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Abstract. We consider the use of Gaussian process (GP) priors for solving inverse problems in a Bayesian
framework. As is well known, the computational complexity of GPs scales cubically in the number
of datapoints. We here show that in the context of inverse problems involving integral operators,
one faces additional difficulties that hinder inversion on large grids. Furthermore, in that context,
covariance matrices can become too large to be stored. By leveraging recent results about sequential
disintegrations of Gaussian measures, we are able to introduce an implicit representation of poste-
rior covariance matrices that reduces the memory footprint by only storing low rank intermediate
matrices, while allowing individual elements to be accessed on-the-fly without needing to build full
posterior covariance matrices. Moreover, it allows for fast sequential inclusion of new observations.
These features are crucial when considering sequential experimental design tasks. We demonstrate
our approach by computing sequential data collection plans for excursion set recovery for a gravi-
metric inverse problem, where the goal is to provide fine resolution estimates of high density regions
inside the Stromboli volcano, Italy. Sequential data collection plans are computed by extending the
weighted integrated variance reduction (wIVR) criterion to inverse problems. Our results show that
this criterion is able to significantly reduce the uncertainty on the excursion volume, reaching close to
minimal levels of residual uncertainty. Overall, our techniques allow the advantages of probabilistic
models to be brought to bear on large-scale inverse problems arising in the natural sciences. Par-
ticularly, applying the latest developments in Bayesian sequential experimental design on realistic
large-scale problems opens new venues of research at a crossroads between mathematical modelling
of natural phenomena, statistical data science and active learning.

1. Introduction. Gaussian processes (GP) provide a powerful Bayesian approach to re-
gression (Rasmussen and Williams, 2006). While traditional regression considers pointwise
evaluations of an unknown function, GPs can also include data in the form of linear oper-
ators (Solak et al., 2003; Särkkä, 2011; Jidling et al., 2017; Mandelbaum, 1984; Tarieladze
and Vakhania, 2007; Hairer et al., 2005; Owhadi and Scovel, 2015; Klebanov et al., 2020).
This allows GPs to provide a Bayesian framework to address inverse problems (Tarantola
and Valette, 1982; Stuart, 2010; Dashti and Stuart, 2016). Even though GP priors have been
shown to perform well on smaller-scale inverse problems, difficulties arise when one tries to
apply them to large inverse problems (be it high dimensional or high resolution) and these
get worse when one considers sequential data assimilation settings such as in Chevalier et al.
(2014a). The main goal of this work is to overcome these difficulties and to provide solutions
for scaling GP priors to large-scale Bayesian inverse problems.
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Specifically, we focus on a triple intersection of i) linear operator data, ii) large number
of prediction points and iii) sequential data acquisition. There exists related works that focus
on some of these items individually. For example, methods for extending Gaussian processes
to large datasets (Hensman et al., 2013; Wang et al., 2019) or to a large number of prediction
points (Wilson et al., 2020) gained a lot of attention over the last years. Also, much work
has been devoted to extending GP regression to include linear constraints (Jidling et al.,
2017) or integral observations (Hendriks et al., 2018; Jidling et al., 2019). On the sequential
side, methods have been developed relying on infinite-dimensional state-space representations
(Särkkä et al., 2013) and have also been extended to variational GPs (Hamelijnck et al., 2021).
There are also works that focus on the three aspects at the same time (Solin et al., 2015). We
note that all these approaches rely on approximations, while our method does not.

The topic of large-scale sequential assimilation of linear operator data has also been of
central interest in the Kalman filter community. To the best of our knowledge, techniques
employed in this framework usually rely on a low rank representation of the covariance matrix,
obtained either via factorization (Kitanidis, 2015) or from an ensemble estimate (Mandel,
2006). Our goal in this work is to elaborate similar methods for Gaussian processes without
relying on a particular factorization of the covariance matrix. As stated above, we focus on
the case where: i) the number of prediction points is large, ii) the data has to be assimilated
sequentially, and iii) it comes in the form of integral operators observations. Integral operators
are harder to handle than pointwise observations since, when discretized on a grid (which is
the usual inversion approach), they turn into a matrix with entries that are not predominantly
null, in our case non-zero for most grid points. For the rest of this work, we will only consider
settings that enjoy these three properties. This situation is typical of Bayesian large-scale
inverse problems because those are often solved on a discrete grid, forcing one to consider
a large number of prediction points when inverting at high resolution; besides, the linear
operators found in inverse problems are often of integral form (e.g. gravity, magnetics).

Example 1.1. For the rest of this work, we will use as red thread a real-world inverse
problem that enjoys the above properties. This problem is that of reconstructing the un-
derground mass density inside the Stromboli volcano, Italy, from observations of the vertical
component of the gravity field at different locations of the surface of the volcano (with respect
to a reference station), see Figure 1. We will use a real dataset of gravimetric observations
that was collected during a field campaign in 2012 (courtesy of Linde et al. (2014)). In Linde
et al. (2014) the inversion domain is discretized at 50 [m] resolution, which, as we explain in
section 3 results in larger-than-memory covariance matrices, calling for the methods developed
in this work.

Our main contribution to overcome the above difficulties is the introduction of an im-
plicit representation of the posterior covariance matrix that only requires storage of low rank
intermediate matrices and allows individual elements to be accessed on-the-fly, without ever
storing the full matrix. Our method relies on an extension of the kriging update formulae
(Chevalier et al., 2014c; Emery, 2009; Gao et al., 1996; Barnes and Watson, 1992) to linear
operator observations. As a minor contribution, we also provide a technique for computing
posterior means on fine discretizations using a chunking technique and explain how to per-
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(a) (b)

Figure 1: Example inverse problem: (a) Simulated underground mass density inside the
Stromboli volcano (realisation from GP prior). (b) vertical intensity of the generated gravity
field at locations where data has been gathered (Linde et al., 2014). Colorscales were chosen
arbitrarily.

form posterior simulations in the considered setting. The developed implicit representation
allows for fast updates of posterior covariances under linear operator observations on very
large grids. This is particularly useful when computing sequential data acquisition plans for
inverse problems, which we demonstrate by computing sequential experimental designs for
excursion set learning in gravimetric inversion. We find that our method provides significant
computational time savings over brute-force conditioning and scales to problem sizes that are
too large to handle using state-of-the-art techniques.

Although the contribution of this work is mostly methodological, the techniques developed
here can be formulated in a rigorous abstract framework by using the language of Gaussian
measures an disintegrations. Though less well-known than GPs, Gaussian measures provide
an equivalent approach (Rajput and Cambanis, 1972) that offers several advantages. First,
it is more natural for discretization-independent formulations; second, it provides a clear de-
scription (in terms of dual spaces) of the observation operators for which a posterior can be
defined and third in integrates well with excursion set estimation. Readers interessted in the
technical details are refered to the results in (Travelletti and Ginsbourger, 2022) upon which
we build our implicit representation framework.

To demonstrate our method, we apply it to the Stromboli inverse problem described
above. In this context, we show how it allows computing the posterior at high resolution,
how hyperparameters of the prior can be trained and how we can sample from the posterior
on a large grid. Finally, we illustrate how our method may be applied to a state-of-the-art
sequential experimental design task for excursion set recovery. Sequential design criterion for
excursion sets have gained a lot of attention recently (Azzimonti et al., 2019), but, to the best
of our knowledge, this is the first time that sequential experimental design for set estimation
is considered in the setting of Bayesian inverse problems.
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2. Computing the Posterior under Operator Observations: Bottlenecks and Solutions.
In this section, we focus on the challenges that arise when using Gaussian process priors to
solve Bayesian inverse problems with linear operators observations and propose solutions to
overcome these. Here an inverse problem is the task of recovering some unknown function
ρ ∈ C(D) from observation of a bounded linear operator G : C(D) → Rp applied to ρ. To
solve the problem within a Bayesian framework, one puts a Gaussian process prior on D and
uses the conditional law of the process, conditional on the data, to approximate the unknown ρ.

Even if one can formulate the problem in an infinite dimensional setting (Travelletti and
Ginsbourger, 2022) and discretization should take place as late as possible (Stuart, 2010), when
solving inverse problems in practice there is always some form of discretization involved, be
it through quadrature methods (Hansen, 2010) or through basis expansion (Wagner et al.,
2021). It turns out that, regardless of the type of discretization used, one quickly encounters
computational bottlenecks arising from memory limitations when trying to scale inversion to
real-world problems. We here focus on inverse problems discretized on a grid, but stress that
the computational difficulties described next also plague spectral approaches.

Let W = (w1, ..., wr) ∈ Dr be a given set of discretization points, we consider observation
operators that (after discretization) may be written as linear combinations of Dirac delta
functionals

(2.1) G : C(D)→ Rp, G =

 r∑
j=1

gijδwj


i

, i = 1, ..., p,

with arbitrary coefficients gij ∈ R. Using (Travelletti and Ginsbourger, 2022, Corollary 5)
we can compute the conditional law of a GP Z ∼ Gp(m, k) on D conditionally on the data
Y = GZW +ε, where ε ∼ N

(
0, τ2Ip

)
is some observational noise. The conditional mean and

covariance are then given by:

m̃X = mX +KXW GT
(
GKWW GT + τ2Ip

)−1
(y −GmW ) ,(2.2)

K̃XX′ = KXX′ −KXW GT
(
GKWW GT + τ2Ip

)−1
KWX′ .(2.3)

Notation: When working with discrete operators as in (2.1) it is more convenient to use
matrices. Hence we will use G to denote the p×r matrix with elements gij . Relation (2.1) will
then be written compactly as ρ 7→ GρW . Similarly, given a Gaussian process Z ∼ GP (m, k)
on D ⊂ Rd and another set of points X = (x1, ..., xm)T ∈ Dm, we will use KXW to de-
note the m× r matrix obtained by evaluating the covariance function at all couples of points
Kij = k(xi, wj). In a similar fashion, let ZX ∈ Rm denote the vector obtained by concatenat-
ing the values of the field at the different points. From now on, boldface letters will be used
to denote concatenated quantities (usually datasets). The identity matrix will be denoted by
I, the dimension being infered from the context.

Even if (2.2) and (2.3) only involve basic matrix operations, their computational cost
depends heavily on the number of prediction points X = (x1, ..., xm) and on the number of
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discretization pointsW = (w1, ..., wr), making their application to real-world inverse problems
a non-trivial task. Indeed, when both m and r are big, there are two main difficulties that
hamper the computation of the conditional distribution:

• the r × r matrix KWW may never be built in memory due to its size, and
• the m×m posterior covariance KXX may be too large to store.

The first of these difficulties can be solved by performing the product KWWGT in chunks,
as described in Subsection 2.3. The second one only becomes of particular interest in sequential
data assimilation settings as considered in Subsection 2.1. In Subsection 2.2 we will introduce
an (almost) matrix-free implicit representation of the posterior covariance matrix enabling us
to overcome both these memory bottlenecks.

2.1. Sequential Data Assimilation in Bayesian Inverse Problems and Update Formulae.
We now consider a sequential data assimilation problem where data is made available in
discrete stages. At each stage, a set of observations described by a (discretized) operator Gi

is made and one observes a realization yi of

(2.4) Yi = GiZWi + εi,

where Wi is some set of points in D. Then, the posterior mean and covariance after each
stage of observation may be obtained by performing a low rank update of their counterparts
at the previous stage. Indeed, (Travelletti and Ginsbourger, 2022, Corollary 6) provides an
extension of Chevalier et al. (2014c); Emery (2009); Gao et al. (1996); Barnes and Watson
(1992) to linear operator observations, and gives:

Theorem 2.1. Let Z ∼ Gp(m, k) and let m(n) and K(n) denote the conditional mean and
covariance function conditional on the data {Yi = yi : i = 1, ..., n} with Yi defined as in (2.4),

where n ≥ 1 and m(0) and K(0) are used to denote the prior mean and covariance. Then:

m
(n)
X = m

(n−1)
X + λn (X)

T
(
yn −Gn m

(n−1)
Wn

)
,

K
(n)
XX′ = K

(n−1)
XX′ − λn (X)

T
Snλn (X ′) ,

with λn (X), Sn defined as:

λn (X) = S−1n GnK
(n−1)
WnX

,

Sn = GnK
(n−1)
WnWn

GT
n + τ2I.

At each stage i, these formulae require computation of the pi ×m matrix λi (X), which
involves a pi × pi matrix inversion, where pi is the dimension of the operator Gn describing
the current dataset to be included. This allows computational savings by reusing already
computed quantities, avoiding inverting the full dataset at each stage, which would require a
p2
tot matrix inversion, where ptot =

∑n
i=1 pi.

In order for these update equations to bring computational savings, one has to be able to

store the past covariances K
(n−1)
WnWn

(Chevalier et al., 2015). This makes their application to
large-scale sequential Bayesian inverse problems difficult, since the covariance matrix on the
full discretization may become too large for storage above a certain number of discretization
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points. The next section presents our main contributions to overcome this limitation. They
rely on an implicit representation of the posterior covariance that allows the computational
savings offered by the kriging update formulae to be brought to bear on large scale inverse
problems.

2.2. Implicit Representation of Posterior Covariances for Sequential Data Assimilation
in Large-Scale Bayesian Inverse Problems. We consider the same sequential data assimilation
setup as in the previous section, and for the sake of simplicity we assume thatW1, ...,Wn = X

and use the lighter notation m(i) := m
(i)
X and K(i) := K

(i)
XX . The setting we are interested in

here is the one where X is so large that the covariance matrix gets bigger than the available
computer memory.

Our key insight is that instead of building the full posterior covarianceK(n) at each stage n,
one can just maintain a routine that computes the product of the current posterior covariance
with any other low rank matrix. More precisely, at each stage n, we provide a routine CovMuln
(Algorithm 2.1), that allows to compute the product of the current covariance matrix with
any thin matrix A ∈ Rm×q, q � m:

CovMuln : A 7→ K(i)A,

where thin is to be understood as small enough so that the result of the multiplication can fit
in memory.

This representation of the posterior covariance was inspired by the covariance operator of
Gaussian measures. Indeed, if we denote by Cµ(n) the covariance operator of the Gaussian
measure associated to the posterior distribution of the GP at stage n, then

(
K(n)A

)
ij

=

m∑
k=1

〈
Cµ(n)δxi , δxk

〉
Akj .

Hence, the procedure CovMuln may be thought of as computing the action of the covariance
operator of the Gaussian measure associated to the posterior on the Dirac delta functionals
at the discretization points.

This motivates us to think in terms of an updatable covariance object, where the inclusion
of new observations (the updating) amounts to redefining a right-multiplication routine. It
turns out that by grouping terms appropriately in Theorem 2.1 such a routine may be defined
by only storing low rank matrices at each data acquisition stage.

Lemma 2.2. For any n ∈ N and any m× q matrix A:

K(n)A = K(0)A−
n∑
i=1

K̄iR
−1
i K̄T

i A,
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with intermediate matrices K̄i and R−1
i defined as:

K̄i : = K(i−1)GT
i ,

R−1
i : =

(
GiK

(i−1)GT
i + τ2I

)−1
.

Hence, in order to compute products with the posterior covariance at stage n, one only has
to store n matrices K̄i, each of size m × pi and n matrices R−1

i of size pi × pi, where pi is
the number of observations made at stage i (i.e. the number of lines in Gi). In turn, each
of these objects is defined by multiplications with the covariance matrix at previous stages,
so that one may recursively update the multiplication procedure CovMuln. Algorithms 2.1,
2.2, and 2.3 may be used for multiplication with the current covariance matrix, update of the
representation and update of the posterior mean.

Algorithm 2.1 Covariance Right Multiplication Procedure CovMuln

Require:
Precomputed matrices K̄i, R

−1
i , i = 1, . . . , n.

Prior multiplication routine CovMul0.
Input matrix A.

Ensure: K(n)A.
procedure CovMuln(A)

Compute K(0)A = CovMul0(A).
Return K(0)A−

∑n
i=1 K̄iR

−1
i K̄T

i A.

Algorithm 2.2 Updating intermediate quantities at conditioning stage n

Require:
Last multiplication routine CovMuln−1.
Measurement matrix Gn, noise variance τ2.

Ensure: Step n intermediate matrices K̄n and Rn
procedure Updaten

Compute K̄n = CovMuln−1GT
n .

Compute R−1
n =

(
GnK̄n + τ2I

)−1
.

Algorithm 2.3 Computation of conditional mean at step n

Require:
Previous conditional mean m(n−1).
Current data yn and forward Gn.
Intermediate matrices K̄n and R−1

n .
Ensure: Step n conditional mean m(n).

procedure MeanUpdaten
Return m(n−1) + K̄nR

−1
n

(
yn −Gnm

(n−1)
)
.
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2.3. Prior Covariance Multiplication Routine and Chunking. To use Algorithm 2.1, one
should be able to compute products with the prior covariance matrix K(0). This may be
achieved by chunking the set of grid points into nc subsets X = (X1, ...,Xnc), where each Xi

contains a subset of the points. Without loss of generality, we assume all subsets to have the
same size mc. We may then write the product as

K
(0)
XXA =

(
K

(0)
X1X

A, . . . ,K
(0)
XncX

A
)T

.

Each of the subproducts may then be performed separately and the results gathered together
at the end. The individual products then involve matrices of size mc ×m and m × q. One
can then choose the number of chunks so that these matrices can fit in memory. Each block

K
(0)
XiX

may be built on-demand provided K
(0)
XX is defined through a given covariance function.

This ability of the prior covariance to be built quickly on-demand is key to our method.
The fact that the prior covariance matrix does not need to be stored allows us to handle
larger-than-memory posterior covariances by expressing products with it as a multiplication
with the prior and a sum of multiplications with lower rank matrices.

Remark 2.3 (Choice of Chunk Size). Thanks to chunking, the product may be computed
in parallel, allowing for significant performance improvements in the presence of multiple
computing devices (CPUs, GPUs, ...). In that case, the chunk size should be chosen as large
as possible to limit data transfers, but small enough so that the subproducts may fit on the
devices.

2.4. Computational Cost and Comparison to Non-Sequential Inversion. For the sake
of comparison, assume that all n datasets have the same size pc and let p = npc denote the
total data size. The cost of computing products with the current posterior covariance matrix
at some intermediate stage is given by:

Lemma 2.4 (Multiplication Cost). Let A be an m× q matrix. Then, the cost of computing
KnA at some stage n using Algorithms 2.1 and 2.2 is O

(
m2q + n(mpcq + p2

cq)
)
.

Using this recursively, we can then compute the cost of creating the implicit representation of
the posterior covariance matrix at stage n:

Lemma 2.5 (Implicit Representation Cost). To leading order in m and p, the cost of defining
CovMuln is O

(
m2p+mp2 + p2pc

)
. This is also the cost of computing m(n).

This can then be compared with a non-sequential approach where all datasets would be
concatenated into a single dataset of dimension p. More precisely, define the p ×m matrix
G and the p-dimensional vector y as the concatenations of all the measurements and data

vectors into a single operator, respectively vector. Then computing the posterior mean using
(2.2) with those new observation operators and data vector the cost is, to leading order in p
and m:

O
(
m2p+mp2 + p3

)
.
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In this light, we can now sum up the two main advantages of the proposed sequential approach:
• the cubic cost O

(
p3
)

arising from the inversion of the data covariances is decreased
to O

(
p2pc

)
in the sequential approach

• if a new set of observations has to be included, then the direct approach will require
the O

(
m2p

)
computation of the product K G T , which can become prohibitively ex-

pensive when the number of prediction points is large, whereas the sequential approach
will only require a marginal computation of O

(
m2pc

)
.

Aside from the computational cost, our implicit representation also provides significant mem-
ory savings compared to an explicit approach where the full posterior covariance matrix would
be stored. The storage requirement for the implicit-representation as a function of the number
of discretization points m is shown in Figure 2.

Figure 2: Memory footprint of the posterior covariance matrix as a function of discretization
size for explicit and implicit representation.

2.5. Toy Example: 2D Fourier Transform. To illustrate the various methods presented
in subsection 2.2, we here apply them to a toy two-dimensional example: we consider a GP
discretized on a large square grid {0, ...,M} × {0, ...,M} and try to learn it through various
types of linear operator data.

More precisely, we will here allow two types of observations: pointwise field values and Fourier
coefficient data. Indeed, the field values at the nodes Zkl, k, l ∈ {1, ...,M} are entirely deter-
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mined by its discrete Fourier transform (DFT):

Fuv =
M∑
k=1

M∑
l=1

Zkle
−2πi(uk

M
+ vl

M ), u, v ∈ {1, ...,M}.(2.5)

Note that the above may be viewed as the discretized version of some operator and thus fits
our framework for sequential conditioning. One may then answer questions such as how much
uncertainty is left after the first 10 Fourier coefficient Fkl, k, l = 1, ..., 10 have been observed?
Or which Fourier coefficient provide the most information about the GP?

(a) ground truth (b) 10 Fourier (c) 50 Fourier (d) 100 Fourier

(e) ground truth (f) 10 pointwise (g) 50 pointwise (h) 100 pointwise

Figure 3: Posterior mean after observation of n = 10, 50, 100 Fourier coefficients (top) and
after observation of n = 10, 50, 100 field values along a space-filling design (bottom). Ground
truth is shown on the left. Correlation parameter (Matérn 5/2) λ = 0.5.

For example, Figure 3 compares the posterior mean after observation of various Fourier
coefficients, compared to observing pointwise values along a space-filling sequence. The GP
model is a constant mean Matérn 5/2 random field on a square domain [−1, 1]2. The domain
is discretized onto a 400×400 grid. Note that, by nature, each Fourier coefficient involves the
field values at all points of the discretization grid and thus direct computation of the posterior
mean requires the full 4002 × 4002 covariance matrix (which would translate to roughly 100
GB of storage). This makes this situation suitable to demonstrate the techniques presented
in this section.

In this example, the Fourier coefficients are ordered by growing l∞ norm. One observes
that Fourier coefficients provide very different information than pointwise observations and
decrease uncertainty in a more spatially uniform way, as shown in Figure 4.
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(a) ground truth (b) 10 Fourier (c) 50 Fourier (d) 100 Fourier

(e) ground truth (f) 10 pointwise (g) 50 pointwise (h) 100 pointwise

Figure 4: Posterior standard deviation after observation of n = 10, 50, 100 Fourier coefficients
(top) and after observation of n = 10, 50, 100 field values along a space-filling design (bottom).
Ground truth is shown on the left. Correlation parameter (Matérn 5/2) λ = 0.5.

The extent to which Fourier coefficients provide more or less information than pointwise
observations (depending on ordering) depends on the correlation length of the field’s covariance
function. Indeed, for long correlation lengths, the low frequency Fourier coefficients contain
most of the information about the field’s global behaviour, whereas for small correlation length,
high frequency coefficients are needed to learn the small-scale structure.

3. Application: Scaling Gaussian Processes to Large-Scale Inverse Problems. In this
section, we demonstrate how the implicit representation of the posterior covariance introduced
in subsection 2.2 allows scaling Gaussian processes to situations that are too large to handle
using more traditional techniques. Such situations are frequently encountered in large-scale
inverse problems and we will thus focus our exposition on such a problem arising in geophysics.
In this setting, we demonstrate how our implicit representation allows to train prior hyper-
parameters in subsection 3.1, in subsection 3.2 we demonstrate posterior sampling on large
grids and finally in subsection 3.3 address a state-of-the-art sequential experimental design
problem for excursion set recovery.

Example Gravimetric Inverse Problem: We focus on the problem of reconstructing
the mass density distribution ρ : D → R in some given underground domain D from obser-
vations of the vertical component of the gravitational field at points s1, ..., sp on the surface
of the domain. Such gravimetric data are extensively used on volcanoes (Montesinos et al.,
2006; Represas et al., 2012; Linde et al., 2017) and can be acquired non-destrucively at com-
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paratively low costs by 1-2 persons in rough terrain using gravimeters, without the need for
road infrastructure or other installations (such as boreholes) that are often lacking on volca-
noes. Gravimeters are sensitive to spatial variations in density, which makes them useful to
understand geology, localize ancient volcano conduits and present magma chambers, and to
identify regions of loose light-weight material that are prone to landslides that could in the
case of volcanic islands generate tsunamis.

As an example dataset we use gravimetric data gathered on the surface of the Strombli
volcano during a field campaign in 2012 (Linde et al., 2014). In subsection 3.3 we will also
consider the problem of recovering high (or low) density regions inside the volcano. Figure 5
displays the main components of the problem.

(a) (b)

(c) (d)

Figure 5: Problem overview: (a) underground mass density (realisation from GP prior), (b)
vertical intensity of the generated gravity field at selected locations, (c) high density regions
and (d) low density regions. Thresholds and colorscales were chosen arbitrarily.

The observation operator describing gravity measurements is an integral one (see Appen-
dix A), which, after discretization, fits the Bayesian inversion framework of section 2. Indeed,
this kind of problems is usually discretized on a finite grid of points X = (x1, . . . , xm), hence
the available data is of the form

(3.1) Y = GρX + ε,

where the p×m matrix G represents the discretized version of the observation operator for the
gravity field at s1, . . . , sp and we assume i.i.d Gaussian noise ε ∼ N (0, τ2Ip). The posterior
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may then be computed using (2.2) and (2.3). Note that the three-dimensional nature of the
problem quickly makes it intractable for traditional inversion methods as the resolution of
the inversion grid is refined. For example, when discretizing the Stromboli inversion domain
as Linde et al. (2014) into cubic cells of 50m side length, one is left with roughly 2 · 105

cells, which translates to posterior covariance matrices of size 160 GB (using 32 bits floating
point numbers). This characteristic of gravimetric inverse problems make them well-suited to
demonstrate the implicit representation framework which we introduced in subsection 2.2.
In subsection 3.3 we will show how our technique allows state-of-the-art adaptive design
techniques to be applied to large real-world problems.

3.1. Hyperparameter Optimization. When using Gaussian process priors to solve in-
verse problems, one has to select the hyperparameters of the prior. There exists different
approaches for optimizing hyperparameters. We here only consider maximum likelihood esti-
mation (MLE).

We restrict ourselves to GP priors that have a constant prior meanm0 ∈ R and a covariance
kernel k that depends on a prior variance parameter σ2

0 and other correlation parameters
θ0 ∈ Rt:

(3.2) k(x, y) = σ2
0r(x, y;θ0),

where r(., .;θ0) is a correlation function, such that r(x, x;θ0) = 1,∀x ∈ D. The maximum
likelihood estimator for the hyperparameters may then be obtained by minimizing the negative
marginal log likelihood (nmll) of the data, which in the discretized setting of section 2 may
be writen as (Rasmussen and Williams, 2006):

L (m0, σ0,θ0;y) =
1

2
log detR+

1

2

(
y −GmX

)T
R−1

(
y −GmX

)
+
n

2
log 2π,(3.3)

R :=
(
GKXXGT + τ2In

)
.(3.4)

Since only the quadratic term depends on m0, we can adapt concentration identities (Park
and Baek, 2001) to write the optimal m0 as a function of the other hyperparameters:

(3.5) m̂MLE
0 (σ0,θ0) =

(
1TmGTR−1G1m

)−1
yTR−1G1m,

where 1m denotes the m-dimensional column vector containing only 1’s. Here we always
assume R to be invertible. The remaining task is then to minimize the concentrated nmll:

(σ0,θ0) 7→ L
(
m̂MLE

0 (σ0,θ0) , σ0,θ0

)
.

Note that the main computational challenge in the minimization of (3.3) comes from the
presence of the m×m matrix KXX . In the following, we will only consider the case of kernels
that depend on a single length scale parameter: θ0 = λ0 ∈ R, though the procedure described
below can in principle be adapted for multidimensional θ0.
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In practice, for kernels of the form (3.2) the prior variance σ2
0 may be factored out of the

covariance matrix (for known noise variance), so that only the prior length scale λ0 appears
in this large matrix. One then optimizes these parameters separately, using chunking (sub-
section 2.3) to compute matrix products. Since σ0 only appears in an p × p matrix which
does not need to be chunked (the data size p being moderate in real applications), one can
use automatic differentiation libraries such as Paszke et al. (2019) to optimize it by gradient
descent. On the other hand, there is no way to factor out λ0 out of the large matrix KXX , so
we resort to a brute force approach by specifying a finite search space for it. To summarize,
we proceed here in the following way:

(i) (brute force search) Discretize the search space for the length scale by only allowing
λ0 ∈ Λ0, where Λ0 is a discrete set (usually equally spaced values on a reasonable
search interval);

(ii) (gradient descent) For each possible value of λ0, minimize the (concentrated) L over
the remaining free parameter σ0 by gradient descent.

We ran the above approach on the Stromboli dataset with standard stationary kernels
(Matérn 3/2, Matérn 5/2, exponential). In agreement with Linde et al. (2014), the observa-
tional noise standard deviation is 0.1 [mGal]. The optimization results for different values of
the length scale parameter are shown in Figure 6. The best estimates of the parameter values
for each kernel are shown in Table 1. The table also shows the practical range λ̄ which is
defined as the distance at which the covariance falls to 5% of its original value.

(a) (b)

Figure 6: (a) Concentrated negative marginal log-likelihood and (b) optimal hyperparameter
values for different length scale parameters λ0.

We asses the robustness of each kernel by predicting a set of left out observations using
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the other remaining observations. Figure 7 displays RMSE and negative log predictive density
for different proportion of train/test splits.

Hyperparameters Metrics

Kernel λ λ̄ m0 σ0 L Train RMSE

Exponential 1925.0 5766.8 535.4 308.9 -804.4 0.060
Matérn 3/2 651.6 1952.0 2139.1 284.65 -1283.5 0.071
Matérn 5/2 441.1 1321..3 2120.9 349.5 -1247.6 0.073

Table 1: Optimal hyperparameters (Stromboli dataset) for different kernels.

(a) (b)

Figure 7: (a) Root mean squared error and (b) negative log predictive density on test set for the
different models (with optimal hyperparameters). The full dataset contains 501 observations.

Note the the above procedure is more of a quality assurance than a rigorous statistical
evaluation of the model, since all datapoints were already used in the fitting of the hyperpa-
rameters. Due to known pathologies of the exponential kernel (MLE for length scale parameter
going to infinity), we choose to use the Matérn 3/2 model for the experiments of subsection 3.2
and subsection 3.3. The maximum likelihood estimator of the prior hyperparameters for this
model are m̂MLE

0 = 2139.1 [kg/m3], σ̂MLE
0 = 284.65 [kg/m3] and λ̂MLE

0 = 651.6 [m].

3.2. Posterior Sampling. Our implicit representation also allows for efficient sampling
from the posterior by using the residual kriging algorithm (Chilès and Delfiner, 2012; de Fou-
quet, 1994), which we here adapt to linear operator observations. Note that in order to sample
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a Gaussian process at m sampling points, one needs to generate m correlated Gaussian random
variables, which involves covariance matrices of size m2, leading to the same computational
bottlenecks as described in section 2. On the other hand, the residual kriging algorithm gen-
erates realizations from the posterior by updating realizations of the prior, as we explain next.

As before, suppose we have a GP Z defined on some compact Euclidean domain D and
assume Z has continuous sample paths almost surely. Furthermore, say we have p observa-
tions described by linear operators `1, ..., `p ∈ C(D)∗. Then the conditional expectation of
Z conditional on the σ-algebra Σ := σ (`1 (Z) , ..., `p (Z)) is an orthogonal projection (in the
L2-sense (Williams, 1991)) of Z onto Σ. This orthogonality can be used to decompose the
conditional law of Z conditional on Σ into a conditional mean plus a residual. Indeed, if we

let Z
′

be another GP with the same distribution as Z and let Σ
′

:= σ
(
`1

(
Z
′
)
, ..., `p

(
Z
′
))

,

then we have the following equality in distribution:

Zx | Σ = E [Zx | Σ] +
(
Z
′
x − E

[
Z
′
x | Σ

′
])
, all x ∈ D.(3.6)

Compared to direct sampling of the posterior, the above approach involves two main opera-
tions: sampling from the prior and conditioning under operator data. When the covariance
kernel is stationary and belongs to one of the usual families (Gaussian, Matérn), methods
exist to sample from the prior on large grids (Mantoglou and Wilson, 1982); whereas the
conditioning part may be performed using our implicit representation.

Remark 3.1. Note that in a sequential setting as in subsection 2.1, the residual kriging
algorithm may be used to maintain an ensemble of realizations from the posterior distribution
by updating a fixed set of prior realizations at every step in the spirit of Chevalier et al. (2015).

3.3. Sequential Experimental Design for Excursion Set Recovery. As a last example
of application where our implicit update method provides substantial savings, we consider
a sequential data collection task involving an inverse problem. Though sequential design
criterion for inverse problems have already been considered in the litterature (Attia et al.,
2018), most of them only focus on selecting observations to improve the reconstruction of the
unknown parameter field, or some linear functional thereof.

We here consider a different setting. In light of recent progress in excursion set estimation
(Azzimonti et al., 2016; Chevalier et al., 2013), we instead focus on the task of recovering an
excursion set of the unknown parameter field ρ, that is, we want to learn the unknown set
Γ∗ := {x ∈ D : ρ (x) ≥ T}, where T is some threshold. In the present context of Stromboli,
high density areas are related to dykes (previous feeding conduits of the volcano), while
low density values are related to deposits formed by paroxysmal explosive phreato-magmatic
events (Linde et al., 2014). To the best of our knowledge such sequential experimental design
problems for excursion set learning in inverse problems have not been considered elsewhere in
the litterature.

Remark 3.2. For the sake of simplicity, we focus only on excursion sets above some thresh-
old, but all the techniques presented here may be readily generalized to generalized excursion
sets of the form Γ∗ := {x ∈ D : ρ (x) ∈ I} where I is any finite union of intervals on the
extended real line.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Realizations from Matérn 3/2 GP prior (hyperparameters taken from Table 1)
with corresponding excursion sets: (left to right) Underground mass density field (arbi-
trary colorscale), high density regions and low density regions, thresholds: 2600 [kg/m3]
and 1700 [kg/m3].

We here consider a sequential setting, where observations are made one at a time and at
each stage we have to select which obsevation to make next in order to optimally reduce the
uncertainty on our estimate of Γ∗. Building upon Picheny et al. (2010); Bect et al. (2012a);
Azzimonti et al. (2019); Chevalier et al. (2014a), there exists several families of criteria to
select the next observations. Here, we restrict ourselves to a variant of the weighted IMSE
criterion (Picheny et al., 2010). The investigation of other state-of-the-art criteria is left for
future work. We note in passing that most Bayesian sequential design criteria involve poste-
rior covariances and hence tend to become intractable for large-scale problems. Moreover in
a sequential setting, fast updates of the posterior covariance are crucial. Those characteris-
tics make the problem considered here particularly suited for the implicit update framework
intoduced in subsection 2.2.

The weighted IMSE criterion selects next observations by maximizing the variance reduc-
tion they will provide at each location, weighted by the probability for that location to belong
to the excursion set Γ∗. Assuming that n data collection stages have already been performed
and using the notation of subsection 2.1, the variant that we are considering here selects the
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next observation location by maximizing the weighted integrated variance reduction (wIVR):

(3.7) wIVRn(s) =

∫
D

(
K(n)
xx −K(n+1)

xx [Gs]
)
pn(x)dx,

where s is some potential observation location, K(n+1) denotes the conditional covariance after
including a gravimetric observation made at s (this quantity is independent of the observed
data) and Gs is the forward operator corresponding to this observation. Also, here pn denotes
the coverage function at stage n (we refer the reader to Appendix B for more details on
Bayesian set estimation). After discretization, applying Theorem 2.1 turns this criterion into:

(3.8)
∑
x∈X

K
(n)
xXG

T
s

(
GsK

(n)
XXG

T
s + τ2I

)−1
GsK

(n)
Xxpn(x),

where we have assumed that all measurements are affected by N (0, τ2) distributed noise.

Note that for large-scale problems, the wIVR criterion in the form given in (3.8) becomes
intractable for traditional methods because of the presence of the full posterior covariance

matrix K
(n)
XX in the parenthesis. The implicit representation presented in subsection 2.2 can

be used to overcome this difficulty. Indeed, the criterion can be evaluated using the posterior
covariance multiplication routine Lemma 2.2 (where the small dimension q is now equal to
the number of candidate observations considered at a time, here 1 but batch acquisition sce-
narios could also be tackled). New observations can be seamlessly integrated along the way
by updating the representation using Algorithm 2.2.

Experiments and Results: We now study how the wIVR criterion can help to reduce
the uncertainty on excursion sets within the Stromboli volcano. We here focus on recovering
the volume of the excursion set instead of its precise location. To the best of our knowledge,
in the existing literature such sequential design criteria for excursion set recovery have only
been applied to small-scale inverse problems and have not been scaled to larger, more realistic
problems where the dimensions at play prevent direct access to the posterior covariance matrix.

In the following experiments, we use the Stromboli volcano inverse problem and work
with a discretization into cubic cells of 50 [m] side length. We use a Matérn 3/2 GP prior
with hyperparameters trained on real data (Table 1) to generate semi-realistic ground truths
for the experiments. We then simulate numerically the data collection process by computing
the response that results from the considered ground truth and adding random observational
noise. When computing sequential designs for excursion set estimation, the threshold that
defines the excursion set can have a large impact on the accuracy of the estimate. Indeed,
different thresholds will produce excursion sets of different sizes, which may be easier or harder
to estimate depending on the set estimator used. For the present problem, Figure 9 shows
the distribution of the excursion volume under the considered prior for different excursion
thresholds.

It turns out that the estimator used in our experiments (Vorob’ev expectation) behaves
differently depending on the size of the excursion set to estimate. Indeed, the Vorob’ev
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Figure 9: Distribution of excursion set volume under the prior for different thresholds. Size
is expressed as a percentage of the volume of the inversion domain.

expectation tends to produce a smoothed version of the true excursion set, which in our
situation results in a higher fraction of false positives for larger sets. Thus, we consider two
scenarios: a large scenario where the generated excursion sets have a mean size of 10% of the
total inversion volume and a small scenario where the excursion sets have a mean size of 5%
of the total inversion volume. One should note that those percentages are in broad accordance
with the usual size of excursion sets that are of interest in geology. The chosen thresholds are
2500 [kg/m3] for the large excursions and 2600 [kg/m3] for the small ones.

The experiments are run on five different ground truths, which are samples from a Matérn
3/2 GP prior (see previous paragraphs). The samples were chosen such that their excursion
set for the large scenario have volumes that correspond to the 5%, 27.5%, 50%, 72.5% and
95% quantiles of the prior excursion volume distribution for the corresponding threshold.
Figure 10 shows the prior excursion volume distribution together with the volumes of the
five different samples used for the experiments. Figure 11 shows a profile of the excursion
set (small scenario) for one of the five samples used in the experiments. The data collection
location from the 2012 field campaign (Linde et al., 2014) are denoted by black dots. The
island boundary is denoted by blue dots. Note that, for the sake of realism, in the experiments
we only allow data collection at locations that are situated on the island (data acquired on
a boat would have larger errors); meaning that parts of the excursion set that are outside of
the island will be harder to recover.
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(a) (large scenario) threshold: 2500 [kg/m3] (b) (small scenario) threshold: 2600[kg/m3]

Figure 10: Distribution of excursion volume (with kernel density estimate) under the prior
for the two considered thresholds, together with excursion volumes for each ground truth.

Experiments are run by starting at a fixed starting point on the volcano surface, and
then sequentially choosing the next observation locations on the volcano surface according to
the wIVR criterion. Datapoints are collected one at a time. We here only consider myopic
optimization, that is, at each stage, we select the next observation site sn+1 according to:

sn+1 = arg min
s∈Sc

wIVRn(s),

where ties are broken arbitrarily. Here Sc is a set of candidates among which to pick the
next observation location. In our experiments, we fix Sc to consist of all surface points within
a ball of radius 150 meters around the last observation location. Results are summarized
in Figures 12 and 13, which shows the evolution of the fraction of true positives and false
positives as a function of the number of observations gathered.

We see that in the large scenario (Figure 12) the wIVR criterion is able to correctly detect
70 to 80% of the excursion set (in volume) for each ground truth after 450 observations. For
the small scenario (Figure 13) the amount of true positives reached after 450 observations is
similar, though two ground truths are harder to detect.

Note that in Figures 12 and 13 the fraction of false negatives is expressed as a percentage
of the volume of the complementary of the true excursion set D \Γ∗. We see that the average
percentage of false positives after 450 observations tends to lie between 5 and 15%, with smaller
excursion sets yielding fewer false positives. While the Vorob’ev expectation is not designed
to minimize the amount of false positives, there exists conservative set estimators (Azzimonti
et al., 2019) that specialize on this task. We identify the extension of such estimators to
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(a) xy projection

(b) xz projection
(c) yz projection

Figure 11: Projection of the excursion set (small scenario) for the first ground truth. Island
boundary denoted in blue, observation location from previous field campaign denoted by black
dots. Distances are displayed in [m] and density in [kg/m3].

inverse problems as a promising venue for new research.
In both figures we also plot the fraction of true positives and false positives that result

from the data collection plan that was used in Linde et al. (2014). Here only the situation at
the end of the data collection process is shown. We see that for some of the ground truths
the wIVR criterion is able to outperform static designs by around 10%. Note that there are
ground truths where it performs similarly to a static design. We believe this is due to the
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(a) True positives (b) False positives

Figure 12: Evolution of true and false positives for the large scenario as a function of the
number of observations.

fact that for certain ground truths most of the information about the excursion set can be
gathered by spreading the observations across the volcano, which is the case for the static
design that also considers where it is practical and safe to measure.

Limiting Distribution: The dashed horizontal lines in Figures 12 and 13 show the de-
tection percentage that can be achieved using the limiting distribution. We define the limiting
distribution as the posterior distribution one were to obtain if one had gathered data at all
allowed locations (everywhere on the volcano surface). This distribution may be approxi-
mated by gathering data at all points of a given (fine grained) discretization of the surface.
In general, this is hard to compute since it requires ingestion of a very large amount of data,
but thanks to our implicit representation (subsection 2.2) we can get access to this object,
thereby, allowing new forms of uncertainty quantification.

In a sense, the limiting distribution represents the best we can hope for when covering
the volcano with this type of measurements (gravimetric). It gives a measure of the residual
uncertainty inherent to the type of observations used (gravimetric). Indeed, it is known that
a given density field is not identifiable from gravimetric data alone (see Blakely (1995) for
example). Even if gravity data will never allow for a perfect reconstruction of the excursion
set, we can use the limiting distribution to compare the performance of different sequential
design criteria and strategies. It also provides a mean of quantifying the remaining uncer-
tainty under the chosen class of models. A sensible performance metric is then the number of
observations that a given criterion needs to approach the minimal level of residual uncertainty
which is given by the limiting distributions.



UQ FOR LARGE LINEAR INVERSE PROBLEMS 23

(a) True positives (b) False positives

Figure 13: Evolution of true and false positives for the small scenario as a function of the
number of observations.

As a last remark, we stress that the above results and the corresponding reconstruction
qualities are tied to an estimator, in our case the Vorob’ev expectation. If one were to use
another estimator for the excursion set, those results could change significantly.

Posterior Volume Distribution: Thanks to our extension of the residual kriging algo-
rithm to inverse problems (see subsection 3.2), we are able to sample from the posterior at
the end of the data collection process. This opens new venues for uncertainty quantification
in inverse problems. For example, we can use sampling to estimate the posterior distribution
of the excursion volume and estimate the residual uncertainty on the size of the excursion set.

Figure 15 shows the empirical posterior distribution of the excursion volume for each of
the ground truths considered in the preceding experiments. When compared to the prior
distribution, Figure 10, one sees that the wIVR criterion is capable of significantly reducing
the uncertainty on the excursion volume. This shows that though the location of the excursion
set can only be recovered with limited accuracy, as shown in Figures 12 and 13, the excursion
volume can be estimated quite well. This is surprising given that the criterion used (wIVR)
is a very crude one and was not designed for that task. On the other hand, there exist more
refined criterion, like the so-called SUR strategies (sequential uncertainty reduction) (Chevalier
et al., 2014b; Bect et al., 2019), among which some were specifically engineered to reduce the
uncertainty on the excursion volume (Bect et al., 2012b). Even though those criterion are more
computationally challenging than the wIVR one, expecially in the considered framework, we
identify their application to large Bayesian inverse problem as a promising avenue for future
research.
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(a) xy projection

(b) xz projection (c) yz projection

Figure 14: Projection of the true excursion set (small scenario) and visited locations (wIVR
strategy) for the first ground truth. Island boundary is shown in blue. Distances are displayed
in [m] and density in [kg/m3].

4. Conclusion and Perspectives. Leveraging new results about sequential disintegrations
of Gaussian measures (Travelletti and Ginsbourger, 2022), we have introduced an implicit al-
most matrix free representation of the posterior covariance of a GP and have demonstrated fast
update of the posterior covariance on large grids under general linear functional observations.
Our method allows streamline updating and fast extraction of posterior covariance informa-
tion even when the matrices are larger than the available computing memory. Using our novel
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(a) (large scenario) threshold: 2500 [kg/m3] (b) (small scenario) threshold: 2600 [kg/m3]

Figure 15: Empirical posterior distribution (after 450 observations) of the excursion volume
for each ground truth. True volumes are denoted by vertical lines.

implicit representation, we have shown how targeted design criteria for excursion set recovery
may be extended to inverse problems discretized on large grids. We also demonstrated UQ on
such problems using posterior sampling via residual kriging. Our results suggest that using
the considered design criteria allows reaching close-to-minimal levels of residual uncertainty
using a moderate number of observations and also exhibit significant reduction of uncertainty
on the excursion volume. The GP priors used in this work are meant as a proof of concept
and future work should address the pitfalls of such priors, such as lack of positiveness of the
realisations and lack of expressivity. Other promising research avenues include extension to
multivariate excursions Fossum et al. (2021) and inclusion of more sophisticated estimators
such as conservative estimates Azzimonti et al. (2019). On the dynamic programming side,
extending the myopic optimization of the criterion to finite horizon optimization in order to
provide optimized data collection trajectories is an obvious next step which could have sig-
nificant impact on the geophysics community. Also, including location dependent observation
costs such as accessibility in the design criterion could help provide more realistic observation
plans.
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lation of the ambient magnetic field by gaussian processes. IEEE Transactions on Robotics,
PP.

Stuart, A. M. (2010). Inverse problems: A Bayesian perspective. Acta Numerica, 19:451–559.
Tarantola, A. and Valette, B. (1982). Generalized nonlinear inverse problems solved using the

least squares criterion. Reviews of Geophysics, 20(2):219–232.
Tarieladze, V. and Vakhania, N. (2007). Disintegration of Gaussian measures and average-

case optimal algorithms. Journal of Complexity, 23(4):851 – 866. Festschrift for the 60th
Birthday of Henryk Woźniakowski.
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Appendix A. Forward operator for Gravimetric Inversion. Given some subsurface
density ρ : D → R inside a domain D ⊂ R3 and some location s outside the domain, the
vertical component of the gravitational field at s is given by:

Gs [ρ] =

∫
D
ρ(x)g(x, s)dx,(A.1)

with Green kernel

(A.2) g(x, s) =
x(3) − s(3)

‖x− s‖3
,

where x(3) denotes the vertical component of x.
We discretize the domain D into m identic cubic cells D = ∪mi=1Di with centroids X =

(X1, . . . , Xm) and assume the mass density to be constant over each cell, so the field ρ may
be approximated by the vector ρX . The vertical component of the gravitational field at s is
then given by: ∫

∪m
i=1Di

g(x, s)ρ(x)dx ≈
m∑
i=1

(∫
Di

g(x, s)dx

)
ρXi := GsρX .

Integrals of Green kernels over cuboids may be computed using the Banerjee formula
(Banerjee and Das Gupta, 1977).

Theorem A.1 (Banerjee). The vertical gravity field at point (x0, y0, z0) generated by a prism
with corners (xh, xl, yh, yl, ...) of uniform mass density ρ is given by:

gz =
1

2
γNρ

[
x log

(√x2 + y2 + z2 + y√
x2 + y2 + z2 − y

)
+ y log

(√x2 + y2 + z2 + x√
x2 + y2 + z2 − x

)
− 2z arctan

( xy

z
√
x2 + y2 + z2

)]∣∣∣∣∣
xh−x0

xl−x0

∣∣∣∣∣
yh−y0

yl−y0

∣∣∣∣∣
zh−z0

zl−z0

Appendix B. Bayesian Inversion and Bayesian Set Estimation. Given a generic Bayesian
linear inverse problem with unknown function ρ : D → R and prior Z, there exists several
approaches to approximate the excursion set Γ∗ = {x ∈ D : ρ (x) ≥ T} using the posterior.
For example, a naive estimate for Γ∗ may be obtained using the plug-in estimator :

Γ̂plug-in := {x ∈ D : m̃x ≥ T},

where m̃x denotes the posterior mean function of the GP prior. In this work, we will focus on
recently developed more sophisticated approaches to Bayesian excursion set estimation (Azz-
imonti et al., 2016; Chevalier et al., 2013) based on the theory of random sets (Molchanov,
2005). We here briefly recall some theory taken from the aforementioned source.
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In the following, let Z̃ denote a random field on D that is distributed according to the
posterior distribution. Then, the posterior distribution of the field gives rise to a random
closed set (RACS):

(B.1) Γ := {x ∈ D : Z̃x ≥ T}.

One can then consider the probability for any point in the domain to belong to that random
set. This is captured by the coverage function:

pΓ :D → [0, 1]

x 7→ P [x ∈ Γ] .

The coverage function allows us to define a parametric family of set estimates for Γ, the
Vorob’ev quantiles:

(B.2) Qα := {x ∈ D : pΓ(x) ≥ α}.

The family of quantiles Qα gives us a way to estimate Γ by controlling the (pointwise) proba-
bility α that the members of our estimate lie in Γ. There exists several approaches for choosing
α. One could for example choose it so as to produce conservative estimates of the excursion
set (Azzimonti et al., 2019). Another approach is to choose it such that the volume of the
resulting quantile is equal to the expected volume of the excursion set. This gives rise to the
Vorob’ev expectation.

Definition B.1. (Vorob’ev Expectation) The Vorob’ev expectation is the quantile QαV with
threshold αV chosen such that

µ(Qα) ≤ E[V (Γ)] ≤ µ(QαV ), ∀α > αV ,

where V (·) denotes the volume under the Lebesgue measure on Rd.
Note that the expected excursion volume may be computed using Robbins’s theorem, which
states that under suitable conditions:

V̄Γ := E[λ(Γ)] =

∫
D
pΓ(x)dx.

We refer the reader to Robbins (1944) and Molchanov (2005) for more details.
To illustrate the various Bayesian set estimation concepts introduced here, we apply them

to a simple one-dimensional inverse problem, where one wants to estimate the excursion set
above 1.0 of a function f : [−1, 1]→ R after 3 pointwise evaluations of the function have been
observed. Results are shown in Figure 16
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Figure 16: Bayesian set estimation for one-dimensional example. Excursion threshold in
red. Posterior after 3 pointwise observations is considered. For left to right, top to bottom:
i) True function (black), posterior and 2σ confidence region (blue). True excursion region
is highlighted in black and plug-in estimate is highlighted in blue. ii) Posterior excursion
probability / coverage function (dark red). ii) Estimated excursion regions using Vorob’ev
quantiles at level α = 0.5 (dark blue) and α = 0.75 (light blue). iv) Estimated excursion
region using Vorob’ev expectation, Vorob’ev threshold is αV = 0.4.

Appendix C. Proofs.

Proof. (Lemma 2.2) We proceed by induction. The case n = 1 follows from (2.3). The
induction step is directly given by Theorem 2.1.

Proof. (Lemma 2.4) The product is computed using Algorithm 1. It involves multiplication
of A with the prior covariance, which costs O

(
m2q

)
and multiplication with all the previous

intermediate matrices, which contribute O (mpcq) and O
(
p2
cq
)

respectively, at each stage.

Proof. (Lemma 2.5) The cost of computing the i-th pushforward K̄i isO
(
m2pc + i(mp2

c + p3
c)
)
.

Summing this cost for all stages i = 1, . . . , n then gives O
(
m2P +mP 2 + p2pc

)
. To that cost,

one should add the cost of computing R−1
i , which costs O

(
p3
c

)
at each stage, yielding a

O
(
Pp2

c

)
contribution to the total cost, which is dominated by P 2pc since pc < P .

Appendix D. Supplementary Experimental Results. We here include more detailed
analysis of the results of subsection 3.3 that do not fit in the main text.
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Figures 12 and 13 showed that there are differences in detection performance for the
different ground truths. These can be better understood by plotting the actual location of the
excursion set for each of the ground truths as well as the observation locations chosen by the
wIVR criterion, as done in Figure 17. One sees that the (comparatively) poor performance
shown by Figure 13 for Sample 2 in the small scenario may be explained by the fact that, for
this ground truth, the excursion set is located mostly outside of the accessible data collection
zone (island surface), so that the strategy is never able to collect data directly above the
excursion.
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(a) sample 1: small scenario (b) sample 1: large scenario

(c) sample 2: small scenario (d) sample 2: large scenario

(e) sample 3: small scenario (f) sample 3: large scenario

(g) sample 4: small scenario (h) sample 4: large scenario

(i) sample 5: small scenario (j) sample 5: large scenario

Figure 17: True excursion set and visited locations (wIVR strategy). Island boundary is
shown in blue.
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