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[1] A number of geophysical methods, such as ground-penetrating radar (GPR), have the
potential to provide valuable information on hydrological properties in the unsaturated
zone. In particular, the stochastic inversion of such data within a coupled geophysical-
hydrological framework may allow for the effective estimation of vadose zone hydraulic
parameters and their corresponding uncertainties. A critical issue in stochastic inversion

is choosing prior parameter probability distributions from which potential model
configurations are drawn and tested against observed data. A well chosen prior should
reflect as honestly as possible the initial state of knowledge regarding the parameters and be
neither overly specific nor too conservative. In a Bayesian context, combining the prior with
available data yields a posterior state of knowledge about the parameters, which can then be
used statistically for predictions and risk assessment. Here we investigate the influence of
prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe
vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data
collected under steady state, natural-loading conditions. We do this using a Bayesian
Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative
uniform prior distributions and then more informative priors derived from soil property
databases. For the informative priors, we further explore the effect of including information
regarding parameter correlation. Analysis of both synthetic and field data indicates that the

geophysical data alone contain valuable information regarding the VGM parameters.
However, significantly better results are obtained when we combine these data with a

realistic, informative prior.

Citation: Scholer, M., J. Irving, A. Binley, and K. Holliger (2011), Estimating vadose zone hydraulic properties using ground
penetrating radar: The impact of prior information, Water Resour. Res., 47, W10512, doi:10.1029/2011WR010409.

1. Introduction

[2] Water infiltration, evapotranspiration, solute transport,
and soil erosion all take place in the vadose zone. These
processes affect plant growth with respect to different atmos-
pheric influences and the wvulnerability of groundwater
resources to pollution [e.g., Haygarth and Jarvis, 2002]. The
accurate estimation of soil hydraulic parameters controlling
vadose zone flow and transport processes is therefore of
utmost importance. Conventional methods to estimate unsat-
urated soil hydraulic properties include laboratory measure-
ments conducted on representative samples from the field as
well as the monitoring of moisture content and/or pressure
head in situ using techniques such as time domain reflectom-
etry and tensiometery. A critical drawback of all of these
methods is the small support volume of the measurements;
that is, being made at essentially the point scale, the meas-
urements are subject to significant variability and may not
adequately represent larger-scale vadose zone processes
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[e.g., Binley et al., 2002b]. Recently, much interest has been
expressed in the use of geophysical methods in hydrology
because they allow for the in situ estimation of subsurface
properties at a larger, more relevant integral scale. Geophysi-
cal properties such as the high-frequency electromagnetic
wave velocity and electrical conductivity are closely related
to soil water content which means that, when combined with
a hydrological process model, they may allow effective in-
ference of vadose zone hydraulic properties [e.g., Finsterle
and Kowalsky, 2008; Looms et al., 2008a]. One commonly
used geophysical method in this regard is ground-penetrating
radar (GPR). Parkin et al. [2000] showed that moisture con-
tents estimated from GPR data have a high reproducibility
and accuracy and allow for the tracking of water front move-
ment in the vadose zone. Both surface-based [e.g., Greaves
et al., 1996; Huisman et al., 2002] and crosshole [e.g., Binley
et al., 2001 ; Looms et al., 2008b; Winship et al., 2006] GPR
surveys have been used for vadose zone characterization.

[3] There is increasing interest in stochastic parameter
estimation, or inversion, strategies in hydrology [e.g., Vrugt
et al., 2009b]. Stochastic inversion has the distinct advant-
age over deterministic inversion approaches of greater ex-
ploration of the space of model parameters, and is thus
naturally suited to highly nonlinear and/or nonunique prob-
lems. Stochastic inversion can also provide, naturally, mul-
tiple sets of parameters that are consistent with the observed
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data, which facilitates the assessment of hydrological pre-
diction uncertainty. The vast majority of stochastic inver-
sion approaches that have been employed in hydrology
operate within a Bayesian-style framework, whereby prior
information about the model parameters is updated and
refined on the basis of available measurements. In this
regard, many researchers have performed hydrological pa-
rameter estimation in a formal Bayesian manner and used
Markov chain Monte Carlo (MCMC) sampling to obtain
multiple parameter realizations from the posterior probabil-
ity distribution [e.g., Hassan et al., 2009; Irving and Sin-
gha, 2010; Vrugt et al., 2009a]. Others have used a pseudo-
Bayesian strategy known as the generalized likelihood
uncertainty estimation (GLUE) method, whereby multiple
model configurations are proposed based on prior knowl-
edge and are then accepted or rejected depending on some
prescribed measure of acceptable data fit [e.g., Beven and
Binley, 1992; Freer et al., 1996; Morse et al., 2003].

[4] The increased interest in both stochastic inversion and
geophysical methods in vadose zone hydrology has led to a
small number of recent studies where unsaturated zone pa-
rameter estimation based on geophysical data has been
attempted in a stochastic manner. Binley and Beven [2003],
for example, used zero-offset-profile (ZOP) crosshole GPR
data to constrain the changes in moisture content caused by
natural loading in the vadose zone during a 2-yr monitoring
period. Assuming a homogeneous subsurface, the GPR-
derived moisture content profiles were then used in a GLUE
inversion strategy to identify “behavioral” sets of van Gen-
uchten-Mualem (VGM) parameters [Mualem, 1976; van
Genuchten, 1980] that all fit the data to within a prescribed
degree. Binley et al. [2004] and Cassiani and Binley [2005]
built on this work and used a similar strategy to estimate
VGM parameters for a layered medium, where the layer
boundaries were stochastically defined. Looms et al. [2008a]
also used the GLUE methodology to assimilate crosshole
GPR and electrical resistivity tomography (ERT) measure-
ments, collected during a forced infiltration experiment, for
the estimation of these parameters in a small number of sub-
surface layers. Finally, Hinnell et al. [2010] employed a
Bayesian MCMC methodology to invert time-lapse electri-
cal resistivity measurements for the VGM parameters in a
synthetic example, their aim being to examine the potential
benefits of directly coupling the geophysical and hydrologi-
cal models in the inversion procedure. In all of these studies,
it was found that the geophysical data allowed for some
reduction in uncertainty regarding the VGM parameters.
However, findings were largely inconclusive regarding the
true utility of the geophysical measurements because of a
lack of systematic testing on synthetic data and considera-
tion of realistic prior knowledge in the inversion procedure.

[s] A critical part of any Bayesian or Bayesian-style
inversion strategy is the appropriate definition and quantifi-
cation of the prior information. Defining the prior probability
distribution for a set of model parameters is not an easy task
and is often done in a way that is mathematically most con-
venient and/or simple, rather than with the objective of rep-
resenting our available knowledge in an optimal manner. In
the stochastic inversion studies described above, for exam-
ple, broad uniform prior distributions were chosen for the
VGM parameters. The parameters were also assumed a pri-
ori to be statistically uncorrelated. Although these choices
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provided noninformative prior distributions that led to the
posterior being shaped only by the geophysical measure-
ments, they did not take into consideration a wealth of perti-
nent information regarding the basic nature of the VGM
parameters that is available from soil property databases, the
USDA ROSETTA database being one example [Schaap
et al., 2001]. Indeed, the analysis of a wide variety of soil
samples has shown that, for a particular soil textural class,
the VGM parameters tend to be markedly nonuniformly
distributed and often strongly correlated [e.g., Carsel and
Parrish, 1988; de Rooij et al., 2004; Mallants et al., 1996].
Given the strong influence of the prior on posterior uncer-
tainties in Bayesian investigations, such information may
allow for significantly improved parameter estimates and
should be carefully considered [Mertens et al., 2004 ; Schar-
nagl et al., 2011]. Further, the use of a more informative
prior distribution may also improve the efficiency of a sto-
chastic inversion, as it limits the domain from which model
parameters are sampled and tested [Flores et al., 2010].

[6] In this paper, we investigate the effect of different
types of prior knowledge regarding the subsurface VGM
parameters on the stochastic inversion of ZOP crosshole
GPR traveltime data, which are collected in the vadose
zone under steady state conditions. In particular, we exam-
ine: (1) how much information regarding the VGM param-
eters is contained in the geophysical data through the use of
a noninformative prior; and (2) whether posterior parame-
ter estimates can be markedly improved using more in-
formative, yet realistic, priors. Our work builds on the
previously described research of Binley and Beven [2003],
Binley et al. [2004], Cassiani and Binley [2005], and
Looms et al. [2008a] involving the GLUE methodology for
VGM parameter estimation from crosshole GPR data.
However, we choose here to use a formal Bayesian MCMC
inversion strategy, as was done by Hinnell et al. [2010], in
order to take advantage of the computational benefits
offered by the Markov chain sampling procedure and the
stochastic rigor of this approach. We begin by outlining the
hydrological and geophysical models used in this study,
along with providing details regarding the inversion meth-
odology. We then examine two synthetic examples of
increasing complexity where we assess the information
content of the geophysical data and the impact of prior in-
formation in the case where the “true” subsurface VGM
parameters are known. Synthetic testing is a key part of
validating any parameter estimation procedure and was
lacking in most previous work in this domain. Finally, the
corresponding methodologies are applied to crosshole GPR
field data collected near Eggborough, Yorkshire, UK.

2. Methodological Background
2.1.

[71 We assume in this work that vadose zone flow can be
effectively described as only vertical, and that Richards’
equation in I-D can thus be used to predict the distribution
of soil water content in the subsurface. To be consistent
with much of the previous work in this domain, we also
consider steady state conditions such that a single GPR-
derived water content profile represents the long-term state
of the system and can be used to estimate the soil hydraulic
parameters [Binley et al., 2002a; Cassiani and Binley,
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2005]. Although it is clear that steady state conditions in
the unsaturated zone are the exception, rather than the
norm, these conditions provide a simplified, yet pertinent
and 1illustrative, framework within which we can investi-
gate the information content of the geophysical data and
the value of prior information. The greater variability of
water content in a transient problem could be expected to
offer more information in the search for hydraulic parame-
ters and will be examined in a future investigation. Note,
however, that the relatively large support volume of bore-
hole-based GPR measurements may limit our ability to
observe such dynamic behavior in detail [Cassiani and
Binley, 2005].

[8] In the steady state, Richards’ equation in 1-D is
given by

d

- {K(h)%+l((h)} =0, (1)

dz

where K is the unsaturated hydraulic conductivity, 4 is the
pressure head, and z is the elevation. We assume that K(%)
is dependent upon soil water content, 6(%), as parameter-
ized by the VGM model

K(h) = KSA[1— (1 - Sg%)"’]z, 2)

where K is the saturated hydraulic conductivity and S, is
the effective saturation, given by

S, =———". (3)

Here 6, denotes the residual water content and 6, the satu-
rated water content or, equivalently, the porosity, and

95 - er

o) =0, +—>— "
) =6+ o

4)

where «, m, and n are empirical shape factors with
m = 1—1/n. A total of five model parameters (0;, 0,, o, K,
and n) therefore describe vadose zone hydraulic properties
using the VGM model. To obtain the steady state, 1-D,
water-content distribution corresponding to a given set of
VGM parameters and specified boundary conditions, we
use the program SS_INFIL [Rockhold et al., 1997], which
implements an integral solution to equation (1) for horizon-
tally layered media. An arbitrary number of layers having
different VGM parameters can be specified.

[¢9] To determine the set of ZOP crosshole GPR travel-
times corresponding to the 1-D water-content profile obtained
with SS_INFIL, we require a relationship between water
content and radar wave velocity. To this end, we use the
complex refractive index model (CRIM) [Roth et al., 1990]
to predict the relative dielectric permittivity, , given the soil
water content, 6:

VE = (1= 0,)/Fs + 0/riwy + (65 — 0)\/ria, (5)

where kg, Ky, and K, are the relative permittivities of the
dry matrix, water, and air components, respectively. The
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soil permittivity is then converted to GPR velocity through
the following low-loss, high-frequency approximation that
implicitly assumes a nonmagnetic subsurface and is valid
in most environments amenable to GPR wave propagation
[e.g., Annan, 2005]:

vzﬁ, (6)

where ¢ is the free-space electromagnetic wave velocity.
To determine the ZOP traveltimes based on the resulting
1-D velocity field, we solve the ray-based eikonal equation,

Vi(r)[* = s(r)?, (7)

where ¢ is the traveltime of first-arriving energy from the
transmitter to the receiver antenna at location r through
the slowness field s(r) = 1/v(r). For ZOP measurements,
the antennas are placed at the same depth in two adjacent
boreholes and the traveltime between them is determined as
a function of depth. We solve equation (7) using a MAT-
LAB version of the PRONTO eikonal software of Aldridge
and Oldenburg [1993], which accounts for bending of the
radar wavefront at interfaces across which velocities change.

2.2. Bayesian MCMC Inversion

[10] As mentioned above, we consider a Bayesian
MCMC stochastic inversion approach in this study. In an
inversion context, Bayes’ theorem can be written as follows
[Tarantola, 2005]:

P(dops|m)p(m)

plmida) P(dobs) ®
where p(-) denotes a probability distribution, m is a vector
containing the model parameters of interest, and dgps is
a vector containing the observed data. In equation (8),
p(m|dgys) is the conditional distribution for m given dgpg
and hence the posterior probability we seek, p(m) is the
prior or marginal probability for the model parameters, and
p(dgps/m) is the conditional distribution for dps given m,
also known as the model likelihood. The marginal proba-
bility, p(deps), can be treated as a normalization constant
that ensures that p(m|d,s) integrates to unity [7arantola,
2005]. Assuming independent and identically normally
distributed data residuals, the model likelihood in equation
(8) can be described by the following equation:

1 .y
P(dobs|m) = (27r0'2)N/2 exp{ o? }7 )

where N is the number of data, o, is the estimated standard
deviation of the residuals, and M is the misfit, or summed
squared residual, given by

M = (g[m] — dops)" (g[m] — dops).- (10)
Here g(-) represents the forward model linking the parame-
ters of interest to the corresponding predicted data. In our
case, it corresponds to the combined hydrological and
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geophysical models relating the VGM model parameters to
the steady state ZOP GPR traveltime measurements.

[11] Because of the complexity of the forward models
involved in hydrological and geophysical inverse problems,
finding an analytical expression for the posterior distribu-
tion given by equation (8) is generally not possible. How-
ever, because the equation provides a means of calculating
the posterior probability of occurrence of a particular set of
model parameters, we can use MCMC methods to numeri-
cally generate samples from this distribution which can
then be analyzed in terms of their posterior statistics. We
base our MCMC inversion methodology on the seminal
work of Mosegaard and Tarantola [1995] and refer the
reader to that publication for full details. In the context of
this study, the algorithm can be summarized as follows:

[12] 1. Draw randomly a starting set of values for the
VGM model parameter vector, m, from the prior distribu-
tion for these parameters. Use the previously described
hydrological and geophysical numerical models, along
with equations (9) and (10), to compute the corresponding
model likelihood, p(d,ps|m).

[13] 2. Perturb the current set of VGM parameters, m, to
obtain a proposed set of parameters, m’. This is done by
drawing from a proposal density function, O(m’|m), which
depends on m and is chosen such that the size of the model
perturbations allows for a reasonable rate of accepted tran-
sitions in the MCMC procedure, typically ~30% [Gilks
et al., 1996]. For our work, we set O(m’|m) to be a bounded
uniform distribution that is centered on m.

[14] 3. Using the previously described hydrological and
geophysical models, compute the likelihood of the pro-
posed model, p(d,ps|m’).

[15] 4. Based on the prior probabilities of occurrence of
m and m’ and their corresponding likelihoods, decide to ei-
ther accept or reject a transition to the proposed model
using a stochastic decision rule. For this we use the Metrop-
olis criterion [Metropolis et al., 1953], whose probability of
acceptance is given by

p(m’)p(dgps|m’)

Pace = .
p(m)p(dgps/m)

(11)

If the transition is accepted, then the next step of the Mar-
kov chain becomes m’ and we set m = m'’. If the transition
is rejected, then the Markov chain remains at the current
model, m.

[16] 5. Repeat steps 2-5.

[17] After a certain number of iterations, known as the
burn-in period, the algorithm described above will reach
equilibrium, beyond which steps in the Markov chain will
effectively represent samples that have been drawn from
the Bayesian posterior distribution for the model parame-
ters. In other words, the MCMC procedure will become in-
dependent of the starting values for these parameters and
samples generated after this point can then be collected and
analyzed in terms of their posterior statistics. In this regard,
the first critical step in the practical application of MCMC
methods is to assess the convergence behavior. Although
there is no way to judge the length of the burn-in period
prior to running an MCMC inversion, a number of practical
strategies exist to evaluate whether a Markov chain has
reached this point. Gelman and Rubin [1992] define a metric
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based on the relative size of between-chain to within-chain
variation for a series of parallel-running chains, in order to
see whether the MCMC procedure has converged. Hassan
et al. [2009] also evaluate burn-in using the results of a
number of chains running in parallel, but do so graphically.
That is, they plot the value of each model parameter versus
iteration number for the different inversions in order to
assess when the inversions have reached a similar equilib-
rium. We adopt the latter approach for our work. Once
burn-in has been reached and the samples up to that point
have been discarded, the next critical step in an MCMC
inversion is to determine the number of iterations that are
required to generate enough samples to properly character-
ize the Bayesian posterior distribution. This will depend on
the dimension of the model parameter search space, the in-
formation content of the prior, and the degree of correlation
between adjacent samples in the Markov chain which
results from the bounded nature of the proposal density
function. Indeed, if the posterior chain exhibits a long auto-
correlation lag, then a greater number of iterations are
required after burn-in to produce a sufficient number of in-
dependent posterior samples. In our work, we chose to use
the methodology proposed by Gilks et al. [1996] to evaluate
an appropriate length for the posterior chain after burn-in.
This involves comparing ergodic averages for the various
model parameters between a number of parallel chains and
stopping when the averages are in good agreement. (For fur-
ther details, please see Gilks et al. [1996].)

3. Tests on Synthetic Data

[18] In the following, we consider two synthetic examples
in order to investigate the effect of including different
degrees of prior information regarding the VGM parameters
on the posterior distributions obtained from the stochastic
inversion of ZOP crosshole GPR traveltime data. We first
consider the simple case of a homogeneous subsurface me-
dium. We then explore a more complex and realistic scenario
where the subsurface is defined by four different layers. For
consistency with the field study presented later, the probed
domain for both synthetic examples is 6 m wide x 17 m
deep and is assumed to consist of sandy fluvial deposits.

[19] To simulate the “observed” GPR traveltime data
corresponding to each example, we first used the SS_INFIL
code with a vertical cell discretization of 0.01 m. Constant
flux boundary conditions were asssumed along the upper
model surface with an infiltration rate of 3.5 x 10 *md ',
whereas the lower model boundary at 17 m depth was
defined to be the groundwater table. To convert the result-
ing steady state water content profile to GPR velocity, we
used equations (5) and (6) with the following parameter
values: k; = 5, k,, = 81, kK, = 1, and 6, = 0.32. Note that,
for consistency with the field example presented in section
4.1, we assume a priori to know the value of the saturated
water content, 6,. It can be shown that this choice has little
influence on the corresponding GPR data as the CRIM
equation is highly insensitive to this parameter. For the sub-
sequent simulation of GPR traveltimes with the PRONTO
eikonal equation solver, the grid discretization was set to
0.1 m and the transmitter and receiver antennas were
assumed to be moved at 0.25 m increments along the left-
and right-hand model edges from 3 to 14 m depth. Finally,
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Gaussian random noise with a standard deviation equal to
2% of the mean traveltime value was added to the data
prior to the MCMC analysis.

[20] We examine the effect of three different priors for
the VGM parameters in each synthetic example. In doing
so, we progress from uninformed to moderately informed
and then to highly informed conditions. The priors are the
following:

[21] 1. The VGM parameters are assigned uniform
prior distributions having bounds: 6, € U(0,0.1), o €
U(0,25) m™', ne U(1.5,4), and log;o(K, [md']) ¢
U(—2,2). These ranges are broad and consistent with pre-
vious work [e.g., Binley and Beven, 2003; Cassiani and
Binley, 2005; Looms et al., 2008a]. Most importantly, such
uniform priors allow us to assess the information with
regard to the VGM parameters contributed by the GPR
traveltime data alone.

[22] 2. The VGM parameters are assumed to follow em-
pirical prior distributions as determined by Carsel and
Parrish [1988] for sandy soil based on the analysis of over
250 samples. In this case, the prior sampling domain is sig-
nificantly restricted when compared to using the uniform pri-
ors. (Please see Carsel and Parrish [1988] for details on
how to generate random sets of VGM parameters corre-
sponding to these distributions.) For this particular prior, we
ignore the joint relationships provided in their paper and thus
assume that the parameters are statistically uncorrelated.

[23] 3. The VGM parameters are prescribed the same mar-
ginal prior statistics for sandy soil from Carsel and Parrish
[1988] as given above, but we further restrict the sampling
domain by now including the full parameter correlation infor-
mation. Again, please see their paper for the relevant details.

[24] Figure 1 shows a series of bivariate scatterplots cor-
responding to the second and third prior scenarios described
above, each of which was created from 50,000 randomly
drawn VGM parameter sets. As mentioned, in going from
the noninformative uniform distribution to the informative
but uncorrelated distribution and finally to the informative

log,o(K(m.d™")) 0 a(m™) n
Figure 1. Bivariate scatter plots and marginal histograms
for the refined prior VGM parameter distributions as defined
by Carsel and Parrish [1988] for sand. The dark and light
blue points indicate the uncorrelated and correlated distribu-
tions, respectively.
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correlated distribution, the prior samples become more
likely to be drawn from a restricted region of the model
space. In an inversion, using carefully chosen refined priors
based on existing databases or field measurements can help
to avoid sampling VGM parameter sets that may fit the
observed data but are not consistent with the environment
and/or material of interest.

3.1.

[25] In our first example, we assume that the subsurface
is homogeneous and characterized by the following VGM
parameter values, which are typical for a sandy soil:
0, =004, a =13 m ', n =3, and log,o(K,; [m d']) =
0.88. These values were drawn randomly from the corre-
lated distribution of Carsel and Parrish [1988] shown in
light blue in Figure 1. To estimate the posterior distribution
of the VGM parameters given the corresponding “observed”
synthetic data, we ran the MCMC inversion procedure con-
sidering our three different prior scenarios. The residual
uncertainty term, o, in equation (9) was set equal to 2% of
the mean GPR traveltime value in each case. Three inde-
pendent parallel Markov chains with randomly chosen start-
ing points were also initiated for each scenario such that
burn-in could be graphically assessed. A sufficient burn-in
period was determined to be 5000 iterations for the uniform
prior and 1000 iterations for the uncorrelated and correlated
refined priors, up until which all samples were discarded
before analysis. After burn-in, 50,000 iterations for the uni-
form prior and 30,000 iterations for both refined priors were
then determined to adequately sample the posterior parame-
ter space. Running the inversions for the uniform and refined
priors took 36 and 15 h on a standard 3.16 GHz desktop
computer, respectively.

[26] Figures 2 and 3 show the marginal prior and poste-
rior histograms of the different VGM parameters for the
uniform and refined prior scenarios, respectively. The true
values of the parameters are also shown. A simple but gen-
erally effective way to further assess the quality of the fit
between each suite of prior and posterior realizations and
the corresponding true values is to compute the root-mean-
square error (RMSE), given by

Homogeneous Medium

where N is the number of realizations, my, is the true model
parameter value, and m; is the i-th model parameter value
from the suite of realizations. Table 1 shows the correspond-
ing RMSE values. Notice in Figure 2 that the posterior dis-
tributions for all VGM parameters are noticeably refined
compared to the prior uniform distributions. Indeed, through
the MCMC inversion of the GPR data, we obtain significant
reductions in uncertainty for «, log;o(K,), and n, and a
smaller but still important reduction in uncertainty for 6,.
This is also observed in Table 1, where we have a significant
decrease in the RMSE values in going from the uniform
prior to the corresponding posterior distributions. These
results clearly show that the GPR data alone contain valua-
ble information about the subsurface VGM parameters.

[27] In Figure 3, where we consider the refined prior dis-
tributions based on the work of Carsel and Parrish [1988],
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Figure 2. Uniform prior and corresponding posterior marginal histograms for the VGM parameters in
the homogeneous medium example. The circles indicate the true parameter values.

we see a further reduction in uncertainty in the posterior
distributions for all VGM parameters compared to the case
of the uniform prior. Here the posterior distributions are
more narrow than those in Figure 2, and the corresponding
RMSE values in Table 1 are significantly smaller. This
demonstrates how choosing a refined, yet realistic, prior
distribution on the basis of soil property measurements
and/or databases can be of great benefit to resolving subsur-
face VGM parameters in a stochastic inversion. We must
emphasize, however, that there is still an important contri-
bution of the GPR data in this case, even with the use of
the refined prior distributions (i.e., the priors are not provid-
ing us with everything). Indeed, comparing the prior and
posterior histograms in Figure 3, we see that the incorpora-
tion of the GPR data allows us to markedly reduce the

uncertainty in the VGM parameter estimates in most cases.
This again is reflected in Table 1, where we see a signifi-
cant and consistent reduction in the posterior RMSE values
compared to the prior distributions.

[28] Finally, we observe in Figure 3 a distinct difference
between the posterior distributions obtained using the uncor-
related refined prior distribution and those obtained assum-
ing that the VGM parameters are correlated. Assuming
correlation between the parameters results in smaller poste-
rior uncertainties for log;o(K;) and 6,, but larger posterior
uncertainties for o and #n, as compared to the uncorrelated
case. This demonstrates that including more detailed infor-
mation in the prior distribution (e.g., parameter correlation)
does not always lead to better resolved posterior VGM pa-
rameter estimates, as one might intuitively assume. This in

0
8 15000 15000 15000 15000
]
=
Prior S 10000 10000 10000 10000
s
é 5000 5000 5000 5000
Z
0 ° 0 . 0 0 L
0 005 0.1 5 10 15 20 25 2 3 4 2 0 2
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Posterior § 10000 10000 10000 10000
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i'é 5000 i 5000 5000 5000
2 [ |
ol e 0 .- 0 o 0
0 005 0.1 5 10 15 20 25 2 3 4 2 0 2
o, a(m™) n |og1o(Ks(m.d'1))

Figure 3. Refined prior and corresponding posterior marginal histograms for the VGM parameters in
the homogeneous medium example. The dark and light blue colors indicate the results obtained for the
uncorrelated and the correlated priors, respectively. Areas where the histograms overlap are shown as a
medium blue color. The circles indicate the true parameter values.
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Table 1. RMSE Values Quantifying the Difference Between the True VGM Parameters and the Corresponding Prior and Posterior Dis-

tributions for the Homogeneous Medium Synthetic Example

Uniform Prior

Refined Prior (Uncorrelated)

Refined Prior (Correlated)

Logio Logio Logio
Distribution 0, a(m™) n (K, [md™']) 0, a(m™h n (K, [md~']) 0, a(m™ n (K, [md™'])
Prior 0.030 6.66 0.76 1.45 0.012 3.08 0.42 0.32 0.012 3.08 0.42 0.32
Posterior 0.027 0.95 0.29 0.77 0.008 0.91 0.10 0.31 0.007 0.88 0.14 0.10

turn implies that using an inadequately informed prior, for
example, by not accounting for parameter correlation when
it exists, may actually lead to overconfidence with regard to
the posterior estimates of certain model parameters.

3.2. Layered Medium

[29] We next consider a more realistic synthetic example
involving a stratified medium consisting of four layers. The
layers are defined as follows:

[30] O0to 6 m: coarse sand (layer 1)

[31] 6to 8 m: fine sand (layer 2)

[32] 8to 12 m: coarse sand (layer 3)

[33] 12 to 14 m: fine sand (layer 4)

[34] The coarse sand material in layers 1 and 3 is charac-
terized by the following VGM parameters: 6, = 0.04,
a=13 m ', n = 3, and logo(K;, [m d”']) = 0.88.
The VGM parameters for the fine sand material in layers 2
and 4 are: 6, = 0.05, « = 10 m™', n = 2.2, and log;o(K,
[m d™']) = 0.50. As in the previous example, we used these
parameters and layer definitions to first simulate the corre-
sponding “observed” ZOP GPR traveltime data under
steady state conditions. These data were then stochastically
inverted to estimate the VGM parameters in each layer
assuming the same three prior scenarios outlined above.
Please note that the same prior distributions were used for
all of the layers in the MCMC inversion procedure. Three
parallel independent MCMC inversions were again run for
each type of prior, with o, in equation (9) set equal to 2%
of the mean GPR traveltime value. A sufficient burn-in pe-
riod was determined to be 15,000 iterations for the uniform
prior and 5000 iterations for both refined priors. In this
example, 100,000 iterations and 50,000 iterations were
determined to adequately sample the posterior parameter
space, respectively. The uniform prior inversion took 3 d
on the same 3.16 GHz desktop computer, whereas each
refined prior inversion took 1.5 d.

[35] Figures 4 and 5 show the marginal prior and poste-
rior histograms of the different VGM parameters in each
layer for the uniform and refined prior scenarios, respec-
tively. Table 2 lists the corresponding RMSE values
between these distributions and the true parameter values.
In agreement with our findings in the case of a homogene-
ous model (Figure 2, Table 1), Figure 4 demonstrates that
even for more complex and realistic subsurface structures,
the GPR traveltime data alone contain a significant amount
of information regarding the VGM parameters. Indeed,
compared to the uniform prior distribution, the posterior
distributions for the shape parameter, «, show significant
refinement, those for log;¢(K,) and n show notable refine-
ment, and those for 6, are refined in layers 1 and 3. These
findings are also reflected in the RMSE values. For the two

refined prior scenarios considered in Figure 5, the inferred
posterior distributions are generally better resolved for the
correlated case than for the uncorrelated case. The most
substantial improvement in terms of the resolution of these
posterior distributions compared to the uniform prior sce-
nario is seen for a. However, the posterior distributions of
the other VGM parameters also benefit from the inclusion
of a more informative prior distribution. In general, the
results in Figures 4 and 5 illustrate that GPR traveltime
data, in combination with well informed yet realistic prior
distributions, should contain sufficient information to allow
for an effective MCMC-based estimation of the VGM pa-
rameters in realistic layered media.

4. Application to Field Data
4.1. Field Site and Data

[36] We now apply the methodologies investigated above
to observed data from a pertinent field site located near Egg-
borough, Yorkshire, UK. This field site was developed to
study the unsaturated hydraulic characteristics of the Sher-
wood sandstone, which represents a major regional aquifer
and consists of predominantly horizontally layered, me-
dium- to fine-grained Triassic sandy fluvial deposits with
occasional intercalations of siltstone [Binley et al., 2002a,
2005; Cassiani and Binley, 2005 ; West et al., 2003]. A total
of 11 boreholes have been drilled at the site with six of these
(R1, R2, R3, R4, A, and B) designed for GPR studies and
the other five (C, E1, E2, E3, and E4) created for resistivity
measurements (Figure 6). All of the boreholes were geo-
physically logged using electromagnetic induction and natu-
ral gamma sondes. One borehole (R5) was completely
cored to 20 m depth, and the retrieved rock samples were
analyzed in the laboratory to determine their hydraulic and
electrical material properties [Binley et al., 2005]. West
et al. [2003] also carried out dielectric property measure-
ments on other samples from the site which allowed them to
estimate the dielectric constant of the sediment grains and
the saturated water content.

[37] We seek to estimate subsurface VGM parameters
from ZOP crosshole GPR data collected at the Eggborough
site between 3 August 1999 and 20 February 2001. These
data were acquired between boreholes R3 and R4, which
are roughly 6 m apart and 16 m deep, using a Sensors and
Software PulseEKKO GPR system with 50 MHz antennae
and a vertical increment of 0.25 m in the observation inter-
val from 3 to 14 m depth. During the monitoring period,
the GPR measurements were repeated 15 times at regular
intervals of ~6 wk. Interestingly, analysis of the data
indicated that the temporal variations of subsurface water
content in response to recharge events and subsequent
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Figure 4. Uniform prior and corresponding posterior marginal histograms for the VGM parameters in
each layer for the layered medium example. The circles indicate the true parameter values for Layers 1
and 3 whereas the triangles indicate the true parameter values for Layers 2 and 4.

moisture redistribution were minimal [ Cassiani and Binley,
2005]. This in turn demonstrated that a steady state charac-
terization approach is justified for the site. Consequently,
we averaged the ZOP traveltimes measured in each GPR
survey to obtain a mean traveltime versus depth curve,
which was used in our analysis. Figure 7d shows this curve
along with bounds corresponding to one standard deviation.
In the numerical modeling codes to link subsurface VGM
parameters to GPR traveltimes for the MCMC inversion,
we used the same boundary conditions and discretization
intervals that were used in both synthetic examples. Based
on the extensive laboratory measurements on the available
core material from borehole R5 [Binley et al., 2005] and
the additional measurements made by West et al. [2003],
values of k;, = 5 and 6; = 0.32 were assumed for the rela-
tive dielectric permittivity of the dry rock matrix and the
saturated water content, respectively.

4.2. Model Parameterization

[38] A critical part of any inversion procedure is choos-
ing the model parameterization. In the synthetic examples

presented earlier, we had the advantage of knowing a priori
the nature of the subsurface heterogeneity, which made this
choice straightforward. For example, in the second exam-
ple, we knew that the subsurface contained four layers and
we also knew the locations of all layer boundaries. For field
data, this kind of information must be gained from the data
themselves as well as from complementary sources of in-
formation, and the model parameterization process is corre-
spondingly uncertain and potentially nonunique. In this
regard, Figure 7 shows some of the core and log data that
have been collected at the Eggborough site. Figures 7a and
7b plot the median particle size and clay fraction versus
depth in borehole R5, which were determined from core
samples, whereas Figure 7c shows the natural gamma log
acquired in neighboring borehole E4. These plots, along
with the GPR traveltime curve in Figure 7d, suggest that
the subsurface is by no means homogeneous, and compari-
son with other log data has indicated that a 1-D layered
model is a reasonable approximation at the site. Cassiani
and Binley [2005] performed a geostatistical analysis of the
logs they collected in each borehole to obtain a stochastic
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Figure 5. Refined prior and corresponding posterior marginal histograms for the VGM parameters in
each layer for the layered medium example. The dark and light blue colors indicate the results obtained
for the uncorrelated and the correlated priors, respectively. Areas where the histograms overlap are
shown as a medium blue color. The circles indicate the true parameter values for Layers 1 and 3 whereas
the triangles indicate the true parameter values for Layers 2 and 4.

description of this layering and, following Binley et al.
[2004], they considered the vertical lithological profile as a

binary system. In a subsequent study, Linde et al.

[2006]

carried out a joint inversion of crosshole electrical resistiv-
ity and multioffset GPR traveltime data collected at the

site. Their results indicated that the subsurface petrophysical
properties can be grouped into four distinct clusters and
hence that, from a geophysical point of view, the site is
adequately characterized by a four-unit model. The bounda-
ries of these four units are shown in Figure 7 and they define

Table 2. RMSE Values Quantifying the Difference Between the True VGM Parameters and the Corresponding Prior and Posterior Dis-

tributions for the Layered Medium Synthetic Example

Uniform Prior

Refined Prior (Uncorrelated)

Refined Prior (Correlated)

Logio Logio Logio
Layer Distribution 6, a(m™) »n (K[md']) 6 am') n Kmd'D) 6 am' » (K[md)

1 Prior 0.030 666  0.76 1.45 0012  3.08 042 0.32 0012 308 042 0.32
Posterior  0.021 175 051 0.72 0.008 182 04l 0.26 0.006 176  0.36 0.23

2 Prior 0.029 750  0.90 1.26 0.011 539  0.54 0.40 0011 539 054 0.40
Posterior ~ 0.025  1.78  0.45 0.74 0.011 045 035 0.34 0.011 037 041 0.32

3 Prior 0.030 666  0.76 1.45 0012  3.08 042 0.32 0012  3.08 042 0.32
Posterior ~ 0.018 219  0.38 0.62 0.008 191 041 0.22 0.005 227 022 0.20

4 Prior 0.029 750  0.90 1.26 0.011 539  0.54 0.40 0011 539 054 0.40
Posterior ~ 0.026  1.74 049 0.79 0.011 048 041 0.35 0.011 047 032 0.28
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Figure 6. Location of the Eggborough field site and in-
stalled boreholes. Adapted from Cassiani and Binley [2005],
with permission from Elsevier.

the layered parameterization that we use for our stochastic
inversion. In other words, we invert the traveltime data in
Figure 7d for the VGM model parameters in each of the dif-
ferent layers assuming that these units are internally homo-
geneous. (For further details regarding how this subsurface
zonation was obtained, please see Linde et al. [2006].)

4.3. Prior Parameter Distributions

[39] For our field investigation at the Eggborough site,
we define the prior distributions for the VGM model param-
eters in each lithological unit based on the hydraulic meas-
urements made by Binley et al. [2005] on core samples
retrieved from borehole R5. Mercury injection capillary
pressure (MICP) tests were carried out on 19 of these sam-
ples and provided information with regard to the pore size
distribution, which was then used to estimate an unsaturated
moisture release curve and to infer the VGM parameters.
Figure 8 shows a series of bivariate scatterplots of the
results obtained. As in the synthetic examples, we again
consider three prior distributions. First, we consider a nonin-
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Figure 7. Example borehole data that were collected at
the Eggborough field site. (a and b) median grain size and
clay content measured on core samples from borehole RS,
respectively, (¢) gamma log taken in borehole R4, (d) mean
and standard deviation of the ZOP GPR traveltimes meas-
ured between boreholes R3 and R4. Also shown is the lay-
ered subsurface parameterization used in this study. Adapted
from Linde et al. [2006].
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Figure 8. Bivariate scatter plots of the VGM parameters
obtained from measurements on core samples from the
Eggborough field site by Binley et al. [2005].

formative uniform prior where the VGM parameter ranges
are the following: 6, € U(0,0.1), a € U(0,3) m™!, n €
U(1.5,3), and log,,(K; [m d7')) € U(—=2,1.5). Next, we
consider a more refined but uncorrelated prior. The field
samples allowed us to prescribe the following distributions:
6, € N(0.045,0.011), o € N(1.58,0.58) m~!, n € N(2.04,
0.31), and log, (K, [m d']) € N(—0.74,0.85). Finally, we
consider that the VGM parameters are correlated. Although
the limited number of samples implies that any statistical
analysis is prone to significant uncertainties, the scatterplots
in Figure 8 provide a relatively clear indication that moder-
ate to strong correlation between the various VGM parame-
ters exists, which is consistent with other previous work. On
the basis of the available data, we inferred the following
correlation matrix :

log,o(Ks) 6, a n
logyo(K;) 1 0752 —0.764 0.682
C= 0, 1 —0.857 0.7834
o 1 —0.812

n 1

(13)

Please note that the same priors are assumed for each litho-
logical unit in each case. Also note that field samples were
necessary in this example to derive our informative prior
distributions because the previously used distributions of
Carsel and Parrish [1988] are for unconsolidated sandy
soils, and not sandstone.

4.4. MCMC Inversion

[40] We performed the stochastic inversion of the GPR
traveltime data in Figure 7d to estimate the posterior distri-
butions of «, 8,, n, and log;o(K,) in each layer under the
three different prior scenarios outlined above. As in the
synthetic examples, three independent MCMC inversions
were run in parallel for each case. A sufficient burn-in pe-
riod was determined to be 20,000 iterations for the uniform
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Figure 9. Uniform prior and corresponding posterior marginal histograms for the VGM parameters in

each layer for the field example.

prior distribution and 5000 iterations for the refined prior
distributions. A total of 100,000 iterations for the uniform
prior and 50,000 iterations for the refined priors were found
to adequately sample the posterior parameter space. The
corresponding inversions took ~3 and 1.5 d, respectively.
For this field example, o, in equation (9) was estimated
based on the multiple repeated traveltime measurements
that were used to obtain Figure 4d.

[41] Figures 9 and 10 show the prior and posterior histo-
grams of the different VGM parameters in each layer for
the uniform and refined prior scenarios, respectively. In
agreement with previous work at the Eggborough site by
Binley and Beven [2003] and Cassiani and Binley [2005],
and in accordance with our synthetic examples, the results
for the uniform prior indicate that an unequivocal estima-
tion of the VGM parameters on the basis of the GPR travel-
time data alone is not possible (Figure 9). However, it is
clear that the GPR data contain important information
regarding these parameters as we observe a significant
reduction of uncertainty in going from the uniform prior to
posterior distributions. In Figure 10, we again see that the
use of more informative priors leads to significantly better
resolved posterior distributions in each layer. Clearly, the

refined priors provide much information, but it is important
to note that they do not provide everything. Indeed, in most
cases, the incorporation of the GPR data results in notice-
ably improved posterior parameter estimates as compared
to the refined priors. Finally, note in Figure 10 that account-
ing for correlation between the VGM parameters in the def-
inition of the prior results in more refined posterior
distributions as compared to the case where the parameters
are assumed to be uncorrelated.

5. Conclusions

[42] We have investigated how different degrees of prior
information regarding vadose zone hydraulic parameters
can affect the posterior distributions obtained for these pa-
rameters from the stochastic inversion of geophysical data.
This was done in the context of estimating VGM parame-
ters from ZOP crosshole GPR data assuming 1-D flow,
steady state conditions, and knowledge of the pertinent
boundary conditions. A number of previous studies found
that the stochastic inversion of ZOP crosshole GPR data
allowed for some refinement in VGM parameter estimates
in homogeneous and layered media. However, the findings
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Figure 10. Refined prior and corresponding posterior marginal histograms for the VGM parameters in
each layer for the field example. The dark and light blue colors indicate the results obtained for the

uncorrelated and the correlated cases, respectively.

medium blue color.

were inconclusive with regard to the true utility of the
GPR measurements due to a lack of systematic testing on
synthetic examples and consideration of realistic prior
knowledge. Moreover, the previous work only involved the
pseudo-Bayesian GLUE inversion methodology, and thus
lacked the stochastic rigor of a formal Bayesian approach.
[43] In both our synthetic and field tests, we saw through
the use of noninformative uniform prior distributions that the
ZOP GPR data contain important information regarding the
VGM parameters, even in the case where these parameters
were estimated in a heterogeneous layered medium. How-
ever, not all parameters were well resolved from the GPR
data alone, which is consistent with previous work. As a
result, unequivocal estimation of the parameters using only
the GPR data, at least in the steady state case, is not possible.
Through the use of more realistic and informative priors
based on soil property databases, we saw a significant
improvement in the posterior distributions of the VGM pa-
rameters. This is encouraging and demonstrates that the com-
bination of geophysical data with realistic prior knowledge
may allow for the effective stochastic estimation of vadose

Areas where the histograms overlap are shown as a

zone hydraulic properties and their corresponding uncertain-
ties. This in turn may be used to predict future hydrological
behavior (e.g., groundwater recharge, contaminant transport)
within a framework of uncertainty, the results of which
might be used for risk assessment. Note, however, that as in
any Bayesian study, much care needs to be taken when defin-
ing refined priors such that they are neither overly specific
nor too conservative and that they adequately reflect the
available a priori information. In our analysis of uncorrelated
versus correlated prior distributions, for example, we saw
that not accounting for parameter correlation when it exists
may actually lead to overconfidence regarding a particular
model parameter; that is, a seemingly conservative choice of
prior may in fact yield overly optimistic posterior results.

[44] It is important to remember that, in any field study,
a number of critical issues exist that are not present when
dealing with synthetic models. In the case of the Eggbor-
ough data set, we made the assumption of 1-D steady state
conditions and a four-layer subsurface parameterization
based on existing site information. Choices of this kind are
clearly approximations that will affect the results obtained
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from an inversion. Future work should involve the study of
errors in such aspects of the modelization process and their
effects on the posterior statistics obtained. Another impor-
tant topic for future work is the consideration of dynamic
data. Dynamic geophysical measurements that are sensitive
to changes in hydrological state variables, such as water
content or salinity, are more strongly tied to subsurface
hydrological properties and may thus offer much improved
potential for stochastic parameter estimation.
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