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ABSTRACT

In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the
‘‘fittest’’ individuals are those that produce on average the highest number of offspring. He showed that in
small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely
reason why Gillespie’s concept of within-generation bet hedging has been largely ignored is the general
consensus that natural populations are of large size. As a consequence, essentially no work has
investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies.
While typically large, natural populations also tend to be subdivided in local demes connected by
migration. Here, we integrate Gillespie’s measure of selection for within-generation bet hedging into the
inclusive fitness and game theoretic measure of selection for structured populations. The resulting
framework demonstrates that selection against high variance in offspring number is a potent force in
large, but structured populations. More generally, the results highlight that variance in offspring number
will directly affect various life-history strategies, especially those involving kin interaction. The selective
pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping
behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are
markedly affected by variance in offspring number, although to a different extent and under different
demographic conditions.

PREDICTING the fate of an allele newly arisen
through mutation is possibly the oldest and most

recurrent problem in population genetics. It has been
known for long that when the fecundity of individuals
follows a Poisson distribution, the survival probability
of a mutant gene lineage increases with an increase in
the mean fecundity of individuals (Haldane 1927;
Fisher 1930). It was later recognized that when the
variance in offspring number differs from the mean,
the survival probability of a mutant gene lineage de-
creases with an increase in the variance in offspring
number (Bartlett 1955; Ewens 1969). This can be
understood by realizing that a random line of genes
that failed to transmit itself at any generation in the past
is lost forever, and this independently of the mean
fecundity of individuals. Intuitively, we thus expect that
between two competing strategies with equal mean
fecundity, the one with the lower variance will out-
propagate its alternative.

In a series of insightful articles, Gillespie (1974,
1975, 1977) elucidated the conditions under which
natural selection will decrease the variance in offspring
number in panmictic populations of constant size. His

key result is that the intensity of selection against the
variance is proportional to the inverse of population
size. The selective pressure against the variance thus
decreases with increasing population size and vanishes
for very large populations. This result can be under-
stood by noting that in a population subject to regula-
tion, the expected number of recruited offspring of an
individual (i.e., its fitness) depends on its total random
number of offspring produced relative to the total
random number of offspring produced by its compet-
itors. When population size becomes large, the law of
large numbers informs us that the total number of
offspring produced by competitors converges to a fixed
value, which is given by the mean fecundity and is devoid
of any variance. In this situation, a mutant allele has only
to produce a mean number of offspring exceeding the
mean of the resident allele to invade the population.
Only when the population is small enough can the
variance in offspring number play a role as important as
the mean in determining the fitness of individuals.
While most natural populations are arguably large, they
also tend to be discontinuously distributed and typically
consist of local demes connected by migration. Such a
spatial structure implies that demes can be of very small
size while the population as a whole remains large. This
feature is renowned to affect the evolutionary process
because it alters the forces shaping the changes in gene
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frequencies such as selection or random genetic drift
(Cherry and Wakeley 2003; Roze and Rousset 2003;
Whitlock 2003). We thus expect that the effect of the
variance in fecundity on the average number of re-
cruited offspring of an individual will also depend on
population structure.

The nature of selection on the variance in offspring
number in subdivided populations has been studied
by Shpak (2005), who concluded that the conditions
under which high-variance strategies are outperformed
by low-variance strategies depend on the timing of the
regulation of the size of the population. When density-
dependent competition occurs before dispersal (i.e.,
soft selection), the variance in the number of offspring
competing in a deme is determined by the number of
individuals reproducing locally. In this case, the in-
tensity of selection against the variance is proportional
to the inverse of the size of the pool of individuals
contributing to this variance, that is, deme size. How-
ever, in natural populations, density-dependent compe-
tition and competition between individuals can also
occur after dispersal. Under this process (called hard
selection), individuals in each deme send juveniles that
will compete in other demes. Then, the individuals
contributing to the variance in the number of juveniles
competing in a focal deme can be separated into two
pools: one small ‘‘resident’’ pool of individuals breeding
in the focal deme and one large ‘‘foreign’’ pool, con-
sisting of all those individuals breeding in different
demes and that affect the demography of the focal deme
through the dispersal of their progeny. This suggests
that the contribution to the variance in offspring
number in a focal deme should come mainly from the
resident pool because the foreign pool, being very large,
will contribute an essentially fixed number of individu-
als to each deme. Thereby, demes affect each other in a
deterministic way when deme number is large Chesson

(1981), a result that follows again from the law of large
numbers. The nature of selection on the variance in
offspring number under hard selection was recently
investigated by Shpak and Proulx (2006) and their
formalization suggests that selection on the variance in
fecundity decreases as migration rate increases (i.e., the
foreign pool of individuals becomes larger).

More generally, we also expect that the variance in
fecundity will affect not only the evolution of bet-
hedging strategies but also other life-history traits. In
particular, traits involving kin interactions such as sex
ratio, dispersal, or altruism depend on the local re-
latedness arising through population structure, which is
itself a dynamical variable shaped by the variance in
fecundity. The effect of the variance in offspring
number on the evolution of such behaviors has been
overlooked so far. Apart from sex-ratio homeostasis
(Verner 1965; Taylor and Sauer 1980) in panmicitic
populations and sex allocation (Proulx 2000, 2004), we
are aware of no model investigating the role of the

fecundity variance on the evolutionary stable state of
various life-history strategies.

The objective of this article is twofold. First, we
integrate the classical measure of selection for within-
generation bet hedging (Gillespie 1974, 1975, 1977)
into the inclusive fitness and game theoretic measure of
selection for structured populations (e.g., Taylor 1990;
Taylor and Frank 1996; Frank 1998; Rousset and
Billiard 2000; Rousset 2004, 2006). This allows us to set
up a framework for studying the effect of the mean and
the variance in fecundity for selection on various life-
history traits and under different life-cycle assumptions
(e.g., timing of regulation, population structure). Sec-
ond, we apply the resulting framework to investigate the
selective pressure on three life-history traits in subdivided
populations under soft and hard selection regimes.
These traits are within-generation bet hedging, helping
between deme mates, and dispersal. Our results for
selection on the fecundity variance are qualitatively
consistent with those of Shpak (2005) and Shpak and
Proulx (2006) but differ quantitatively because the
approach endorsed in this article allows us to take the
variance in gene frequency between demes explicitly into
account. Our results also indicate that the magnitude of
selection on both helping behaviors and dispersal rates is
markedly affected by the fecundity variance and can even
lead to outcomes qualitatively different from the classical
predictions considering mean fecundity only.

MODEL

Life cycle and change in gene frequency: Consider
that the population consists of haploid organisms oc-
cupying an infinite number of demes of size N that are
connected by migration (finite deme number is consid-
ered in the appendix). The life cycle is punctuated by
the following events:

1. Each adult produces a large number of indepen-
dently distributed juveniles. The mean and the
variance of the fecundity distribution of an adult
depend on its own phenotype and on the phenotype
of all other deme mates.

2. Each juvenile disperses independently from each
other with probability m to another deme.

3. Density-dependent ceiling regulation occurs so that
only N juveniles reach adulthood in each deme. The
size of each deme is thus assumed to be constant over
time.

The evolution of a phenotypic trait z under selection
in this population can be described by a gradual, step-by-
step transformation caused by the successive invasion of
mutant alleles resulting in different phenotypic effects
from those of resident alleles fixed in the population.
The invasion of a mutant allele can in turn be ascer-
tained by the change in its frequency p over one
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generation, which for a mutant with small phenotypic
effect d (weak selection) can be written as

Dp ¼ dSpð1� pÞ1 Oðd2Þ: ð1Þ

The term O(d2) is a remainder and S is Hamilton’s
(1964) inclusive fitness effect, which measures the direc-
tion of selection on the mutant and also provides the
first-order phenotypic effect of the mutant on its prob-
ability of fixation when the population is of finite size
[Roze and Rousset 2003, 2004; Rousset 2004 (pp. 99,
108–109, and 206–207), 2006]. The inclusive fitness
effect (S) can be computed by the direct fitness method
(Taylor and Frank 1996; Rousset and Billiard

2000), as

S [
@w

@z d

1
@w

@zD
0

FST; ð2Þ

where w [ w(zd, zD
0 ) is a fitness function giving the

expected number of adult offspring of a focal individual
(FI) and FST is the relatedness between the FI and
another individual randomly sampled from its deme
(here Wright’s measure of population structure). The
partial derivatives of w are the effects of actors (i.e.,
individuals bearing the mutant allele) on the fitness of
the FI, the actors being the FI itself with phenotype
denoted zd, and the other individuals from the focal
deme with average phenotype denoted zD

0 . The partial
derivatives can be evaluated at a candidate evolutionary
stable strategy zw. This phenotype toward which selec-
tion leads through small mutational steps is obtained by
solving S ¼ 0 at z

d
¼ zD

0 ¼ zw. In the next section we
provide expressions for both the fitness function w and
the relatedness FST in terms of the means and the
variances of the fecundity distributions of the individu-
als in the population.

Fitness function: The direct fitness function of a FI
can be decomposed into two terms:

w ¼ wp 1 wd: ð3Þ

This formulation emphasizes that fitness depends on
the expected number of FI’s offspring recruited in the
focal deme (wp) and on the ones reaching adulthood in
a foreign deme after dispersal (wd). In the appendix we
show that when deme size is large, each component of
fitness can be expressed as a function of only the mean
and the variance of the fecundity distribution of the
different individuals in the population affecting the
fitness of the FI. Neglecting terms of order 1/N2 and
higher order, the philopatric component of fitness can
be written as

wp ¼
ð1� mÞf

d

fp
1 1

s2
p

Nf 2
p

 !
�

s2
d;p

Nf 2
p

; ð4Þ

where fd is the mean fecundity of the FI and fp ¼ (1 �
m)f0 1 mf1 is the average of the mean number of

juveniles produced by individuals in the population and
coming into competition in the focal deme (Equation
A18 of the appendix). This number depends on the
average mean fecundity f0 of individuals breeding in
the focal deme and on the average mean fecundity f1 of
individuals breeding in different demes. The fitness
function wp also involves the variance in the number of
offspring of the FI coming into competition in the focal
deme,

s2
d;p ¼ ð1� mÞmf

d
1 ð1� mÞ2s2

d
; ð5Þ

where s2
d

is the variance of the fecundity distribution of
the FI (here, the variance of the number of offspring
produced before the dispersal stage). The term (1 �
m)mfd in this equation can be interpreted as the variance
in offspring number entering in competition in the
focal deme and caused by dispersal being a random
event. The second term in Equation 5 is the additional
variance in offspring number entering in competition
in the focal deme and resulting from fecundity being a
random variable. Accordingly, when fecundity is a fixed
number and migration is random, we are left only with
the first term while if fecundity is a random number but
a fixed proportion of juvenile migrate, we are left only
with the second term. The fitness function also depends
on the average variance of the number of juveniles
entering into competition in the focal deme, which
reads

s2
p ¼ ð1� mÞmf0 1 ð1� mÞ2s2

0 1 mf1; ð6Þ

where s2
0 is the average variance in fecundity of

individuals breeding in the focal deme.
The component of the fitness of the FI resulting from

dispersing progeny reads

wd ¼
mf

d

f1
1 1

s2
d

Nf 2
1

� �
�

s2
d;d

Nf 2
1

; ð7Þ

where

s2
d;d ¼ mf

d
ð8Þ

is the variance in the number of offspring of the FI
entering into competition in other demes (Equation
A24 of the appendix). This variance depends only on
dispersal being a random event and not on the variance
in fecundity. This is so because the contribution of the
variance in fecundity to the variance in the number of
competing offspring in a given deme depends on the
square of the migration rate to that deme (Equation
A16 of the appendix). Since in the infinite island model
two offspring descending from the same parent have a
probability of zero of emigrating to the same deme, the
effect of the fecundity variance on the variance in the
number of competing offspring in a nonfocal deme
vanishes. Finally, we need the average variance of the

Selection on Fecundity Variance 363



number of juveniles entering into competition in dif-
ferent demes; this is

s2
d ¼ ð1� ð1� mÞ2Þf1 1 ð1� mÞ2s2

1; ð9Þ

where s2
1 is the average variance in fecundity of

individuals breeding in different demes.
Equations 4 and 7 highlight that both the means ( f )

and the variances (s2) of the fecundity distributions of
individuals in the population affect the fitness of a FI.
This result is an approximation that follows from the
assumption that demes are of large size. Conversely, if
demes are small, the fitness function w will also depend
on the kurtosis, skewness, and other measures of the
dispersion of the fecundity distributions (see Equation
A6 of the appendix). By contrast, when fecundity foll-
ows a Poisson distribution, fitness depends only on mean
fecundity. This is an exact result (see Poisson-distributed
fecundity in the appendix), holding whatever the sizes of
demes, which is usually invoked in applications of in-
clusive fitness theory (e.g., Comins et al. 1980; Rousset

and Ronce 2004) or population genetics (e.g., Karlin

and McGregor 1968; Ewens 1969; Gillespie 1975;
Ewens 2004), because it greatly simplifies the cal-
culations. To investigate how a distribution of fecund-
ity with a variance in excess of a Poisson-distributed
fecundity might affect selection, we consider here the
fate of mutant alleles affecting three different life-
history traits:

a. The mutant results in a reduction in both the mean
(by C) and the variance (by D) of its random number
of juveniles produced before dispersal.

b. The mutant causes an action that reduces its mean
fecundity by some cost C but that increases the mean
fecundity of each individual in the deme (excluding
the actor) by a benefit B/(N � 1).

c. The mutant expresses a decrease (or increase) in the
dispersal rate set by the resident allele.

Assumptions for the variance in fecundity: Accord-
ing to our assumption that the deme sizes remain
constant over time, the mean fecundity f of individuals
in a monomorphic population has to be large to cancel
out the fluctuations of deme sizes induced by demo-
graphic stochasticity. If the variance in fecundity is of the
same order of magnitude as the mean, all terms
involving a variance in the fitness functions (Equations
4 and 7) will vanish because they are divided by the
mean squared (i.e., s2/f 2 / 0 when f becomes large).
We are then left with a situation where the fitness of a FI
depends only on its mean fecundity of that of the other
actors in the population. However, when the variance in
fecundity is of higher order of magnitude than the
mean, the coefficient of variation defined as

sv [
s

f
ð10Þ

(e.g., Lynch and Walsh 1998, p. 23) remains positive
under large mean fecundity (i.e., sv . 0 for f large). For
the rest of this article, we assume that the fecundity
distribution has a variance of larger order of magnitude
than the mean and that the mean fecundity is finite but
large enough to prevent demographic stochasticity.

Several distributions closely related to the Poisson
distribution have a variance of larger order of magni-
tude than the mean. Such distributions can be conve-
niently obtained by mixing the rate of occurrence of
birth events f of the Poisson distribution with other
distribution (i.e., mixed Poisson distributions; Willmot

1986). For instance, the negative-binomial distribution,
which is advocated to be the basis of the fertility in
humans and other species (Caswell 2000), can be
obtained by mixing the birth rate f by a gamma distri-
bution. This distribution has mean f and variance f 1 f 2/
a, where the parameter a allows tuning this variance
away from that of a Poisson distribution (Figure 1).
When the mean becomes large, the coefficient of varia-
tion of this distribution remains positive (sv /

ffiffiffiffiffiffiffiffi
1=a

p
).

Similarly, when clutch size follows a Poisson distribution
and the whole clutch has a probability (1 � s) of com-
plete failure, the resulting distribution has mean sf and
variance fs 1 f 2s(1 � s).

Relatedness: The variance in fecundity will also affect
the dynamics of relatedness between two individuals
sampled in the same deme after dispersal. At equilib-
rium, relatedness satisfies the recursion

FST ¼ ð1� mÞ2ðPrðCÞ1 ½1� PrðCÞ�FSTÞ; ð11Þ

where (1�m)2 is the probability that the two individuals
are of philopatric origin and Pr(C) is the probability that
they descend from the same parent.

Using Equation 10 and Equation A31 from the
appendix, assuming that both deme size and mean

Figure 1.—Negative-binomial fecundity probability distri-
bution Prð J Þ ¼ ðGða 1 J Þ=GðaÞJ !Þð f J =aÞð1 1 ð f =aÞÞ�ða1J Þ for
the number J of juveniles produced by an individual. The
mean is given by f and the variance by f 1 f 2/a. For all curves
we have a mean of f ¼ 10, while a ¼ ‘ for the curve with the
highest peak (i.e., Poisson distribution), a ¼ 5 for the curve
with the intermediate peak, and a ¼ 1.5 for the curve with
the lowest peak.
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fecundity are large, and keeping only terms of leading
order we find that the coalescence probability is given by

PrðCÞ ¼ 1 1 s2
v

N
; ð12Þ

where s2
v is called the effective variance by Gillespie

(1975, p. 407).
Using Equations 4, 7, and 12 we investigate in the next

section the selective pressure on the three life-history
traits discussed above.

EXAMPLES

Within-generation bet hedging: Here we investigate
the conditions under which an organism is selected to
decrease its mean fecundity to reduce its variance in
fecundity. The setting is the same as the one investigated
by Shpak and Proulx (2006). The fecundity means and
variances of the various classes of actors affecting the
fitness of a FI bearing a mutant bet-hedging allele
are evaluated as is usually done by the direct fitness
method (e.g., Frank 1998; Rousset and Billiard 2000;
Rousset 2004) and are presented in Table 1. Substitut-
ing these functionals into the direct fitness function
(Equation 3) allows us to calculate explicitly the selec-
tive pressure on the mutant allele (Equation 2). Eval-
uating this selective pressure at the phenotypic value of
the resident allele (z

d
¼ zD

0 ¼ z1 ¼ 0) and taking into
account only terms of leading order [i.e., neglecting
terms of order 1/N 2, 1/f 2, 1/(Nf) and beyond], we find
that the inclusive fitness effect becomes

S ¼� C 1 1
s2

v ð1� mÞ2
N

� �
1 D

s2
v ð1� mÞ2

N

1 Cð1� mÞ2F R
ST; ð13Þ

where

F R
ST ¼

1

N
1

N � 1

N

� �
FST ð14Þ

is the relatedness between the FI and an individual
randomly sampled with replacement from its deme
(thus including the FI with probability 1/N) and

FST ¼
1 1 s2

v

� �
ð1� mÞ2

N ð2� mÞm : ð15Þ

The inclusive fitness effect S is composed of three
terms. First, there is a direct cost to the FI stemming
from the reduction in its (mean) fecundity. Second,
there is a direct benefit to the FI stemming from the
reduction in its variance in fecundity, which is pro-
portional to the probability (1 � m)2/N that two
randomly sampled offspring in the focal deme descend
from the FI and on the coefficient of variation squared
(i.e., effective fecundity). Third, we have to account for
an indirect benefit resulting from the reduction in
competition in the focal deme faced by the FI’s off-
spring, which results from its own and its relatives1
reduced fecundity. This decrease in kin competition is
proportional to the probability (1 � m)2 that two
offspring produced in the focal deme compete against
each other. Since we assumed large deme size, there are
no effects on fitness resulting from relatives lowering
their fecundity variance as such effects are of order 1/
N2. However, the variance in fecundity increases re-
latedness (Equation 15) and thus has an impact on the
intensity of kin competition. Rearranging the inclusive
fitness effect, the low-variance mutant spreads when the
threshold cost to benefit ratio satisfies

C

D
,

s2
v ð1�mÞ2ð2�mÞm

ðN 11Þð2�mÞm�s2
v ð1�mÞ2ð1�2ð2�mÞmÞ�1

:

ð16Þ

This threshold decreases with an increase in migration
rate and deme size and with a decrease in the variance in
fecundity. The inequality cannot be satisfied when the
coefficient of variation is vanishingly small (s2

v ¼ 0) or
when migration is complete (m ¼ 1).

While the intensity of selection on the variance in
fecundity is proportional to the inverse of population
size in panmictic populations (Gillespie 1974, 1975,
1977; Demetrius and Gundlach 2000; Demetrius

2001), we see from Equation 13 that the intensity of
selection on this variance is proportional to (1 � m)2/N
in subdivided populations when regulation occurs after
dispersal. Thus, selection on the variance decreases as
the migration rate and/or deme size increases. This is so
because the contribution of the variance in fecundity
of a focal individual to the variance in the number of
offspring competing in a given deme after dispersal
depends on the square of the migration rate to that deme.
Under infinite-island model assumptions, this contri-
bution vanishes for all demes except for the focal deme
(compare Equation 5 and Equation 8). The finding that
selection on the variance is of intensity (1 � m)2/N

TABLE 1

Symbol
Value for within-generation

bet hedging
Value for
helping

fd f(1 � Czd) f(1 1 BzD
0 � Cz

d
)

f0 f(1� CzR
0 ) f(1 1 ðB � CÞzR

0 )
f1 f(1 � Cz1) f(1 1 (B � C)z1)
s2

d
s2(1 � Dzd) s2

s2
0 s2(1� DzR

0 ) s2

s2
1 s2(1 � Dz1) s2

f, baseline mean fecundity of each individual in a mono-
morphic population; s2, baseline fecundity variance of each
individual in a monomorphic population; zd, phenotype of
a focal individual; zR

0 , average phenotype of individuals from
the focal deme (zR

0 ¼ ð1=N Þz
d
1 ððN � 1Þ=N ÞzD

0 ); zD
0 , average

phenotype of individuals from the focal deme but excluding
the FI; z1, average phenotype of individuals from different
demes.
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corroborates the results of Shpak and Proulx (2006).
Indeed, the two first terms of the inclusive fitness effect
are consistent with Equation 20 of Shpak and Proulx

(2006). However, we note that the approach endorsed
here takes into account the effect of the variance in gene
frequency between demes on the expected change of
allele frequency at the level of the population given by
Equation 1. Indeed, the third term of the inclusive
fitness effect, which involves kin competition, depends
on the variance in gene frequency among demes (i.e.,
FST) and is not considered by Shpak and Proulx (2006)
but its presence here is consistent with previous pop-
ulation genetic derivation of selection on the mean
fecundity in subdivided populations (e.g., Roze and
Rousset 2003, 2004; Rousset 2004). In the appendix,
we complement our analyses by presenting the condi-
tion under which an organism is selected to decrease its
mean fecundity to reduce its variance in fecundity when
regulation occurs before dispersal (soft selection).
Selection on the variance in fecundity then scales as
1/N as was already established by Shpak (2005).

Helping behaviors: Here, we investigate the effect of
the variance in fecundity on the condition under which
an organism should be prepared to sacrifice a fraction
of its resources to help its deme mates. The setting is
exactly the same as that in Taylor (1992a), except for
the assumptions regarding the distribution of fecundity.
While Taylor considers an infinite fecundity, we assume
here as in the previous section that the fecundity is finite
but large and that its distribution has a variance in
excess of a Poisson-distributed fecundity. The means
and the variances of the fecundities of the various classes
of individuals affecting the fitness of a FI are given in
Table 1. Evaluating the selective pressure on the helping
allele at the phenotypic value of the resident allele
(z

d
¼ zD

0 ¼ z1 ¼ 0) and taking into account only terms to
leading order, the selective pressure on helping
becomes

S ¼�C 11
s2

v ð1�mÞ2
N

� �
1BFST�ð1�mÞ2ðB�CÞF R

ST;

ð17Þ

where F R
ST and FST are given by Equation 14 and

Equation 15, respectively. This inclusive fitness effect S
is also composed of three terms: first, the direct cost of
helping; second, the benefit received by the FI from its
neighbors; and third, the cost of the increase in
competition in the focal deme faced by the FI’s off-
spring caused by it and its neighbors expressing the
helping trait. In Taylor’s (1992a) original setting we
have FST¼ (1� mÞ2F R

ST, which inserted into Equation 17
cancels out all the benefit terms. However, in the pres-
ent situation we have FST . (1� mÞ2F R

ST (see Equation
12) because relatedness is inflated due to the increased
frequency of coalescence events stemming from the
higher variance in fecundity. This results in a situation

where the fecundity benefit B is no longer canceled out
by the concomitant increase in kin competition. Rear-
ranging this selective pressure, we find that helping
spreads when

C

B
,

s2
v ð1�mÞ2ð2�mÞm

ðN 11Þð2�mÞm�s2
v ð1�mÞ2ð1�2ð2�mÞmÞ�1

ð18Þ

is satisfied. As in the preceding section, the threshold
cost to benefit ratio decreases with an increase in the
migration rate and deme size and with a decrease in the
variance in fecundity. When the coefficient of variation
is vanishingly small (s2

v /0), we have C/B , 0 so that
the direction of selection on helping is determined
solely by direct fecundity benefits. The behavior is then
selected for if�C . 0, that is, if the number of juveniles
counted before any competition stage is increased
(Taylor 1992a; Rousset 2004). Here, helping can be
selected for at a direct fecundity cost to the actor
whenever s2

v . 0. We note that Taylor’s seminal hard
selection model and relaxations of its life-cycle assump-
tions have been investigated by several authors (Taylor

and Irwin 2000; Irwin and Taylor 2001; Perrin and
Lehmann 2001; Rousset 2004; Roze and Rousset

2004; Gardner and West 2006; Lehmann 2006; Lehmann

et al. 2006).
Dispersal: Finally, we examine the effect of the

variance in fecundity on the evolutionary stable (ES)
dispersal rate. The setting is exactly the same as in
Frank (1985, 1998), with the exception that we assume
again as in the previous sections that fecundity is finite
but large and that its distribution has a variance in
excess of a Poisson-distributed fecundity. The fitness
functions w of a focal parent bearing a mutant genotype
affecting the dispersal rate of its offspring are more
complicated than those investigated so far because we
have to take into account the survival rate s of juveniles
during dispersal. Let us designate by d the evolving
dispersal rate and by dd the average dispersal rate of the
offspring of a FI. A proportion 1 � dd of the offspring
produced by the FI remain in the focal deme and a
fraction sdd of these offspring enter in competition in
another deme after dispersal. The direct fitness func-
tion for the evolution of dispersal can then be obtained
by setting (1 � m) [ 1 � dd in the numerator of the first
ratio in Equation 4 and m [ sdd in the numerator of the
first ratio in Equation 7, while all the remaining terms of
these fitness functions are given in Table 2. The fitness
function for dispersal can then be written as

w ¼ 1�d
d

1�dR
0

� �
1 sd1

11
s2

p

Nf 2
p

 !
1

sd
d

ð1�d1Þ1 sd1
11

s2
d

Nf 2
1

� �

�
s2

d;p

Nf 2
p

�
s2

d;d

Nf 2
1

; ð19Þ
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which, for a large mean fecundity and vanishing co-
efficient of variation (sv ¼ 0), reduces to the classical
fitness function for dispersal (e.g., Frank 1998; Gandon

and Rousset 1999; Perrin and Mazalov 2000).
Substituting the fitness function into Equation 2,
evaluating the selective pressure at the candidate ES
dispersal rate, that is, at d

d
¼ dR

0 ¼ d1 ¼ d, and taking
into account only terms to leading order, we find that
the selective pressure on dispersal becomes

S ¼� 1� s

1� dð1� sÞ1
ð1� dÞ

ð1� dð1� sÞÞ2 F R
ST

1
s2

v ð1� dÞð1� dð1� sÞ1 sÞ
N ð1� dð1� sÞÞ3 ; ð20Þ

where F R
ST and FST are given by Equation 14 and

Equation 15 with the backward migration rate ex-
pressed as m [ sd/(1 � d 1 sd), which represents the
probability that an individual sampled in a deme is an
immigrant. This selective pressure on dispersal is
decomposed into three terms: first, the classical direct
cost of increasing the dispersal rate, which varies directly
with the survival probability s during dispersal; second,
the indirect benefit stemming from the reduction in
competition in the focal deme faced by the FI’s off-
spring, which results from it and its neighbors’ offspring
dispersing (e.g., Hamilton and May 1977; Taylor

1988; Frank 1998; Gandon and Michalakis 1999;
Gandon and Rousset 1999; Perrin and Mazalov

2000); and third, a benefit resulting from the dispersing
progeny of the FI reducing the variance in its number of
offspring reaching adulthood in the focal deme. This
term is new and is driven by Equation 5. By dispersing,
juveniles minimize the variance in the number of
offspring of a focal parent entering into competition
in the focal deme. Since the variance in the number of
offspring entering locally into competition (Equation
5) dominates the variance in the number of offspring
entering into competition in different demes by dis-
persing (Equation 8), dispersal decreases the overall
variance in the number of offspring entering into com-

petition. As a consequence, fitness increases through
dispersing and the ES dispersal rates are boosted by
higher variance in fecundity. Figure 2 compares the ES
dispersal rate obtained from the present model with the
classical ES dispersal rate (e.g., Hamilton and May

1977; Frank 1998; Gandon and Rousset 1999; Perrin

and Mazalov 2000) obtained under the vanishing
coefficient of variation (s2

v ¼ 0 in Equations 20 and 15).

DISCUSSION

In this article, we integrated the classical measure of
selection for within-generation bet hedging (Gillespie

1974, 1975, 1977) into the game theoretic and inclu-
sive fitness measure of selection for structured popula-
tions (e.g., Taylor 1990; Rousset and Billiard 2000;
Rousset 2004, 2006). The resulting framework in which
fitness depends explicitly on both the means and the
variances of the fecundity distribution can be applied to
study the evolution of various life-history traits (i.e., sex
ratio, helping, reproductive effort), under soft and hard
selection regimes. The selective pressures on three traits
were directly investigated here, namely within-generation
bet hedging, helping behaviors, and the evolutionary
stable dispersal rate. The results suggest that the evo-
lutionary dynamics of all these traits are affected by the
variance in fecundity, although with variable intensity
and under different demographic conditions.

Within-generation bet hedging: Natural selection
selects against the variance in offspring number when
panmictic populations are not too large (Gillespie

1974, 1975, 1977; Demetrius and Gundlach 2000;
Demetrius 2001). Our models suggest that selection
against this variance in subdivided populations scales as
1/N (Equation A37) when regulation occurs before

Figure 2.—Evolutionary stable dispersal rate graphed as a
function of deme size N with survival rate set to s ¼ 0.9. The
solid line is the classical ES dispersal rate obtained by assum-
ing that the progeny distribution is Poisson or has an infinite
mean. The dotted line (curve between solid and dashed
curves) corresponds to the ES dispersal rate when s2

v ¼ 1
5,

while the dashed line corresponds to the ES dispersal rate
when s2

v ¼ 1
1:5. Fecundity distributions corresponding to such

variances are given in Figure 1.

TABLE 2

Symbol Value for dispersal

fd f
fp f ½ð1� dR

0 Þ1 sd1�
f1 f ½ð1� d1Þ1 sd1�
s2

d;p (1 � dd)ddf 1 (1 � dd)2s2

s2
d;d sddf

s2
p (1� dR

0 ÞdR
0 f 1 ð1� dR

0 Þ
2
s2 1 sd1f

s2
d (1 � d1)d1f 1 (1 � d1)2s2 1 sd1f

dd, dispersal rate of the offspring of the focal individual; dR
0 ,

average dispersal rate of the offspring of individuals from the
focal deme (dR

0 ¼ ð1=N Þd
d
1 ððN � 1Þ=N ÞdD

0 ); d1, average dis-
persal rate of the offspring of individuals from different
demes
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dispersal (soft selection) and scales as (1 � m)2/N
(Equation 13) when regulation occurs after dispersal
(hard selection). This is so because the contribution of
the variance in fecundity of a focal individual to the
variance in its number of offspring competing in a given
deme depends on the square of the migration rate to
that deme. Under soft selection, all the competition
occurs in the focal deme so that migration has no effect
on selection. By contrast, under hard selection, the
offspring of an individual compete in different demes
and, due to our infinite-island model assumptions, the
contribution of the variance in fecundity to the various
demes vanishes for all demes except for the focal deme
(compare Equation 5 and Equation 8). These results
corroborate the findings of Shpak (2005) and Shpak

and Proulx (2006) and illustrate that they can be
derived from the same model.

It is sometimes assumed in the literature that selec-
tion against the variance in offspring number and its
impact on various life-history trait will be of limited
importance in natural populations because they are of
large size (e.g., Seger and Brockman 1985). Our results
and those of Shpak (2005) and Shpak and Proulx

(2006) demonstrate that selection against this variance
can operate perfectly in large but subdivided popula-
tions in the presence of both soft and hard selection
regimes. That selection can target the fecundity vari-
ance in large populations may be relevant for the
evolution of bet-hedging strategies in general and for
the theory of sex-ratio homeostasis (Verner 1965;
Taylor and Sauer 1980) in particular. Indeed, the
results suggest that the demographic parameters of the
population will condition whether strategies involving
probabilistic sex-ratio determination (i.e., each individ-
ual develops into a male or a female with a given
probability) will resist invasion by strategies involving a
rigid determination of it (i.e., a fixed proportion of
offspring develop into either sex).

More generally, the fecundity variance might also play
a role in the evolution of systems of phenotypic de-
termination. Systems of adaptive polymorphism are
expected in the presence of fluctuating environments
or resource specialization and involve, among other
mechanisms, the random determination of an individ-
ual’s phenotype or its genetic determination (Grafen

1999; Leimar 2005). Since probabilistic phenotype
determination can introduce additional variance in
the number of offspring entering in competition, the
conditions under which mixed evolutionary stable strat-
egies are favored over pure genetic polymorphism are
likely to be dependent on the variance in the number of
offspring sent into competition by each strategy.

Helping behaviors: While the preceding examples of
bet-hedging strategies resulted in directional selection
against the variance in fecundity, the selective pressure
on other strategies can depend on the magnitude of this
variance. Helping behaviors involving kin interaction

fall into this category because their evolution depends
on the relatedness between interacting individuals,
whose dynamic is determined by the probability of com-
mon ancestry within deme, itself a function of the
fecundity distribution (Ewens 2004; Rousset 2004).
An increase in fecundity variance decreases the number
of effective ancestors within demes and thus increases the
relatedness between deme mates, possibly leading to an
increase in the selective pressure on helping behaviors.

Taylor (1992a,b) has demonstrated that when
demes are of constant size and when fecundity is infinite
(i.e., no variance in fecundity), selection on helping is
determined solely by direct fecundity benefits. Here,
Taylor’s assumption on fecundity was replaced by the
assumption that fecundity follows a distribution with
finite but large mean and with a variance exceeding the
mean. Allowing for a nonvanishingly small coefficient of
variation increases relatedness between deme members
with the consequence that all kin selected effects,
whether positive or negative, are increased. Here, this
translates into helping being selected for at a direct
fecundity cost to the actor with the intensity of selection
on helping decreasing when the variance in fecundity
decreases (Equation 18). This result suggests that se-
lection on helping is also bound to depend on the
mating system because the variance in the number of
mating partners obtained by males will increase re-
latedness within demes.

The finding that the magnitude of the variance in
fecundity qualitatively affects the outcome of selection
on costly helping might help us to understand why
different authors have repeatedly reached contradictory
results when investigating selection on helping under
apparently identical life cycles. While several authors
have emphasized that unconditional costly helping is
counterselected when social interactions occur between
semelparous individuals living in structured popula-
tions of constant size (Wilson et al. 1992; Taylor

1992a,b; Rousset 2004; Lehmann et al. 2006), other
authors have suggested that costly helping is selected for
in that case (Nowak and May 1992; Killingback et al.
1999; Hauert and Doebeli 2004). The results by the
former group of authors are based on analytical models
assuming infinite and/or Poisson-distributed fecund-
ities. The results by the latter group are mostly based
on simulations. In this case, it remains unclear how
the updating rules used by the authors to simulate the
transmission of strategies from one generation to the
next in the population influence relatedness and may
thus result in significant departure from the Poisson-
distributed fecundity assumption. For instance, copying
the fittest neighbor will result in different dynamics of
relatedness than copying neighbors with a probability
proportional to their fitness. These specific features
might help to explain why some authors observed the
emergence of costly helping behaviors while others
did not.
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Dispersal: This article emphasizes that the variance in
the number of offspring sent into competition can be as
important in determining fitness as the mean of such
offspring (Equations 4 and 7). This variance will depend
among other factors on the probability that an in-
dividual reproduces, its offspring disperse, migrants
survive dispersal, and successful migrants survive com-
petition. While a near endless chain of stochastic events
may affect individuals as they move along their life cycle,
we focused here only on the stochasticity induced by
reproduction and migration. Migration has a striking
and nonintuitive impact on the total variance in the
number of offspring entering competition because it
results in two distinct effects on this variance. First,
migration redistributes the variance in fecundity of an
individual over the whole population. Since the vari-
ance in the number of offspring competing in a given
deme after dispersal depends on the square of the
migration rate to that deme, the contribution of the
variance in fecundity to the variance in competing off-
spring in that deme vanishes for all demes except for the
focal one, whenever there is a large number of demes
(compare Equation 5 and Equation 8). Second, we as-
sumed that migration itself is a probabilistic event, which
thus generates a variance in the number of competing
offspring even for fixed fecundity schedules (first term
in Equations 5 and 8). These two effects of migration on
fitness will have two distinct consequences for the
evolution of stable dispersal rates.

First, assuming that each juvenile disperses indepen-
dently from each other and that the environment is
constant, the evolutionary stable dispersal rate depends
on a balance between two opposing forces. There is a
cost of dispersal resulting from reduced survival during
migration opposed by a benefit leading to local decrease
in kin competition (e.g., Hamilton and May 1977;
Frank 1985, 1998; Gandon and Michalakis 1999;
Gandon and Rousset 1999; Perrin and Mazalov

2000). Here, this balance is displaced in favor of
increased dispersal because the cost of dispersal is
reduced as migration reduces the total variance in the
number of offspring of an individual sent into compe-
tition. By dispersing, the offspring of the focal individ-
ual decrease the impact of the variance in fecundity on
fitness. A large variance in fecundity can result in a
twofold increase of the evolutionary stable dispersal rate
(Figure 2). That the variance in fecundity can affect the
candidate evolutionary stable strategy has already been
shown for models of sex allocation (e.g., Proulx 2000,
2004). Our result that the ES dispersal rate is affected by
the variance in fecundity might be of practical impor-
tance when evaluating the causes of dispersal in natural
populations and it suggests that the fecundity distribu-
tion might explain a part of the observed variance in
dispersal rates.

The second consequence of subdivided populations
for the evolution of dispersal rates stems from the fact

that if migration is a probabilistic event, it increases the
variance in offspring number of an adult coming into
competition. One might then wonder whether a strat-
egy resulting in a fixed proportion of individuals dis-
persing would not be favored over a strategy involving
probabilistic dispersal, in complete analogy with the
theory of sex-ratio homeostasis (Taylor and Sauer

1980), where the production of a fixed proportion of
males and females is favored over probabilistic sex-ratio
determination. In the Dispersal homeostasis section in the
appendix, we constructed a model precisely along these
lines (see Equation A43), which demonstrates that
dispersal homeostasis can indeed evolve but that the
selective pressure on it is only of order 1/(fN), where f is
the mean fecundity. This result is in line with work by
Taylor and Sauer (1980), who showed that selection
on ‘‘sex-ratio homeostasis’’ in panmictic populations is
proportional to the inverse of the total number fN of
offspring born in a group. According to our assumption
that both deme size and fecundity are large, terms of
such order were generally dismissed in the calculation
of the various selective pressures (Equations 13, 17, and
20). However, selection on both dispersal and sex-ratio
homeostasis might be effective in subdivided popula-
tion when both the mean fecundity and the deme size
are not too large.

Limitations and extensions of the model: All results
derived in this article are based on five main assump-
tions that greatly simplified the analyses and that we now
discuss. First, we assumed an island model of migration.
This assumption was introduced to highlight in a sim-
ple way the effects of the fecundity variance on fitness in
subdivided populations, although the model derived in
the appendix is more general and allows for isolation by
distance (e.g., stepping-stone dispersal). In this case we
expect selection on the variance in fecundity to be
increased because the variance in the number of off-
spring competing in a given deme after dispersal de-
pends on the square of the migration rate to that deme
(Equation A16). This probability will not be vanishingly
small for migration at short spatial distances so that
selection against the variance will generally exceed
the intensity (1 � m)2/N established here for infinite-
island situations. Second, we assumed that demes are of
large size (terms of order 1/N 2 are neglected, see the
Regulation section in the appendix). This assumption
was introduced to focus primarily on selection on the
variance in fecundity and to neglect selection on other
measures of dispersion of the fecundity distribution that
are likely to matter when demes are of small size. As can
be noted by inspecting Equation A6, natural selection
will not only reduce the variance in fecundity but also
favor positively skewed fecundity distributions that are
platykurtic: that is, distributions that are asymmetric
with a fatter right tail and that are less peaked than a
normally distributed variable. This is intuitively ex-
pected because it results in a shape of the fecundity
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distribution that reduces the likelihood of producing
no offspring at all. Exactly how natural selection will
shape the fecundity distribution given the constraints
on reproductions remains to be investigated. Third, we
assumed that the mean fecundity is finite but large. This
assumption was introduced to be able to neglect de-
mographic stochasticity and to obtain analytical expres-
sions as simply as possible. Under ceiling regulation,
demographic stochasticity is completely prevented from
occurring for demes of large size as soon as individuals
produce more than two offspring (Lehmann et al. 2006).
However, other forms of population regulation occur in
nature, such as density-dependent survival with no spe-
cific ceiling effect, which might result in wider popula-
tion fluctuations. Overall, allowing for low fecundities
and small deme sizes should in principle lead to
situations where selection on the measures of statistical
dispersions (e.g., variance, skewness) is exacerbated.
Fourth, we assumed that the variance in fecundity is of
larger order of magnitude than the mean so that the
coefficient of variation (sv) is not vanishingly small even
when the mean fecundity is large. This assumption was
introduced to ensure that the variance of the fecundity
distribution still influences fitness under our hypothe-
ses of large fecundities and demes sizes. A typical
example of such a fecundity distribution is given by
the negative-binomial distribution, which follows from
many models of reproduction (Caswell 2000, p. 455)
and has been advocated to be characteristic of the
fertility in humans and other species (Anscombe 1949;
Cerda-Flores and Davila-Rodriguez 2000). That or-
ganisms have a variance in fecundity in excess of the mean
has also been reported in studies of reproductive success
(Crow and Kimura 1970, Table 7.6.4.2.; Clutton-
Brock 1988). Fifth, we assumed an infinite number
of demes so that the effect of drift at the level of the total
population on gene frequency change is not taken into
account. However, our direct fitness derivation pre-
sented in the appendix is framed within a finite pop-
ulation so that the inclusive fitness effect S also allows
us to evaluate the first-order phenotypic effect of a mu-
tant allele on its probability of fixation (Rousset 2004,
2006). The evaluation of the probability of fixation itself
deserves further formalizations that might be achieved
by following along the lines of the direct fitness ap-
proach to diffusion equations of Roze and Rousset

(2003, 2004). We finally mention that we investigated
here only three phenotypic traits, whose evolution dep-
ends on the magnitude of relatedness (i.e., FST) that is
itself a function of the variance in fecundity. However,
the evolution of many other traits including sex ratio,
mate choice, harming behaviors such as spiteful acts,
niche-constructing phenotypes, or resource exploita-
tion curves depend on relatedness (e.g., Hamilton

1971; Boomsma and Grafen 1991; Taylor and Getz

1994; Gandon and Michalakis 1999; Ajar 2003;
Lehmann 2006). Consequently, the expression of all

these traits is likely to be indirectly influenced by the
variance in fecundity.

On the basis of all these comments and the premise
that there is as much genetic variation for the variance
in fecundity as there is for the mean, we expect that the
results presented in this article are of relevance for
natural systems. As a final note, we can thus only re-
emphasize Gillespie’s (1977) view that the role of the
variance deserves a more prominent place in our
thinking about evolutionary processes.

We thank one anonymous reviewer for very helpful comments on
this manuscript. L.L. acknowledges financial support from the Swiss
National Science Foundation.
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APPENDIX

Fitness function: Here we derive an expression for the direct fitness function w (Equation 2), which involves both the
mean and the variance of the number of offspring produced by a focal individual and generalizes the derivation of
Gillespie (1975) to subdivided populations (see also Shpak and Proulx 2006). We assume that the mean fecundity of
individuals is finite but sufficiently large to prevent any demographic stochasticity. Accordingly, each deme will be treated
as being of constant size N. This assumption implies that the model is not exact but provides a balance between accuracy
and complexity. An exact model can be obtained by recasting the forthcoming derivation within the framework of the
general metapopulation model ofRousset and Ronce (2004) by conditioning the expressions forfitness on demographic
states. For completeness, we first consider that the population is constituted of a finite number nd of demes and then take
the infinite island limit (nd / ‘). We now follow the events of the life cycle presented in the main text in reverse order.

Regulation: The expectation of the random number Nijx of offspring surviving regulation in deme i and descending
from individual x breeding in deme j can be written as

E ½Nijx � ¼
X

Ji

X
Jijx

E ½Nijx j Jijx ; Ji �Prð Jijx j JiÞPrð JiÞ; ðA1Þ
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where Pr( Jijx j Ji)Pr( Ji) is the joint probability that Jijx offspring of individual x enter in competition in deme i among a
total number of Ji offspring and E[Nijx j Jijx, Ji] is the conditional expectation of Nijx given Jijx and

Ji ¼
Xnd

j¼1

XN
y¼1

Jijy; ðA2Þ

where each random variable Jijy is assumed to be independently distributed.
Density-dependent regulation is assumed to affect each individual independently and equally. According to this

assumption, the conditional expectation of the number Nijx of recruited offspring of x given Ji and Jijx is N times the
probability that a randomly sampled juvenile is an offspring of x (Gillespie 1975), and this is

E ½Nijx j Jijx ; Ji � ¼ N 3
Jijx

Ji
: ðA3Þ

The random numbers of juveniles in this ratio can be expressed as deviations around their expectations; thereby

Jijx

Ji
¼

E ½ Jijx �1 zijx

E ½ Ji �1 zi

; ðA4Þ

where zijx [ Jijx� E[ Jijx] and zi[Ji � E ½ Ji � ¼
Pnd

j¼1

PN
y¼1 zijy. The ratio of the number of juveniles can now be expanded

according to the series

Jijx

Ji
¼ E ½ Jijx �

E ½ Ji �
X‘

t¼0

ð�1Þt zi

E ½ Ji �

� �t

1 1
zijx

E ½ Jijx �

� �
; ðA5Þ

which, once substituted into Equation A1, gives the fitness function

E ½Nijx � ¼ N
E ½ Jijx �
E ½ Ji �

1 1
X‘

t¼1

ð�1ÞtE zi

E ½ Ji �

� �t

1 1
zijx

E ½ Jijx �

� �� � !
: ðA6Þ

Equation A6 illustrates that the expectation of the number of recruited offspring in deme i and descending
from individual x breeding in deme j is a function of all the moments ði:e:;E ½zt

i �Þ of the distribution of the number
of offspring entering in competition in deme i after dispersal. It involves, among other measures of statistical
dispersion, the variance, the skewness, and the kurtosis of the distribution of number of offspring entering in
competition.

Because Equation A6 is complicated, we follow previous work (Gillespie 1975; Proulx 2000; Shpak and Proulx

2006) by establishing an expression for fitness that takes only the variance of the distributions of competing juveniles
into account. To do this, we note that the sum

PN
y¼1 Jijy appearing in the expectation E[Ji] (see Equation A12) is about

as big as NE[Jijy] when N becomes large. By contrast, the central limit theorem ascertains that the sum
PN

y¼1 zijy

appearing in the deviation around the mean zi is only about as big as
ffiffiffiffiffi
N
p

when N is large (e.g., Grimmet and Stirzaker

2001, pp. 193–194). Therefore, the ratio ðzi=E ½Ji �Þt appearing in Equation A6 is approximately of order of magnitude
ð
ffiffiffiffiffi
N
p

=N Þt when N becomes large and rapidly shrinks with increasing t. As in Gillespie (1975, p. 114), we thus keep
only leading terms of order 1/N and neglect terms of order 1/N 2 and higher order in Equation A6. After
rearrangement, we obtain

E ½Nijx � ¼ N
E ½ Jijx �
E ½ Ji �

1
E ½z2

i �E ½ Jijx �
E ½ Ji �3

�
E ½zizijx �
E ½ Ji �2

� �
1 O

1

N 2

� �
: ðA7Þ

From the assumption of the independence of the distributions of juveniles we have E ½zizijx � ¼ E ½z2
ijx � ¼ Var½ Jijx �, which

is the variance in the number of juveniles entering in competition in deme i and descending from individual x
breeding in deme j, and E ½z2

i � ¼ Var½ Ji � ¼
Pnd

j¼1

PN
y¼1 Var½ Jijy�, which is the total variance in the number of juveniles

entering in competition in deme i. Equation A7 can now be written as

E ½Nijx � ¼ N
E ½ Jijx �
E ½ Ji �

1
Var½ Ji �E ½ Jijx �

E ½ Ji �3
� Var½ Jijx �

E ½ Ji �2
� �

1 O
1

N 2

� �
ðA8Þ

and depends only on the means and the variances of the distributions of the number of juveniles entering in
competition in deme i. The means and the variances appearing in Equation A8 are for the number of juveniles
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entering in competition in demes after dispersal. In the next section, we express these moments in terms of means and
variances of juveniles produced before dispersal.

We note that the term in parentheses in Equation A7 agrees precisely with the approximation of the expectation of a
ratio of random variables as obtained by the delta method (Lynch and Walsh 1998, pp. 807–813), which for the
random variables X and Y reads

E
X

Y

� �
’ E ½X �

E ½Y �1
Var½Y �E ½X �

E ½Y �3 � Cov½Y ;X �
E ½Y �2 : ðA9Þ

Migration: The mean number of juveniles entering in competition in deme i and descending from individual x
reproducing in deme j can be written as

E ½ Jijx � ¼
X

Jjx

E ½ Jijx j Jjx �Prð JjxÞ; ðA10Þ

where Jjx is the number of offspring of individual x produced before the dispersal stage and Pr( Jjx) is the
corresponding probability distribution. Given Jjx and the assumption that each juvenile migrates independently with
probability mij from deme j to deme i, the number of dispersing juveniles of individual x to deme i follows the binomial
distribution Bð Jijx ; Jjx ;mijÞ with parameters Jjx and mij. Hence, E[Jijx j Jjx] ¼ mij Jjx with the result that

E ½ Jijx � ¼ mij E ½ Jjx �; ðA11Þ

where E[Jjx] is the mean fecundity of individual x (here the mean number of offspring produced before the dispersal
stage). Summing up the contribution of each individual to deme i, we obtain

E ½ Ji � ¼
Xnd

j¼1

mij

XN
y¼1

E ½ Jjy�
" #

; ðA12Þ

where the term in brackets is the total fecundity in deme j, which, when divided by N yields the average mean fecundity
of individuals in deme j.

The variance in the number of juveniles entering in competition in deme i and descending from individual x can be
written as

Var½ Jijx � ¼ E J 2
ijx

h i
� E ½ Jijx �2; ðA13Þ

where the second moment E ½ J 2
ijx � can be evaluated by conditioning on the number Jjx of juveniles produced before

dispersal; that is,

E J 2
ijx

h i
¼
X

Jjx

E J 2
ijx j Jjx

h i
Prð JjxÞ: ðA14Þ

From the binomial distribution we have

E J 2
ijx j Jjx

h i
¼ mijð1� mijÞJjx 1 m2

ij J 2
jx ; ðA15Þ

which allows us to express equation A13 as

Var½ Jijx � ¼ mijð1� mijÞE ½ Jjx �1 m2
ij Var½ Jjx �; ðA16Þ

where Var[Jjx] is the variance in the number of juveniles produced before dispersal by individual x in deme j.
Remembering that the total variance in the number of juveniles entering in competition in deme i is given by

Var½ Ji � ¼
Pnd

j¼1

PN
y¼1 Var½ Jijy�, we have

Var½ Ji � ¼
Xnd

j¼1

mijð1� mijÞ
XN
y¼1

E ½ Jjy�
" #

1 m2
ij

XN
y¼1

Var½ Jjy�
" # !

; ðA17Þ

where the term in the second brackets is the total variance in the number of juveniles produced in deme j.
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Selection: We now use the foregoing results to establish the direct fitness w of a focal individual (FI) bearing a mutant
allele (e.g., Taylor and Frank 1996; Frank 1998; Rousset and Billiard 2000; Rousset 2004). We consider that
individual x breeding in deme j is this FI and assume that interactions are spatially homogeneous. With this
assumption, the fitness of the FI can be expressed as a function of its own phenotype, of the phenotype of the
individuals in its deme, of the phenotypes of individuals one step further apart, of the phenotypes of individuals two
steps further apart, and so on (e.g., Rousset and Billiard 2000; Rousset 2004). For simplicity, we further consider
here only the island model of dispersal where the individuals in the population can be pooled into three classes so that
the fitness of the FI is expressed only as a function of its own phenotype, of the average phenotype of its deme mates,
and of the average phenotype of individuals from different demes. We call m the dispersal probability of a juvenile so
that its probability to disperse to a given nonnatal deme is m/(nd � 1). Designating by fd and s2

d
the mean and the

variance of the fecundity distribution of the FI, using Equations A8 and A11–A17, we find that the mean number of
offspring of the FI reaching adulthood in the focal deme can be written as

wp [ E ½Njjx �

¼ ð1� mÞf
d

fp
1
ð1� mÞf

d
s2

p

Nf 3
p

�
s2

d;p

Nf 2
p

1 O
1

N 2

� �
; ðA18Þ

with

fp ¼ ð1� mÞf0 1 mf1; ðA19Þ

where f0 ¼ ð1=N Þ
PN

y¼1 E ½ J0y� is the average mean fecundity of individuals in the focal deme (at distance 0) and
f1 ¼ ð1=N Þ

PN
y¼1 E ½ J1y� is the average mean fecundity of individuals breeding in a different deme (at distance 1). Such

average fecundities can conveniently be expressed as functions of the underlying average phenotypes of individuals,
which in turn are determined by their genotypes (e.g., Frank 1998; Rousset and Billiard 2000; Rousset 2003, 2004;
Roze and Rousset 2003).

The fitness function wp also involves the variance in the number of offspring of the FI entering in competition in the
focal deme that is given by

s2
d;p ¼ ð1� mÞmf

d
1 ð1� mÞ2s2

d
: ðA20Þ

Finally, we have the average variance s2
p of the number of juveniles entering in competition in the focal deme, which

includes juveniles from the focal deme and from the nd � 1 different demes. This variance can be written as

s2
p ¼mð1� mÞf0 1 ð1� mÞ2s2

0

1 ðnd � 1Þ m

nd � 1
1� m

nd � 1

� �
f1 1

m

nd � 1

� �2

s2
1

� �
; ðA21Þ

where s2
0[ 1

N

PN
y¼1 Var½ J0y� is the average variance in fecundity of individuals breeding in the focal deme and s2

1[
1
N

PN
y¼1 Var½ J1y� is the average variance in fecundity of individuals breeding in a different deme. These average

variances can also be expressed in the direct fitness manner as a function of the phenotypes of individuals affecting
them.

The mean number of offspring descending from the FI and reaching adulthood in a different deme can be
written as

wd[
Xnd

i 6¼j

E ½Nijx �

¼ mf
d

fd
1

mf
d
s2

d

Nf 3
d

�
s2

d;d

Nf 2
d

1 O
1

N 2

� �
; ðA22Þ

where

fd ¼ ð1� mÞf1 1 m
1

nd � 1

� �
f0 1

nd � 2

nd � 1

� �
f1

� �
ðA23Þ

is the expected average number of offspring entering in competition in a different deme, from which a proportion
m/(nd � 1) descend from the focal deme. The fitness function fd also depends on the variance in the number of
offspring of the FI coming into competition in any of the nd � 1 other demes by dispersal; this is
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s2
d;d ¼ ðnd � 1Þ m

nd � 1
1� m

nd � 1

� �
f

d
1

m

nd � 1

� �2

s2
d

� �
: ðA24Þ

Last, to compute the fitness function we need the average variance of the number of juveniles entering in competition
in a deme different than the focal deme, which is given by

s2
d ¼mð1� mÞf1 1 ð1� mÞ2s2

1

1 ðnd � 1Þ 1

nd � 1

m

nd � 1
1� m

nd � 1

� �
f0 1

m

nd � 1

� �2

s2
0

� ��

1
ðnd � 2Þ
ðnd � 1Þ

m

nd � 1
1� m

nd � 1

� �
f1 1

m

nd � 1

� �2

s2
1

� ��
: ðA25Þ

The total fitness of a focal individual is obtained by summing up Equations A18 and A22, whereby

w ¼ wp 1 wd; ðA26Þ

which can readily be checked to sum up to one (w¼ 1) when the population is monomorphic (i.e., all individuals have
the same phenotype and consequently bear the same mean and variance in fecundity). By taking the infinite-island
limit (nd / ‘) in the fitness functions wp and wd we obtain the equations presented in the main text.

Relatedness: In the infinite-island model of dispersal, the probability of identity between two homologous genes
sampled without replacement in the same deme after dispersal satisfies at steady state the recursion

FST ¼ ð1� mÞ2ðPrðCÞ1 ½1� PrðCÞ�FSTÞ; ðA27Þ

where (1 � m)2 is the probability that the two genes are of philopatric origin and Pr(C) is the probability that they
descend from the same parent. This probability of coalescence can be expanded as

PrðCÞ ¼
X

J

PrðC j J ÞPrð J Þ; ðA28Þ

so that conditional on J juveniles being produced in a deme, the probability of coalescence is the expectation of the
ratio of the total number of ways of sampling two genes from the same parent to the total number of ways of sampling
two genes,

PrðC j J Þ ¼ E
XN
y¼1

Jyð Jy � 1Þ
J ð J � 1Þ

" #
; ðA29Þ

where Jy is the number of juveniles produced by individual y and where the total fecundity in a deme satisfies J¼ J1 1 . . .
1 JN. Since relatedness is evaluated in the absence of selection, the population is assumed to be monomorphic
in phenotypic effects and all individuals have the same fecundity distribution. Consequently, the probability of
coalescence can be written as

PrðCÞ ¼ N 3 E
E ½ J 2

x j J � � E ½ Jx j J �
J ð J � 1Þ

� �
: ðA30Þ

Using Equation A9 to approximate this coalescence probability, defining f [ E[Jx] as the mean fecundity of an
individual and s2 [ Var[Jx] as the variance of the fecundity of an individual, we obtain after lengthy but straightforward
calculations

PrðCÞ ¼ 1

N
1 1

s2

f 2 �
1

f

� �
1 O

1

N 2

� �
; ðA31Þ

which is expressed as a function of the variance and the mean of the fecundity distribution only. When the fecundity
follows the Poisson-gamma distribution with variance s2 ¼ f 1 f 2/a, the coalescence probability takes the form

PrðCÞ ¼ 1 1 a

N a
; ðA32Þ

which is very close to the exact coalescence probability that can be calculated in this special case and is given by (1 1

a)/(1 1 Na).
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Poisson-distributed fecundity: We consider here the special but relevant case when the fecundity of each individual
follows a Poisson distribution and when each juvenile migrates independently from each other. With these two
assumptions, the random number of dispersing and philopatric juveniles entering into competition in a given deme
follows a Poisson distribution (Karlin and Taylor 1981; Grimmet and Stirzaker 2001). Substituting Equation A3
into Equation A1, we have

E ½Nijx � ¼ N
X

Ji

X
Jijx

Jijx

Ji
Prð Jijx j JiÞPrð JiÞ; ðA33Þ

where Pr(Ji) is a Poisson distribution with mean E[ Ji] and the conditional distribution Pr( Jijx j Ji) is binomial with
parameters Ji and E[ Jijx]/E[ Ji] (Karlin and McGregor 1968; Karlin and Taylor 1981; Grimmet and Stirzaker

2001). Hence,
P

Jijx
JijxPrð Jijx j JiÞ ¼ JiE ½ Jijx �=E ½ Ji � and the expected number of recruited offspring in deme i and

descending from individual x breeding in deme j reduces to

E ½Nijx � ¼ N
E ½ Jijx �
E ½ Ji �

; ðA34Þ

which depends only on the mean number of juveniles entering in competition and not on any other measure of
statistical dispersion. Under this assumption of Poisson-distributed fecundity, the direct fitness of a focal individual in
the infinite-island model of dispersal reduces to

w ¼ ð1� mÞf
d

ð1� mÞf0 1 mf1
1

mf
d

f1
; ðA35Þ

which is also equivalent to the fitness function obtained by assuming that each individual produces an infinite number
of juveniles (e.g., Gandon and Michalakis 1999; Roze and Rousset 2003; Rousset 2004). Similar arguments show
that the coalescence probability (equation A30) for the relatedness coefficients (equation A27) reduces to Pr(C)¼ 1/
N under a Poisson-distributed fecundity. Note that when the fecundity has a finite and small mean, demographic
stochasticity matters and one should take the demographic states of demes into account when evaluating the fitness
functions (e.g., Rousset and Ronce 2004).

Within-generation bet hedging under soft selection: Here we investigate the conditions under which an organism is
prepared to decrease its mean fecundity to reduce its variance in fecundity in the presence of regulation before
dispersal (soft selection). The setting is the same as the one investigated by Shpak (2005) and since competition
occurs in this case only between deme mates, the direct fitness function for this model is given by

w ¼ f
d

f0
1 1

s2
0

Nf 2
0

� �
� s2

d

Nf 2
0

: ðA36Þ

Using the means and variances of the two classes of actors given in Table 1, evaluating the selective pressure (Equation
2) at the phenotypic value of the resident allele (z

d
¼ zD

0 ¼ z1 ¼ 0) and taking into account only terms of leading order
[i.e., neglecting terms of order 1/N 2, 1/f 2, 1/(Nf ) and beyond], we find that the inclusive fitness effect becomes

S ¼ �C 1 1
s2

v

N

� �
1 D

s2
v

N
1

C

N
: ðA37Þ

Selection on the variance in fecundity now scales as 1/N, which is consistent with the result of Shpak (2005) while the
last term of the inclusive fitness effect is consistent with the soft selection models of Rousset (2004, p. 125). Note that
all kin selection terms have canceled out as is usually the case under regulation before dispersal (Wade 1985; Roze and
Rousset 2003).

Dispersal homeostasis: Here we develop a model of ‘‘dispersal homeostasis.’’ We consider the fate of a mutant
homeostatic allele, which, conditional on having produced a number J of juveniles, sends a fixed proportion of
juveniles to other demes (i.e., maternal control of dispersal). By contrast, conditional on J, the number of migrant
juveniles of the resident allele follows a binomial distribution as assumed in the previous sections. Accordingly, the
variance in the number of juveniles entering into competition in deme i and descending from an individual x
breeding in deme j and bearing a resident allele is given by Equation A16, while this variance for such an individual
bearing the mutant homeostatic allele becomes

Var½ Jijx � ¼ m2
ijVar½ Jjx � ðA38Þ

because dispersal is no longer a random variable.

376 L. Lehmann and F. Balloux



It now remains to evaluate the various variance components for the fitness functions (Equations 4 and 7). Applying
the same lines of reasoning as in the Selection section of this appendix, we find that the number of offspring of a FI
coming into competition in the focal deme can be written as

s2
d;p ¼ z

d
ð1� mÞ2s2 1 ð1� z

d
Þ½ð1� mÞmf 1 ð1� mÞ2s2�; ðA39Þ

where zd is the phenotype of the focal individual, equal to one if it expresses the homeostatic allele and zero otherwise.
The average variance of the number of juveniles entering into competition in the focal deme by dispersing is given by

s2
p ¼ zR

0 ð1� mÞ2s2 1 1� zR
0

� �
½ð1� mÞmf 1 ð1� mÞ2s2�1 ð1� z1Þmf ; ðA40Þ

where zR
0 is the average phenotype of individuals in the focal deme and z1 is the average phenotype of individuals from

different demes. We also need the variance in the number of offspring of the FI entering into competition in other
demes; this is

s2
d;d ¼ ð1� zdÞmf : ðA41Þ

Finally, the average variance in fecundity of individuals breeding in different demes is given by

s2
d ¼ z1ð1� mÞ2s2 1 ð1� z1Þ½ð1� ð1� mÞ2Þf 1 ð1� mÞ2s2�: ðA42Þ

Substituting these functionals into the direct fitness function (Equation 3) and assuming that the individuals in the
population are monomorphic for the mean and the variance in fecundity (given by f and s2) allows us to calculate
explicitly the selective pressure on the homeostatic allele (Equation 2). Evaluating this selective pressure at the
phenotypic value of the resident allele, which does not express dispersal homeostasis (z

d
¼ zD

0 ¼ z1 ¼ 0), we find that
the inclusive fitness is given by

S ¼ 1� ð1� mÞ2
fN

1 O
1

f 2

� �
1 O

1

N 2

� �
: ðA43Þ

The selective pressure on dispersal homeostasis increases monotonically with dispersal and decreases with deme size
and mean fecundity, a result that is in line with the work of Taylor and Sauer (1980), who showed that selection on
sex-ratio homeostasis in panmictic populations is proportional to the inverse of the total number fN of offspring born
in a group.
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