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The aim of this study was to assess the performance of different kinematic features
measured by foot-worn inertial sensors for detecting running gait temporal events (e.g.,
initial contact, terminal contact) in order to estimate inner-stride phases duration (e.g.,
contact time, flight time, swing time, step time). Forty-one healthy adults ran multiple
trials on an instrumented treadmill while wearing one inertial measurement unit on the
dorsum of each foot. Different algorithms for the detection of initial contact and terminal
contact were proposed, evaluated and compared with a reference-threshold on the
vertical ground reaction force. The minimum of the pitch angular velocity within the
first and second half of a mid-swing to mid-swing cycle were identified as the most
precise features for initial and terminal contact detection with an inter-trial median ± IQR
precision of 2 ± 1 ms and 4 ± 2 ms respectively. Using these initial and terminal contact
features, this study showed that the ground contact time, flight time, step and swing
time can be estimated with an inter-trial median ± IQR bias less than 12 ± 10 ms and
the a precision less than 4 ± 3 ms. Finally, this study showed that the running speed
can significantly affect the biases of the estimations, suggesting that a speed-dependent
correction should be applied to improve the system’s accuracy.

Keywords: running, inertial measurement unit (IMU), validation study, temporal parameters, contact time

INTRODUCTION

In running, two temporal events (initial contact or touchdown and terminal contact or toe-off)
need to be detected in order to extract the main temporal parameters of each step: cadence,
contact time, flight phase duration, and swing phase duration. Initial contact (IC) is defined as
the time instant when the foot initiates contact with the ground at landing. Terminal contact
(TC) corresponds to the end of the pushing phase, when the foot ends contact with the ground.
The intrinsic relationships between the different inner-stride temporal parameters and running
speed, shoe configuration, running economy, running performance, injury risks have been widely
investigated. Therefore, an accurate detection of IC and TC are paramount.

In the literature, the majority of studies that investigated temporal parameters in running have
used force plates, contact mats or high speed cameras as reference measurement system (Viitasalo
et al., 1997; Garcia-Lopez et al., 2005; Leitch et al., 2011; Ogueta-Alday et al., 2013; Handsaker et al.,
2016). Although force plates are accepted as state-of-the-art systems for temporal events detection
in running, they suffer from several limitations. In fact, the detection timing of IC and TC on the
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vertical ground reaction force depends on the filtering method
and on the detection threshold used (Cronin and Rumpf, 2014).
Moreover, their lack of portability and their setup complexity
restrict their use for in-laboratory experiments, which is a major
drawback given the in-field nature of the running activity.

Thanks to the recent improvements in MEMS inertial sensors,
their low production cost, their decrease in weight and size
and their ability to measure kinematics over large periods of
time, inertial sensors are now widely accepted systems to analyze
human locomotion. In fact, studies on gait analysis have shown
that inertial measurement units (IMUs), when used with state-
of-the-art algorithms, can reliably fill the gap between subjective
observational analysis and bulky in-laboratory installations
(Mariani et al., 2012, 2013). In running, inertial sensors have
predominantly been used to detect inner-stride temporal events
and derive temporal parameters estimations from them. Some
studies have used IMUs on the upper body (Bergamini et al., 2012;
Norris et al., 2014), other focused on the shank/tibia segments
(Mercer et al., 2003; Crowell et al., 2010; McGrath et al., 2012) and
some used foot-worn IMUs (Strohrmann et al., 2011; Chapman
et al., 2012; Lee et al., 2015; Reenalda et al., 2016; Brahms, 2017).
However to the authors’ knowledge, only a few studies have
reported on the validity of their algorithms when compared with
state-of-the-art reference system. In Ammann et al. (2016), CT
estimations were compared between shoe laces worn IMUs and
a high-speed video camera for 132 steps of 12 athletes at running
speeds within 22.3± 5.8 km/h. Because data processing was done
by a proprietary software, the algorithms used to estimate CT
were not described in the methods. In Weyand et al. (2001) the
authors used acceleration peak from a foot-worn accelerometer
to detect IC and TC and compared their estimation of CT with a
treadmill-mounted force plate. The exact method used to detect
IC and TC is not documented in this study and only the bias
(mean ± STD) of the 165 trials is provided in the results. There
is therefore, no information about the precision of the proposed
system. For all other methods, where no validation was reported,
there is no evidence that the parameters measured are within an
acceptable error range and that this error range does not change
with the running conditions.

Therefore the aim of the present study was to investigate
different algorithms to detect IC and TC from different features
measured by foot-worn IMU kinematic signals, and estimate
the main inner-stride temporal parameters. The performance
metrics (bias and precision) of each algorithm were assessed in
comparison with a reference system (instrumented force plate
treadmill), that allowed a validation of inner-stride temporal
parameters over a high number of steps and a large range of
running speeds.

MATERIALS AND METHODS

Measurement Protocol
In total, 41 healthy adults (13 females and 28 males, age
29 ± 6 years, weight 70 ± 10 kg, height 174 ± 8 cm, running
weekly 2.1± 1 h, 11 being affiliated to a running club) running at
least once a week and without any symptomatic musculoskeletal

injuries volunteered to participate to this study. The study was
approved by the local ethic committee (CCER-VD 2015-00006),
was conducted according to the declaration of Helsinki, and
written informed consent was obtained from all the participants
prior to the measurements. Each participant was asked to run
multiple trials of 30 s each, wearing their usual shoes, on an
instrumented treadmill, starting at 8 km/h and increasing by
2 km/h up to their maximum speed. A 6 min familiarization
period (Lavcanska et al., 2005) was carried out on the treadmill
and served as warm-up for the participants. The participants were
free to decide on the rest duration in-between the trials.

Wearable Device and Temporal Features
Estimation
IMU Based System
One inertial measurement unit (IMU) (Physilog 4, Gait Up,
Switzerland, weight: 19 g, size: 50 × 37 × 9.2 mm) was worn
on the dorsum of each foot and measured both 3D acceleration
and 3D angular velocity at 500 Hz. Each IMU was affixed to the
foot using an adhesive strap around the shoe. The range of the
accelerometer was set to±16 g and±2000◦/s for the gyroscope.

Functional Calibration
In order to use single axes of the inertial sensors in a meaningful
and reproducible manner, we designed a functional calibration
method to automatically align the technical frame of the foot-
worn IMUs with the functional frame of the foot. The functional
frame of the foot was defined as in Figure 1: the origin is at
the base of the second metatarsal bone, YF is orthogonal to
the horizontal plane defined by the ground surface, XF lies on
the horizontal plane projection of the line joining the center
of the calcaneus bone and the head of the second metatarsal
bone, pointing distally, and ZF is orthogonal to the XFYF plane
pointing to the right-hand side of the subject. The functional
calibration process requires static standing periods in order to

FIGURE 1 | Shows both the technical frame of the foot-worn IMU (XT, YT, ZT)
and the functional frame of the foot (XF, YF, ZF). The 3 by 3 rotation matrix R
aligns the IMU’s technical frame with the functional frame of the foot.
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align YT with YF using the gravitational acceleration measured
by the IMU. Then, using the hypothesis that most of the foot’s
angular rotations occur along the ZF axis while running, we used
Principal Component Analysis to find the rotation angle around
the ZT axis which aligns ZT with ZF. Finally, XT is the result of
the cross-product<ZT, XT>.

Gait Cycle Detection
Using the cyclic nature of the running movement, an algorithm
was designed to segment a complete trial into mid-swing to mid-
swing cycles. Following previous work on gait analysis (Aminian
et al., 2002; Sabatini et al., 2005), we hypothesized that the pitch
angular velocity (Ωp) of the foot is maximum at mid-swing. To
enhance and detect the mid-swing peak, a 2nd-order Butterworth
low-pass filter was designed with an adaptive cut-off frequency.
The cut-off frequency was set at 60% of the stride frequency
estimated using an auto-correlation method over a 5 s sliding
window. This adaptive filtering method was used to cope with
the range of running speeds used in this study. The length of the
sliding window (5 s) was selected empirically and based on our
observations of the signals.

Temporal Features Detection
The estimation of inner-stride phases relies on two main
temporal events: initial and terminal contact. The initial contact
(IC) event corresponds to the time instant when the foot initiates
contact with the ground at landing. The terminal contact (TC)
event, also known as toe-off, corresponds to the end of the
pushing phase when the toes terminates contact with the ground.
For each cycle, we identified kinematic features that seemed to
be valid candidates to detect IC and TC. Such features varied
from global maximum (MAX), local maximum (MAXloc), global
minimum (MIN), local minimum (MINloc) and zero crossing
(ZeroX) time samples and were detected on the following signals:
the pitch angular velocity (Ωp: angular velocity around ZF),
the pitch angular acceleration (Ω’p), the pitch angular jerk or
first derivative of the pitch angular acceleration (Ω”p), the roll
angular velocity (Ωr: angular velocity around XF), the norm of
the angular velocity (||Ω||), the vertical axis acceleration (Avert:
acceleration along YF), the longitudinal axis of the acceleration
(Along: acceleration along XF), the coronal axis acceleration
(Acoro: acceleration along ZF), the norm of the acceleration (||A||)
and the first derivative of the acceleration norm or jerk (||A||).
In some cases, an empirically chosen threshold was also used
to improve the feature detection (e.g., < −100◦/s). All these
detection rules are detailed in Table 1 and illustrated in Figure 2.
Prior to the detection, the acceleration and angular velocity
signals were filtered using a 2nd-order low-pass Butterworth filter
(fc = 30 Hz) to minimize the influence of the IMU fixation
artifacts and a temporal estimation of mid-stance was carried
out for each gait cycle in order to separate the detection zones
for IC and TC. The detection zone for IC was set as the period
between the first zero-crossing of the pitch angular velocity
(Ωp) and mid-stance. For TC, the detection zone was set as the
period between mid-stance and the last zero-crossing of the pitch
angular velocity. Mid-stance was set as the time instant when
the angular velocity norm (||Ω||) is minimum within the 30–45%

time-range of each mid-swing to mid-swing cycle. Finally, the IC
and TC events of left and right foot steps were combined in order
to estimate for each step i the ground contact time (CT), the flight
time (FLT), the swing time (SWT) and the step time (SPT) using
the following relations:

CTi = TCi − ICi (1)

FLTi = ICi + 1 − TCi (2)

SWTi = ICi + 2 − TCi (3)

SPTi = ICi + 1 − ICi (4)

Reference System and Temporal
Features
Force Plate
This study used an instrumented treadmill (T-170-FMT, Arsalis,
Belgium) sampling at 1000 Hz as reference system for the
validation. The force plate system and the inertial sensors were
electronically synchronized using a 5 V pulse triggered manually
and recorded on each system while IMUs were synchronized
with each other’s using radio frequencies. To reduce the noise
inherent to the treadmill’s vibrations, we first applied, on the
vertical ground reaction force (GRF) signal, a 2nd-order stop-
band Butterworth filter with edge frequencies set to 25 and
65 Hz. The filter configuration was chosen empirically to obtain a
satisfactory reduction of the oscillations observed during flight
phases (i.e., subject not in contact with the treadmill) while
minimizing its widening effect during ground contact timeS.

Temporal Features Detection
IC and TC events were detected using a threshold on the
filtered vertical GRF signal, setting the first threshold-crossing
occurrence as IC and the second as TC for each step. As previous
studies (Weyand et al., 2001; Cronin and Rumpf, 2014) used
different reference thresholds, we have decided to investigate the
effect of eight reference thresholds on the validation results. Four
thresholds were set to 20, 30, 40, and 50 N, independently of the
subjects’ body weight (BW) and four others were set to 3, 5, 7,
and 9 %BW. Finally, we combined IC and TC events to find the
reference inner-stride phases durations (CT, FLT, SWT, and SPT)
as in Equations 1–4.

Statistical Analysis and Error Estimation
In order to avoid developing algorithms that over-fits our data
set and would therefore bias the results, first 10 subjects were
randomly selected and dedicated to the development set while
the remaining subjects were only used as the validation set. The
design of the algorithms described in Section “Wearable Device
and Temporal Features Estimation” was conducted using solely
the data from the development set. No algorithms debugging was
done over signals from the validation set.

To evaluate the error of the proposed system against the
reference force plate, we computed for each temporal feature, the
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TABLE 1 | Summary of the features used on the inertial sensors signals to detect initial contact (Ic) and terminal contact (Tc).

Detection zone Feature Description

Signal Rule Label

Initial contact (IC) Ωp MIN k1 Minimum of the pitch angular velocity

ZeroX k2 First zero-crossing of the pitch angular velocity

MINloc < −100 ◦/s k3 First local minimum smaller than 100◦/s on the pitch angular velocity

Ω’p MAX k4 Maximum of the pitch angular acceleration

MIN before k4 k5 Minimum of the pitch angular acceleration before k4

Ω”p ZeroX k6 Last zero-crossing of the pitch angular jerk before k4

||Ω|| MAX k7 Maximum on the angular velocity norm

Avert MAX k8 Maximum of the vertical acceleration

||A|| MAX k9 Maximum of the acceleration norm

MIN before k9 k10 Minimum of the acceleration norm before k9

MINloc k11 First local minimum of the acceleration norm

||A||’ ZeroX k12 Last zero-crossing of the jerk

Terminal contact (TC) Ωp MIN t1 Minimum of the pitch angular velocity

Ω’p ZeroX after t1 t2 First zero-crossing of the pitch angular acceleration after t1

Ωr ZeroX after t1 t3 First zero-crossing of the roll angular velocity after t1

||Ω|| MAX t4 Maximum of the angular velocity norm

Avert MAXloc after t1 t5 First local maximum of the vertical acceleration after t1

Along MIN t6 Minimum of the longitudinal acceleration

Acoro MAXloc after t1 t7 First local maximum of the coronal acceleration after t1

||A|| MAX t8 Maximum of the acceleration norm

MAXloc after t1 t9 First local maximum of the acceleration norm after t1

IC candidates are identified by kj with j ∈ {1.. 12} and TC candidates are identified by tj with j ∈ {1.. 9}. The features presented in this table were used in the respective
detection zone of IC and TC.

FIGURE 2 | Features used on the kinematic signals recorded by the foot-worn inertial sensors. IC candidates are identified by kj with j ∈ {1 . . . 12} and TC
candidates are identified by tj with j ∈ {1 . . . 9}. The vertical gray dashed lines show the limits of the detection zones for IC and TC candidates. The signals showed in
this figure belong to the same step and are represented during one mid-swing to mid-swing cycle.

bias (intra-trial mean) and precision (intra-trial STD) for all steps
within a trial. We then combined the results from each trial and
computed the median and IQR of both the bias and precision

over all trials. These two steps resulted in four inter-trial statistics
per temporal feature for both sets (development and validation
sets): bµ is the inter-trials median bias, bσ is the inter-trials IQR of
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the bias, σµ is the inter-trials median precision and σσ is the inter-
trials IQR of the precision. Note that we have used the median
and IQR functions for the inter-trial statistics as the intra-trial
bias and precision were not normally distributed.

A similar method was used for the inner-stride phases.
However, to avoid having a large number of candidates for each
parameter (12 IC candidates ∗ 9 TC candidates = 108 possible
pairs of candidates for each phase estimation), we have decided
to keep only the three most precise candidates for IC, the three
most precise candidates for TC and to combine them into 9 pairs
of estimates for CT, FLT, SWT, and SPT. Then, similarly, the
inter-trials bias (bµ, bσ) and the inter-trial precision (σµ, σσ) were
evaluated. Precision (i.e., intra-trial STD) was chosen as selection
criteria for IC and TC candidates as it informs about the range of
random errors made by the system among the steps of a trial. The
bias, however can potentially be decreased using an appropriate
model of the errors.

To investigate if the speed affects the intra-trial bias of the
IC and TC candidates, we used the Kruskal–Wallis test with a
significance level of 0.05. We preferred this non-parametric test
to the one-way ANOVA because the Lilliefors test rejected, in
most cases, the hypothesis that the intra-trial bias were normally
distributed among the running speeds. Consequently, in this
study, the null hypothesis was accepted only if the rank of
the biases were equal among the running speeds. The same
hypothesis has also been tested on the precision. Note that this
test was applied on the complete data set (development and
validation set) as there was no speed-depend adaptations of our
detection algorithms.

Finally, we used Bland-Altman plots and the best linear fit, in
the least squares sense, to show the trend in the CT estimation
errors on the development set. Finding the best linear fit on the
development set, allows to further use the linear coefficients to
correct the inter-steps errors in the validation set. The inter-steps
errors refers to the error of all steps within a group, independently
of the trial they belong to. The inter-steps bias is defined as the
mean error of all steps and the inter-steps precision as the STD of
the error of all steps.

RESULTS

Temporal Events Detection
Out of the 41 participants, 35 were kept for the evaluation of
the proposed system. Within the 6 participants removed, 2 were
removed because the data loss rate was above 20% and 4 were
removed because of calibration errors of the systems. The results
for the development set and the validation set were computed
from 10 subjects with 59 trials (4836 steps) and 25 subjects with
146 trials (12092 steps), respectively. Trials with running speed at
8 km/h were removed due to the presence of steps with double
support for some subjects that makes the detection of IC and TO
impossible with the GRF of the reference system. The minimum
number of steps per trial was 67 and the maximum number of
steps per trial was 105 given that the running speed recorded
ranged from 10 to 20 km/h. Figure 2 illustrates the features used
to detect IC and TC with the vertical gray dashed lines showing

the limits of the detection zones for IC and TC candidates. The
signals showed in Figure 2 belong to the same step and are
represented during one mid-swing to mid-swing cycle.

Table 2 summarizes the IC and TC events detection error
for development and validation sets, and for each kinematics
feature candidate (kj and tj) extracted by applying the specific
detection rule on the kinematics signal. The results are obtained
by using the reference value estimated with a threshold at 7
%BW on the vertical GRF. The differences shown in the table
were computed such that a positive difference indicates that the
event was detected later in the signal than the reference. The
three most precise IC candidates (median ± IQR) with respect
to the results from the validation set are: k1 (2 ± 1 ms), k3
(2 ± 1 ms) and k8 (3 ± 2 ms). The three most precise TC
candidates (median ± IQR) with respect to the results from the
validation set are: t1 (4 ± 2 ms), t4 (4 ± 2 ms) and t5 (4 ± 2 ms).
One TC candidate shows a noticeably lower inter-trial bias IQR:
t5 with bσ = 7 ms.

Figure 3 shows the influence of the running speed on the
IC and TC inter-trials bias for the features (k1, k3, k8) and
(t1, t4, t5). The graph was generated using the complete data
set (development and validation set) as it is solely used for
visualization purpose. When the trials are grouped according to
the running speed, the Kruskal–Wallis test applied on the biases
shows that the running speed significantly affects the biases in k8
(p = 0.001), t1 (p < 0.001), t4 (p < 0.001), t5 (p < 0.001) and
precision in t1 (p< 0.001), t4 (p = 0.014) and t5 (p< 0.001).

Inner-Stride Phases Estimation
Table 3 lists absolute and relative errors obtained for the
estimations of CT, on the validation set, when compared with
the force plate estimation found using the reference threshold at
7 %BW. The bias and precision obtained when comparing the
other force plate thresholds with the 7%BW reference threshold
are also listed at the end of Table 3.

The most precise pair of IC and TC candidates for CT was
(k1, t1) with an inter-trial median ± IQR precision of 4 ± 2 ms
or 1.8 ± 0.9%. CT estimators (k1, t5) and (k3, t5) both have the
lowest absolute inter-trial IQR of the biases (bσ = 12 ms) while
(k1, t5) has the lowest IQR in relative values (bσ = 5.0%). The
reference values observed in this study ranged from 132 to 354
ms for CT, from 29 to 238 ms for FLT, from 367 to 613 ms for
SWT and from 254 to 435 ms for SPT. Table 4 shows the relative
and absolute errors for FLT, SWT, and SPT estimations for both
(k1, t1), (k1, t5) and (k3, t5) pairs.

Finally, Figure 4 shows the Bland-Altman plot for the CT
estimation of the (k1, t1) and (k1, t5) estimators. The orange
dashed line represent the best linear fit according to the least
squares method. These graphs were computed using all the steps
in the development set (N = 4836), independently of the trials.

DISCUSSION

In this study we proposed, evaluated and compared how different
algorithms based foot-worn IMU kinematic features performed
in detecting IC and TC during running and in estimating the
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TABLE 2 | List of time differences for all the IC and TO candidates, computed over 4836 and 12092 steps for the development set and the validation set, respectively.

Feature Development set (N = 59) errors
when threshold at 7%BW is used

on vertical GRF (ms)

Validation set (N = 146) errors when
threshold at 7%BW is used on

vertical GRF (ms)

Signal Rule Label bµ bσ σµ σσ bµ bσ σµ σσ

Initial contact (IC) Ωp MIN k1 11 14 2 1 11 10 2 1

ZeroX k2 −30 11 6 3 −29 11 6 2

MINloc < −100◦/s k3 11 14 2 1 11 10 2 1

Ω’p MAX k4 22 20 3 2 23 15 4 2

MIN before k4 k5 −5 7 3 4 −4 7 4 4

Ω”p ZeroX k6 −3 11 2 3 −2 8 3 3

||Ω|| MAX k7 14 4 3 2 14 5 4 2

Avert MAX k8 19 13 3 2 20 13 3 2

||A|| MAX k9 19 18 3 3 17 17 3 3

MIN before k9 k10 1 19 3 5 0 13 5 6

MINloc k11 6 19 7 5 4 13 7 5

||A||’ ZeroX k12 2 17 2 4 2 13 3 4

Terminal contact (TC) Ωp MIN t1 −24 14 3 2 −21 13 4 2

Ω’p ZeroX after t1 t2 31 18 10 13 29 17 9 10

Ωr ZeroX after t1 t3 33 24 13 39 39 33 14 25

||Ω|| MAX t4 −22 14 3 2 −18 13 4 2

Avert MAXloc after t1 t5 −7 8 4 3 −4 7 4 2

Along MIN t6 20 18 5 9 18 15 6 7

Acoro MAXloc after t1 t7 −2 14 21 9 1 11 22 9

||A|| MAX t8 33 38 24 28 37 57 22 40

MAXloc after t1 t9 −3 11 4 2 0 13 5 6

Time differences are expressed in milliseconds (ms). The reference system used in this table is the vertical GRF with a threshold set at 7% BW. IC candidates are identified
by kj with j ∈ {1.. 12} and TC candidates are identified by tj with j ∈ {1.. 9}. “b” and “σ ” are the abbreviations for accuracy (intra-trial mean error) and precision (intra-trial
STD of the error), respectively, while suffix “µ” and “σ ” represent the median and the IQR over all the trials.

FIGURE 3 | Initial contact (left graph) and terminal contact (right graph) inter-trials bias for the features (k1, k3, k8) and (t1, t4, t5), respectively. The graph was
computed using the complete data set (development set and validation set) and using the reference threshold on the vertical GRF at 7 %BW. Each group of speed
contains N = 35 trials except the 20 km/h group where N = 30.
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TABLE 3 | List of the duration differences for CT estimation in the validation set (N = 146 trials, 12092 steps) when compared to the force plate estimation using the
reference threshold set at 7 %BW.

Features CT errors when compared with reference at 7
%BW (ms)

CT errors when compared with reference at 7
%BW (%)

IC TC bµ bσ σµ σσ bµ bσ σµ σσ

k1 t1 −30 17 4 2 −13.8 5.5 1.8 0.9

k1 t4 −27 17 4 2 −12.9 5.5 1.9 1.2

k1 t5 −15 12 5 3 −7.1 5.0 2.1 1.0

k3 t1 −30 18 4 2 −13.8 5.6 1.8 1.0

k3 t4 −27 17 4 3 −12.9 5.5 1.9 1.4

k3 t5 −15 12 5 3 −7.1 5.2 2.2 1.1

k8 t1 −38 21 5 3 −18.1 6.0 2.1 1.0

k8 t4 −35 21 5 3 −17.4 6.1 2.2 1.3

k8 t5 −23 15 5 3 −10.8 5.5 2.2 1.3

20 N 8 6 3 1 4.0 2.2 1.3 0.9

30 N 5 4 2 1 2.2 1.6 1.0 0.6

40 N 2 3 1 1 0.9 1.2 0.6 0.5

50 N 0 2 1 1 −0.1 1.1 0.4 0.3

3 %BW 9 5 3 2 3.9 1.7 1.3 0.9

5 %BW 4 2 2 1 1.7 0.6 0.8 0.5

9 %BW −3 2 2 1 −1.4 0.5 0.7 0.4

The first nine rows show the estimation errors of the three most precise candidates for IC and TO detection arranged as pairs while the last seven rows show the difference
observed when using other reference thresholds on the vertical GRF signal. “b” and “σ ” are the abbreviations for bias (intra-trial mean error) and precision (intra-trial STD
of the error), respectively, while subscript characters µ and σ represent the median and the IQR over all the trials in the validation set.

TABLE 4 | Flight phase duration (FLT), swing phase duration (SWT) and step time duration (SPT) estimations errors for the (k1, t1), (k1, t5) and (k3, t5) candidates when a
reference threshold at 7 %BW is used on the vertical GRF.

Parameter Estimator Absolute errors when compared with reference
threshold at 7 %BW (ms)

Relative errors when compared with reference
threshold at 7 %BW (%)

bµ bσ σµ σσ bµ bσ σµ σσ

FLT (k1, t1) 30 17 4 3 22.8 17.2 4.0 2.8

(k1, t5) 15 12 5 3 10.7 10.7 3.7 2.7

(k3, t5) 15 12 5 3 10.7 10.7 3.9 2.6

SWT (k1, t1) 30 17 4 2 6.3 3.7 0.9 0.4

(k1, t5) 15 12 5 3 3.2 2.6 1.0 0.6

(k3, t5) 15 12 5 3 3.2 2.6 1.0 0.6

SPT (k1, t1) 0 0 3 2 0.0 0.0 0.8 0.5

(k1, t5) 0 0 3 2 0.0 0.0 0.8 0.5

(k3, t5) 0 0 3 2 0.0 0.0 0.8 0.5

The results were computed from the data in the validation set (N = 146 trials, 12092 steps). “b” and “σ ” are the abbreviations for bias (intra-trial mean error) and precision
(intra-trial STD of the error), respectively, while subscript characters µ and σ represent the median and the IQR over all the trials in the validation set.

main inner-stride temporal parameters: CT, FLT, SWT, and SPT.
The errors (displayed in Table 2) show that the bias and precision
for IC and TC could reach very low values depending on the
kinematic features used. Therefore by considering the most
performant kinematic features an accurate and precise estimation
of inner-stride temporal parameters was proposed and validated
against a force plate as reference system.

Table 3 shows that, the three most precise IC candidates (k1,
k3 and k8) and TC candidates (t1, t4, and t5) can be combined
to provide a precise estimation of ground contact time (CT). The
most precise pair of features obtained from the two minimums of
pitch angular velocity in IC and TC detection zones (k1, t1) had

an inter-trials median± IQR precision of 4± 2 ms (1.8± 0.9%).
However the accuracy of the t1 candidate is speed dependent
(p< 0.001). This explains the relatively high inter-trial IQR of the
biases (bσ = 17 ms) of CT for the (k1, t1) candidate. In Figure 3,
the median of the biases for the t1 (as well for t4 and t5) seem
to linearly decrease as the speed increases. However, even though
the Kruskal–Wallis test shows that speed also affect t5 (p< 0.001),
the range of the median biases is approximately two times shorter
for t5 (10 ms) than for t1 (21 ms).

To reduce the effect of the running speed on the bias, the
minimums of pitch angular velocity in IC zone and the maximum
of vertical acceleration in TC zone, i.e., (k1, t5) candidate can
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FIGURE 4 | Bland-Altman plot of the ground contact time (CT) estimation errors for the (k1, t1) (top graph) and (k1, t5) (bottom graph) candidates. The error is
measured on all the steps of the development set (N = 4836). The orange dashed line represent the best linear fit according to the least square method.

be used. Although it is slightly less precise on the detection of
CT, the results in Table 4 show better results in the estimation
of FLT for both the accuracy and precision. Given that the CT
decreases as speed increase, a measure of the CT itself already
contains information about the running speed. Therefore, using
the coefficients from the best linear fit (development set data)
showed on the Bland-Altman plots in Figure 4, the validation
set inter-trials median ± IQR bias decreased to −2 ± 14 ms
(−1 ± 6.2%) and 1 ± 10 ms (0.3 ± 4.9%) for the (k1, t1) and the
(k1, t5) pairs, respectively. For both the (k1, t1) and the (k1, t5)
candidates, the precision did not change after the aforementioned
correction. Note that the outliers observed on the top graph of
Figure 4 correspond to the detection errors of the t1 feature
due to a second minimum happening later in the pitch angular
velocity signal.

Moreover, Table 2 reveals that the most precise features for
IC detection were found on the measurements from a single
axis of the IMUs (k1, k3, and k8). This observation emphasizes
on the importance of the functional calibration which aligns the
technical frame of the inertial sensors with the biomechanically
meaningful axes of the foot.

Table 2 also shows that, in general, the kinematic features
used in this study tend to better detect IC than TC. Considering
that the IC event comes with a landing impact, while no abrupt
variation in the foot’s motion occurs at TC, the odds of missing
the exact instant of TC are higher. Moreover, the vertical force

applied by the foot on the ground decreases drastically at the end
of the CT although foot is still in contact with the ground leading
to a potentially early detection of TC. Similar observations were
reported by Weyand et al. (2001). In fact, we observed that the
3%BW detection threshold showed a bias (bµ ± bσ) of −2 ± 2
ms and 7 ± 4 ms for IC and TC when compared to the 7%BW
reference threshold. For both IC and TC, the bias was the highest
when compared to a force threshold set at 20N. These results
show that the detection accuracy of the force plate for TC, is more
sensitive to the variations in the reference threshold than IC.

Lastly, the inter-step errors of the k1 feature seem to follow
a bimodal distribution when including all step of the validation
set, independently of the trials (N = 12092 steps). This implies
that there might be an additional source of variance other than
running speed that affects the detection of IC. Because the k1
feature is based on the angular velocity of the foot at landing, we
assume that the type of foot-strike employed (fore-foot strike or
rear-foot strike) could also introduce an error in the detection of
IC. Further study would be required to evaluate how foot-strike
angle influences detection accuracy and precision of temporal
events during running. In addition, determining the applicability
of the algorithms developed for level running in this study to
uphill or downhill running would also need further study.

This study used a different method to express the CT errors
than in Ammann et al. (2016). In the aforementioned study, the
authors reported an inter-steps bias (N = 132 steps) of −1.9 ms
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(−1.3%) and a random error (95% confidence interval) of 17.4 ms
(6.1%) for CT. The inter-steps bias and precision for the (k1, t1)
pair showed comparable results. In fact, the validation set inter-
steps bias (N = 12092 steps) was −2 ms (−0.5%) for CT, after
applying the linear fit correction showed in the Bland-Altman
plots in Figure 4. However, the inter-steps random error (95%
confidence interval) was slightly higher (23 ms) for the (k1, t1)
pair than in Ammann et al. (2016). This can be explained by the
fact that t1 precision is affected by speed (p < 0.001) and that
the range of speed in this study (10 – 20 km/h) is larger than in
Ammann et al. (2016) (22.3± 5.8 km/h). In Weyand et al. (2001),
the authors reported a bias (mean ± STD) of 14.6 ± 0.5% when
computed over 165 trials. These results are in accordance with the
biases showed in Table 3.

To the authors’ knowledge this study is the first to
quantitatively demonstrate how, when using foot-worn IMUs in
running, the choice of kinematic features affect the detection
accuracy and precision of IC, TC and the inner-stride parameters
derived from these two events. Consequently, it is important
that researchers report on the methods applied to detect IC and
TC events as it provides some information about the confidence
interval of the measurements.

CONCLUSION

This study aimed to validate, against a gold standard reference
system, the performance of several algorithms using foot-worn
inertial sensors to detect running gait temporal events and
estimate inner-stride phases duration. The results highlighted the
importance of suitable kinematic signals and features to avoid
large errors in detecting initial and terminal contact. The two

minimum values of the pitch angular velocity in the first half
and second half of a mid-swing to mid-swing cycle provide
the best estimation of IC and TC. Also the maximum value of
vertical acceleration during the second half mid-swing to mid-
swing cycle provides a good estimation of TC which is less
dependent on running speed. Using these initial and terminal
contact features, we showed that the ground contact time, flight
time, step and swing time can be estimated with an inter-trial
median ± IQR bias less than 15 ± 12 ms and the inter-trial
median ± IQR precision less than 4 ± 3 ms. Running speed
could have significant impact on the biases of the estimations
and therefore the knowledge about the speed could improve the
results. Further studies should investigate the effect of the foot-
strike angle on the errors made by the features during initial
contact.
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