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In a recent paper, Traulsen and Nowak use a multilevel selection
model to show that cooperation can be favored by group selection
in finite populations [Traulsen A, Nowak M (2006) Proc Natl Acad
Sci USA 103:10952–10955]. The authors challenge the view that kin
selection may be an appropriate interpretation of their results and
state that group selection is a distinctive process ‘‘that permeates
evolutionary processes from the emergence of the first cells to
eusociality and the economics of nations.’’ In this paper, we start
by addressing Traulsen and Nowak’s challenge and demonstrate
that all their results can be obtained by an application of kin
selection theory. We then extend Traulsen and Nowak’s model to
life history conditions that have been previously studied. This
allows us to highlight the differences and similarities between
Traulsen and Nowak’s model and typical kin selection models and
also to broaden the scope of their results. Our retrospective
analyses of Traulsen and Nowak’s model illustrate that it is possible
to convert group selection models to kin selection models without
disturbing the mathematics describing the net effect of selection
on cooperation.

Traulsen and Nowak (1) (T&N) present a multilevel selection
model and demonstrate that a mutant helping allele can be

favored to fixation, when introduced as a single copy in a population
monomorphic for selfishness if
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q
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where c is the cost of helping, b the benefit of helping for group
members (excluding the actor), N the group size, ng the number
of groups, � the migration rate between groups, and q the
probability of group splitting (T&N, inequality ineq. 2). In their
conclusion, T&N challenge the view that kin selection is an
appropriate interpretation of their results and state that:

‘‘It would be interesting to see how the mathematical methods of
kin selection can be used to derive our central results given by eqs.
1–3 and what assumption are needed for such a derivation. The
problem is that typical methods of kin selection are based on
traditional considerations of evolutionary stability, which are not
decisive for games in finite populations.’’

Further, in a recent comment on the various possible mecha-
nisms leading to the evolution of cooperation, Nowak (2) states that
the group selection model of T&N results in a different process than
kin selection. These are surprising statements, given that many
authors have emphasized that group selection models are not
different from kin selection models (3–8), and that kin selection
theory has been extended to finite populations that can follow very
diverse demographic regimes (8–14). To us, the mechanism favor-
ing cooperation in T&N’s model is clearly kin selection. Indeed, kin
selection operates whenever interactions occur among genetic
relatives, that is, among individuals who tend to share a more recent
common ancestor than individuals sampled randomly from the
whole population. This may happen when interactions take place
within families before the dispersal of offspring, or when dispersal
is limited (population structure), so that relatives remain near each
other. This is clearly the case in the ‘‘group selection’’ scenario

considered by T&N, because dispersal is limited, interactions occur
among relatives.

In this paper, we first address T&N’s challenge and carry out a
retrospective analysis of their model by deriving ineq. 1 using the kin
selection approach for finite populations developed by Rousset (8,
15). Next, we consider a slightly different life cycle that resembles
more the life cycles usually represented in classical kin selection
formalizations. This allows us to highlight the few differences and
broad similarities between T&N’s model and ‘‘typical’’ kin selection
models. This second formalization suggests that ineq. 1 in fact holds
for a large spectrum of life cycles, provided that Me � ��q is
interpreted as the ‘‘effective number of migrants.’’

Results
T&N’s Model. To derive ineq. 1 by using inclusive fitness theory (16),
we endorse exactly the same assumptions as T&N. The population
is subdivided into ng groups, which grow in size as individuals within
them reproduce. In any one time step, a single individual from the
entire population is chosen for reproduction with a probability
proportional to its payoff. When a group has reached a threshold
size N, it either divides into two daughter groups with probability
q (in which case a random group from the population is eliminated),
or it does not divide (with complementary probability 1 � q), in
which case a random individual in the group is eliminated. Social
interactions occur only among members of the same group, and
individuals bearing a mutant allele (say A) express an act of helping,
which decreases their payoff by c and generates a benefit b, which
is shared by all other group members (thus excluding the actor).
Selfish individuals then tend to replicate faster than helpers within
groups, but groups comprising helpers grow faster and have a
greater chance of dividing before going extinct. T&N also introduce
migration between groups, by assuming that once an individual has
reproduced, one of its offspring may migrate to another group with
probability �. If the group exceeds the critical size N after the arrival
of the migrant, the group splits with probability q, or a random
individual is eliminated from the group.

T&N analyze their model in the limiting case where both
migration and group division are very rare (q �� 1 and � �� 1), so
they can assume in their calculations that the population behaves as
if all its groups constantly remain at the threshold size N. With these
assumptions, fixation within groups occurs on a faster time scale
than migration and group division. The fixation probability � of a
newly arisen mutant in the population can then be expressed as the
product of the fixation probability �g of a single mutant in a group
(before migration or group division occurs) times the fixation
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probability �p of the mutant at the level of the population condi-
tional on its fixation at the level of a single group (e.g., T&N). The
direction of evolutionary change of the mutant can then be deter-
mined by asking whether it has a larger or smaller probability of
fixation than a single neutral mutant (8, 9, 17). The change of the
fixation probability for a mutant with small phenotypic deviation �
relative to the resident allele (weak selection) is given by the
derivative of the probability of fixation with respect to the pheno-
typic deviation �, evaluated at � � 0. This yields

d�

d�
�

d�g

d�
��p �

d�p

d�
��g , [2]

where �°g � 1�N, and �°p � 1�ng are the fixation probabilities in the
absence of selection (neutral case; that is, � � 0).

In the supporting information (SI) Appendix, we show that Eq. 2
represents, in fact, a specific application of the inclusive fitness
framework for finite populations of Rousset and coworkers (8, 9,
14, 15). Further, the effects of the mutant on its probability of
fixation both at the level of a single group (d�g�d�) and at the level
of the population conditional on its fixation at the level of a single
group (d�p�d�) can be calculated by the direct fitness method for
constructing kin selection models (6, 9, 18). In particular, Eq. 19 of
SI Appendix reveals that the effect of the mutant on its probability
of fixation at the level of a single group can be expressed as

d�g

d�
�

�wij
g

�zij
Kg , [3]

where wij
g is a direct fitness function giving the expected number of

individuals descending from individual j in group i (possibly includ-
ing ij himself) between two reproductive events causing neither a
migration nor a group division, zij is the phenotype of individual ij,
and Kg is a positive constant that depends on demographic assump-
tions (e.g., iteroparity vs. semelparity, group size). Because repro-
duction occurs at a faster time scale than migration or group
division, the function wij

g measures fitness on a ‘‘small’’ time interval,
whereas migration or group division can be seen as being spaced by
a ‘‘large’’ time interval. Eq. 3 informs us that the direction of
selection on the probability of fixation of a single mutant at the level
of the group depends only on the effect of the phenotype of
individuals on their own fitness (�wij

g��zij) and is independent of the
behavior of the other individuals from the group. Because by
definition the act of helping results in a fitness cost, selection
disfavors the fixation of helping at the level of the group.

Eq. 21 of SI Appendix shows that the effect of the mutant on
its probability of fixation at the level of the population can be
written as
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where wij
p is a direct fitness function giving the expected number of

individuals descending from individual j in group i (possibly includ-
ing ij himself) between two reproductive events causing either a
migration or a group division. The function wij

p thus measures fitness
on the ‘‘large’’ time interval, during which many reproductive events
have occurred within groups, so that all groups are genetically
monomorphic by the time migration or group division occurs. Eq.
4 also depends on zi, which is the average phenotype of individuals
in group i, R, which measures by how much two individuals
randomly sampled from the same group are more related than two
individuals sampled randomly from the whole population (Eq. 11
of SI Appendix), and Kp, which is a positive constant depending on
demographic assumptions on the population (e.g., migration, pop-
ulation size).

Eq. 4 tells us that the effect of the mutant on its probability of
fixation at the level of the population now depends both on the

effect �wij
p��zij of the phenotype of the individual on its fitness and

the effect �wij
p��zi of the mean group phenotype on the focal

individual’s fitness, weighted by the coefficient of relatedness
among group members. Substituting the fitness effects (Eqs. 3 and
4) into the measure of selection d��d� (Eq. 2) reveals that this
equation fits within Hamilton’s definition of the inclusive fitness
effect (16), which is a relatedness-weighted sum of the effects of the
phenotypes of different actors on the fitness of a focal individual.
The mutant allele is selected for when the inclusive fitness effect is
positive (16), which is when d��d� � 0.

A consequence of the assumptions of T&N’s model is that
relatedness is always equal to one (R � 1) and thus takes its maximal
value. Indeed, because migration and group division are very rare,
all lineages from a group trace back to a single ancestor during the
time between two migration�division events. This result in a
situation where the effect of migration affects not relatedness but
only the fitness function wij

p and the weight Kp of the inclusive fitness
effect. Following T&N’s life cycle assumptions, we evaluate, in the
SI Appendix, the fitness functions wij

g and wij
p; and the two weights Kg

and Kp. We find that the inclusive fitness effect is positive when
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which is precisely ineq. 34 of T&N. This inequality represents their
main and exact weak selection result, which holds for any group size
and number (see Eq. 43 of SI Appendix). If ng �� 1 and N �� 1, it
simplifies to ineq. 1. Our derivation of ineq. 5 by the direct fitness
method allows us to illustrate that it is possible to translate group
selection models to kin selection models without disturbing at all
the mathematics describing the net effect of selection on helping
behaviors.

Typical Kin Selection Model. The assumptions used by T&N to obtain
ineq. 1 imply that individuals are iteroparous, with no more than
one individual dying per unit time, and that a breeding individual
produces only one offspring (i.e., the Moran process). By contrast,
traditional multilevel and kin selection models rely on different
life-history assumptions, namely that all adult individuals produce
at the same time a very large number of juveniles and then die (3,
8, 19–24). To complement T&N’s analysis and to highlight the
similarities and differences between their model and typical kin
selection models, we derive a multilevel selection model for a finite
population with nonoverlapping generations. We consider a pop-
ulation where individuals live in ng groups of constant size N that
are connected by migration. Each individual produces a large
number of juveniles, the exact number depending on its own
phenotype and the phenotypes of other group members. As in
T&N’s model, individuals bearing a mutant allele express an act of
helping, which decreases their fecundity by c and increases the
fecundity of their neighbors by b. All adults die, and juveniles from
the same group assemble to form daughter groups of size N. The
number of daughter groups produced by a group is proportional to
the average fecundity in the group, and the individual contribution
to a daughter group is proportional to individual fecundity relative
to group fecundity. Groups then compete against each other to
form the next generation of adults, which migrate randomly with
probability � to another of the ng groups. As in T&N’s model, the
entire evolutionary dynamics is driven by individual fitness, and the
effect of a mutant on its probability of fixation is given by

d�

d�
� ��wij

�zij
�

�wij

�zi
R�K, [6]
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where wij is the fitness function giving the expected number of
successful offspring of individual j in deme i, and K is a positive
constant depending on the demographic assumptions on the pop-
ulation (Eq. 10 of SI Appendix). The function wij measures fitness
between two reproductive events, which occur at exactly the same
time scale as migration and group division. The crucial difference
between Eq. 6 and the inclusive fitness effect obtained for T&N’s
model (Eq. 4) is the way relatedness affects selection on the mutant
allele. Because of the separation of the time scale between fixation
within groups and migration or group division, relatedness is always
equal to one during the period of competition between groups in
T&N’s model. By contrast, relatedness depends on the demo-
graphic parameters of the population in the typical kin selection
model, because fixation at the level of the group is very unlikely to
precede migration or group division. For large deme size and low
migration (ng �� 1 and � �� 1 and see Eq. 50 in SI Appendix),
relatedness is given by

R � 1 � �N � 1�� 1
ng

� 2�� . [7]

Relatedness takes its maximum value when there is a very large
number of groups (ng3 	), and when migration is absent (� � 0).
Relatedness decreases as ng decreases, because individuals from
different groups may bear the same allele inherited from a common
ancestor. Substituting the relatedness and the fitness function (Eq.
51 in SI Appendix) into the inclusive fitness effect (Eq. 6) reveals
that, if ng �� 1 and � �� 1, helping spreads when

b
c

� 1 �
N
ng

� Me , [8]

where Me � 2N� is the average number of migrants in a group. This
condition of invasion is similar to ineq. 1, with the only difference
that the number of migrants is given by Me � ��q in T&N’s model.
This difference is explained by the differences in life cycles. Indeed,
in our semelparous model, group splitting occurs in each generation
(and all group splits), and all individuals can migrate. Relatedness
then depends on the square of the migration rate and on group size
(see Eq. 48 in SI Appendix), yielding 2N� as the number of migrants,
as is usually the case for haploid models with population structure
(8, 25, 26). Our results suggest that provided Me is interpreted as the
‘‘effective number of migrants’’, and that ineq. 8 applies to a
continuum of life cycles, ranging from few group divisions and
migrations occurring per unit time to frequent ones and from only
one or a few individuals reproducing per unit time (overlapping
generations) to all individuals in the population reproducing (non-
overlapping generations). This is so because, in all these situations,
competition occurs strictly and randomly between groups. Hence,
the various within-group demographies will affect only quantita-
tively the condition under which selection favors helping. So long as
competition occurs randomly between groups, ineq. 8 should also
apply to simple metapopulation models with extinction and recolo-
nization of groups, to other genetic systems (e.g., diploidy and
haplo-diploidy), and to other mating systems (e.g., selfing and
polygyny), because all these variations will affect only the effective
number of migrants Me, through the alteration of the effective
migration rate and effective group size (8).

Our analyses also allow us to clarify why helping evolves in T&N’s
model, and how it relates to previous kin theoretical models for the
evolution of helping in subdivided populations. Helping evolves in
the two multilevel selection models analyzed in this paper, because
competition occurs between groups sensu stricto. Indeed, the round
of competition between groups that follows a group division event
occurs at the level of the population, so that local competition
between individuals for resources is prevented to occur. This results
in a demographic situation where kin competition cannot hamper
the spread of helping, a result that our typical kin selection model

suggests is true whatever the life-history assumptions concerning
individuals within groups (e.g., overlapping generations vs. non-
overlapping generations and haploidy vs. diploidy). By contrast,
when competition occurs sensu stricto between individuals, genet-
ically related neighbors are also more likely to compete for the same
local resources because some individuals remain philopatric during
the round of competition (see ref. 27 for a direct comparison
between models involving competition between groups or between
individuals). In this case, kin competition can at least partially offset
the benefits of helping. For instance, helping at a fecundity cost to
the actor is selected for under overlapping generations (28), but the
fecundity benefits of helping are completely canceled out by the
concomitant increase in kin competition under nonoverlapping
generations (23, 29, 30).

Conclusion
We derived in this paper two multilevel selection models for the
evolution of helping in finite populations. The first is a retrospective
analysis of the model of T&N, who suggest that helping does not
evolve through kin selection in their formalization. Using inclusive
fitness theory (16), we recovered the main result of T&N as a
specific application of kin selection theory for structured popula-
tions of finite size (8, 9, 14, 15). It is quite obvious that the
mechanism that allows cooperation to evolve under T&N’s life
cycle is kin selection; interactions occur within groups, and indi-
viduals from the same group are related (i.e., they share a more
recent common ancestor than individuals sampled randomly from
the whole population). Hence, T&N’s model falls into the scope of
Hamilton’s inclusive fitness theory, which is a general method for
analyzing selection that can also be used to study the evolution of
social interactions among nonkin (31, 32).

To illustrate the similarities and differences between T&N’s life
cycle with overlapping generations (the Moran scheme of repro-
duction) and more typical kin selection formalizations, we devel-
oped a multilevel selection model for nonoverlapping generations
with frequent group divisions and arbitrary migration rates (3,
19–24). The analysis of this model suggests that ineq. 8 in fact holds
for a variety of life cycles ranging from rare group divisions and
migrations occurring per unit time to frequent ones and from
overlapping to nonoverlapping generation situations, provided the
parameter Me is interpreted as the ‘‘effective number of migrants.’’
Further, so long as competition occurs randomly and strictly
between groups, ineq. 8 will also apply to simple metapopulation
models with extinction and recolonization of groups and to other
genetic systems and mating systems, because all these variations will
affect only the average number of migrants Me. To us, the two
models investigated in this paper do not represent different mech-
anisms for the evolution of helping behaviors but only involve
different sets of life-history assumptions and approximations, of
which there are infinitely many.

The statement that helping evolves by a different mechanism
(‘‘group selection’’ or ‘‘multilevel selection’’) will only bring con-
fusion in a domain of knowledge that was rather clear 20 years ago.
This emphasizes the need for researchers to relate their work to the
existing literature, especially when discussing the possible novelty of
mechanisms leading to the evolution of cooperation and altruism
(33, 34). To avoid semantic confusion both within and across
disciplines (35), it appears more useful to reckon that, whenever
interactions occur at a local spatial scale, and dispersal is limited,
then interactions occur among genetic relatives, and thus kin
selection is operating. Finally, it is also important to keep a tight link
between modeling and biology and to develop models that are
aimed at representing life cycles that occur in nature. As was
pointed in a recent comment on social evolutionary theory (36),
‘‘For the study of cooperation and altruism, we think that the time
has come to value work more highly that brings theory and
observation into closer contact, compared with work that merely
adds another twist to modeling.’’

6738 � www.pnas.org�cgi�doi�10.1073�pnas.0700662104 Lehmann et al.

http://www.pnas.org/cgi/content/full/0700662104/DC1
http://www.pnas.org/cgi/content/full/0700662104/DC1
http://www.pnas.org/cgi/content/full/0700662104/DC1
http://www.pnas.org/cgi/content/full/0700662104/DC1


1. Traulsen A, Nowak M (2006) Proc Natl Acad Sci USA 103:10952–10955.
2. Nowak M (2006) Science 314:1560–1563.
3. Hamilton WD (1975) in Biosocial Anthropology, ed Fox R (Malaby Press, London),

pp 133–157.
4. Queller DC (1992) Evolution (Lawrence, Kans) 46:376–380.
5. Dugatkin LA, Reeve HK (1994) in Advances in the Study of Behavior (Academic,

New York), Vol 23, pp 101–133.
6. Frank SA (1998) Foundations of Social Evolution (Princeton Univ Press,

Princeton).
7. Michod RE (1999) Darwinian Dynamics (Princeton Univ Press, Princeton).
8. Rousset F (2004) Genetic Structure and Selection in Subdivided Populations

(Princeton Univ Press, Princeton).
9. Rousset F, Billiard S (2000) J Evol Biol 13:814–825.

10. Leturque H, Rousset F (2002) Theor Popul Biol 62:169–180.
11. Roze D, Rousset F (2003) Genetics 165:2153–2166.
12. Rousset F, Ronce O (2004) Theor Popul Biol 65:127–141.
13. Roze D, Rousset F (2004) Am Nat 164:214–231.
14. Rousset F (2006) Theor Popul Biol 69:165–179.
15. Rousset F (2003) J Theor Biol 221:665–668.
16. Hamilton WD (1964) J Theor Biol 7:1–16.
17. Lessard S (2005) Theor Popul Biol 68:19–27.

18. Taylor PD, Frank SA (1996) J Theor Biol 180:27–37.
19. Eshel I (1972) Theor Popul Biol 11:258–277.
20. Aoki K (1982) Evolution (Lawrence, Kans) 36:832–842.
21. Leigh JEG (1983) Proc Natl Acad Sci USA 80:2985–2989.
22. Nunney L (1985) Am Nat 126:212–230.
23. Taylor PD (1992) Evol Ecol 6:352–356.
24. Roze D, Michod RE (2001) Am Nat 158:638–654.
25. Wright S (1951) An Euge 15:323–354.
26. Ewens WJ (2004) Mathematical Population Genetics (Springer, New York).
27. Lehmann L, Perrin N, Rousset F (2006) Evolution (Lawrence, Kans) 60:1137–1151.
28. Taylor PD, Irwin AJ (2000) Evolution (Lawrence, Kans) 54:1135–1141.
29. Wilson D, Pollock G, Dugatkin L (1992) Evol Ecol 6:331–341.
30. Taylor PD (1992) Proc R Soc London 240:299–302.
31. Grafen A (1985) in Oxford Surveys in Evolutionary Biology, eds Dawkins R, Ridley

M (Oxford Univ Press, Oxford), pp 28–90.
32. Grafen A (2006) J Theor Biol 238:541–563.
33. Lehmann L, Keller L (2006) J Evol Biol 19:1365–1376.
34. Grafen A (2007) Proc R Soc London Ser B 274:713–719.
35. West SA, Griffin AS, Gardner A (2006) J Evol Biol 20:415–432.
36. Leimar O, Hammerstein P (2006) J Evol Biol 19:1403–1405.

Lehmann et al. PNAS � April 17, 2007 � vol. 104 � no. 16 � 6739

EV
O

LU
TI

O
N


