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Abstract: This paper derives an exact asymptotic expression for

Pxu{∃t≥0X(t)− µt ∈ U}, as u→∞,

where X(t) = (X1(t), . . . , Xd(t))
>, t ≥ 0 is a correlated d-dimensional Brownian motion starting at the point

xu = −αu with α ∈ Rd, µ ∈ Rd and U =
∏d
i=1[0,∞). The derived asymptotics depends on the solution of

an underlying multidimensional quadratic optimization problem with constraints, which leads in some cases to

dimension-reduction of the considered problem. Complementary, we study asymptotic distribution of the condi-

tional first passage time to U , which depends on the dimension-reduction phenomena.
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1. Introduction

Consider X(t)−µt, t ≥ 0, a correlated d-dimensional Brownian motion with drift, where X(t) = AB(t), A ∈ Rd×d

is a non-singular matrix, B(t) = (B1(t), . . . , Bd(t))
>, t ≥ 0 is a standard d-dimensional Brownian motion with

independent coordinates and µ = (µ1, . . . , µd)
>∈ Rd.

The probability

Px{∃t≥0X(t)− µt ∈ U}(1)

that starting at the point x ∈ Rd, the process X(t) − µt enters the set U ⊂ Rd in a finite time, is of interest

both for theory-oriented studies and for applied-mathematics problems as, e.g., heat and mass diffusion, photon

absorption or chemotaxis. Due to the complexity of (1), still only some fragmentary results focusing on the special

case of mutually independent coordinates (i.e., for A being the identity matrix) or on particular structures of U are

available. We refer to, e.g., [1] for the asymptotic analysis, as r := ‖x‖ → ∞, of (1) for A the identity matrix, some

compact U , and appropriately chosen drifts, see also [2, 3]. Somehow related problem for the exit time from a cone

for a (noncorrelated) multidimensional Brownian motion with drift was considered in [4] and references therein;

see also [5] for the case of U being a Weyl chamber.

This contribution is concerned with investigation of (1) for the model allowing correlation between the Brownian

components. More precisely, we investigate the asymptotics of probability that in infinite-time horizon, the process

X(t) − µt, t ≥ 0, starting at point xu := (−α1u, ...,−αdu)> with αi ∈ R, 1 ≤ i ≤ d, u > 0, enters the cone

U =
∏d
i=1[0,∞), that is

P (u) := Pxu{∃t≥0X(t)− µt ∈ U}, u→∞.(2)
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Our results allow for considering other sets in (2), as e.g., polyhedral cones {x ∈ Rd : Mx ≥ 0}, where M is a d×d

non-singular matrix. Indeed, by a linear transformation of M , we can reduce the problem of hitting the polyhedral

cone to (2), namely

Pxu
{
∃t≥0X(t)− µt ∈ {x ∈ Rd : Mx ≥ 0}

}
= Px,u

{
∃t≥0MX(t)−Mµt ∈

d∏
i=1

[0,∞)

}
,

with x,u = Mxu.

Since we are interested in the case that limu→∞ P (u) = 0 we shall assume that there exists some 1 ≤ i ≤ d such

that

αi > 0, µi > 0.(3)

Using that

P (u) = P0

{
∃t≥0

d⋂
i=1

{Xi(t)− µit > αiu}

}
this paper contributes also to extreme value problems of vector-valued stochastic processes.

Complementary, we investigate distributional properties of the passage time of X(t)− µt to U , for ‖xu‖ → ∞ as

u→∞, given that the multivariate process has ever entered the upper quadrant. Specifically, for

τu = inf{t ≥ 0 : X(t)− µt > αu}(4)

(X(0) = 0) we are interested in the approximate distribution of τu|τu <∞ as u→∞.

In the 1-dimensional setup it is well-known that for α, µ positive

P (u) = P
{

sup
t≥0

(B1(t)− µt) > αu

}
= e−2αµu,

where from this point on we write P := P0. Further, in view of [6] we have that

lim
u→∞

P
{
α−1/2µ3/2(τu − αu/µ)/

√
u ≤ s

∣∣∣τu <∞} = Φ(s), s ∈ R,

with Φ the distribution function of an N (0, 1) random variable. Normal or exponential approximations for 1-

dimensional Gaussian counterparts of the considered model in this contribution are discussed in [6–8].

In the case d ≥ 2, both the approximation of P (u) and the approximate distribution of τu|τu <∞ depend on the

solution of a related quadratic optimization problem. In particular, in the light of [9][Theorem 1], the logarithmic

asymptotics of (2) can be derived and takes the following form (hereafter ∼ means asymptotic equivalence as

u→∞)

− lnP (u) ∼ ĝ

2
u, ĝ = inf

t≥0
g(t),(5)

with

g(t) =
1

t
inf

v≥α+µt
v>Σ−1v, Σ = AA>.(6)

Clearly, (5) is of no use for the approximation of the conditional passage time τu|τu <∞ as u→∞.

Our main result presented in Theorem 3.1 shows that

P (u) ∼ CIHIu
1−m

2 e−
ĝ
2u,(7)
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where CI > 0, m ∈ N are known constants and HI is a multidimensional counterpart of the celebrated Pickands

constant that appears in the extreme value theory of Gaussian random fields; see e.g., [10–17]. In Theorem 3.3 we

derive approximation of the conditional passage time.

One of the findings of this paper is that the set of indexes {1, . . . , d} of the vector-process X can be partitioned

into three subsets I, J,K. The index set I determines m, ĝ and HI in the asymptotics (7), whereas both I and

K determine the constant CI . Moreover, the set J , whenever non-empty, contains indices that do not play any

role in our asymptotic consideration. Interestingly, the limit distribution of the conditional passage time derived

in Theorem 3.3 is Gaussian only if K = ∅.

Our investigation shows that for d ≥ 2, the problem (2) is surprisingly hard even for the seemingly simple case

of independent components, that is with A being the identity matrix. Besides, solving this particular case does

not reveal the essential ingredients that determine the asymptotics of P (u) in the general case where A is not the

identity matrix.

The strategy of the proof of the main result, given in Theorem 3.1, although in its roots based on the double sum

technique developed in 1-dimensional setting for extremes of Gaussian processes and fields (see, e.g. [10–12]), needed

new ideas that in several key steps of the argumentation significantly differ from methods used in 1-dimensional

case. In particular, one of difficulties is the lack of Slepian-type inequalities that could be applied in our vector-

valued setting. Notice also that the standard techniques utilized for proving the negligibility of the double-sum,

as e.g., in [12], do not work in the general d-dimensional vector-valued case. Other difficulty lies in analysis of the

multidimensional Pickands constants HI . Establishing its finiteness and positivity requires significant efforts. The

developed in this paper approach opens some possibilities for its application to asymptotic analysis of some related

functionals of vector-valued Gaussian processes.

In this contribution we present a full general picture and a complete solution of the problem at hand by developing

new techniques building up on asymptotic theory, convex optimization and probability theory. Additionally, we

analyze in details some special cases including the case of independent components, the homogeneous case when

αj = α and µj = µ for all j and the case with negatively associated components. Moreover, we discuss several

interesting special cases when d = 2.

We organise the paper as follows. The next section fixes the notation and presents some preliminary findings. The

main results with examples are presented in Section 3, with detailed proof relegated to Section 4. Detailed analysis

of the related optimization problem and some technical proofs are displayed in Appendix.

2. Preliminaries

All vectors here are d-dimensional column vectors written in bold letters with d ≥ 2. For instanceα = (α1, . . . , αd)
>,

with > the transpose sign. Operations with vectors are meant component-wise, so |x| = (|x1| , . . . , |xd|)> and

λx = xλ = (λx1, . . . , λxd)
> for any λ ∈ R,x ∈ Rd. We denote

0 = (0, . . . , 0)> ∈ Rd, 1 = (1, . . . , 1)> ∈ Rd.

For any non-empty subset T ⊂ R, denote the inner set of T by T o and its closure set by T . If I ⊂ {1, . . . , d},

then for a vector a ∈ Rd we denote by aI = (ai, i ∈ I) a sub-block vector of a. Similarly, if further J ⊂ {1, . . . , d},

for a matrix M = (mij)i,j∈{1,...,d} ∈ Rd×d we denote by MIJ= MI,J = (mij)i∈I,j∈J the sub-block matrix of M
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determined by I and J . Further, write M−1
II = (MII)

−1 for the inverse matrix of MII whenever it exists. The next

lemma stated in [18] (see also [19]) is important for several definitions in the sequel.

Lemma 2.1. Let M ∈ Rd×d, d ≥ 2 be a positive definite matrix. If b ∈ Rd \ (−∞, 0]d, then the quadratic

programming problem

PM (b) : minimise x>M−1x under the linear constraint x ≥ b

has a unique solution b̃ and there exists a unique non-empty index set I ⊆ {1, . . . , d} so that

b̃I = bI 6= 0I , M−1
II bI > 0I ,(8)

and if Ic = {1, . . . , d} \ I 6= ∅, then b̃Ic = −((M−1)IcIc)
−1(M−1)IcIbI = MIcIM

−1
II bI ≥ bIc .(9)

Furthermore,

min
x≥b

x>M−1x = b̃
>
M−1b̃ = b>I M

−1
II bI > 0,(10)

x>M−1b̃ = x>I M
−1
II b̃I = x>I M

−1
II bI , x ∈ Rd.(11)

If b = b1, b ∈ (0,∞), then 2 ≤ ]{i : i ∈ I} ≤ d.

Hereafter, the unique index set I that defines the solution of the quadratic programming problems in question will

be referred to as the essential index set.

For any fixed t, let I(t) ⊆ {1, . . . , d} be the essential index set of the quadratic programming problem PΣ(b(t))

where

b(t) = α+ tµ, t ≥ 0

and set

I(t)c = {1, . . . , d} \ I(t).

Next, we analyze the function g defined in (6). Let us briefly mention the following standard notation for two

given functions f(·) and h(·). We write f(x) = h(x)(1 + o(1)) or simply f(x) ∼ h(x), if limx→a f(x)/h(x) = 1

(a ∈ R ∪ {∞}). Further, write f(x) = o(h(x)), if limx→a f(x)/h(x) = 0.

Lemma 2.2. We have g ∈ C1(0,∞). Furthermore, g is convex and it achieves its unique minimum at

t0 =

√
α>I Σ−1

II αI

µ>I Σ−1
II µI

> 0,(12)

which is given by

g(t0) = inf
t>0

1

t
inf

v≥α+µt
v>Σ−1v =

1

t0
b>I Σ−1

II bI ,(13)

with

b = b(t0) = α+ t0µ

and I = I(t0) being the essential index set corresponding to PΣ(b). Moreover,

g(t0 ± t) = g(t0) +
g
′′
(t0±)

2
t2(1 + o(1)), t ↓ 0.(14)
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The proof of Lemma 2.2 is displayed in the Appendix.

Hereafter we shall use the notation b = b(t0), and I = I(t0) for the essential index set of the quadratic programming

problem PΣ(b). Furthermore, let b̃ be the unique solution of PΣ(b). If Ic = {1, . . . , d} \ I 6= ∅, we define the weakly

essential and the unessential index sets by

K = {j ∈ Ic : b̃j = ΣjIΣ
−1
II bI = bj}, and J = {j ∈ Ic : b̃j = ΣjIΣ

−1
II bI > bj},(15)

respectively. Set for t > 0

gI(t) =
1

t
α>I Σ−1

II αI + 2α>I Σ−1
II µI + µ>I Σ−1

II µIt.

Clearly, by Lemma 2.1 we have g(t0) = gI(t0). Furthermore, we have

gI(t0 + t) = gI(t0) +
g
′′

I (t0)

2
t2(1 + o(1)), t→ 0,(16)

with

g
′′

I (t0) = 2t−3
0 (α>I Σ−1

II αI).

For notational simplicity we shall set below

ĝ = inf
t≥0

g(t) = g(t0) = gI(t0), g̃ = g
′′

I (t0).(17)

3. Main Results

Let for the non-empty index set K defined in (15) Y K
d∼ N (0K , DKK), i.e., Y K is a normally distributed random

vector with mean vector 0K and covariance matrix DKK given by

DKK = ΣKK − ΣKIΣ
−1
II ΣIK .

We write m = ]I := ]{i : i ∈ I}≥ 1 for the number of elements of the index set I. Further define the following

constant

HI = lim
T→∞

1

T
HI(T ), HI(T ) =

∫
Rm

e
1
t0
x>I Σ−1

II bIP
{
∃t∈[0,T ](X(t)− µt)I > xI

}
dxI ,(18)

with respect to the essential index set I and set

CI =
1√

(2πt0)m |ΣII |

∫
R
e−g̃

x2

4 ψ(x) dx,

where, for x ∈ R

ψ(x) =

 1, if K = ∅

P
{
Y K > 1√

t0
(µK − ΣKIΣ

−1
II µI)x

}
, if K 6= ∅.

(19)

HI ’s are multidimensional counterparts of the celebrated Pickands constants, defined in the 1-dimensional setup

as

lim
T→∞

1

T

∫
R
exP

{
∃t∈[0,T ](

√
2WH(t)− t2H) > x

}
dx,

where WH is a fractional Brownian motion with Hurst parameter H ∈ (0, 1]; see also [20] for the analog of HI
when ΣII = Id is the identity matrix. We refer to [10–13, 15] and references therein for properties and extensions

of the notion of classical Pickands constants.

The next theorem constitutes our principal result. Its proof is demonstrated in Section 4.
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Theorem 3.1. Let α,µ satisfy (3) and let ĝ, g̃ be given by (17). We have as u→∞

P (u) ∼ CIHIu
1−m

2 e−
ĝ
2u,(20)

where

0 <
tm−1
0 µ>I Σ−1

II bI

16
∏
i∈I(Σ

−1
II bI)i

≤ HI <∞.(21)

Remark 3.2. In the case that K = ∅, direct calculations show that (20) holds with

CI =
21−m/2π(1−m)/2√

tm0 g̃ |ΣII |
> 0.

Using the same technique as in the proof of Theorem 3.1, we can derive the approximation of the conditional

passage time τu|τu <∞.

Theorem 3.3. Let τu be defined in (4) and ψ be defined in (19). Under the assumptions of Theorem 3.1 for any

s ∈ R we have

lim
u→∞

P

{
τu − t0u√

2u/g̃
≤ s
∣∣∣τu <∞} =

∫ s
−∞ e−

x2

2 ψ(
√

2/g̃x) dx∫∞
−∞ e−

x2

2 ψ(
√

2/g̃x) dx
.

Remark 3.4. If K = ∅, then by (19) τu−t0u√
2u/g̃

∣∣∣τu < ∞ is asymptotically, as u → ∞, approximated by a standard

normal random variable.

In the rest of this section we discuss some interesting special cases and examples.

3.1. Independent components. Let Σ be the d× d identity matrix. We focus on the case where α > 0 and

µi > 0, 1 ≤ i ≤ n, µj ≤ 0, n+ 1 ≤ j ≤ d

is valid for some positive integer n < d. The result for the easier case n = d will also be included. Under the above

assumptions

g(t) =
1

t
inf

v≥α+tµ
v>v, t > 0.

Before we state the result we need to introduce some notation. By rearranging indexes we can have the following

order of constants

(22)
|µn+1|
αn+1

≤ |µn+2|
αn+2

≤ · · · ≤ |µd|
αd

.

Next, define d = k1 > · · · > kl > kl+1 = n for which

|µd|
αd

=
|µj |
αj

; k2 < j ≤ k1 = d

...
...

|µkl |
αkl

=
|µj |
αj

; n+ 1 ≤ j ≤ kl

and

|µkl |
αkl

<

∣∣µkl−1

∣∣
αkl−1

< · · · < |µk1
|

αk1
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implying that 0 = t
′

0 < t
′

1 < . . . < t
′

l < t
′

l+1 =∞, where t
′

i =
αki
|µki |

, i = 1, . . . , l are consecutive change of dimension

instants. Precisely, for the quadratic programming problem in question, constancy segments are Ui = [t
′

i−1, t
′

i), i =

1, . . . , l + 1, and for t ∈ Ui we have I(t) = Ii = {1, . . . , ki} since

αIi + tµIi > 0Ii , αIci + tµIci ≤ 0Ici , t ∈ Ui.

Define for i = 1, . . . , l + 1 the following auxiliary functions

gIi(t) =
1

t
α>IiαIi + 2α>IiµIi + tµ>IiµIi , t > 0

and remark that g(t) = gIi(t) for t ∈ Ui. Clearly, gIi(t), t > 0 achieves its global minimum at

t0(i) =

√
α>IiαIi

µ>IiµIi
> 0.

Set below

p : = min{i = 1, . . . , l + 1 : t
′

i−1 ≤ t0(i) < t
′

i}, t0 = t0(p) =

√√√√α>IpαIp

µ>IpµIp
> 0.

With the same arguments as at the end of the proof of Lemma 2.2 it follows that g achieves its minimum at t0.

Then with the notation of Theorem 3.1 we have

gI(t0) =
1

t0

kp∑
j=1

(αj + µjt0)2, g
′′

I (t0) = 2t−3
0

kp∑
j=1

α2
j , I = Ip, m = kp.

Moreover, if t
′

p−1 < t0(p) < t
′

p, then K = ∅, and if t
′

p−1 = t0(p), then K = {kp + 1, . . . , kp−1}. Set

HIp = lim
T→∞

1

T

∫
Rkp

e
∑kp
j=1(αjt

−1
0 +µj)xjP

{
∃t∈[0,T ](B(t)− µt)Ip > xIp

}
dxIp .

We define Ψ(x) = 1−Φ(x), x ∈ R with Φ the distribution function of an N (0, 1) random variable. Below we shall

put
∏
i∈B(· · · ) = 1 for B empty.

We reformulate next our main findings for this particular case.

Corollary 3.5. (i). If n < d, then as u→∞

P {∃t≥0B(t)− µt > αu} ∼
HIp√

(2πt0)kp
u

1−kp
2 e−

1
2t0

∑kp
j=1(αj+µjt0)2u

∫
R
e
−
∑kp
j=1

α2
j

2t30
x2 ∏

i∈K
Ψ

(
µi√
t0
x

)
dx,(23)

and for any s ∈ R

lim
u→∞

P

 τu − t0u√
t30(
∑kp
j=1 α

2
j )
−1u

≤ s
∣∣∣τu <∞

 =

∫ s
−∞ e−

x2

2

∏
i∈K Ψ

(
µit0(

∑kp
j=1 α

2
j )
−1/2x

)
dx∫∞

−∞ e−
x2

2

∏
i∈K Ψ

(
µit0(

∑kp
j=1 α

2
j )
−1/2x

)
dx
.(24)

(ii). If n = d, then (23) and (24) hold with p replaced by l + 1 and K replaced by ∅.

3.2. Homogeneous α and µ. Suppose that α = 1α, α > 0 and µ = 1µ, µ > 0. Then for any t > 0

g(t) =
1

t
inf

v≥α+µt
v>Σ−1v =

(α+ µt)2

t
D, D := inf

v≥1
v>Σ−1v.

Let I be the essential index set of the quadratic programming problem PΣ(1) with m = ]{i : i ∈ I}. If Ic is

non-empty, we set

K = {j ∈ Ic : ΣjIΣ
−1
II 1I = 1j}.

Obviously, I(t) = I, t ≥ 0. Further, gI(t) = g(t), t > 0 and

t0 = αµ−1, gI(t0) = 4Dαµ, g
′′

I (t0) = 2Dµ3α−1, b = 2α1.
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Corollary 3.6. We have, as u→∞,

P (u) ∼ 2−]Kα(1−m)/2µ(m−3)/2√
(2π)m−1D |ΣII |

HIu
1−m

2 e−2Dαµu,

and for any s ∈ R

lim
u→∞

P

{
τu − αµ−1u√
αD−1µ−3u

≤ s
∣∣∣τu <∞} = Φ(s).

3.3. Negatively associated components. In this subsection we suppose that

Σ−1α > 0, Σ−1µ > 0.

A special case of interest is when Σ−1 has all elements positive, α > 0 and µ > 0. Recall that if the covariance

matrix Σ of Z is a correlation matrix, then the statement that Σ−1 has all elements positive means that it is an

M -matrix, i.e., Σ = Id − B, where B ≥ 0 and Id is the identity matrix. For general covariance matrix Σ, with

nonpositive elements out of the diagonal, transformation diag(σ−1
jj )Σdiag(σ−1

jj ) makes it an M -matrix. Notice that

if a Gaussian vector Z has such a covariance matrix, then Z is negatively associated (for definition and properties

see [21]).

In this case I = {1, . . . , d}, K = J = ∅, m = d and

gI(t) =
1

t
α>Σ−1α+ 2α>Σ−1µ+ tµ>Σ−1µ.

Consequently,

t0 =

√
α>Σ−1α

µ>Σ−1µ
> 0, gI(t0) =

1

t0
b>Σ−1b, g

′′

I (t0) =
2α>Σ−1α

t30
,

where b = α+ t0µ. Hence we arrive at the following result.

Corollary 3.7. As u→∞

P (u) ∼
(2π)(1−d)/2H{1,...,d}√
td−3
0 (α>Σ−1α) |Σ|

u
1−d

2 e−
b>Σ−1b

2t0
u,

and for any s ∈ R

lim
u→∞

P

{
τu − t0u√

t30(α>Σ−1α)−1u
≤ s
∣∣∣τu <∞} = Φ(s).

3.4. Two-dimensional case. In this section we analyze some interesting scenarios of the two-dimensional case,

in which we can observe how different entries of the covariance matrix yield different scenarios of asymptotic

behaviour. Proofs will be postponed to Section 5.3, after presenting required results on a quadratic programming

problem. For simplicity, we shall assume that

Σ =

 1 ρ

ρ 1

 , ρ ∈ (−1, 1)

and µi = 1, i = 1, 2, α1 > α2 > 0.

We present next the asymptotics of (2) for the 2-dimensional model.
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Corollary 3.8. (i). If −1 < ρ < α1+α2

2α1
, then as u→∞

P (u) ∼
H{1,2}√

t20π(1− ρ2)g̃
u−

1
2 e−

ĝ
2u,

with

t0 =

√
α2

1 + α2
2 − 2α1α2ρ

2(1− ρ)
> 0, ĝ =

2

1 + ρ
(α1 + α2 + 2t0), g̃ = 2t−3

0

α2
1 + α2

2 − 2α1α2ρ

1− ρ2
,

H{1,2} = lim
T→∞

1

T

∫
R2

e

(
α1−ρα2
(1−ρ2)t0

+ 1
1+ρ

)
x1+

(
α2−ρα1
(1−ρ2)t0

+ 1
1+ρ

)
x2P

{
∃t∈[0,T ](X(t)− t(1, 1)T ) > x

}
dx.

Furthermore, for any s ∈ R

lim
u→∞

P

{
τu − t0u√

2u/g̃
≤ s
∣∣∣τu <∞} = Φ(s).

(ii). If ρ = α1+α2

2α1
, then as u→∞

P (u) ∼ 1√
2πα1

∫
R
e−

1
2α1

x2

Ψ

(
1− ρ
√
α1

x

)
dxe−2α1u,

and for any s ∈ R

lim
u→∞

P
{
τu − α1u√

α1u
≤ s
∣∣∣τu <∞} =

∫ s
−∞ e−

x2

2 Ψ ((1− ρ)x) dx∫∞
−∞ e−

x2

2 Ψ ((1− ρ)x) dx
.

(iii). If α1+α2

2α1
< ρ < 1, then as u→∞

P (u) ∼ e−2α1u,

and for any s ∈ R

lim
u→∞

P
{
α
−1/2
1 (τu − α1u)/

√
u ≤ s

∣∣∣τu <∞} = Φ(s).

Remark 3.9. According to our findings, in both (ii) and (iii) above we should also have the following constant

H{1} = lim
T→∞

1

T

∫
R
e2xP

{
∃t∈[0,T ](X(t)− t)1 > x

}
dx.

However, a simple comparison with the known Pickands constants for the standard Brownian motion, i.e.,

lim
T→∞

1

T

∫
R
exP

{
sup
t∈[0,T ]

(
√

2B1(t)− t) > x

}
dx = 1

yields H{1} = 1.

We conclude this section with some observations.

It is possible to have similar asymptotics of P (u) for d ≥ 2 as in the 1-dimensional case. For instance in the above

the 2-dimensional setup, for ρ ∈ ((α1 + α2)/(2α1), 1) we have

P
{
∃t≥0 ∩2

i=1 {(Xi(t)− t) > αiu}
}
∼ CIP {∃t≥0(X1(t)− t) > α1u} , u→∞,(25)

with CI = 1. Consequently, only the first component of X(t), t ≥ 0 is controlling the asymptotics of P (u). This

case will be referred to as the loss of dimensions phenomena.

There are other cases of loss of dimensions phenomena, where some components other than those with indexes in

I still play a role in the asymptotics of P (u), but only up to some constants. For instance, referring again to the
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2-dimensional case presented in Corollary 3.8 we have for ρ = (α1 +α2)/(2α1) that (25) holds, with CI taking the

information of the second component and given by

CI =
1√

2πα1

∫
R
e−

1
2α1

x2

Ψ

(
1− ρ
√
α1

x

)
dx.

There are several technical issues related to the loss of dimensions as it will be explained in our proofs below.

4. Proofs of Main Results

In this section we first present the proof of Theorem 3.1. In order to convey the main ideas and to reduce complexity,

we shall divide the proof into several steps and then we complete the proof by putting all the arguments together.

By the self-similarity of Brownian motion, for any u positive we have

P (u) = P {∃t≥0 X(t)− µt > αu} = P
{
∃t≥0 X(t) >

√
u(α+ µt)

}
.

We have thus the following sandwich bounds

p(u) ≤ P (u) ≤ p(u) + r(u),(26)

where

p(u) := P
{
∃t∈4uX(t) >

√
u(α+ µt)

}
, r(u) := P

{
∃t∈4̃uX(t) >

√
u(α+ µt)

}
,

with (recall the definition of t0 in (12))

4u =

[
t0 −

ln(u)√
u
, t0 +

ln(u)√
u

]
, 4̃u =

[
0, t0 −

ln(u)√
u

]
∪
[
t0 +

ln(u)√
u
,∞
)
.

4.1. Analysis of r(u). This step is concerned with sharp upper bounds for r(u) when u is large.

Lemma 4.1. For all large u we have

P
{
∃
t∈[t0+

ln(u)√
u
,∞)
X(t) >

√
u(α+ µt)

}
≤ Ce

−u2 gI(t0)−
(
g
′′

(t0+)
2 −ε

)
(ln(u))2

,(27)

and

P
{
∃
t∈[0,t0− ln(u)√

u
]
X(t) >

√
u(α+ µt)

}
≤ Ce

−u2 gI(t0)−
(
g
′′

(t0−)
2 −ε

)
(ln(u))2

(28)

are valid for some constant C > 0 and some sufficiently small ε > 0 which do not depend on u.

Proof: We only present the proof of (27) since the proof of (28) follows with similar arguments. First note that

for any D ⊂ R+ and any u positive

P
{
∃t∈DX(t) >

√
u(α+ µt)

}
≤ P

{
∃t∈D(X(t))I(t) >

√
u(α+ µt)I(t)

}
≤ P

{
∃t∈D(Σ−1

I(t)I(t)(α+ µt)I(t))
>(X(t))I(t) >

√
u(Σ−1

I(t)I(t)(α+ µt)I(t))
>(α+ µt)I(t)

}
= P

{
∃t∈DYI(t)(t) >

√
u
}
,

where we used the fact that Σ−1
I(t)I(t)(α+ µt)I(t) > 0I(t) for all t ≥ 0, and

YI(t)(t) =
(Σ−1

I(t)I(t)(α+ µt)I(t))
>(X(t))I(t)

(α+ µt)>I(t)Σ
−1
I(t)I(t)(α+ µt)I(t)

, t ≥ 0.
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By the property of Brownian motion, we have almost surely

lim
t→∞

YI(t)(t) = 0

inplying that YI(t) has bounded sample paths on [a,∞) for any a > 0. Since further

Var
(
YI(t)(t)

)
=

1

g(t)
, t ≥ 0

by the Borell-TIS inequality (see e.g., [22–25]) for any small θ > 0

P
{
∃t∈[t0+θ,∞)X(t) >

√
u(α+ µt)

}
≤ P

{
∃t∈[t0+θ,∞)YI(t)(t) >

√
u
}

≤ e−
(
√
u−C0)2

2 inft∈[t0+θ,∞) g(t)(29)

holds for all u such that

√
u > C0 := E

{
sup

t∈[t0+θ,∞)

YI(t)(t)

}
.

It follows from Lemma 5.4 that if θ> 0 is chosen sufficiently small, then for some I+

g(t) =
1

t
α>I+Σ−1

I+I+αI+ + 2α>I+Σ−1
I+I+µI+ + µ>I+Σ−1

I+I+µI+t

for all t ∈ (t0, t0 + θ). Furthermore,

E
{

(YI+(t)− YI+(s))2
}
≤ C1 |t− s|

holds for all s, t ∈ [t0 + ln(u)√
u
, t0 + θ], with some positive constant C1. Thus, it follows from Piterbarg’s inequality

in [26][Lemma 5.1] (see also [12][Theorem 8.1] and [27][Theorem 3]) that

P
{
∃
t∈[t0+

ln(u)√
u
,t0+θ]

X(t) >
√
u(α+ µt)

}
≤ P

{
∃
t∈[t0+

ln(u)√
u
,t0+θ]

YI+(t) >
√
u

}
≤ C2ue

−u2 inf
t∈[t0+

ln(u)√
u
,t0+θ]

g(t)

(30)

holds for all u large, with some positive constant C2 not depending on u. Moreover, for a small chosen θ > 0, there

exists some ε > 0 such that

inf
t∈[t0+

ln(u)√
u
,t0+θ]

g(t) ≥ g(t0) +

(
g
′′
(t0+)

2
− ε

)
(ln(u))2

u
(31)

is valid for all u large with

g
′′
(t0+) = 2t−3

0 (α>I+Σ−1
I+I+αI+) > 0.

Consequently, the claim in (27) follows by (29), (30), (31) and the fact that

g(t0) = gI(t0) < inf
t∈[t0+θ,∞)

g(t).

Hence the proof is complete. �
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4.2. Analysis of p(u). We investigate the asymptotics of p(u) as u→∞. Denote, for any fixed T > 0 and u > 0

4j;u = 4j;u(T ) = [t0 + jTu−1, t0 + (j + 1)Tu−1], −Nu ≤ j ≤ Nu,

where Nu = bT−1 ln(u)
√
uc (we denote by b·c the ceiling function). By Bonferroni’s inequality we have

p1(u) ≥ p(u) ≥ p2(u)−Π(u),(32)

where

p1(u) =

Nu∑
j=−Nu−1

pj;u, p2(u) =

Nu−1∑
j=−Nu

pj;u, Π(u) =
∑

−Nu≤j<l≤Nu

pi,j;u,

with

pj;u = P
{
∃t∈∆j;uX(t) >

√
u(α+ tµ)

}
and

pi,j;u = P
{
∃t∈4i;uX(t) >

√
u(α+ µt), ∃t∈4j;uX(t) >

√
u(α+ µt)

}
.

Analysis of the single sum. We shall focus on the asymptotics of p1(u), which will be easily seen to be asymptotically

equivalent to p2(u) as u→∞.

We first present a lemma concerning the finiteness of HI(T ) defined in (18), the constant that will appear in the

asymptotics of p1(u).

Lemma 4.2. For any T > 0 we have that HI(T ) <∞.

Proof: The claim follows if we can show that for any aI > 0I and any T > 0 we have∫
Rm

ex
>
I aIP

{
∃t∈[0,T ](X(t)− µt)I > xI

}
dxI <∞.(33)

Clearly, it is sufficient to prove that∫
|xI |>L1I

ex
>
I aIP

{
∃t∈[0,T ](X(t)− µt)I > xI

}
dxI <∞

holds for some large L. Obviously, the above integral is the sum of a finite number of integrals with xI restricted

to certain quadrants. Thus, without loss of generality, we may consider only the integral over {xI1 > L1I1 ,xI2 <

−L1I2} with I1 ∪ I2 = I. By Borell-TIS inequality

P
{
∃t∈[0,T ](X(t)− µt)I > xI

}
≤ P

{
∃t∈[0,T ](X(t)− µt)I1 > xI1

}
≤ P

{
∃t∈[0,T ]Σi∈I1(Xi(t)− µit) ≥ Σi∈I1xi

}
≤ exp

(
−C1(

∑
i∈I1

xi − C2)2

)

holds for all L large enough, with some positive constants C1, C2 which may depend on T,µ. Consequently, we may

further write ∫
{xI1>L1I1 ,xI2≤−L1I2}

ex
>
I aIP

{
∃t∈[0,T ](X(t)− µt)I > xI

}
dxI

≤
∫
xI1>L1I1

ex
>
I1
aI1 exp

(
−C1(

∑
i∈I1

xi − C2)2

)
dxI1

∫
xI2<−L1I2

ex
>
I2
aI2 dxI2 <∞

establishing thus the claim. �
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Lemma 4.3. We have as u→∞

p1(u) ∼ p2(u) ∼ 1√
(2πt0)m|ΣII |

HI(T )

T
u

1−m
2 e−

u
2 gI(t0)

∫
R
e−

g
′′
I (t0)x2

4 ψ(x) dx,(34)

where ψ(x) is given in (19).

Proof: By the independence of the increments property and the self-similarity of the Brownian motion, we have

Bi(tu
−1 + cj;u)

d
=
√
cj;uNi +

1√
u
Bi(t), t ∈ [0, T ], i = 1, . . . , d,(35)

with cj;u = cj;u(T ) = t0 + jT/u, and N = (N1, . . . , Nd) with independent N (0, 1) components, being further

independent of B. Denote Zj;u =
√
cj;uAN with covariance matrix Σj;u = cj;uΣ and set

bj;u = bj;u(T ) = b(t0 +
jT

u
) = b+

jT

u
µ.

Using (35) we obtain

pj;u = P
{
∃
t∈[t0+ jT

u ,t0+
(j+1)T
u ]

X(t0 +
jT

u
) +X(t)−X(t0 +

jT

u
) >
√
u(α+ tµ)

}
= P

{
∃s∈[0,Tu ]

√
cj;uAN +X(s) >

√
u(α+ (s+ t0 +

jT

u
)µ)

}
= P

{
∃t∈[0,T ]

√
cj;uAN +

1√
u

(X(t)− tµ) >
√
u(b+

jT

u
µ)

}
= P

{
∃t∈[0,T ]Zj;u +

1√
u

(X(t)− tµ) >
√
ubj;u

}
.

Since further

(Zj;u)I
d∼ N (0I , (Σj;u)II)

(Zj;u)Ic | ((Zj;u)I = wI)
d∼ N (ΣIc,IΣ

−1
II wI , (CjT,u)Ic),

with (CjT,u)Ic = cj;u(ΣIc,Ic − ΣIc,IΣ
−1
II ΣI,Ic), we have

pj;u =

∫
Rm

φ(Σj;u)II (wI)P

∃t∈[0,T ]

1√
u

(X(t)− µt)I >
√
u(bj;u)I −wI

(Zj;u)Ic + 1√
u

(X(t)− µt)Ic >
√
u(bj;u)Ic

∣∣∣((Zj;u)I = wI)

 dwI ,

where

φ(Σj;u)II (wI) =
1√

(2π)m |(Σj;u)II |
exp

(
−1

2
w>I (Σj;u)−1

II wI

)
.

Using a change of variable wI =
√
u(bj;u)I − xI/

√
u we obtain

pj;u =
u−m/2√

(2π)m |(Σj;u)II |

∫
Rm

exp

(
−1

2
(
√
u(bj;u)I − xI/

√
u)>(Σj;u)−1

II (
√
u(bj;u)I − xI/

√
u)

)

×P

∃t∈[0,T ]

(X(t)− µt)I > xI
√
cj;uY Ic + ΣIc,IΣ

−1
II (
√
u(bj;u)I − xI/

√
u) + 1√

u
(X(t)− µt)Ic >

√
u(bj;u)Ic

 dxI ,

where

Y Ic
d∼ N (0Ic , DIcIc), DIcIc = ΣIcIc − ΣIcIΣ

−1
II ΣIIc .

Next, we work out the exponent under the above integral

(
√
u(bj;u)I − xI/

√
u)>(Σj;u)−1

II (
√
u(bj;u)I − xI/

√
u)
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= u
1

cj;u
(bj;u)>I Σ−1

II (bj;u)I − 2
1

cj;u
x>I Σ−1

II (bj;u)I +
1

ucj;u
x>I Σ−1

II xI

= ugI(t0 +
jT

u
)− 2

1

cj;u
x>I Σ−1

II (bj;u)I +
1

ucj;u
x>I Σ−1

II xI .

Note that

√
u(bj;u)Ic =

√
ubIc + µIc

jT√
u
,

√
uΣIc,IΣ

−1
II (bj;u)I =

√
uΣIc,IΣ

−1
II bI +

jT√
u

ΣIc,IΣ
−1
II µI .

Furthermore, denote

ZK(t,xI) = (X(t)− tµ)K − ΣKIΣ
−1
II xI ,

ZJ(t,xI) = (X(t)− tµ)J − ΣJIΣ
−1
II xI .

For any u positive we have{√
cj;uYIc + ΣIc,IΣ

−1
II (
√
u(bj;u)I −

xI√
u

) +
1√
u

(X(t)− tµ)Ic >
√
u(bj;u)Ic

}
=


√
cj;uYK + 1√

u
ZK(t,xI) >

jT√
u

(µK − ΣKIΣ
−1
II µI)

√
cj;uYJ + 1√

u
ZJ(t,xI) >

√
u(bJ − ΣJIΣ

−1
II bI + (µJ − ΣJIΣ

−1
II µI)

jT
u )

 ,

where we used bK − ΣKIΣ
−1
II bI = 0K . Consequently, for the single sum we have

p1(u) =
u−m/2√

(2π)m |ΣII |

∑
−Nu−1≤j≤Nu

1

c
m/2
j;u

exp

(
−1

2
ugI(t0 +

jT

u
)

)∫
Rm

fj;u(T,xI)Pj;u(T,xI) dxI

=:
1

T

1√
(2π)m |ΣII |

u(1−m)/2e−
ugI (t0)

2 RT (u),(36)

where

fj;u(T,xI) = exp

(
1

cj;u
x>I Σ−1

II (bj;u)I −
1

2ucj;u
x>I Σ−1

II xI

)
,(37)

Pj;u(T,xI) = P

∃t∈[0,T ]

(X(t)− tµ)I > xI
√
cj;uYK + 1√

u
ZK(t,xI) >

jT√
u

(µK − ΣKIΣ
−1
II µI)

√
cj;uYJ + 1√

u
ZJ(t,xI) >

√
u(bJ − ΣJIΣ

−1
II bI + (µJ − ΣJIΣ

−1
II µI)

jT
u )

 .

and

RT (u) = exp

(
ugI(t0)

2

)
T√
u

∑
−Nu−1≤j≤Nu

1

c
m/2
j;u

exp

(
−1

2
ugI(t0 +

jT

u
)

)

×
∫
Rm

fj;u(T,xI)Pj;u(T,xI) dxI .(38)

We shall prove in Section 5.4 that

lim
u→∞

RT (u) = t
−m/2
0 HI(T )

∫ ∞
−∞

e−
g
′′
I (t0)x2

4 ψ(x) dx(39)

implying thus (34) (recall that HI(T ) <∞ by Lemma 4.2). �

We shall conclude this section with a result which is needed to prove the sub-additivity property of H(T ), T > 0.

In the following for any fixed S ∈ R, T > 0 we set

4u(S, T ) =
[
t0 + Su−1, t0 + (S + T )u−1

]
.
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Note in passing that if S = T , then 4u(S, T ) = 41;u.

Lemma 4.4. For any fixed S ∈ R, T > 0, we have as u→∞

P
{
∃t∈4u(S,T )(X(t))I >

√
u(αI + tµI)

}
∼ P {Y K > 0K}√

(2πt0)m|ΣII |
HI(T )u−

m
2 e−

u
2 gI(t0).(40)

Proof: As in (36) for all u > 0 we have

P
{
∃t∈4u(S,T )(X(t))I >

√
u(αI + tµI)

}
=

u−m/2√
(2π)m |ΣII |

1

(cu(S))m/2
exp

(
−1

2
ugI(t0 +

S

u
)

)∫
Rm

fu(S,xI)Pu(S, T,xI) dxI ,

where cu(S) = t0 + S/u, and with bu(S) = b+ µS/u

fu(S,xI) = exp

(
1

cu(S)
x>I Σ−1

II (bu(S))I −
1

2ucu(S)
x>I Σ−1

II xI

)
,

Pu(S, T,xI) = P

∃t∈[0,T ]

(X(t)− tµ)I > xI√
cu(S)YK + 1√

u
ZK(t,xI) >

S√
u

(µK − ΣKIΣ
−1
II µI)√

cu(S)YJ + 1√
u
ZJ(t,xI) >

√
u(bJ − ΣJIΣ

−1
II bI + (µJ − ΣJIΣ

−1
II µI)

S
u )

 .

We adopt the same notation introduced in (66) and (67). Next, we have the following upper bounds:

fu(S,xI) ≤ e
x>I (Σ

−1
II
bI+ε

xI
I

)

t0+ε(xI ) , Pu(S, T,xI) ≤ P
{
∃t∈[0,T ](X(t)− tµ)I > xI

}
.

Furthermore, by (33) ∫
Rm

e
x>I (Σ

−1
II
bI+ε

xI
I

)

t0+ε(xI ) P
{
∃t∈[0,T ](X(t)− tµ)I > xI

}
dxI <∞.

Consequently, the claim follows from the dominated convergence theorem by letting u→∞, and thus the proof is

complete. �

Finiteness and positivity of HI . Recall that I with m = ]I elements is the essential index set of the quadratic

programming problem PΣ(b) where

b = b(t0) = α+ µt0.

We first prove the sub-additivity of HI(T ), T > 0.

Lemma 4.5. For any S, T positive we have HI(S + T ) ≤ HI(S) +HI(T ). Moreover,

HI = inf
T>0

1

T
HI(T ) <∞.

Proof: Note that

P
{
∃t∈[t0,t0+(S+T )u−1](X(t))I >

√
u(αI + tµI)

}
≤ P

{
∃t∈[t0,t0+Su−1](X(t))I >

√
u(αI + tµI)

}
+P
{
∃t∈[t0+Su−1,t0+(S+T )u−1](X(t))I >

√
u(αI + tµI)

}
.

Using the result of Lemma 4.4 the proof of the sub-additivity follows. The second claim follows directly from

Fekete’s lemma. This completes the proof. �

Lemma 4.6. For any t > 0∫
Rm

e
x>I Σ

−1
II
bI

t0 P {(X(t)− µt)I > xI} dxI =
tm0∏

i∈I(Σ
−1
II bI)i

> 0.(41)
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Proof: First note that the solution of the quadratic programming problem PΣ(b) is such that∏
i∈I

(Σ−1
II bI)i > 0.

Since

E
{
es
>
I (X(t))I

}
= ets

>
I ΣIIsI/2, s ∈ Rd, t > 0

for any a > 0 we have∫
Rm

eax
>
I Σ−1

II bIP {(X(t)− µt)I > xI} dxI = e−atµ
>
I Σ−1

II bI

∫
Rm

eay
>
I Σ−1

II bI

(∫
zI≥yI

φtΣII (zI) dzI

)
dyI

=
a−m∏

i∈I(Σ
−1
II bI)i

e−aµ
>
I Σ−1

II bI

∫
Rm

eaz
>
I Σ−1

II bIφtΣII (zI) dzI

=
a−m∏

i∈I(Σ
−1
II bI)i

e−atµ
>
I Σ−1

II bI+a2t
b>I Σ

−1
II
bI

2 ,

where

φtΣII (zI) =
1√

(2πt)m |ΣII |
exp

(
− 1

2t
z>I Σ−1

II zI

)
.

In view of (16) we have that g′I(t0) = 0, (recall that b = α+ µt0) hence

−
µ>I Σ−1

II bI
t0

+
b>I Σ−1

II bI
2t20

= 0(42)

implying thus µ>I Σ−1
II bI > 0. Moreover, choosing a = 1/t0, where

t0 =

√
α>I Σ−1

II αI

µ>I Σ−1
II µI

> 0

establishes the claim. �

Lemma 4.7. We have

HI ≥
tm−1
0 µ>I Σ−1

II bI

16
∏
i∈I(Σ

−1
II bI)i

> 0.

Proof: Suppose that δ > 0 and let n be any integer. Application of Bonferroni’s inequality yields

HI(δn) ≥
∫
Rm

e
x>I Σ

−1
II
bI

t0 P {∃k ∈ {1, . . . , n} : (X(δk)− µ(δk))I > xI} dxI

≥
∫
Rm

e
x>I Σ

−1
II
bI

t0

n∑
k=1

P {(X(δk)− µ(δk))I > xI} dxI

−
∫
Rm

e
x>I Σ

−1
II
bI

t0

n−1∑
k=1

n∑
l=k+1

P {(X(δk)− µ(δk))I > xI , (X(δl)− µ(δl))I > xI} dxI

=: I1 − I2.

By Lemma 4.6 we have

I1 = nQ, Q :=
tm0∏m

i=1(Σ−1
II bI)i

.

Next, since

P {(X(δk)− µ(δk))I > xI , (X(δl)− µ(δl))I > xI} ≤ P
{

1

2
(X(δk) +X(δl)− µ(δk + δl))I > xI

}
by Lemma 4.6

I2 ≤
n−1∑
k=1

n∑
l=k+1

∫
Rm

e
x>I Σ

−1
II
bI

t0 P
{

1

2
(X(δk) +X(δl)− µ(δk + δl))I > xI

}
dxI
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=

n−1∑
k=1

n∑
l=k+1

∫
Rm

e
x>I Σ

−1
II
bI

t0 P

{√
3δk + δl

4
(X(1))I − µI

3δk + δl

4
> xI +

µIδ(l − k)

4

}
dxI

= Q

n−1∑
k=1

n∑
l=k+1

e−
µ>I Σ

−1
II
bIδ

4t0
(l−k).

Since by (42) we have µ>I Σ−1
II bI > 0, hence

I2 ≤ Qn

∫ ∞
0

e−
µ>I Σ

−1
II
bIδ

4t0
x dx = Qn

4t0

δµ>I Σ−1
II bI

.

By Lemma 4.5

HI = inf
T>0

1

T
HI(T ) ≥ inf

n>0

I1 − I2

δn
=
Q

δ

(
1− 1

δ

4t0

µ>I Σ−1
II bI

)
.

Since δ > 0 was arbitrary, as in [20],

HI ≥ max
δ>0

Q

δ

(
1− 1

δ

4t0

µ>I Σ−1
II bI

)
≥ Q

µ>I Σ−1
II bI

16t0
> 0,

establishing the proof. �

Estimation of double-sum. In this subsection we shall show that as u→∞ and then T →∞

Π(u) = o(p1(u)).(43)

First, note that

pi,j;u = P
{
∃s∈∆i;u

X(s) >
√
u(α+ sµ),∃t∈∆j;u

X(t) >
√
u(α+ tµ)

}
≤ P

{
∃(s,t)∈∆i;u×∆j;u

(X(s) +X(t))I >
√
u(2αI + (s+ t)µI)

}
= P

{
∃(s,t)∈[0,T ]2

1

2
(X(t0 +

iT + s

u
) +X(t0 +

jT + t

u
))I >

√
u(αI + (t0 +

(i+ j)T + s+ t

2u
)µI)

}
.(44)

Next we rewrite for (s, t) ∈ [0, T ]2

X(t0 +
iT + s

u
) +X(t0 +

jT + t

u
)

=

{
2X(t0 +

iT

u
)

}
+

{
(X(t0 +

iT + s

u
)−X(t0 +

iT

u
)) + (X(t0 +

(i+ 1)T

u
)−X(t0 +

iT

u
))

}
+

{
X(t0 +

jT

u
)−X(t0 +

(i+ 1)T

u
)

}
+

{
X(t0 +

jT + t

u
)−X(t0 +

jT

u
)

}
.

Note that all the processes (or random variables) inside consecutive {. . .} are mutually independent. Consequently,

1

2

(
X(t0 +

iT + s

u
) +X(t0 +

jT + t

u
)
)
I

(45)

d
= (Zi,j;u)I +

1

2
√
u

(
X1(s) +X1(T ) +X2(t)

)
I
, (s, t) ∈ [0, T ]2,

where X1 and X2 are independent copies of X, which are also independent of Zi,j;u
d
=
√
ci,j;uAN , with covariance

matrix Σi,j;u = ci,j;uΣ, where ci,j;u = t0 + (j+3i−1)T
4u and N = (N1, . . . , Nd) has independent N (0, 1) components.

Next, set

bi,j;u = b

(
t0 +

(i+ j)T

2u

)
.

It follows from (44) and (45) that

P
{
∃(s,t)∈∆i,u×∆j,u

(X(s) +X(t))I >
√
u(2αI + (s+ t)µI)

}
= P

{
∃(s,t)∈[0,T ]2(Zi,j;u)I +

1

2
√
u

(X1(s) +X1(T ) +X2(t)− (s+ t)µ)I >
√
u(bi,j;u)I

}
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=
u−m/2√

(2π)m|(Σi,j;u)II |

∫
Rm

exp

(
−1

2
(
√
u(bi,j;u)I −

xI√
u

)>(Σi,j;u)−1
II (
√
u(bi,j;u)I −

xI√
u

)

)
×P
{
∃(s,t)∈[0,T ]2

1

2
(X1(s) +X1(T ) +X2(t)− (s+ t)µ)I > xI

}
dxI .(46)

In particular for i = 0, j = 2 using (46) and similar arguments as in the proof of Lemma 4.4 we have

P
{
∃(s,t)∈∆0,u×∆2,u

(X(s) +X(t))I >
√
u(2αI + µI(s+ t))

}
∼ H̃I(T )

u−m/2√
(2πt0)m |ΣII |

exp(−u
2
gI(t0)) exp(−3aT ),(47)

where a = gI(t0)
8t0

and

H̃I(T ) =

∫
Rm

e
x>I Σ

−1
II
bI

t0 P
{
∃(s,t)∈[0,T ]2

1

2
(X1(s) +X1(T ) +X2(t)− µ(s+ t))I > xI

}
dxI .

Note that in a similar vein as in Lemma 4.2 we can prove the finiteness of H̃I(T ).

We shall need an upper bound for pi,j;u derived in the following lemma.

Lemma 4.8. For any fixed T > 0, there exists some small ε > 0 such that, for all i, j satisfying −Nu ≤ i < j ≤ Nu,

pi,j;u ≤ CT 2e2aTu−m/2 exp

(
−gI(t0)

2
u

)
× exp

(
−g

′′

I (t0)− ε
4

(
iT√
u

)2
)

exp
(
−aε((j − i+ 1)T )

)
(48)

holds for some constant C > 0 independent of i, j, u and T , when u is large, where

aε =
1

2

(
gI(t0)− ε

4t0 + ε
− ε(g

′′

I (t0)− ε)
2

)
, a = a0 =

gI(t0)

8t0
.

Proof: . In view of (44) and (46) we have (recall bi,j;u = b(t0 + (i+j)T
2u ))

pi,j;u ≤ u−m/2√
(2π)m|(Σi,j;u)II |

∫
Rm

exp

(
−1

2
(
√
u(bi,j;u)I −

xI√
u

)>(Σi,j;u)−1
II (
√
u(bi,j;u)I −

xI√
u

)

)
×P
{
∃(s,t)∈[0,T ]2

1

2
(X1(s) +X1(T ) +X2(t)− µ(s+ t))I > xI

}
dxI .(49)

Let for T positive

H̃I,i,j;u(T ) =

∫
Rm

e

x>I Σ
−1
II
b(t0+

(i+j)T
2u

)I

t0+
j+3i−1

4u P
{
∃(s,t)∈[0,T ]2

1

2
(X1(s) +X1(T ) +X2(t)− µ(s+ t))I > xI

}
dxI .

Since H̃I,i,j;u(T )→ H̃I(T ) as u→∞ uniformly with respect to −Nu ≤ i < j ≤ Nu we have that for large u

H̃I,i,j;u(T ) ≤ const H̃I(T ).

Now for the expression in the exponent in (49) we have that(√
u(bi,j;u)I −

xI√
u

)>
(Σi,j;u)−1

II

(√
u(bi,j;u)I −

xI√
u

)
= u

1

ci,j;u
(bi,j;u)>I Σ−1

II (bi,j;u)I − 2
1

ci,j;u
x>I Σ−1

II (bi,j;u)I +
1

uci,j;u
x>I Σ−1

II xI

= u
t0 + (i+j)T

2u

ci,j;u
gI(t0 +

(i+ j)T

2u
)− 2

1

ci,j;u
x>I Σ−1

II (bi,j;u)I +
1

uci,j;u
x>I Σ−1

II xI .
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It follows that for all u > 0 large

pi,j;u ≤ C0H̃I(T )
u−m/2√

(2π(t0 − ε))m |ΣII |
exp

(
−u

2

(
1 +

(j − i+ 1)T

(4t0 + (3i+j−1)T
u )u

)
gI

(
t0 +

(i+ j)T

2u

))
(50)

for some C0 > 0 and some small ε > 0. Furthermore, we have that for the small ε

(3i+ j − 1)T

u
< ε

and

gI(t0 +
(i+ j)T

2u
) ≥ gI(t0) +

1

2
(g
′′

I (t0)− ε)
(

(i+ j)T

2u

)2

for all −N(u) ≤ i < j ≤ N(u) and u large. Moreover, for any j > i(
(i+ j)T

2u

)2

=

(
(j − i)T

2u
+
iT

u

)2

≥
(
iT

u

)2

+
(j − i)T (iT )

u2
≥
(
iT

u

)2

− ε (j − i+ 1)T

u

holds for all u large. Consequently, for any j > i

exp

(
−u

2

(
1 +

(j − i+ 1)T

(4t0 + (3i+j−1)T
u )u

)
g(t0 +

(i+ j)T

2u
)

)

≤ exp

(
−u

2

(
1 +

(j − i+ 1)T

(4t0 + ε)u

)(
gI(t0) +

1

2
(g
′′

I (t0)− ε)

((
iT

u

)2

− ε (j − i+ 1)T

u

)))

= exp

−gI(t0)

2
u− g

′′

I (t0)− ε
4

(
iT√
u

)2

− (j − i+ 1)T

2

gI(t0) +
g
′′
I (t0)−ε

2

((
iT
u

)2 − ε (j−i+1)T
u

)
4t0 + ε

− ε(g
′′

I (t0)− ε)
2


 .

With the small given positive ε, for all −N(u) ≤ i < j ≤ N(u) and all large u we have

gI(t0) +
g
′′

I (t0)− ε
2

((
iT

u

)2

− ε (j − i+ 1)T

u

)
≥ gI(t0)− ε.

Consequently,

exp

(
−u

2

(
1 +

(j − i+ 1)T

(4t0 + (3i+j−1)T
u )u

)
g
(
t0 +

(i+ j)T

2u

))

≤ exp

(
−gI(t0)

2
u

)
exp

(
−g

′′

I (t0)− ε
4

(
iT√
u

)2
)

exp
(
−aε((j − i+ 1)T )

)
from which we obtain that

pi,j;u ≤ C H̃I(T )
u−m/2√

(2π(t0 − ε))m |ΣII |
exp

(
−gI(t0)

2
u

)

× exp

(
−g

′′

I (t0)− ε
4

(
iT√
u

)2
)

exp
(
−aε((j − i+ 1)T )

)
holds when u is large. Next, in order to complete the proof it is sufficient to show that for any positive integer T

H̃I(T ) ≤ T 2e2aT H̃I(1).

For T, u positive define

Eu(T ) = [t0, t0 + Tu−1]× [t0 + 2Tu−1, t0 + 3Tu−1],

Eu(k, l) = [t0 + ku−1, t0 + (k + 1)u−1]× [t0 + (2T + l)u−1, t0 + (2T + l + 1)u−1],

k, l = 0, 1, · · · , T − 1.
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It follow from (47) that

lim
u→∞

P
{
∃(s,t)∈Eu(T )(X(s) +X(t))I >

√
u(2αI + µI(s+ t))

}
u−m/2√

(2πt0)m|ΣII |
exp

(
−u2 gI(t0)

) = e−3aT H̃I(T ).

Similarly, we can show that

lim
u→∞

P
{
∃(t,w)∈Eu(k,l)(X(s) +X(t))I >

√
u(2αI + µI(s+ t))

}
u−m/2√

(2πt0)m|ΣII |
exp

(
−u2 gI(t0)

) = e−a(2T+l−k+1)H̃I(1).

Furthermore, since

Eu(T ) ⊂ ∪T−1
k=0 ∪

T−1
l=0 Eu(k, l)

we obtain from the above two equalities that

e−3aT H̃I(T ) ≤
T−1∑
k=0

T−1∑
l=0

e−a(2T+l−k+1)H̃I(1),

which yields that

H̃I(T ) ≤ eaT
T−1∑
k=0

T−1∑
l=0

e−a(l−k+1)H̃I(1)

≤ e2aTT 2H̃I(1)

establishing the proof. �

Now, we are ready to show (43). Note that

Π(u) =
∑

−Nu≤i<j≤Nu

pi,j;u =
∑

−Nu≤i<j≤Nu

pi,j;u

j=i+1

+
∑

−Nu≤i<j≤Nu

pi,j;u

j>i+1

=: Π1(u) + Π2(u).

For Π1(u) we have

Π1(u) =

N(u)∑
i=−N(u)

(
P
{
∃t∈4i;u X(t) >

√
u(α+ µt)

}
+ P

{
∃t∈4(i+1);u

X(t) >
√
u(α+ µt)

}
−P
{
∃t∈4i;u∪4(i+1);u

X(t) >
√
u(α+ µt)

})
=: S1(u) + S2(u)− S3(u).

Recall that we have proved in Lemma 4.5 and Lemma 4.7 that

lim
T→∞

T−1HI(T ) = HI ∈ (0,∞),(51)

hence using similar arguments as for (34) to Si(u), i = 1, 2, 3, we conclude that

lim
T→∞

lim
u→∞

Π1(u)

u(1−m)/2 exp
(
− gI(t0)

2 u
)

=
1√

(2πt0)m |ΣII |

∫ ∞
−∞

e−
g
′′
I (t0)x2

4 ψ(x) dx lim
T→∞

(
2HI(T )

T
− HI(2T )

T

)
= 0.(52)

For Π2(u) we have from (48) that, there exists some ε > 0, such that

Π2(u) ≤ CTe2aTu
1−m

2 exp
(
−u

2
gI(t0)

)
× T√

u

∑
−Nu≤i≤Nu

exp

(
−g

′′

I (t0)− ε
4

(
iT√
u

)2
)∑
j≥1

exp
(
−aε(jT )

)
exp(−2aεT )
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holds for all large u with some C > 0, implying thus

lim
T→∞

lim
ε→0

lim
u→∞

Π2(u)

u(1−m)/2 exp
(
− gI(t0)

2 u
) = 0,

which establishes (43).

Proof of Theorem 3.1: First note that the finiteness of HI is established in Lemma 4.5 and the lower bound is

obtained in Lemma 4.7. Furthermore, in view of (32), (34), (43) and letting T →∞ we obtain (recall (51))

p(u) ∼ 1√
(2πt0)m|ΣII |

HIu
1−m

2 e−
u
2 gI(t0)

∫
R
e−

g
′′
I (t0)x2

4 ψ(x) dx, u→∞.

Moreover, by Lemma 4.1

r(u) = o(p(u)), u→∞.

Consequently, the claim follows from (26). �

Proof of Theorem 3.3: Define

τ̂u = inf{t ≥ 0 : X(t) > (α+ µt)
√
u}.

Since τu = uτ̂u, for any s ∈ R

P
{
τu − t0u√

u
≤ s
∣∣τu <∞} =

P
{
τu−t0u√

u
≤ s, τu <∞

}
P {τu <∞}

=
P {uτ̂u ≤ ut0 +

√
us}

P (u)

=
P
{
∃t∈[0,t0+s/

√
u]X(t) > (α+ µt)

√
u
}

P (u)
.

Using the same arguments as in the proof of Theorem 3.1, we have

P
{
∃t∈[0,t0+s/

√
u]X(t) > (α+ µt)

√
u
}
∼ P

{
∃t∈[t0−ln(u)/

√
u,t0+s/

√
u]X(t) > (α+ µt)

√
u
}

∼ HI√
(2πt0)m |ΣII |

∫ s

−∞
e−g̃

x2

4 ψ(x) dxu
1−m

2 e−
ĝ
2u, u→∞.

In order to derive the above result the only required modification in the proof of Theorem 3.1 is the replacement

of
∑
−Nu−1≤j≤Nu by

∑
−Nu−1≤j≤b

√
us/Tc in RT (u), see (36). Consequently, the claim follows and thus the proof

is complete. �

5. Appendix

5.1. Quadratic programming problem. This subsection is concerned with discussions on Lemma 2.1, which

will be useful for the analysis of the function g in the next subsection. Recall from Lemma 2.1, that b̃ is the optimal

solution of the quadratic programming problem PM (b) with the essential index set I. Next, we define for Ic 6= ∅

K = {j ∈ Ic : bj = b̃j}.(53)

We start with some important remarks on Lemma 2.1.

Remark 5.1. i) If there is a unique index set I with maximal number of elements such that (8) holds, then I is

the essential index set of PΣ(b). Otherwise, if there are I1, . . . , Il index sets which have the same maximal number

of elements such that (8) holds, then the unique essential index set say I = Ik satisfies additionally (9).
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ii) Note that, for any I1 satisfying {1, . . . , d} ⊇ I1 ⊃ I, b̃I1 = b̃I1 is the unique solution of the quadratic programming

problem PΣI1I1
(bI1). If further

Σ−1
I1I1

bI1 ≥ 0I1

holds, then b̃I1 = bI1 and

Σ−1
I1I1

bI1 =

 Σ−1
II bI

0I1\I

 ,

with Σ−1
II bI > 0I ; see also the proof of 1 of Proposition 2.5 in [19].

iii) Consider the case d = 2 and let b with b1 = 1, b2 = b ∈ (−∞, 1]. Suppose for simplicity that Σ is a correlation

matrix with σ12 = ρ ∈ (−1, 1). If b > ρ, then b̃ = b and thus I = {1, 2}. If b = ρ, then I = {1},K = {2}. Finally,

for b < ρ we have I = {1},K = ∅.

Lemma 5.2. Let I ⊂ {1, . . . , d} be the essential index set of the quadratic programming problem PM (b), b ∈ Rd \ (−∞, 0]d.

We have, for any I1 satisfying {1, . . . , d} ⊇ I1 ⊃ I, if b>I1M
−1
I1I1

bI1 = b>I M
−1
II bI holds, then I1 ⊆ I ∪ K, with K

given by (53).

Proof: Note that from Remark 5.1 ii) we have b̃I1 = b̃I1 . In the light of (11),

b>I1M
−1
I1I1

b̃I1 = b>I1M
−1
I1I1

b̃I1 = b>I M
−1
II bI

and

b̃
>
I1M

−1
I1I1

(bI1 − b̃I1) = (bI1 − b̃I1)>M−1
I1I1

b̃I1 = (bI1 − b̃I1)>I M
−1
II bI = 0.

Further, since

b>I1M
−1
I1I1

bI1 = b>I1M
−1
I1I1

(bI1 − b̃I1) + b>I1M
−1
I1I1

b̃I1

= (bI1 − b̃I1)>M−1
I1I1

(bI1 − b̃I1) + b̃
>
I1M

−1
I1I1

(bI1 − b̃I1) + b>I M
−1
II bI

= (bI1 − b̃I1)>M−1
I1I1

(bI1 − b̃I1) + b>I M
−1
II bI

we obtain

(bI1 − b̃I1)>M−1
I1I1

(bI1 − b̃I1) = 0

thus bI1 = b̃I1 , implying that I1 ⊆ I ∪K and hence the proof is complete. �

5.2. Analysis of g. In this subsection we analyze the function

g(t) =
1

t
inf

v≥α+µt
v>Σ−1v

defined already in the Introduction. In the sequel we will denote by I(t) the essential index set of the quadratic

programming problem PΣ(α+ tµ). If I(t)c 6= ∅ we define

K(t) = {j ∈ I(t)c : ΣjI(t)Σ
−1
I(t)I(t)(α+ µt)I(t) = (α+ µt)j},

J(t) = {j ∈ I(t)c : ΣjI(t)Σ
−1
I(t)I(t)(α+ µt)I(t) > (α+ µt)j}.

Note that, when analysing the function g, the index set K(t) plays the role of K from Section 5.1.

Lemma 5.3. We have g ∈ C(0,∞).
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Proof: Let h(t) = g(t)t. For g ∈ C(0,∞) it is sufficient that h ∈ C(0,∞). In view of Lemma 2.1 we have that for

any t ≥ 0 there exists some v∗t , so that

h(t) = (v∗t +α+ µt)>Σ−1(v∗t +α+ µt),

where

v∗t =

 0I(t)

ΣI(t)cI(t)Σ
−1
I(t)I(t)(α+ µt)I(t) − (α+ µt)I(t)c

 .

For any fixed t1 ∈ (0,∞), it is easy to see that in a neighbourhood of t1, say (t1− ε, t1 + ε), with some small ε > 0,

we have

h(t) = inf
supt∈(t1−ε,t1+ε) v

∗
t≥v≥0

(v +α+ µt)>Σ−1(v +α+ µt), t ∈ (t1 − ε, t1 + ε).(54)

Since for two topological spaces X ,Y with Y compact we have

f(x) = inf
y∈Y

q(x, y)

is continuous on X , provided that q : X × Y → R is continuous, we immediately get that h ∈ C(t1 − ε, t1 + ε).

Consequently, h ∈ C(0,∞) follows since t1 was chosen arbitrarily. �

We show next that

I(t) =
∑
j

IjI(t ∈ Uj),

where I(·) is the indicator function and Uj ’s are of the following form

(55) (ak, bk), [ak, bk), (ak, bk], [ak, bk], {ak}, (bk,∞), [bk,∞),

where 0 < ak < bk <∞ and Ij ⊆ {1, . . . , d}. Since point intervals are theoretically possible, we call such function

almost piecewise constant set function.

Lemma 5.4. I(t), t ≥ 0 is an almost piecewise constant set function.

Proof: First, by Lemma 2.1 for any t ≥ 0 there exists a unique I(t) satisfying

Σ−1
I(t)I(t)(α+ µt)I(t) > 0I(t),(56)

ΣI(t)cI(t)Σ
−1
I(t)I(t)(α+ µt)I(t) ≥ (α+ µt)I(t)c , if I(t)c 6= ∅.(57)

Next, for each Vk ⊆ {1, . . . , d} we solve (56) and (57) with I(t) substituted by Vk and I(t)c substituted by

V ck = {1, . . . , d} \ Vk. Since for each Vk the solution is a convex set, by the linearity the solution (if it exists) is in

one of the following forms

(ak, bk), [ak, bk), (ak, bk], [ak, bk], {ak}, (bk,∞), [bk,∞).

Therefore, there exists some finite partition {U1, . . . , Uq} of [0,∞), with

q ≤
d∑
i=1

(
d

i

)

some constant and Uj an interval such that the index set I(t) = Ij ⊆ {1, . . . , d} for all t ∈ Uoj , hence the proof is

complete. �
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Lemma 5.5. For the boundary points tj = Uj ∩ Uj+1, j = 1 . . . , q − 1, we have I(tj) ⊂ {1, . . . , d} and K(tj) 6= ∅.

Moreover, I(tj) ⊆ I(t) ⊆ I(tj) ∪K(tj) for all t ∈ Uj ∪ Uj+1.

Proof: It follows from Lemma 2.1 that (56) holds for t = tj . By continuity, there exists some small δ > 0 such

that for all t ∈ (tj − δ, tj + δ)

Σ−1
I(tj),I(tj)

(α+ µt)I(tj) > 0I(tj).

This implies that I(tj) has less than d elements, since otherwise we would have I(t) = {1, . . . , d} for all t ∈ Uj∩Uj+1,

a contradiction with the fact that tj is a boundary point. Similarly, if (56) and (57) holds for t = tj with K(tj) = ∅,

then by continuity we conclude that I(t) = I(tj) for all t ∈ Uj ∩ Uj+1, again a contradiction. Thus, K(tj) 6= ∅.

Now, let I(t) = Ij+1, t ∈ Uoj+1 and I(t) = Ij , t ∈ Uoj . Without loss of generality, we only show I(tj) ⊆ Ij since

I(tj) ⊆ Ij+1 follows with the same arguments. Notice that

Σ−1
I(tj),I(tj)

(α+ µtj)I(tj) > 0I(tj),

ΣK(tj),I(tj)Σ
−1
I(tj),I(tj)

(α+ µtj)I(tj) = (α+ µtj)K(tj),(58)

ΣJ(tj),I(tj)Σ
−1
I(tj),I(tj)

(α+ µtj)I(tj) > (α+ µtj)J(tj).

Since equations in (58) are linear in tj for fixed I(tj),K(tj), two cases will be distinguished.

Case 1. It holds that

ΣK(tj),I(tj)Σ
−1
I(tj),I(tj)

(α+ µt)I(tj) > (α+ µt)K(tj)

for all t ∈ Uoj .

Case 2. There exists some index i ∈ K(tj) such that

Σi,I(tj)Σ
−1
I(tj),I(tj)

(α+ µt)I(tj) < (α+ µt)i

holds for all t ∈ Uoj .

For Case 1, by continuity we conclude that Ij = I(tj). Next, we focus on Case 2, and show for this case I(tj) ⊂ Ij .

Denote Î = I(tj) ∪ {i}. We can show that

Σ−1

Î,Î
(α+ µt)Î > 0Î(59)

holds for all t ∈ Uoj such that t− tj is small, which, by Remark 5.1 i), implies that

]Ij ≥ ]Î = ]I(tj) + 1.(60)

In fact, denoting B = Σ−1

Î,Î
we have

Σ−1

Î,Î
(α+ µt)Î =

 BI(tj)I(tj)(α+ µt)I(tj) +BI(tj),i(α+ µt)i

Bi,I(tj)(α+ µt)I(tj) +Bi,i(α+ µt)i

 .

Since B is positive definite, Bi,i > 0. By the properties of block positive definite matrix B, we have that

BI(tj)I(tj)(α+ µt)I(tj) +BI(tj),i(α+ µt)i = Σ−1
I(tj),I(tj)

(α+ µt)I(tj)

+BI(tj),i

(
(α+ µt)i − Σi,I(tj)Σ

−1
I(tj),I(tj)

(α+ µt)I(tj)

)
and

Bi,I(tj)(α+ µt)I(tj) +Bi,i(α+ µt)i = Bi,i

(
(α+ µt)i − Σi,I(tj)Σ

−1
I(tj),I(tj)

(α+ µt)I(tj)

)
> 0.
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Then, since

Σ−1
I(tj),I(tj)

(α+ µtj)I(tj) > 0I(tj), (α+ µtj)i = Σi,I(tj)Σ
−1
I(tj),I(tj)

(α+ µtj)I(tj)

we conclude that (59) holds for all t ∈ Uoj such that t− tj is small.

On the other hand, since I(t) = Ij , t ∈ Uoj we have

Σ−1
IjIj

(α+ µt)Ij > 0Ij ,

ΣIcj IjΣ
−1
IjIj

(α+ µt)Ij > (α+ µt)Icj(61)

hold for all t ∈ Uoj . The reason why we do not have equality in (61) is that if for some row equality holds with

some t1 ∈ Uoj , then I(t) = Ij , t ∈ Uoj will be invalid by linearity of the equation. Consequetly, letting t→ tj in the

above inequalities we obtain

Σ−1
IjIj

(α+ µtj)Ij ≥ 0Ij ,(62)

ΣIcj IjΣ
−1
IjIj

(α+ µtj)Ij ≥ (α+ µtj)Icj .(63)

Suppose that the first l rows (the corresponding index set is denoted by Î1) of Σ−1
IjIj

(α + µtj)Ij are positive and

the last ]Ij − l rows (the corresponding index set is denoted by Î2) are equal to 0. Since I(tj) is the essential index

set of PΣ(α+ µtj), in view of Remark 5.1 i) we have l ≤ ]I(tj). Next, as in Remark 5.1 ii) (see also the proof of

Proposition 2.5 in [19]) we have

Σ−1
IjIj

(α+ µtj)Ij =

 Σ−1

Î1Î1
(α+ µtj)Î1

0Î2


and

ΣÎ2Î1Σ−1

Î1Î1
(α+ µtj)Î1 = (α+ µtj)Î2 , Σ−1

Î1Î1
(α+ µtj)Î1 > 0Î1 .(64)

Then rewriting (63) we have

ΣIcj Î1
Σ−1

Î1Î1
(α+ µtj)Î1 ≥ (α+ µtj)Icj ,

which together with (64) yields that Î1 is also an essential index set of the problem PΣ(α + µtj). Thus, by

uniqueness, I(tj) = Î1 ⊂ Ij . Consequently, I(tj) ⊆ I(t) for all t ∈ Uj ∪Uj+1. Finally, we show I(t) ⊆ I(tj)∪K(tj)

for all t ∈ Uj ∪ Uj+1. Since g ∈ C(0,∞) we have

(α+ µtj)
>
I(tj)

Σ−1
I(tj),I(tj)

(α+ µtj)I(tj) = (α+ µtj)
>
IjΣ
−1
Ij ,Ij

(α+ µtj)Ij

= (α+ µtj)
>
Ij+1

Σ−1
Ij+1,Ij+1

(α+ µtj)Ij+1
.

Consequently, we conclude from Lemma 5.2 that Ij ⊆ I(tj) ∪ K(tj) and Ij+1 ⊆ I(tj) ∪ K(tj), establishing the

proof. �

Proof of Lemma 2.2: By Lemma 5.4 for any j = 1, . . . , q we have

h(t) = inf
v≥α+µt

v>Σ−1v

= (α+ µt)>I(t)Σ
−1
I(t),I(t)(α+ µt)I(t)

= α>I(t)Σ
−1
I(t),I(t)αI(t) + 2tα>I(t)Σ

−1
I(t),I(t)µI(t) + µ>I(t)Σ

−1
I(t),I(t)µI(t)t

2

= α>IjΣ
−1
Ij ,Ij

αIj + 2tα>IjΣ
−1
Ij ,Ij

µIj + µ>IjΣ
−1
Ij ,Ij

µIj t
2, t ∈ Uoj .
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Clearly, h ∈ C1(Uoj ) for all j = 1, . . . , q. Thus, to prove that g ∈ C1(0,∞) it is sufficient to show that, for any

tj = Uj ∩ Uj+1,

h′(tj+) = h′(tj−)

holds. It follows that

h′(tj−) = 2(α>IjΣ
−1
Ij ,Ij

µIj + µ>IjΣ
−1
Ij ,Ij

µIj tj) = 2µ>IjΣ
−1
Ij ,Ij

(α+ µtj)Ij ,

h′(tj+) = 2µ>Ij+1
Σ−1
Ij+1Ij+1

(α+ µtj)Ij+1
.

Next, from Lemma 5.5 we have I(tj) ⊆ Ij and I(tj) ⊆ Ij+1. For notational simplicity, we denote B = Σ−1
Ij ,Ij

,

Jj = Ij \ I(tj). Since

Σ−1
Ij ,Ij

(α+ µt)Ij > 0Ij , t ∈ Uoj

we have

Σ−1
Ij ,Ij

(α+ µtj)Ij ≥ 0Ij .

Thus, by Remark 5.1 ii)

Σ−1
Ij ,Ij

(α+ µtj)Ij =

 Σ−1
I(tj),I(tj)

(α+ µtj)I(tj)

0Jj

 ,(65)

with Σ−1
I(tj),I(tj)

(α+ µtj)I(tj) > 0I(tj) implying

h′(tj−) = 2µ>IjΣ
−1
Ij ,Ij

(α+ µtj)Ij = 2µ>I(tj)Σ
−1
I(tj),I(tj)

(α+ µtj)I(tj).

Similarly, we have

h′(tj+) = 2µ>I(tj)Σ
−1
I(tj),I(tj)

(α+ µtj)I(tj).

Consequently, g ∈ C1(0,∞) is proved.

Now,

g(t) =
1

t
α>IjΣ

−1
Ij ,Ij

αIj + 2α>IjΣ
−1
Ij ,Ij

µIj + µ>IjΣ
−1
Ij ,Ij

µIj t, t ∈ Uoj

and

g′(t) =
µ>IjΣ

−1
Ij ,Ij

µIj t
2 −α>IjΣ

−1
Ij ,Ij

αIj

t2
, t ∈ Uoj .

Since for any nonempty Ij ⊂ {1, . . . , d}

α>IjΣ
−1
Ij ,Ij

αIj > 0, µ>IjΣ
−1
Ij ,Ij

µIj > 0

we have g(t) → ∞ as t → ∞ and t → 0, and g′(t) < 0 for all t around 0, g′(t) > 0 for all t large enough. Thus,

the function g has a unique minimizer in [0,∞]. Note that function a/s + b + cs is decreasing to the left of some

s0 > 0 and increasing to the right. Consider the interval Uj . The function g has a unique minimum on Uj . If at

tj the function is decreasing it either decreasing in the whole interval, or t0 belongs to Uj so it is increasing at

tj+1 and consequently it is increasing at each entrance to constancy interval Uk, k > j. In this case, (12) holds and

g′(t0) = 0. Next, for t0 we have from Lemma 5.4 that there exist some small ε > 0 and I+, I− ⊆ {1, . . . , d} such

that

g(t) =
1

t
α>I+Σ−1

I+I+αI+ + 2α>I+Σ−1
I+I+µI+ + µ>I+Σ−1

I+I+µI+t, t ∈ (t0, t0 + ε),

g(t) =
1

t
α>I−Σ−1

I−I−αI− + 2α>I−Σ−1
I−I−µI− + µ>I−Σ−1

I−I−µI−t, t ∈ (t0 − ε, t0).
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Then it follows that (14) holds. �

5.3. Analysis of 2-dimensional case. We now demonstrate details for Section 3.4. Recall that in our notation

I(t) is the essential index set of the quadradtic problem PΣ(α+ µt). If I(t)c 6= ∅ we define

K(t) = {j ∈ I(t)c : ΣjI(t)Σ
−1
I(t)I(t)(α+ µt)I(t) = (α+ µt)j}.

Further define

bt =
α2 + t

α1 + t
∈ (0, 1).

It follows that

g(t) =
(α1 + t)2

t
inf
v≥bt

v>Σ−1v, bt = (1, bt)
>.

Case 1. ρ < 0. Clearly bt > ρ and thus in view of Remark 5.1 iii) we have that I(t) = {1, 2}, t > 0 and

inf
v≥bt

v>Σ−1v =
1

1− ρ2
(1 + b2t − 2btρ)

implying

g(t) = g1(t) :=
(α1 + t)2

t

1

1− ρ2
(1 + b2t − 2btρ).

Note that we slightly abuse the notation writing g1 instead of g{1,2}. It follows that for

t
(1)
0 =

√
α2

1 + α2
2 − 2α1α2ρ

2(1− ρ)
> 0

we have

inf
t≥0

g(t) = g1(t
(1)
0 ) =

2

1 + ρ
(α1 + α2 + 2t

(1)
0 ).

Case 2. ρ > 0. In such a case, we have to consider if bt > ρ or not. Several different sub-cases are thus discussed

in the following.

Case 2.1. α1ρ ≤ α2. For this case, we have always bt > ρ, t > 0. Then I(t) = {1, 2}, t > 0 and g(t) = g1(t).

Case 2.2. α1ρ > α2. Let

Q :=
α1ρ− α2

1− ρ
.

We have

(a) {bt > ρ} ⇔ {t > Q}, for which I(t) = {1, 2},

(b) {bt < ρ} ⇔ {t < Q}, for which I(t) = {1}, K(t) = ∅,

(c) {bt = ρ} ⇔ {t = Q}, for which I(t) = {1}, K(t) = {2}.

Now consider (a). Since bt > ρ, we have g(t) = g1(t), t > Q. Now we have to check if t
(1)
0 > Q or not. We can show

that

t
(1)
0 > Q ⇔ ρ <

α1 + α2

2α1
.

Thus, we have

(a1). If α2/α1 < ρ < α1+α2

2α1
, then inft∈(Q,∞) g(t) = g1(t

(1)
0 );

(a2). If ρ > α1+α2

2α1
then inft∈(Q,∞) g(t) = g1(Q).
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Next consider (b). Let g2(t) = (α1 + t)2/t which attains its minimum at the unique point t
(2)
0 = α1. Since bt < ρ,

we have g(t) = g2(t), t ∈ [0, Q). Similarly as above we have to check if t
(2)
0 < Q. We can show that

t
(2)
0 < Q ⇔ ρ >

α1 + α2

2α1
.

Thus we have

(b1). If α2/α1 < ρ < α1+α2

2α1
, then

inf
t∈[0,Q)

g(t) = g2(Q) =
(α1 − α2)2

(1− ρ)(α1ρ− α2)
.

(b2). If ρ > α1+α2

2α1
, then

inf
t∈[0,Q)

g(t) = g2(t
(2)
0 ) = 4α1.

Furthermore, by the definitions of g1, g2 and Q we obtain

g1(Q) = g2(Q).

The above findings are summarized in the following lemma:

Lemma 5.6. (1). If −1 < ρ ≤ α2/α1, then I(t) = {1, 2}, t > 0 and

t0 = t
(1)
0 , I = {1, 2}, gI(t0) = g1(t

(1)
0 ), g

′′

I (t0) = g
′′

1 (t
(1)
0 ) = 2(t

(1)
0 )−3α

2
1 + α2

2 − 2α1α2ρ

1− ρ2
.

(2). If α2/α1 < ρ < α1+α2

2α1
, then

I(t) = {1}, 0 < t ≤ Q, I(t) = {1, 2}, t > Q

and

t0 = t
(1)
0 > Q, I = {1, 2}, gI(t0) = g1(t

(1)
0 ), g

′′

I (t0) = g
′′

1 (t
(1)
0 ).

(3). If ρ = α1+α2

2α1
, then

I(t) = {1}, 0 < t ≤ Q, I(t) = {1, 2}, t > Q

and

t0 = t
(1)
0 = t

(2)
0 = Q, I = {1}, K = {2}, gI(t0) = g2(t

(2)
0 ), g

′′

I (t0) = g
′′

2 (t
(2)
0 ) = 2α−1

1 .

(4). If α1+α2

2α1
< ρ < 1, then

I(t) = {1}, 0 < t ≤ Q, I(t) = {1, 2}, t > Q

and

t0 = t
(2)
0 < Q, I = {1}, K = ∅, gI(t0) = g2(t

(2)
0 ), g

′′

I (t0) = 2α−1
1 .

Remark 5.7. We point out that in general the second derivative of g at t0 is discontinuous. For instance, for the

case where ρ = α1+α2

2α1
in Lemma 5.6 we have

g(t) =

 1
t (α1 + t)2, 0 < t ≤ α1,

1
t (α+ 1t)>Σ−1(α+ 1t), t > α1.
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Hence

g
′
(t) =

 1− α2
1

t2 , 0 < t ≤ α1,

2
1+ρ −

4α3
1

(3α1+α2)t2 , t > α1

, g
′′
(t) =


2α2

1

t3 , 0 < t ≤ α1,

8α3
1

(3α1+α2)t3 , t > α1.

Consquetnly, g ∈ C1(0,∞) is decreasing in the interval (0, α1). Its first derivative is 0 at t0 = α1, however its

second derivative is not continuous at t0.

5.4. Proof of (39). Recall RT (u) defined in (38). We derive next sharper bounds for Pj;u(T,xI) and fj;u(T,xI).

Since ΣJIΣ
−1
II bI < bJ , then for any small ε > 0 and any large Q > 0

P−j;u(T,xI , ε,Q) ≤ Pj;u(T,xI) ≤ P+
j;u(T,xI , ε)

holds for all −Nu ≤ j ≤ Nu when u is large enough, where

P−j;u(T,xI , ε,Q) = P

∃t∈[0,T ]

(X(t)− tµ)I > xI
√
t0 − εYK − ε |ZK(t,xI)| > jT√

u
(µK − ΣKIΣ

−1
II µI)

√
t0 − εYJ − ε |ZJ(t,xI)| > −Q1J

 ,

P+
j;u(T,xI , ε) = P

∃t∈[0,T ]

(X(t)− tµ)I > xI
√
t0 + εYK + ε |ZK(t,xI)| > jT√

u
(µK − ΣKIΣ

−1
II µI)

 .

Furthermore, for any large L > 0, we can find ε > 0 sufficiently small such that

e
x>I (Σ

−1
II
bI−ε

xI
I

)

t0−ε(xI )
−ε ≤ fu(T, j,xI)

holds for all ||xI || ≤ L and all −Nu ≤ j ≤ Nu when u is large enough, where

ε(xI) =

 −ε, x>I Σ−1
II bI > 0,

ε, x>I Σ−1
II bI ≤ 0,

(66)

and εxII = (εxIi , i ∈ I) with

εxIi =

 ε, xi > 0,

−ε, xi ≤ 0,
i ∈ I.(67)

Similarly,

fu(T, j,xI) ≤ e
x>I (Σ

−1
II
bI+ε

xI
I

)

t0+ε(xI )

holds for all xI ∈ Rm, −Nu ≤ j ≤ Nu when u is large enough. Moreover, it follows from (16) that for the given ε

g
′′

I (t0)− ε
2

(
jT

u

)2

≤ gI(t0 +
jT

u
)− gI(t0) ≤ g

′′

I (t0) + ε

2

(
jT

u

)2

holds for all −Nu ≤ j ≤ Nu when u is large enough. Consequently, we obtain the following upper bound

RT (u) ≤ 1

(t0 − ε)m/2
(F1(L, ε, T, u) + F2(L, ε, T, u)),

where

F1(L, ε, T, u) =
T√
u

∑
−Nu−1≤j≤Nu

exp

(
−g

′′

I (t0)− ε
4

(
jT√
u

)2
)∫
||xI ||≤L

e
x>I (Σ

−1
II
bI+ε

xI
I

)

t0+ε(xI ) P+
j;u(T,xI , ε) dxI

F2(L, ε, T, u) =
T√
u

∑
−Nu−1≤j≤Nu

exp

(
−g

′′

I (t0)− ε
4

(
jT√
u

)2
)
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×
∫
||xI ||>L

e
x>I (Σ

−1
II
bI+ε

xI
I

)

t0+ε(xI ) P
{
∃t∈[0,T ](X(t)− tµ)I > xI

}
dxI .

Next, it follows that

lim
ε→0

lim
u→0

F1(L, ε, T, u) =

∫
||xI ||≤L

e
x>I Σ

−1
II
bI

t0 P
{
∃t∈[0,T ](X(t)− tµ)I > xI

}
dxI

∫ ∞
−∞

e−
g
′′
I (t0)x2

4 ψ(x) dx

and

lim
ε→0

lim
u→0

T√
u

∑
−Nu−1≤j≤Nu

exp

(
−g

′′

I (t0)− ε
4

(
jT√
u

)2
)

=

∫ ∞
−∞

e−
g
′′
I (t0)x2

4 dx.

Hence in view of Lemma 4.2, letting L→∞ we obtain

lim
u→∞

RT (u) ≤ 1

t
m/2
0

HI(T )

∫ ∞
−∞

e−
g
′′
I (t0)y2

4 ψ(y) dy.

Similarly, we obtain the following lower bound

RT (u) ≥ 1

(t0 + ε)m/2
F3(L,Q, ε, T, u),

where

F3(L,Q, ε, T, u) =
T√
u

∑
−Nu−1≤j≤Nu

exp

(
−g

′′

I (t0) + ε

4

(
jT√
u

)2
)

×
∫
||xI ||≤L

e
x>I (Σ

−1
II
bI−ε

xI
I

)

t0−ε(xI )
−ε
P−j;u(T,xI , ε,Q) dxI .

Letting u→∞, Q→∞, ε→ 0, L→∞ (in this order) and in view of Lemma 4.2 we obtain

lim
u→∞

RT (u) ≥ 1

t
m/2
0

HI(T )

∫ ∞
−∞

e−
g
′′
I (t0)y2

4 ψ(y) dy> 0.

Consequently, the claim follows and the proof is complete. �
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[26] K. Dȩbicki, E. Hashorva, and P. Liu, “Ruin probabilities and passage times of γ-reflected Gaussian process

with stationary increments,” http://arXiv.org/abs/1511.09234, 2015.

[27] V. I. Piterbarg, “High extrema of Gaussian chaos processes,” Extremes, vol. 19, no. 2, pp. 253–272, 2016.
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