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ABSTRACT (241 words) 

 

Background: For the past decade 18F-Fluoro-ethyl-L-tyrosine (FET) and 18F-fluoro-deoxy-

glucose  (FDG) positron emitting tomography (PET) have been used for the assessment of 

patients with brain tumor. However, direct comparison studies only reported limited number 

of patients. Our purpose was to compare the diagnostic performance of FET and FDG-PET. 

Methods: We examined studies published between January 1995 and January 2015 in the 

PUBMED database. To be included the study should: 1) use FET and FDG-PET for the 

assessment of patients with isolated brain lesion 2) use histology as the gold standard. 

Analysis was performed on a per patient basis. Study quality was assessed with STARD and 

QUADAS criteria. 

Results: Five studies (119 patients) were included. For the diagnosis of brain tumor, FET-

PET demonstrated a pooled sensitivity of 0.94 (95% confidence interval [CI]: 0.79-0.98) and 

pooled specificity of 0.88 (95%CI:0.37-0.99), with an area under the curve (AUC) of 0.96 

(95%CI:0.94-0.97), a positive likelihood ratio (LR+) of 8.1 (95%CI:0.8-80.6) and negative 

likelihood ratio (LR–) of 0.07 (95%CI: 0.02-0.30) while FDG-PET demonstrated a sensitivity 

of 0.38 (95%CI:0.27-0.50) and specificity of 0.86 (95%CI:0.31-0.99), with an AUC of 0.40 

(95%CI:0.36-0.44), a LR+ of 2.7 (95%CI:0.3-27.8) and LR– of 0.72 (95%CI:0.47-1.11). 

Target-to-background ratios of either FDG or FET however allow distinction between low 

and high-grade gliomas (p>0.11). 

Conclusions: 

For brain tumor diagnosis, FET-PET performed much better than FDG and should be 

preferred when assessing a new isolated brain tumor. For glioma grading, both tracers 

however showed similar performances. 

 



N-O-D-15-00235R1 

	
   3	
  

Keywords: PET, brain tumor, meta-analysis, 18F-Fluoro-ethyl-tyrosine, 18F-Fluoro-deoxy-

glucose 

 



N-O-D-15-00235R1 

	
   4	
  

INTRODUCTION 

Primary brain tumors have an annual age-adjusted incidence rate of 28 per 100’000 in adults. 

Gliomas represent 28% of all tumors but 80% of malignant tumors 1. The World Health 

Organization (WHO) currently divides gliomas in four grades. Grade I and II tumors are 

considered as low-grade tumors that have a prolonged clinical course. Grade III (anaplastic 

glioma) or grade IV (glioblastoma) tumors are considered as high-grade lesions rapidely 

leading to death when left untreated 2. Adequate tumor diagnosis and grading is thus crucial to 

initiate proper treatment and improve patient’s outcome. 

Molecular imaging with positron-emission tomography (PET) helps to identify and 

delineate areas of tumor with increased growth activity 3. PET with 18F-fluoro-deoxy-glucose 

(FDG) was first used to detect and distinguish between low and high-grade tumors 4. 

However, FDG-PET is limited by high uptake in normal brain and unspecific uptake in 

inflammatory benign lesions 5. 18F-fluoro-ethyl-L-tyrosine (FET) is an artificial amino acid, 

which provides well-contrasted images in both high- and low-grade tumors while decreasing 

effective dose as compared to FDG 6. FET-PET demonstrated value for guiding biopsy 7,8, for 

diagnosing primary brain tumor 9,10, for directing radiotherapy 11 and for distinguishing 

between tumor recurrence and radionecrosis after initial therapy 12,13. Moreover, dynamic 

FET-PET analysis helps in differentiating low- from high-grade tumors 9,14,15 and in 

predicting patient’s outcome 16-18. 

Since FDG-PET is poorly reliable in predicting the neoplasic nature of a lesion due to 

uptake by inflammatory lesions, amino acid tracers such as FET have been developed in the 

past decades to increase specificity. However, to date, only a few studies limited to small 

patient populations directly compared FDG and FET diagnostic value.  

The purpose of this report is firstly to systematically review studies of the literature 

and perform a meta-analysis on diagnostic performance of FDG and FET-PET in patients 
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with brain tumors, and secondly to assess whether tracer uptake may allow distinction 

between non-tumor and tumor lesions. 

MATERIALS AND METHODS 

Data Sources and Search 

As the first reported study about FET synthesis was published in 1999 by Wester et al. 19, we 

performed a systematic search in the medical database PUBMED for English publications 

from January 1995 to January 2015 using the following search: “(“O-(2-fluoroethyl)tyrosine” 

[all fields] OR “(18F)fluoroethyltyrosine” [all fields] OR “Fluorodeoxyglucose F18” [Mesh]) 

AND (“PET” [all fields]) AND (“Glioma” [Mesh]) AND (“Humans” [Mesh])”. Errata, 

reviews, preclinical, animal, and nonradiopharmaceutical studies were excluded. 

 

Study Selection 

We considered studies using FET and FDG-PET for the assessment of patients with suspected 

brain tumors. Inclusion criteria were: 1) FET and FDG-PET used in the same patients with a 

newly diagnosed brain lesion or patients with suspicion of recurrence of a brain tumor; 2) 

patients who underwent or did not undergo radiotherapy, surgery, or chemotherapy before the 

PET studies; 3) use of histology as the gold standard to assess diagnostic performance. 

Studies in abstract form, case reports and studies including fewer than 10 patients were 

excluded.  

 

Data Extraction and Quality Assessment 

For each selected publication we extracted the following information: first author, year of 

publication, study population (number of patients who underwent FET and FDG for the 

assessment of brain tumor, sex, age, and histology), FET and FDG results (positive or 

negative, and target-to-background [TBR] ratio when reported). When possible, data were 
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recorded at the patient level. We used both checklists of the Quality Assessment of Diagnostic 

Accuracy Studies (QUADAS, scale 0–14) and Standards for Reporting Studies of Diagnostic 

Accuracy (STARD, scale 0–25) to assess study quality and applicability 20,21. 

 

Statistical Analysis 

All analyses were performed at the patient level with Stata 13.1 software (StataCorp LP, 

College Station, TX). A p-value less than 0.05 was considered statistically significant. 

Continuous variables are presented as mean± standard deviation (SD) or median (interquartile 

range [IQR]). Dichotomized histologic diagnosis (tumor or not, glioma or not) according to 

the classification of tumors of the central nervous system of the WHO 2 and the third edition 

of the International Classification of Diseases for Oncology (ICD-O-3) was used as the gold 

standard. Gliomas were defined by ICD-O-3 codes 9380-9384, 9391-9460, and 9480. Each 

study had its own criteria for defining FET and FDG-PET positivity. The bivariate mixed-

effects regression model was applied for data synthesis. Average sensitivity, specificity, 

positive and negative likelihood ratio (LR), diagnostic odds ratio (OR) and the respective 95% 

confidence intervals (95%CI) were calculated from the maximum likelihood estimates and 

graphically assessed by summarized receiver-operating-characteristic (SROC) curves. Forest 

plots, X2 test and Cochran Q were used to graphically and statistically assess heterogeneity of 

the results between studies. To statistically quantify inconsistency of the results between the 

studies we used the I2 statistic, which describes the percentage of total variation across studies 

attributable to heterogeneity rather than chance. The Funnel plot asymmetry test was used to 

assess publication bias. Finally after pooling all the patients, a ROC curve comparison 

between FDG and FET-PET performance for the diagnostic of either brain tumor versus non-

tumor lesions and brain glioma versus non-glioma lesions was performed. By convention, the 

small letter n and the capital letter N were used in the figures and text when describing the 
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number of studies (n) and the number of patients (N). 

Secondary analyses were performed at the patient level to compare quantitative FDG 

and FET uptake values. Patients were classified in three groups according to histological 

diagnosis (non-glioma tumor, glioma or non-tumor lesion). We then compared, among the 

groups, mean TBR (mean activity of the lesion divided by mean activity of the contralateral 

brain) or maximum TBR (maximum activity of the lesion divided by mean activity of the 

contralateral brain) measured on FDG and FET-PET images by Kruskall-Wallis test. We also 

compared mean TBR and maximum TBR values in glioma according to WHO grade to assess 

the ability of FDG and FET-PET to distinguish between low and high-grade gliomas. 

 

RESULTS 

Study Characteristics 

In total, 253 papers were identified in the PUBMED database. After exclusion of review 

articles (n [studies]= 16), case reports (n= 31), preclinical and animal studies (n= 25), errata 

and comments (n=5), 176 studies about the use of PET in humans with brain tumors were 

found. After applying the inclusion criteria, 3 studies remained, excluding reports using FDG-

PET alone (n=56), FET-PET alone (n=45) or other tracers alone or in combination with FDG-

PET (n=72). Two additional studies were found through reference screening of the papers 

(Figure 1). 

Overall, five studies including 190 patients (Table 1) respected the inclusion criteria 

and were included 22-26. In one study 26 all patients did not have both FDG and FET-PET for 

evaluation, only patients who underwent both imaging modalities (N=23) were thus included 

in the analysis. In one study 24, the histological diagnosis could not be established in three 

patients, and therefore only the remaining 18 patients were included in the analysis. Finally, 

in the study by Floeth et al. 22, we included 11 of 14 reported patients who had both FDG and 
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FET-PET examinations. Thus 119 patients remained (median age: 45[37-57] years, mean age: 

46±14 years, sex ratio: 2.2 M:F). Of these patients, 90 patients had a brain tumor, of whom 43 

had a low-grade glioma and 39 a high-grade glioma. Low-grade gliomas included pilocytic 

astrocytoma (N=1), ganglioglioma (N=1), astrocytomas (N=20), oligoastrocytomas (N=7), 

oligodendrogliomas (N=10) and four unspecified low-grade gliomas. High-grade gliomas 

included anaplastic astrocytomas (N=14), anaplastic oligoastrocytomas (N=5), anaplastic 

oligodendroglioma (N=1) and glioblastomas (N=19). Eight patients had a non-glioma brain 

tumor: metastasis (N=3), lymphoma (N=2), invasive adenoma (N=1), ganglioneuroblastoma 

(N=1) and meningioma (N=1). Twenty-nine patients had non-tumoral lesions including 9 

abscesses or empyemas, 4 hemorrhages, 2 encephalitis, 1 cortical dysplasia and 13 

unspecified lesions. 

 

Performances of FDG and FET-PET 

From the five selected studies, four with a total of 104 patients were used in the bivariate 

mixed-effects regression model. The fifth one 25 could not be included because it did not 

report any true-negative or false-positive case to compute specificity. However, the pooled 

results of the five studies (N=119 patients) were used to compare area under the curve of FDG 

and FET-PET. Criteria for FET and FDG-PET positivity varied between studies. Positivity 

definition was based on qualitative visual analysis as compared to non-tumor brain 

background in four studies 23-26 or on quantitative assessment of TBR using defined threshold 

in one study 22.  

 Including four of the five selected studies, FDG-PET demonstrated an overall 

sensitivity of 0.38 (95%CI: 0.27–0.50) and specificity of 0.86 (95%CI: 0.31–0.99), with an 

area under the curve of 0.40 (95%CI: 0.36–0.44), positive LR of 2.7 (95%CI: 0.3–27.8), 

negative LR of 0.72 (95%CI: 0.47–1.11) and diagnostic OR of 4 (95%CI: 0–58) for the 
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diagnosis of brain tumoral versus non-tumoral lesions. FET-PET demonstrated a sensitivity of 

0.94 (95%CI: 0.79–0.98) and specificity of 0.88 (95%CI: 0.37–0.99), with an area under the 

curve of 0.96 (95%CI: 0.94–0.97), positive LR of 8.1 (95%CI: 0.8–80.6), negative LR of 0.07 

(95%CI: 0.02–0.30) and diagnostic OR of 113 (95%CI: 4–2975).  

 For the diagnosis of glioma versus non-glioma lesions, FDG-PET demonstrated an 

overall sensitivity of 0.35 (95%CI: 0.11–0.71) and specificity of 0.65 (95%CI: 0.48–0.79), 

with an area under the curve of 0.60 (95%CI: 0.56–0.65), positive LR of 1.0 (95%CI: 0.4–2.7) 

negative LR of 1.0 (95%CI: 0.58–1.73) and diagnostic OR of 1.0 (95%CI: 0–5) whilst FET-

PET demonstrated an overall sensitivity of 0.92 (95%CI: 0.75–0.98) and specificity of 0.62 

(95%CI: 0.43–0.79), with an area under the curve of 0.89 (95%CI: 0.86–0.91), positive LR of 

2.4 (95%CI: 1.4–4.1), negative LR of 0.13 (95%CI: 0.04–0.48) and diagnostic OR of 18 

(95%CI: 4–92). 

 By pooling patients’ results of the five selected studies (N=119), FET-PET’s area 

under the curve (0.85 [95%CI: 0.77–0.93]) was significantly higher than FDG-PET’s area 

under the curve (0.56 [95%CI: 0.47–0.66], p<0.0001) for the diagnosis of brain tumor (Figure 

2). For the diagnosis of glioma, FET-PET’s area under the curve (0.76 [95%CI: 0.67–0.84]) 

was also significantly higher than FDG-PET’s area under the curve (0.49 [95%CI: 0.40–0.58], 

p<0.0001). 

 

Assessment of Heterogeneity, Inconsistency and Quality Studies 

For the differentiation between brain tumoral and non-tumoral lesions, a Forest plot did not 

show any significant performance heterogeneity (Cochran Q=3.4, p=0.092) but mild 

inconsistency between studies (I2 41% attributable to heterogeneity rather than chance) for 

FDG-PET. There was neither performance heterogeneity (Cochran Q=1.3, p=0.27) nor 

inconsistency (I2 0%) between studies for FET-PET. For the diagnosis of brain glioma versus 
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non-glioma lesions, a Forest plot showed major inconsistency between studies for FDG-PET 

(I2 100%) but not for FET-PET (I2 0%). This was mainly due to heterogeneity and 

inconsistency of sensitivity (Cochran Q=9.10, p=0.03 and I2 67%) due to the high sensitivity 

value of FDG-PET in the study by Floeth et al. 22 that includes only high grade gliomas with 

no false negative case (Figure 3). Funnel plots did not demonstrate publication bias for FDG 

(p>0.051) or FET (p>0.18) PET analysis. QUADAS and STARD scores for the assessment of 

study quality are reported in Figure 4. 

 

Quantitative analysis  

Among the five studies selected, only two (N=63) reported mean and maximum TBR values 

of the lesions for both FDG and FET-PET. Among these 63 cases, 47 gliomas, 2 non-glioma 

tumors and 14 non-tumoral lesions were included. Of the 47 gliomas, 22 were low-grade and 

25 high-grade lesions. Neither mean TBR (1.3±0.5 vs. 1.1±0.5, p=0.14) nor maximum TBR 

(2.0±1.0 vs. 1.8±0.9, p=0.32) on FDG-PET were significantly different between tumoral and 

non-tumoral lesions. On FET-PET images, both mean TBR (2.1±0.8 vs. 1.4±0.3, p=0.0015) 

and maximum TBR (2.9±1.2 vs. 1.9±0.5, p=0.0007) were significantly higher in tumoral than 

in non-tumoral lesions. 

 There was no statistically significant difference of mean TBR (2.1±0.9 vs. 2.0±0.1, p 

=0.69) and maximum TBR values (3.0±1.2 vs. 2.6±0.1, p=0.40) on FET-PET images between 

glial and non-glial tumors. FDG mean TBR (1.3±0.5 vs. 1.7±1.3, p=0.88) and maximum TBR 

values (2.0±0.9 vs. 2.5±1.9, p=0.88) were also not significantly different between glial and 

non-glial tumors.  

 Taking into account all gliomas (N=47), while mean TBR (2.1±0.9 vs. 1.4±0.3, p 

=0.003) and maximum TBR values (3.0±1.2 vs. 1.9±0.5, p=0.0009) on FET-PET images were 

significantly higher than in non-tumoral lesions, neither mean TBR (1.3±0.5 vs. 1.1±0.6, 
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p=0.15) nor maximum TBR values (2.0±0.9 vs. 1.8±0.9, p=0.33) on FDG-PET images were 

significantly different. However, both mean TBR and maximum TBR on FDG and FET-PET 

images were significantly higher in high-grade lesion (N=25) when compared to low-grade 

lesions (N=22) (Figure 5). ROC curve analysis showed that a mean TBR of at least 1.4 and a 

maximum TBR of at least 1.8 had the best value to distinguish between low and high-grade 

glioma with FDG-PET reaching a sensitivity, specificity and accuracy of 0.60, 0.91, 0.74 and 

0.72, 0.73, 0.72 respectively. For FET-PET we observed that a mean TBR of at least 2.0 and a 

maximum TBR of at least 3.0 reached a sensitivity, specificity and accuracy of 0.88, 0.73, 

0.81 and 0.80, 0.82, 0.81 respectively. Performances of these thresholds for glioma grading 

were not different between FDG and FET-PET using mean TBR (p=0.22) or maximum TBR 

(p=0.11). 

 

DISCUSSION 

The main results of this meta-analysis may be summarized as follows: (1) FET-PET 

demonstrated significantly higher diagnostic performance for the diagnosis of brain tumor 

(AUC of 0.96 vs. 0.40, p<0.0001) and glioma (AUC of 0.89 vs. 0.60, p<0.0001) as compared 

to FDG-PET; (2) Mean and maximum TBR values on FET-PET can distinguish between 

tumoral and non-tumoral lesions in the brain while mean and maximum TBR values on FDG-

PET cannot; and (3) Both FDG and FET quantitative parameters allow distinction between 

low and high-grade gliomas. 

Due to the known lack of specificity of conventional MRI to non-invasively 

characterize brain lesions, metabolic imaging using PET tracers has been increasingly studied. 

FDG-PET being limited by high uptake in normal brain and unspecific uptake in 

inflammatory benign lesions, radiolabeled amino acids tracers such as 11C-methionine (MET) 

and 18F-fluoro-ethyl-tyrosine have been developed to overcome these limitations. FET-PET 
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has demonstrated its value for the diagnosis 9,10 and grading 9,14,15 of newly identified brain 

tumor, for the diagnosis 27 and grading 28 of tumor recurrence, for the differentiation between 

brain tumor recurrence and radiation necrosis 12,13 and for the assessment of treatment 

response 29 with lower radiation burden than FDG-PET 6. However, only few studies with 

small patient populations report direct comparison of FET and FDG-PET for the qualitative 

and quantitative characterization of brain lesions in humans. In the presented meta-analysis, 

we demonstrated the strong advantage of FET-PET over FDG-PET for the diagnosis of brain 

tumors (AUC of 0.96 vs. 0.40, p<0.0001) and gliomas (AUC of 0.89 vs. 0.60, p<0.0001). 

This is in line with a recent meta-analysis reporting the good performance of FET-PET with 

an area under the curve of 0.84 (95%CI: 0.80-0.87) for the initial assessment of patients with 

new isolated brain lesions 9. Regarding clinical applications, due to positive and negative 

likelihood ratios of 2.7 (95%CI: 0.3-27.8) and 0.72 (95%CI: 0.47-1.11) respectively, FDG-

PET qualitative analysis has very small informational value for the differentiation of brain 

tumors versus non-tumoral lesions. In contrast, FET-PET positive and negative likelihood 

ratios (8.1 [95%CI: 0.8-80.6] and 0.07 [95%CI: 0.02-0.30], respectively) indicate that FET-

PET may help to exclude and to confirm the diagnosis of brain tumor. The higher accuracy 

for brain tumor diagnosis was also demonstrated with other radiolabeled amino acid tracers as 

compared to FDG-PET 30-33, especially in a recent meta-analysis by Zhao et al. 33 who argued 

for the excellent diagnostic performance of MET while conceding the major inconvenience of 

tracer supply. 

Regarding quantitative analysis, only mean and maximum TBR values on FET-PET 

images had the ability to distinguish between tumoral and non-tumoral brain lesions, mainly 

due to high FDG uptake in inflammatory lesions such as abscess, as previously 

demonstrated5. Based on the small number of cases where uptake quantification of the two 

tracers was performed, respective values for the differentiation of non-glioma versus glioma 
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tumors could not reliably be assessed in our study. However, both tracers were able to 

distinguish between low grade and high-grade gliomas, which is consistent with previously 

published studies on FET-PET 9,14,15,28,34 and FDG-PET 4,35-38. Though mean and maximum 

TBR cut-off values were different between FDG and FET-PET, performances were similar 

with both tracers (p>0.11) and close to those reported in the literature 4,14,15. Similar 

performance for distinguishing low and high-grade gliomas has also been reported for FDG-

PET and MET-PET 35,37. Among current amino acid tracers, the performance of FET-PET for 

glioma grading seems however to be better than 18F-fluoro-dihydroxy-phenalalanine 

(FDOPA) 39 and MET 40, the use of time-activity curve parameters from dynamic FET-PET 

acquisition 14,28,34,40 even improving tumor characterization. It is however important to take 

into account that glioma is a heterogeneous histological family. Oligodendroglial component 

may have a singular behavior both on FET-PET 41 and FDG-PET 35 that may impair 

diagnostic accuracy for both examination types. In a recent study, Manabe et al. 35 thus 

concluded that the results of PET imaging should be revised after obtaining histology report 

to better classify patient recurrence risk. 

Substantial data in the literature also demonstrated the value of FET-PET for guiding 

and evaluating response to therapy, and for the prediction of patient outcome. FET-PET may 

help to delineate tumoral volume before radiotherapy 11,42, to monitor the effects of 

radiotherapy 43,44 and chemotherapy 45,46. The prognostic value of FET-PET has also been 

demonstrated for the assessment of low-grade and high-grade gliomas. Floeth et al. 17 first 

found that low-grade gliomas exhibiting a diffuse tumoral pattern with positive uptake on 

baseline FET-PET have a significant lower progression-free survival. Two recent studies 

reported that dynamic FET-PET analysis could also help in identifying low-grade gliomas at 

high-risk of progression 47,48. FET-PET is also useful to evaluate patient prognosis in the 

preoperative, postoperative and pre-radiative phases of high-grade gliomas management 
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16,29,49-53. Untreated gliomas with high TBR on baseline static FET-PET images have a lower 

overall survival 49, while grade III astrocytoma tumors with an early minimal time-to-peak on 

dynamic FET-PET images exhibit similar survival than glioblastoma 50. Higher postoperative 

residual tumor volume on FET-PET and decreasing time-activity-curve 51,52 as well as 

decreasing time-activity-curve prior re-irradiation of recurrent glioblastoma 53 were also 

related to impaired patient survival. In contrast, early TBR decrease on serial static FET-PET 

examinations 16,29,54 but not dynamic FET-PET parameters changes 54 after 

radiochemotherapy in glioblastoma was associated with a better patient survival. Though the 

prognostic value of FDG-PET has also been reported in newly diagnosed and recurrent 

gliomas prior therapy 55-57 and for response assessment 58, it seems to be lower than for amino 

acid tracers PET 37,59. 

 Regarding the development of hybrid PET/MR imaging, it is furthermore worthy to 

mention that the respective value of combining FDG and FET-PET with MRI techniques 

cannot be deduced from this meta-analysis. FET-PET increases MRI accuracy 7,8 to guide 

biopsies, and notably helps in determining the outcome of patients with low-grade glioma 17. 

However, only few studies report combination of multiparametric MRI with quantitative 

analysis of FDG 38 or FET-PET 41,60,61. Yoon et al. 38 concluded that in case of concordant 

results of multiparametric MR techniques for high-grade lesions, the additive value of FDG 

PET may be limited. In contrast, combination of dynamic FET-PET with diffusion MRI 

improves glioma grading 41 and improves presurgical biopsy guidance 61 as compared to a 

single modality approach. Furthermore, spatial congruence of increased FET or FDOPA 

uptake area and abnormal area on enhanced MRI 62 or perfusion weighted MRI 60,63 are 

different, highlighting that practical guidelines for interpreting multimodal imaging have to be 

developed to ensure accurate glioma classification. The diagnostic superiority of combined 

FET-PET/MRI over FDG-PET/MRI in a same patient population also remains to be 
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demonstrated. Finally, although Heinzel et al. 64 demonstrated that the combined use of FET-

PET and conventional MRI was cost-effective in the planning of biopsies of glioma, the cost-

effectiveness of multiparametric MRI associated or not with FDG or FET-PET remains to be 

determined.  

Our systematic review of the literature only found five studies that directly compare 

FDG and FET-PET for assessing patients with suspected brain tumor. While all achieved a 

good quality (QUADAS scores >10 and STARD scores >18), the small number of studies 

resulted in substantial inconsistency between study results for FDG-PET but not for FET-

PET. No publication bias was observed for both tracers. There were however some 

limitations. First, only 4 studies were included in the meta-analysis because of the absence of 

true negative and false negative cases in one study. Second, due to the small number of 

pooled patients, a definitive conclusion about the value of FDG and FET TBR to differentiate 

gliomas (N= 47) versus non-glioma tumors (N= 2) cannot be reliably made. Though we did 

not observe patients characteristics overlap, the two studies that gave TBR values both on 

FDG and FET-PET came from the same institution, emphasizing the need of multicenter 

prospective studies to overcome limitations of single center multiple retrospective reports. 

Multicenter prospective studies could also assess the comparative value of parameters 

extracted from dynamic PET acquisition (i.e time-activity-curve for FET or cerebral 

metabolic rate of glucose for FDG) and from multiparametric MRI for the diagnostic and 

prognostic assessment of patients with brain tumors, which could not be performed hereby. 

On the basis of our systematic review and meta-analysis we could recommend that 

though FET-PET should be preferred to FDG-PET for the diagnosis of brain tumor and 

glioma. Moreover, FET and FDG TBR may be used indifferently to distinguish between low 

and high-grade gliomas. Multicentric multitracer studies should be developed to assess the 

respective values of dynamic PET parameters notably to distinguish between gliomas and 
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non-glioma tumors. Regarding the emergence of hybrid PET/MR imaging, development of 

integrated interpretation guidelines and evaluation of diagnostic performance and cost-

effectiveness of multiparametric MRI in comparison or in combination with PET is also 

mandatory in order to avoid wasting time and funds. 

 

CONCLUSION 

This systematic review and meta-analysis indicate that FET-PET has significant higher 

diagnostic performance for the diagnosis of brain tumor and glioma than FDG-PET. Although 

both FDG and FET quantitative parameters allow distinction between low and high-grade 

tumors, only TBR values on FET-PET can distinguish between tumoral and non-tumoral 

lesions, confirming FET-PET superiority over FDG-PET for brain lesion characterization. 

Additive value and cost-effectiveness of the use of FDG and FET-PET in combination with 

multiparametric MRI in the same population have to be assessed considering the development 

of hybrid PET/MR imaging and should provide new insights to reduce diagnostic time and 

cost.  
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Figure and captions 

Figure 1. Flowchart of study selection 
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Figure 2. Receiver Operating Characteristics curves for discrimination between brain tumoral 

and non-tumoral lesion for FDG-PET and FET-PET (N= 119 patients). Dashed line indicates 

FDG-PET; solid line indicates FET-PET; fine dashed line indicates chance. 
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Figure 3. Forest plot of studies included in the meta-analysis for discrimination between 

glioma versus non-glioma lesions with FDG-PET. 
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Figure 4. Study quality grading using QUADAS scores (range 0-14) and STARD scores 

(range 0-25). *Studies included in the meta-analysis. Dashed line indicates maximal score for 

QUADAS. 
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Figure 5. TBR comparison according to histologic WHO grading. Light gray and medium 

light gray indicate mean TBR and maximum TBR from FDG-PET, medium dark and dark 

grey indicate mean TBR and maximum TBR from FET-PET. *p=0.0028 versus WHO grade 

I–II; **p=0.0065 versus WHO grade I–II, ||p=0.0001 versus WHO grade I–II. For comparison 

between non-tumoral lesions and WHO grade I–II gliomas, all p-values>0.44. 
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