted
of HPLC-grade water with 0.1% (v/v) formic acid and mobile phase B
consisted of HPLC-grade ACN with 20% (v/v) HPLC-grade water and
0.1% (v/v) formicacid. Peptide separation was carried out onan ES806,
2m,100 A, 150 pminternal diameter x 150 mm, C18 EASY-Spray col-
umn (Thermo Fisher Scientific) atatemperature of 50 °C. For LC-MS/
MS analyses, 2 pg each sample were loaded onto the column via an
Easy-nLC1200 system (Thermo Fisher Scientific). Samples were loaded
at 4 pl min™ with 100% mobile phase A for 5 min. Peptide elution was
performed using the following gradient (1) 2% to 8% mobile phase
B in 4 min; (2) 8% to 32% mobile phase B in 49 min; (3) 32% to 60 %
mobile phase B in 1 min; and (4) ramp to 98% mobile phase B in 1 min
at2 plmin™

For DIA acquisition on a Q-Exactive HF mass spectrometer, we
applied aDIA method published elsewhere*®. Inshort, we performed an
MS1scan over a mass range of m/z400-1210 at aresolution of 120,000
with an AGC target value of 3 x 10° and with a maximum injection time
of 50 ms. For MS/MS scans, the resolution was at 30,000 with an AGC
target value of 1 x 10° and with ‘Auto’ maximum injection time. Precur-
sor ions were isolated within a 15-Th window and fragmented by HCD
with normalized collision energy 28. A total of 54 MS/MS scan windows
were defined, interspersed every 18 scans with an MS1scan.

DIA data analysis was performed in Spectronaut v.12 (Biognosys)
using standard parameters. For identification, a Q value cutoff of 0.01
was applied onthe precursor aswellasonthe proteinlevel. TheMS1area
was selected for quantification. Quantification parameters were set to
mean peptide quantity for major group quantity, the top three peptides
were selected for protein quantity calculation. Datafiltering was set to
Qvalue sparse, with no imputation. Cross-run normalization was set
tolocal. The protein report for downstream analysis contained infor-
mation report about PG.ProteinAccessions, PG.ProteinDescriptions,
PG.ProteinNames. PG.Qvalue and PG.Quantity.

Quality assessment of WGS, RNA-seq and DIA-MS data

Overall quality assurance tests revealed amean of high-quality aligned
genomic reads of 8.7 x 10% at a median genomic coverage of > 38-fold
(Extended Data Fig. 1b). A median of 3.74 million single-nucleotide
variations were called using the Genome Analysis Toolkit** and Deep-
Variant>’. RNA-seq datashowed amedian Phred score of >36.3 at three
and more cycles (Extended Data Fig. 1c), while proteomics data showed
a high reproducibility with 2,218 proteins detected in at least 75% of
samples (Extended Data Fig.1d). For 9 of the 230 samples RNA extrac-
tion yielded insufficient nucleic acid to proceed with transcriptome
sequencing; hence, these datasets were excluded from all further
analysis (transcriptomics data of sample IDs 22, 54, 59, 78, 89, 109,
123,207 and 221).

Selection of primary fibroblasts for polar metabolomics

To select cell lines for metabolomics, we opted for a balanced
design with ten MMUT-deficient cell lines and ten control lines.
MMUT-deficient lines were picked to show over-expression of GLUD1
and under-expression of OGDH, whereas the control lines were chosen
to show the reverse pattern. We fitted a mixed-effects model with PI+
as aresponse, two fixed effects for GLUD1 and OGDH expression and
arandom effect with the same covariance structure as the proteomics
data after column and row normalization. From the MMUT-deficient
and control cell lines, we chose ten with the lowest predicted value of
Pl+andten with the highest predicted value, respectively. Thetop-ten
ranked MMUT-deficient (MMAO14, MMA092, MMA042, MMAO067,
MMAO093, MMA104, MMA013, MMA030, MMA138 and MMA036) and
the last-ten ranked control primary fibroblasts (MMA219, MMA221,
MMA227, MMA222,MMA213,MMA230, MMA226, MMA228, MMA225
and MMAZ215) were selected and cultured as described above.

Six primary fibroblast lines (in bold above) met growth criteria and
were selected for the polar metabolomics experiment.

Fibroblast sample preparation for polar metabolomics

A total of 100,000 cells per well were seeded in a six-well plate and
grown for 48 h. Medium was removed and cells were washed twice
with 150 mM ammonium hydrogen carbonate (NH,HCO,) at pH 7.4.
The whole plate was flash-frozen in liquid nitrogen for 20 s and then
stored at —80 °C. Metabolites were extracted by putting the plate on
dryiceandaddingcold (20 °C) 40:40:20 acetonitrile:methanol:water
and incubated at —20 °C for 10 min. Supernatant was collected and a
second volume 0f 40:40:20 acetonitrile:methanol:water was added and
incubated at—20 °C for10 min. Plates were put ondryice and cells were
scraped mechanically and collected. Collection tubes were centrifuged
at15,000gfor2 minat4 °C, supernatants were collected and stored at
-20 °C before metabolomics analysis.

Polar metabolomics in patient-derived fibroblasts

Untargeted metabolite profiling was performed using flow injection
analysis on an Agilent 6550 QTOF instrument (Agilent) using nega-
tive ionization, 4 GHz high-resolution acquisition and scanning in
MS1 mode between m/z 50-1,000 at 1.4 Hz*'. The solvent was 60:40
isopropanol:water supplemented with1 mM NH,F at pH 9.0, as well as
10 nM hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine and 80 nM
taurochloric acid for online mass calibration. The seven batches were
analyzed sequentially. Within each batch, the injection sequence was
randomized. Datawere acquired in profile mode, centroided and ana-
lyzed with MatLab (Mathworks). Missing values were filled by recursion
inthe raw data. Upon identification of consensus centroids across all
samples, ions were putatively annotated by accurate mass and isotopic
patterns. Starting from the HMDB v.4.0 database, we generated a list
of expected ions, including deprotonated, fluorinated and all major
adducts found under these conditions. All formulas matching the
measured mass within a mass tolerance of 0.001 Da were enumer-
ated. As this method does not employ chromatographic separation or
in-depth MS2 characterization, it is not possible to distinguish between
compounds with the identical molecular formula. The confidence of
annotationreflectslevel 4 but, in practice, in the case ofintermediates
of primary metabolism, itis higher because they are the most abundant
metabolitesin cells. The resulting datamatrix included 1,809 ions that
couldbe matched to deprotonated metabolites listed in HMDB. Allm/z
peaks that remained unmatched or were associated with adducts or
heavy isotopomers were discarded.

Mouse care and handling

The study was approved under license no. 202/2014 from the Can-
tonal Veterinary Office Zurich. Generation of the Mmut-p.Met698Lys
variant model and crossing with a Mmut-ko/wt model was conducted
as previously described®. These mice, B6.129S1-Mmut<tm1Pai>x
B6-Mmut<tm1.1IMrb>were generated on a C57BL/6] background. Mice
were housed insingle-ventilated cages witha12-hlight-dark cycle and
an artificial light of approximately 40 Lux in the cage. The animals
were kept under controlled humidity (45-55%) and temperature
(21+1°C) and housed in abarrier-protected specific-pathogen-free
unit. Mice had ad libitum access to sterilized drinking water and to
pelleted and extruded mouse diet containing 18.5% protein and 4.5%
fat (Kliba-Nafag, 3436).

Collecting of mouse tissues

Urine was collected in the morning after one night ina metabolic cage.
The sediment was removed and the supernatant was flash-frozen in
liquid nitrogen. Tissue samples were collected from mice aged 58-63 d.
Animals were anesthetized by sevoflurane. Portal blood was taken
and kept on ice to coagulate, centrifuged at 4 °C and snap-frozen in
liquid nitrogen directly after. The liver, kidneys, heart and brain were

Nature Metabolism | Volume 5 | January 2023 | 80-95

290


http://www.nature.com/natmetab

Article

https://doi.org/10.1038/s42255-022-00720-8

collected and snap-frozen in liquid nitrogen. All samples were stored
at—80 °C before analysis.

Metabolomics in mouse tissues

The mouse body fluid and tissue samples derived from five female
Mmut-ki/wt and five female Mmut-ko/ki mice were collected as
described above and prepared as previously published*’. Sample analy-
sis using LC-MS was performed as previously published®. lons were
annotated to metabolites based on exact mass to the KEGG database™
considering [M-H+] and 0.01 Da mass accuracy.

Transcriptomics in mouse brains

Brain tissue samples were collected as described above. Four female
mice per genotype groups Mmut-ki/wt and Mmut-ko/kiwere used. RNA
was purified using a DNase kit (QIAGEN, 79254) together with QIAmp
RNABlood Mini kit (QIAGEN, 52304). RNA-seq reads were aligned with
STAR-aligner®. Asreference, we used the Ensembl mouse genome build
GRCm38. Gene expression values were computed with the function
featureCounts from the R package Rsubread*®.

CRISPR gene-editing experiments

CRISPR-Cas9 editing was performed in 293T cells (ATCC CRL-3216)
as described”. Cas9 protein was provided as a plasmid (PX459-V2.0,
Addgene, 62988) and guide RNA (MMUT: ATTCCTTTAGTATATCATTT;
OGDH: GACTAGTTCGAACTATGTGG; DLST: AACAGGGGAACTGCC-
CTCTA) as gBLOCKS™® (IDT Technologies). The 293T cells were trans-
fected using a Neon transfection system (Thermo Fisher Scientific)
containing 100,000 cells, 0.6 pg Cas9 plasmid and 600 ng guide RNA
following the manufacturer’s instructions. At 48 h after transfection,
cells were collected, diluted to 1 cell per 100 pl and transferred to a
96-well plate at 100 pl per well for clonal selection. Correct clones were
confirmed by Sanger sequencing of genomic DNA.

Western blotting

Protein extraction and Western blotting was performed as described
previously®. Primary antibodies used were probing for the follow-
ing proteins: MMUT (Abcam, ab67869, 1:1,000 dilution, mouse host),
OGDH (Atlas Antibodies, HPA020347,1:500 dilution, rabbit host), GLUD
(Abcam, ab166618, 1:2,000 dilution, rabbit host) and B-actin (Sigma,
A1978,1:5,000 dilution, mouse host). Secondary antibodies used were
anti-rabbit HRP (Santa Cruz, sc-2357,1:5,000 dilution, mouse host) and
anti-mouse HRP (Santa Cruz, sc-516102,1:5,000 dilution, goat host).

KGDH enzyme activity assays

An assay of oxoglutarate dehydrogenase enzyme activity was per-
formed in 293T cell clones according to the manufacturer’s instruc-
tions (Sigma-Aldrich, MAK189) detected using a VICTOR Nivo system
(PerkinElmer).

Glutamine tracing studies and treatments

The 293T cells or primary fibroblasts were cultured on poly-L-lysine
coated coverslips in DMEM with 25 mM glucose and 4 mM
L-glutamine (Gibco, 11965092), supplemented with 10% FBS, 1%
antibiotic-antimycotic (Gibco). For treatment studies, 1 mM citricacid
disodium salt (Sigma, 71635), 6 mM dimethyl 2-oxoglutarate (Sigma,
349631) or 1 mML-malicacid (Sigma, M7397) was added for 24 hbefore
cell collection. Four hours before cell collection, medium was changed
to DMEM with 25 mM glucose without L-glutamine (Gibco, 11960044)
supplemented with 10% FBS, 1% antibiotic-antimycotic (Gibco) and
4 mM[U-BC] glutamine (Sigma-Aldrich, 605166). At collection, medium
was removed, coverslips quickly dipped into sterile double-distilled
water at 37 °C and quenched in 80% methanol at -20 °C. Cells were
scrapped in methanol and centrifuged at 15,000g for 15 min at 4 °C.
Supernatants were collected, snap-frozeninliquid nitrogen and stored
at—80 °C before LC-MS analysis.

Thawed supernatants were lyophilized overnight and resolubilized
in200 plloading buffer (water and 0.5% formicacid) in narrow-bottom
96-deep-well plates on a shaker (800 r.p.m., 15 °C,10 min) for LC-MS
injection. Metabolites were separated usingan ACQUITY UPLCHSS T3
1.8-pm, 100 x 2.1 mm internal diameter column (Waters) and eluted
using the following gradient from solvent A (water, 5 mM ammonium
formate and 0.1% formicacid) tosolvent B (methanol, 5 mM ammonium
formate and 0.1% formic acid) as follows:2 minat 0% B;2-3.5 minto4%
B;3.5-10 min to45% B;10-12 minto 70% B; 12-13.5 min to 100% B; with
anisocratic plateau at100% B for 2-15.5 min and from 15.5-16.5 min to
0% B. After each run the columnwas re-equilibrated for 8 minat100%
Awitha constant flow rate of 0.4 ml min™,

Mass spectra were acquired using a heated ESI source of a
Q-Exactive high-resolution, accurate mass spectrometer (Thermo
Fisher Scientific). Mass spectrawere recorded in positive and negative
mode with the MS detector in full-scan mode (full MS) in a scan range
50-750 m/z with an AGC target of 1 x 10, an Orbitrap resolution of
70,000 and amaximum injection time of 80 ms. Peaks were integrated
with Xcalibur (v.4.0.27.19, Thermo Fisher Scientific) using windows of
0.01m/z and 20 s for retention time as previously determined using
alibrary of standards. Heated ESI parameters were sheath gas flow
rate 35 arbitrary units (AU), auxiliary gas flow rate 35 AU, sweep gas
flow rate 2 AU, spray voltage 3.5 kV, capillary temperature 350 °C and
aux gas heater temperature 350 °C. Detector settings for full MS were
in-source CID 0.0 eV; pscans of 1; resolution of 70,000; AGC target of
1x10°% max IT of 35 ms and spectrum data type, profile. Integration
parameters were ICIS Peak Integration, nearest RT; smoothing points
3; baseline window 40; area noise factor 3; peak noise factor 70; and
minimum peak height 3.0. Data preprocessing included missing value
imputation and normalization to internal standards [*H];-creatine
and [*H],-citric acid for positive and negative mode, respectively.
Experiments were performed in 2-3 clonal replicates, two biological
replicates and three technical replicates. Each technical replicate was
runin positive and negative mode.

Affinity-capture mass spectrometry

The 293T cells were grown in DMEM (Gibco) supplemented with 10%
fetal bovine serum (Gibco) and antibiotics (GE Healthcare). Transient
transfection of each pCDNA3-C-FLAG-LIC construct was performed at
least three separate times using Lipofectamine 3000 (Thermo Fisher
Scientific) according to manufacturer’s instructions. At 48 h after
transfection, cells were crosslinked using 0.5% paraformaldehyde
(PFA, Sigma-Aldrich) in PBS (Gibco) for 10 min at RT, the reaction
was quenched with 1.25 M glycine/PBS (Sigma-Aldrich) for 10 min
at 4 °C, cells were centrifuged for 5min at 2,000g at 4 °C and the
pellet resuspended in lysis buffer (1% Nonidet P-40, 0.5% deoxycho-
line, 150 mM NaCl and 50 mM Tris-HCI, pH 7.5; all Sigma-Aldrich).
Pre-cleared cell extracts wereimmunoprecipitated with anti-FLAG M2
(F3165, Sigma-Aldrich), anti-MMUT (ab67869, Abcam) or anti-MMAB
(HPA039017, Sigma-Aldrich) using Dynabeads Protein G (Thermo
Fisher Scientific) according to the manufacturer’s instructions.

For affinity capture, all samples were washed with PBS and pep-
tides were released by trypsin (100 ng pl™ in 10 mM HCI) and super-
natants were collected, dried and dissolved in 0.1% formic acid. All
affinity-captured samples were measured on a Q-Exactive mass spec-
trometer (Thermo Fisher Scientific) withan MS1resolution of 70,000,
an AGC target of 3 x 10°and amaximum injection time 0f 100 ms over
ascan range of m/z350-1,500. A data-dependent top-12 method was
used for HCD MS/MS with a normalized collision energy of 25 at a
resolution of 35,000. Precursor ions were isolated in a1.2-Th window
with an AGC target value of 1 x 10° with a maximum injection time of
120 ms. Dynamic exclusion was set to 40 s.

Samples were analyzed using Mascot (Matrix Science, v.2.6.2)
with the SwissProt database (downloaded 4 February 2019) assuming
trypsin with at maximum two miscleavages. Mascot was searched
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with afragmention mass tolerance of 0.030 Daand a parention toler-
ance of10.0 ppm. Oxidation of methionine was specified as a variable
modification. Scaffold (v.Scaffold_5.1.2, Proteome Software) was used
to validate MS/MS-based peptide and protein identifications. Peptide
identifications were accepted if they could be established at greater
than 95.0% probability by the Scaffold Local FDR algorithm. Protein
identifications were accepted if they could be established at greater
than 99.0% probability and contained at least two identified peptides.

For immunoblotting, the procedure was the same as described
above with the exception that samples were detected using anti-FLAG
(1:2,000 dilution; Sigma-Aldrich), anti-MMUT (1:500 dilution, Abcam),
anti-MMAB (1:1,000 dilution, Sigma-Aldrich) or anti-DLST (1:1000
dilution, D22B1, Cell Signaling Technology) primary antibodies. Indi-
cated proteins were detected by HRP-labeled anti-mouse (ab131368,
Abcam) or anti-rabbit (ab131366, Abcam) secondary antibodies at a
dilution of 1:5,000.

Genetic variantinvestigation approach
Short-variant calling was carried out with GATK and DeepVariant algo-
rithms and annotated with annovar®. Copy-number variations (CNVs)
were called with CNVnator® with abinsize of 100 and standard param-
eters and annotated with AnnotSV®2. Variation in the MMUT gene was
investigated first. When no genetic cause for the phenotype was identi-
fied with this approach (twoinactivating/damaging eventsin MMUT),
other genes known to be involved in MMA (based on literature reports)
were investigated as a virtual gene panel. When no genetic cause was
found in the two previous steps, genes highlighted by mutational
burden (genes harboring pathogenic variants across the cohortinan
autosomal recessive patternin two or more individuals) were investi-
gated. Finally, all samples and controls were used to run OUTRIDER*
and genes highlighted as expression outliers associated with pheno-
typesoverlapping MMA were analyzed to either confirm the identified
damaging variants, or to further explore damaging variationin them.

Variants were prioritized with the following approach: First, any
coding variant (excluding synonymous variants) with a GnomAD fre-
quency across all represented populations <0.01, in homozygosity
or compound heterozygosity with another relevant variant and sup-
ported by atleast two forward and two reverse reads and at least eight
reads coverage, were evaluated. Second, all variants categorized by the
automaticapplication of the ACMG criteria® by InterVar®* or classified
in Clinvar® as ‘pathogenic’ or ‘likely pathogenic’, in homozygosity or
compound heterozygosity with another relevant variant, were consid-
eredand evaluated. Third, variants withadbscSNV_ADA or dbscSNV_RF
scores>0.6inthe annovar annotation using the database prepared and
described previously®® were evaluated.

For CNVs, individuals with a single heterozygous variant or no
variation in MMUT and the other genes of interest were investigated
forthe presence of relevant CNVs that could explain their phenotype®.

Data analysis

For differential expression analysis, we quantile normalized the
response variable (Pl activity measures) to have it follow a standard
normal distribution and ensure that the normality assumption holds.
Proteomics and RNA-seq expression matrices wereiteratively column-
and row-wise standardized to ensure mean zero and unit variance both
row- and column-wise®°, We then ran a mixed model with the gene
expression vector being used as afixed effect and arandom effect with
the same covariance structure as the expression data after column
and row normalization as described before®. For the global data layer
inspection we used the MOFA v.1.3.1 (ref.>*), MASS v.7.3-54 (ref. ®°) and
fgseav.1.18.0 (ref.”°) packages. MOFA was run onlog-transformed data.
Gene enrichment analysis was performed using gene sets downloaded
from http://www.gsea-msigdb.org/gsea/msigdb/index.jsp ‘MSigDB
Collections’on 28 December 2020. Circos, including chord plots, were
created using the circlize package v.0.4.13 (ref. ”*). The UniProt portal

was accessed on 24 February 2021 to scrape protein localization data.
Data analysis was performed using Rv.4.1.0.

Ethical compliance

Collection and use of primary fibroblast cells and informed consent for
phenotypic data were performed as approved by the Ethics Committee
of'the Canton of Zurich (KEK-2014-0211, amendment PB_2020-00053).
All animal experiments were approved by the Cantonal Veterinary
Office Zurich (license no.202/2014).

Reporting summary
Furtherinformation onresearch designisavailable inthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Access to the raw genomic and transcriptomic data is restricted
due to ethical concerns. Data can be made available upon reason-
able request to D.S.F. within 3 months following an established data
transfer, use agreement and ethical approval. The MS proteomics
data (.raw files) have been deposited to the ProteomeXchange Con-
sortium (http://proteomecentral.proteomexchange.org) via the
MassIVE partner repository (https://massive.ucsd.edu) with dataset
identifiers MSV0O00088791 and PXD038225. Metabolomics MS raw
data for human fibroblast measurements have been uploaded to the
MassIVE datarepository (https://massive.ucsd.edu) with dataset iden-
tifier MSVO00089082. IP-MS raw files have been deposited to the
ProteomeXchange Consortium via the MassIVE partner repository
(https://massive.ucsd.edu) with dataset identifier MSVO00088791.
Source data are provided with this paper.

Code availability

Computer code for data analyses is hosted on a repository on the
GitHub platform and accessible at https://github.com/pforny/
MMAomics.
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Extended Data Fig. 1| Historic context of sample collection and quality
control measurements of multi-omics data. a, Histogram of fibroblast samples
binned into their year at collection and waffle chart illustrating the different
sample groups indicated by the color code. b, Violin plotsillustrating average
number of read per sample (n =229). HQ, high quality. Line plot (one line per
sample) indicating genome coverage as quantitatively summarized in the below
table. ¢, Boxplots indicating Phred quality scores at different number of cycles.
Each sample (n=221) underwent 75 cycles that were binned (see x axis) to display

MMUT other  unaffected all
def. MMA

the Phred scores per bin (bin1-2,1206 scores; 3-5,1809; 6-10, 3015; 11-20,
6030;21-50,18090; > 50,15075). d, Proteomics quality control illustrated by
the number of detected proteins in relation to the percentage of overlapping
proteins (top panel). Using a threshold of > 50% overlapping proteins, the
variation coefficients of n = 2850 proteins are displayed for each sample group.
Boxplot elements represent center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers. Violin plots depict
the distribution of the data using vertical density curves.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Biochemical assessment of MMUT activity and
propionate incorporation activity supports diagnosis of affected
individuals. a, Scatter plot of maximal, that is supplemented with
adenosylcobalamin (AdoCbl) or hydroxocobalamin (OHCbl), activity of the
MMUT enzyme and the propionate incorporation assay. b, Boxplots of MMUT
enzyme activity with and without AdoCbl supplementation measured in
biologically independent fibroblast samples (mut®, n =119; mut, n =29; other
MMA, n =46; unaffected, n = 3). ¢, Boxplots of propionate incorporation activity
withand without OHCbl supplementation measured in biologically independent
fibroblast samples (mut®, n =120; mut, n = 30; other MMA, n = 60; unaffected,
n=9).d, Copy number variants illustrated by read counts of specific locations of
the MMUT gene for three specific samples. e, Scatter plots of MMUT transcript
and protein levels of the MMUT-deficient samples. Samples are indicated by
dots and are grouped according to the underlying bi-allelic genetic variation

type of the MMUT gene (Number of samples for the transcript and protein plot,
respectively: deletion/deletion, n = 1/1; missense/missense, n = 63/65; missense/
splicing, n = 6/6; missense/truncating, n = 26/30; splicing/splicing, n = 6/6;
truncating/splicing, n = 3/3; truncating/truncating, n = 36/37). f, Regression plots
of MMUT transcript and protein levels versus MMUT enzyme and propionate
incorporation activity. g, Same as f but excluding samples with truncating/
truncating, splicing/splicing and truncating/splicing MMUT allele combinations.
h, Fold change of all transcripts and proteins, respectively, when comparing

the MMUT-deficient group versus the rest of the samples. Gene names are
ranked according to the negative base 10 logarithm of the fold change. All linear
regressions are calculated according to the Pearson method, Pvalues two-sided;
bands indicate 95% confidence level interval. Boxplot elements represent center
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile
range; points, outliers.

Nature Metabolism


http://www.nature.com/natmetab

Article https://doi.org/10.1038/s42255-022-00720-8
a Expression rank plot: ACSF3 MMA186 MMA187 b Expression rank plot: SUCLA2 MMA164 MMA192
~ 10000 °ACSF3 20% . acsF3 — 16405 o > SUCLA2
+ +
—_ —_ —_ 5 —_
% 1000 3 20 . B 15 g E .SUCLA2 3 20
g ? Tl 8 T 0] o 7
= 100 MMA187 Q " o 10 . 8:3e+04 o 10 -, .
=] =] L] =) =3 L]
8 ° 10 E . 8 o MMA164 S ‘a. E 10 Y .
E 10 5 s 75 £ g0 o .
2 S 10404
1{e MMA186 0 0 o MMA192 0 0
0 50 100 150 200 -10-5 0 5 -10 -5 0 5 0 50 100 150 200 -8 -4 0 4 -10 -5 0
Sample rank Z-score Z-score Sample rank Z-score Z-score
c Expression rank plot: MMAA MMA206 MMA209 d Expression rank plot: MMAB MMA152
50000
— 10000 ° MMAA 301e MMAA _ ° °
o 59 % A 59
£ MMA206 ] g £ 30000 [ .
S 10007 3 3 20 5 2 s
<] > > <] > o MMAB
S [ 6 d S T S
2 100 S = S 3
5 > > 10 = S
(] g 3 S ° «© °3
E 10 i i £ 10000 !
z MMA209 P4
11e 0 0 o MMA152 0
0 50 100 150 200 -6-4-20 2 4 -10 -5 0 0 50 100 150 200 -5 0 5
Sample rank Z-score Z-score Sample rank Z-score

Extended Data Fig. 3| Expression outlier analysis reveals causative genes in specific disease samples. Expression rank plots fora, ACSF3,b, SUCLA2, c, MMAA and
d, MMAB and Z-score volcano plots for specific samples, applying the OUTRIDER R package.
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Extended Data Fig. 6 | Metabolomics investigation of a subset of patient cell
lines. a, Density plot illustrating amodel for OGDH and GLUD1 with all fibroblast
samples ranked according to three sample groups. b, Boxplots of total ion
current assessed in the two experimental groups ‘control’ and ‘MMUT-deficient’
primary fibroblasts (n = 6 in each group); technical replicates are collapsed to
represent one dot per cell line. ¢, TCA metabolites as measured by untargeted
polar metabolomics; n = 6 biological replicates. d, Levels of metabolites involved

inthe two enzymatic steps catalyzed by two oxoacid dehydrogenase complexes
(OGDC and OADC) and their proximal reactions; OGDH proteinin greenindicates
its downregulation as detected in the proteotyping dataset; n = 6 biological
replicates. Boxplot elements represent center line, median; box limits, upper and
lower quartiles; whiskers, 1.5x interquartile range. All Pvalues are calculated by
Wilcoxon rank test, two-sided.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Treatment of primary patient/control fibroblasts and
293T cells. a, Relative incorporation into different isotopologues of succinate
without treatment of 293T cells. b, Relative abundance of isotopologues of

TCA cycle metabolites after glutamine labeling. ¢, Total pool sizes of TCA

cycle metabolites under different treatment conditions (Oxoglut., dimethyl-
oxoglutarate) in primary fibroblasts; n = 4 biologically independent samples per
group were measured. d, Total ion count for citrate and malate (e) is displayed
for different isotopologues under citrate and malate treatment, respectively.

For each boxplot representing results from293 T cells (c, e, f,g),n=3
biologically independent samples (WT), n =2 (MMUT-KO), n = 2 (DLST-KO) over 2
independent experiments were measured. For experiments in patient fibroblasts
(h, i), n=4biologicallyindependent samples per group were measured; Pvalues
calculated by Wilcoxon rank test, two-sided. Boxplot elements represent center
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile
range; dotsina, d, and e are outliers, in cindividual samples.
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Extended Data Fig. 8 | Fractional labeling pattern derived from glutamine in 293T and primary fibroblast cells upon treatment. Cells (a, 293T. b, primary patient
and control fibroblasts) treated with the compounds indicated above the plots (DM-Oxog., dimethyl-oxoglutarate).
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Extended Data Fig. 9| MMUT-flag is enzymatically active and pulls down centered around the mean; Pvalues calculated by t-test, two-sided. b, Western
other propionate pathway proteins usingimmunoprecipitation. a, MMUT blots of over-expressed flag-tagged MMUT, MMAB, MMAA, and MCEE, but
enzyme activity using aradio-labeled substrate in 293T cells (backgrounds (WT not VLCAD, ACO2, and empty vector (EV). ¢, Detection of endogenous MMUT
or MMUT-KO) and transfected constructs are indicated in the color key; data and MMARB following cross-linking immunoprecipitation. Panels shown are
pointsindicate means of n = 3 independent experiments; error barsindicate SD, representative of at least n = 3independent experiments.
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Validation Validation of commercially available primary antibodies can be found on the vendor's website (accessed 20 April 2022):

- MMUT (Abcam, ab67869): https://www.abcam.com/methylmalonyl-coenzyme-a-mutase-antibody-ab67869.html

- OGDH (Atlas antibodies, HPA020347): https://www.atlasantibodies.com/products/antibodies/primary-antibodies/triple-a-
polyclonals/ogdh-antibody-hpa020347/

- GLUD (Abcam, ab166618): https://www.abcam.com/glud1--glud2-antibody-epr11369b-ab166618.html

- Beta-actin (Sigma, A1978): https://www.sigmaaldrich.com/CH/de/product/sigma/al1978
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
[See ICLAC register)

Primary fibroblast cells: Tissue bio bank University Children's Hospital Zurich
HEK293T cells: ATCC CRL-3216 (https://www.atcc.org/products/crl-3216, accessed 21 April 2022)

Cell lines were not authenticated.
All cell lines were tested periodically for mycoplasma contamination with negative results.

Na misidentified cell lines were used.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mmut-ko/ki control Mmut-ki/wt mice (Mus musculus) were bred by crossing Mmut-ko/wt female and Mmut-ki/ki male mice. The
background was C57BL/6). Experimental mice were female. Aged 58-63 days.

wild animals Study did not involve wild animals.
Field-collected samples Study did not involve wild animals.
Ethics oversight All animal experiments were approved by the Cantonal Veterinary Office Zurich (license number 202/2014).

Note that full information an the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

The presented study involved a cohort af individuals suspected ta be affected by the rare metabolic disease methylmalonic
aciduria. Due to the rarity of the condition, heterogeneity of the study population has to be taken into account to achieve
relevant samples sizes. Most findings of this study are based on the multi-omics datasets obtained by analysing primary
fibroblast cells derived from the study cohort. As all these cell lines were cultivated under standard conditions, cohort
heterogeneity is negligable for these results.

The genotypes of the individuals in our cohort were investigated as part of this study. Please refer ta the first section of the
results.

Regarding the phenotypic traits of the individuals in our cohort, we provide a detailed overview of their main clinical and
biochemical features. Please refer to Source data table 1.

The cohort was compiled based an the availability of samples derived from individuals with suspicion of the rare metabaolic
disease methymalonic aciduria at our diagnostic reference center. Unaffectec inviduals constituted unaffected siblings and
inviduals suspected with disorders unrelated ta the current study where na defect was detected.

Usage of primary fibroblast cells and the associated phenotypic data of individuals was approved by the Ethics committee of
the Canton of Zurich, Switzerland (KEK-2014-0211, amendment: PB_2020-00053).

Note that full information an the approval of the study protocol must also be provided in the manuscript.
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