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ABSTRACT
In many countries, the decline in interest rates has reduced the interest
in traditional participating life insurance contracts with investment guar-
antees and has led to a shift to unit-linked policies without guarantees.
We design a novel mixed insurance contract splitting premium payments
between aparticipating and aunit-linked fund. An additional guarantee fee
is appliedon theunit-linked return inorder to increase the investmentguar-
antee of the participating fund. In a utility-based framework, using power
utility andprospect theory as preference functions, we show that themixed
product is usually perceivedmore attractive than a full investment in either
the unit-linked or the participating contract. The guarantee fee is beneficial
for conservative investors interested in stronger protection against losses.
This is also interesting from amarketing perspective: By the increase of the
guarantee in the participating product, zero or negative guaranteed rates
can be avoided.
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1. Introduction

In many countries, the industry of life insurance has traditionally focused on products with guar-
antees. The typical example is given by participating life insurance contracts (or life insurance with
profit), where the insurer offers ex ante a return guarantee and afterwards provides the customer a
participation in case the actual return exceeds this return guarantee. These participation schemes
may have different forms such as reversionary bonus or terminal bonus (Bacinello 2001, Bohn-
ert & Gatzert 2011, Hieber et al. 2019). The premiums are usually invested in the general fund of
the insurer with no possible financial decision from the customer. In parallel to this activity, new
forms of life insurance products have emerged for decades in many markets under the form of unit-
linked contracts or equity-linked contracts. In these products, the financial risk is transferred to the
investor allowing a more risky investment strategy. The investor can then realize his choices between
several funds. In some countries, additional guarantees can be included in the product (Boyle &
Schwartz 1977, Brennan & Schwartz 1979, Hansen & Miltersen 2002, Bauer et al. 2008, Bacinello
et al. 2011, Mackay et al. 2015, Hieber 2017).

The recent evolution of the financial market, characterized by persistent low (or even nega-
tive) interest rates and volatile equity markets, threatens the existence of attractive guarantees from
the life insurer and makes, therefore, the offer of participating contracts very challenging. Then,
the unit-linked products could appear as the only future for life insurance. Removing completely
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the guarantees has been indeed an important trend for insurers in many markets these last decades.
Nevertheless, it is confirmed bymany empirical and experimental studies that the customers are risk-
averse and specifically interested in a downside protection by guarantees (Arkes et al. 2008, Gatzert
et al. 2011, Knoller 2016, Ruβ & Schelling 2021). The demand and interest for guarantees from the
customers have not disappeared. The importance to provide some form of guarantees has been also
emphasized by the European Commission in the context of the recent draft regulation on a new Pan
European Pension Product (European Insurance and Occupational Pensions Authority 2021), where
the providers should propose possibilities of capital protection for the customers. One solution to
keep some form of guarantees in this challenging financial environment is hybrid or mixed products
including partial or lighter guarantees. This is a promising area of development, in order to find inter-
mediate solutions between pure participating products and pure equity-linked policies. As observed
by Hambardzumyan & Korn (2019), finding a good compromise between the search for potential
returns and the possibility to generate guarantees is a major issue for the life insurance industry.

The ability of the product to generate guarantees can also play an important role when legal guar-
antees are imposed by the regulator or incentivized by the state (for instance inBelgium, theminimum
guaranteed rate to offer in occupational pensions, Devolder & De Valeriola 2017, or in Germany the
reduced taxation for products with a so-called money-back guarantee, Alexandrova et al. 2017).

Mixed or hybrid products have already been considered in the literature (Bohnert 2013, Bohnert
et al. 2014, Bohnert & Gatzert 2014) and developed in practice (for instance ‘Select Products’ in Ger-
many, Alexandrova et al. 2017). ‘Select Products’ constitute a static hybrid insurance product where
the investor can choose between the investment in a unit-linked index participation and a traditional
participating life insurance contract. The detailed product design varies from insurer to insurer but
the contracts typically also include a money-back guarantee (i.e. a 0%maturity guarantee) and possi-
bly caps or floors on the unit-linked fund return, similar to equity-indexed annuities in the US (see,
e.g. Bernard&Boyle 2011). Apart from static hybrid products, so-called 3-fund dynamic hybrid prod-
ucts have been introduced to theGerman insurancemarket (Kochanski&Karnarski 2011,Mahayni&
Schneider 2016, Hambardzumyan &Korn 2019). The dynamic version includes a period rebalancing
between the investment possibilities, typically a participating life insurance contract, a guarantee fund
and a (unit-linked) equity fund. The dynamic rebalancing is used to finance and replicate additional
guarantees, i.e. a money-back guarantee. The design allows to also adapt the product to the individual
policyholder’s needs (see also the related case of so-called flexibility riders in Chen et al. 2019).

In Belgium, new products have emerged these last years, called ‘products of Branch 44’, mixing a
part in Branch 21 (participating life insurance contract with guaranteed rate) and a part in Branch 23
(pure unit-linked product) (Van Maldegem 2020).

In this paper, we introduce hybrid products based on a combination of a participating product and
a pure unit-linked product. The latter is a product without any maturity guarantee, thereafter called
‘unit-linked product’. Instead of considering just the superposition of these two parts, we create an
automatic link between them, by a double mechanism. First, we allow contracts with or without peri-
odical rebalancing between the two accounts.We also permit transfer from the unit-linked part to the
guaranteed part by introducing a continuous fee on the unit-linked part. This technique is similar to
the concept of guarantee fees in variable annuities (see, e.g. Bauer et al. 2008) and towell-known struc-
tured funds in finance offering only a part of the return of the market in exchange for a money-back
guarantee. Our guarantee fee is chosen by the customer and works as a subsidy from the unit-linked
part to increase the investment guarantee in the participating part. In the environment of low interest
rates, this kind of internal subsidy inside the contract can boost the guaranteed part. In particular, we
show that this technique permits the insurer to offer guarantees higher than the risk-free rate. This
could be precious for two reasons. First, from a marketing point of view in a situation of negative
returns, the insurer could propose some products with positive guaranteed rates (even if technically
possible, life insurance contracts with a negative interest rate guarantee seem unrealistic). Second, we
assume that the continuous fee in the unit-linked part is a fixed percentage that is due in both bad
and good market scenarios. This fee is used to increase the downside protection of the investment
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boosting the guaranteed return in the participating contract. This leads to return distributions with
a higher asymmetry, i.e. a lower return in good market scenarios but a higher downside protection.
Such asymmetric return distributions are popular for many customers ( Ruβ & Schelling 2021). For
the participating part, we look at various forms of guarantees (annual or maturity guarantees, and
intermediate guarantees on a predefined number of years).

We analyze in the paper successively the point of view of the insurer and of the customer. Using
a classical Black and Scholes market without mortality risk, we compute the fair value of various
hybrid contracts. Generalizing the fairness relation between the parameters of a participating con-
tract as developed by Bacinello (2001), we obtain different forms of equivalent relations depending
on the parameters of the two parts and on the kind of guarantee chosen by the customer. The numer-
ical results show the ability of the product to offer a range of guaranteed levels, including guarantees
higher than the risk-free rate. In a second part, we look at the value of these contracts for the cus-
tomer, using successively a utility approach and the cumulative prospect theory. These two preference
functions were also considered by Døskeland & Nordahl (2008) and Chen et al. (2015) comparing
several insurance products and a pure unit-linked product according to their expected utility. The
analysis of the paper by Chen et al. (2015) shows that by incorporating realistic aspects like mortal-
ity, long time horizons and high risk-aversion, the demand for products with guarantee increases.
Our results suggest that a hybrid product leads to a higher expected utility than the two special cases
of a pure unit-linked and a participating product interpreted in Døskeland & Nordahl (2008) and
Chen et al. (2015) for both expected utility and prospect theory. In particular, we obtain, for various
risk aversion, optimal proportions between participating and unit-linked parts and optimal level of
guarantee fees.

We organize the remainder of this paper as follows. In Section 2, we present the main financial
assumptions used throughout the paper. Section 3 describes the mechanism of the hybrid product
considered. In Section 4, we compute fair values and obtain various fairness relations between the
parameters of the contract, depending on the kind of bonus. In Section 5, we look at optimal contracts
for the customer in terms of mixing degree and level of fees. Section 6 concludes.

2. Basic financial andmortality assumptions

The insurance company has to take into account the mortality risk as well as the financial risk in
order to fulfill their contractual obligations towards the customers. In this paper, we focus on the
financial risk and ignore mortality risk assuming that these two risks are independent and that the
mortality risk will not have an effect on the fairness relation of the contract (as illustrated, for example,
in Bacinello 2001).

To follow the evolution of the wealth and the price dynamics, we assume a continuous-timemodel
with Black–Scholes economy (Black & Scholes 1973) with the following assets:

(1) A money market account which is a risk-free asset denoted by B earning a constant interest
rate r ∈ R with dynamics:

dBt = r B dt, B0 = 1.

(2) Two risky funds G and H, where G is a general fund of the company (in general with low
volatility), not directly traded on themarket and used as a reference for the participating con-
tracts. However,H is an investment fund (with high volatility) traded on the market and used
to compute the value of the unit-linked contract. These two funds are described as follows:
(2.a) The fund G is following a geometric Brownian motion with dynamics:

dGt = μG Gt dt + σG Gt dWG
t , G0 = 1, t ∈ [0,T], (1)

where WG is a standard Brownian motion under the real probability measure P and
σG > 0.In the following, wewill discretize time inn ∈ Nperiods of equal length�s = T

n .
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Figure 1. Representation of a T
n -years product.

Figure 1 illustrates n periods with maturity T where each period is made up of �s = T
n

years. These periods are counted as t = 1, 2, . . . , n.The period return of G is defined as
follows:

gt·�s = Gt·�s

G(t−1)·�s
− 1, t = 1, 2, . . . , n. (2)

It is well known that the solution of the stochastic differential equation (1), under the
real probability measure P, is Gt·�s = G0 exp((μG − σ 2

G
2 ) · t · �s + σG · WG

t·�s). Hence,

1 + gt·�s = exp((μG − σ 2
G
2 ) · �s + σG(WG

(t+1)·�s − WG
t·�s)) are independent and log-

normally distributed for all t.
(2.b) The fund H is following a geometric Brownian motion with dynamics:

dHt = μH Ht dt + σH ρ Ht dWG
t + σH

√
1 − ρ2Ht dWt , H0 = 1, t ∈ [0,T], (3)

where ρ ∈] − 1, 1[ is the parameter of correlation between the log-returns of the two
funds H and G, and W is a standard Brownian motion under the real probability
measure P, independent of WG and σH > 0. We write dWH

t = ρ · dWG
t +
√
1 − ρ2 ·

dWt .Similarly to the return of the fund G, the period return of the risky fund is defined
as follows:

ht·�s = Ht·�s

H(t−1)·�s
− 1, t = 1, 2, . . . , n. (4)

Noting that the solution of the stochastic differential equation (3), under the
real probability measure P, is Ht·�s = H0 exp((μH − σ 2

H
2 ) · t · �s + σH ρ WG

t·�s +
σH
√
1 − ρ2Wt·�s) and then 1 + ht·�s = exp((μH − σ 2

H
2 ) · �s + σH · ρ · (WG

(t+1)·�s −
WG

t·�s) + σH ·
√
1 − ρ2 · (W(t+1)·�s − Wt·�s)) are also independent and log-normally

distributed for all t.

Since we assume that the interest rate r is deterministic and constant, the uncertainty is limited to
the stochastic evolution of the portfolio and is reflected by the standard Brownian motionsWG and
W under the real probability measure P. These standard Brownian motions are defined on a filtered
probability space (�,F ,P) in the time interval [0,T].

We further assume that the investment is riskier in the second fund than in the first fund, that is:
μH > μG > r , μG and μH ∈ R and σH > σG.

We consider the financial market to be complete and arbitrage-free. LetQ be the risk-neutral mea-
sure used for pricing in this market as per Harrison & Kreps (1979). Using Girsanov’s theorem, we
can write the change of measure between the real-world measure P and the risk-neutral measure Q
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as

dQ

dP
|Et= Zt = e−

1
2 ‖θ‖2t−θWt , where θ =

( μG−r
σG

μH−r
σH

√
1−ρ2

− ρ(μG−r)
σG

√
1−ρ2

)
and Wt =

(
WG

t
Wt

)
is a two-dimensional P-Brownian motion.

Then,
(
W̃G

t
W̃t

)
= W̃t = Wt + θ · t is a two-dimensional Q-Brownian motion.

3. Structure of the policy

We consider a life insurance contract with a single premium P paid at the inception of the contract.
The contract pays a lump sum at maturity T > 0. A life insurance company decides on investing
the customers’ contributions such that a part is invested dynamically in a participating life insurance
contract (for example, the ‘Branch 21’ insurance in Belgium) while the remaining is invested in a pure
unit-linked contract (known as ‘Branch 23’ in Belgium). In the following, we point out the difference
between these two contracts:

A participating life insurance contract is a rather safe investment since it guarantees a minimum
investment return known in advance, in addition to a possible bonus participating in the investment
profits of the insurer’s asset portfolio. More precisely, if the real rate of return exceeds the guaranteed
rate, the difference between a part of the real return and the guaranteed rate is granted to the insured.
In each period, the insured receives a surplus return of

δt·�s = max(β · real rate of return t·�s − guaranteed rate of return, 0),

where β ∈ [0, 1] is the participation level assumed to be constant over time, the guaranteedminimum
rate of return, thereafter called ĩ, is a technical interest rate that the insurance company determines
at contract initiation while the real rate of return is a market rate acquired from the insurer’s asset
portfolio.We look at different guarantee periods ranging between one year (annual guarantee), several
years (maturity guarantee) or simply by an arbitrary guarantee period �s (see Figure 1). We note
that the rate of return ĩ is the total guarantee given on a period of T

n and can be computed as ĩ =
(1 + i)

T
n − 1, for an annual technical interest rate i.

The participating life insurance policy invests into the fund G defined in Section 2 and its value is
computed by investing the premium with the guaranteed interest rate and adding the bonus rate in
good years. So, the total return on the participating fund is the guaranteed interest rate ĩ in addition
to a surplus return δt·�s = (β · gt·�s − ĩ)+.

A pure unit-linked contract is more attractive for investors who are likely to take more risks to
pursue higher returns since the return depends on the investment funds to which this policy is linked
to. Referring to Bacinello (2002), this type of insurance offers advantages to the customers in terms
of higher returns and the flexibility to choose or change the financial asset to which the policy is
linked as well as it allows the insurance company to offer competitive products in the market. In
contrast to classical life insurance products, the returns of a pure unit-linked contract aremore volatile
which makes the benefit at maturity uncertain and not guaranteed. There is no investment guarantee
provided by the insurer.

We assume that the investment in the unit-linked part is subject to a continuous guarantee fee ε

used to increase the guarantee of the participating part of the mixed product. The dynamics of this
investment Ft := e−εtHt is given by

dFt = (μH − ε) Ft dt + σH ρ Ft dWG
t + σH

√
1 − ρ2 Ft dWt , H0 = 1, t ∈ [0,T], (5)

where the period return of the unit-linked fund is

ft·�s = Ft·�s

F(t−1)·�s
− 1, t = 1, 2, . . . , n. (6)
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Under the real probability measure P, 1 + ft·�s = exp((μH − ε − σ 2
H
2 ) · �s + σH · ρ · (WG

(t+1)·�s −
WG

t·�s) + σH ·
√
1 − ρ2 · (W(t+1)·�s − Wt·�s)) are independent and log-normally distributed for

all t.
The guarantee fee ε is a continuous-time dividend extracted from process H and credited to the

guaranteed part.
Basically, the benefit granted to the customer is a function of the guaranteed interest rate, the

surplus return and the rate of return from the investment in a risky fund.
More specifically, the contract is a combination of the participating life insurance and the unit-

linked contract where

• a constant proportion x ∈ ]0, 1] of the financial portfolio is invested dynamically in a partic-
ipating life insurance contract with period return ĩ + δt·�s. The real return is modeled by a
fund G;

• a constant proportion 1−x is invested in a risky fund F without guarantee.

With this investment, we analyze two different cases:

• Rebalancing case : After each time period, the investment share is rebalanced such that, again,
a constant proportion x ∈ ]0, 1] is invested in the participating contract. Here is the benefit at
maturity for a mixed product:

VT = V0 ·
n∏

t=1

[
x ·
(
ĩ +
(
β · gt· Tn − ĩ

)+)+ (1 − x) ·
(
1 + ft· Tn

)]
. (7)

• Non − rebalancing case : The proportion x is set once at the beginning of the contract. No
further action is taken, so the benefit at maturity is written as follows:

VT = V0 ·
[
x ·

n∏
t=1

(
ĩ +
(
β · gt· Tn − ĩ

)+)+ (1 − x) ·
n∏

t=1

(
1 + ft· Tn

)]
. (8)

4. Valuation of the contract

Apart from the single premium, no payments occur until the maturity of the contract. Let us point
out also that the guarantee can be given by the insurer on an annual basis (n = T), periodical basis
or at maturity (n = 1). In order to price and evaluate the different forms of contract and define their
parameters, we designate two main concepts:

(a) The retrospective reserve: it corresponds to the initial premium capitalized each period,
following the specifications of the contract.

We will denote this reserve by Vt· Tn (t = 0, 1, . . . , n) with initial condition: V0 = P. We
give the example of an annual guarantee contract (n = T):
(a) •For a pure participating life insurance contract (x = 1) with an annual guarantee, this

reserve is given by

Vt· Tn = Vt = V0 ·
t−1∏
k=0

(
1 + i + (β · gk+1 − i)+

) = Vt−1 · (1 + i + (β · gt − i)+
)
.
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For a pure unit-linked contract (x = 0) with an annual guarantee, this reserve is given
by

Vt· Tn = Vt = V0 ·
t−1∏
k=0

(
1 + fk+1

)
.

The last two formulas can be easily generalized for a mixed contract (x ∈ ]0, 1[):
For a rebalanced portfolio:

Vt· Tn = V0 ·
t−1∏
k=0

[
x ·
(

(1 + i)
T
n +
(
β · g(k+1)· Tn − ((1 + i)

T
n − 1)
)+)

+(1 − x) ·
(
1 + f(k+1)· Tn

)]
.

For a non-rebalanced portfolio:

Vt· Tn = V0 ·
[
x ·

t−1∏
k=0

(
(1 + i)

T
n +
(
β · g(k+1)· Tn − ((1 + i)

T
n − 1)
)+)

+(1 − x) ·
t−1∏
k=0

(
1 + f(k+1)· Tn

)]
.

We note that the final retrospective reserve VT corresponds to the benefit paid at maturity
to the customer. Particularly, we obtain the reserve of a pure participating contract and a
pure unit-linked contract by, respectively, extracting x = 1 and x = 0 from the above mixed
contract.

(b) The prospective reserve (or fair valuation): it corresponds to the discounted risk-neutral
expectation of the final retrospective reserve.

We denote the fair value at time t · T
n by FVt· Tn (t = 0, 1, . . . , n), i.e.

FVt· Tn = e−r(T−t· Tn ) · EQ[VT |Ft· Tn ].

We say that the contract is fairly priced if and only if the initial fair value is equal to the initial
retrospective reserve:

FV0 = V0 = P.

In the next sections, we develop this condition of fairness for different kinds of mixed
contracts.

4.1. Maturity guarantee

As known, the timing of the allocation of the guarantee and the profit sharing can be annually, period-
ically or can be applied only at maturity. In the latter case where n = 1, the investment is developing
throughout the years until maturity without assessing the performance of the funds which means
that this is a product with a maturity guarantee (that is sometimes called terminal bonus). In com-
mon sense, we can deduce that the rebalancing of the portfolio during the investment years does
not make any sense. For this reason, we will price hereinafter the case of a non-rebalanced portfolio
where the guarantee and the profit sharing are computed at maturity, while the rebalancing case will
be hidden in such a sort of product.
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4.1.1. Maturity guarantee without rebalancing
In this type of contract, the guarantee does not have to interfere during the years of investment and
so there is somehow a compensation between good and bad years.We can conclude that this is a kind
of static investment that leads to the following benefit at maturity:

VT = V0

[
x ·
(

(1 + i)T +
(

β ·
(
GT

G0
− 1
)

− ((1 + i)T − 1)
)+)

+ (1 − x) ·
(
FT
F0

)]

(see Equation (7) with n = 1 and ĩ = (1 + i)
T
n − 1).

The value of this contract is assumed by computing the time 0 price of VT under the risk-neutral
expectation: FV0(VT) = EQ[e−rT · VT]. This end gives, after replacing the retrospective reserve by
its expression:

EQ[e−rT · VT] = x · V0 ·
[
e−rT · (1 + i)T + β · e−rT · EQ

[(
GT

G0
−
(
1 + (1 + i)T − 1

β

))+]]

+ (1 − x) · V0 · e−rT · EQ

[
FT
F0

]
.

The term c{T}
0 = e−rT · EQ[(GT

G0
− (1 + (1+i)T−1

β
))+] is the time 0 value of a European call option

with a maturity T, an initial price of 1 of the underlying fund G and a strike price 1 + (1+i)T−1
β

. The
value of this call option is given by Black–Scholes under the following formula:

c{T}
0 = 
(d1) −

(
1 + (1 + i)T − 1

β

)
· e−rT · 
(d2),

where d1 =
(r + σ 2

G
2 )T − ln(1 + (1+i)T−1

β
)

σG
√
T

, d2 = d1 − σG
√
T

and 
 is the cumulative distribution function of a standard normal variable.
In addition, FTF0 expresses 1+ return of the fund F from the inception of the contract till maturity.

Based on Equation (6), by taking n = 1, the Q-expectation of FT
F0 gives e(r−ε)T .

After these indications, the contract is fairly priced by equalizing the expected present value of
benefits to the single premium paid by the insured (FV0(VT) = P):

x · V0 ·
[
e−rT · (1 + i)T + β · c{T}

0

]
+ (1 − x) · V0 · e−rT · e(r−ε)T = V0.

Eventually, the premium equivalence is as follows:

x ·
[
((1 + i)e−r)T + β · c{T}

0

]
+ (1 − x) · e−εT = 1. (9)

This relation gives us a fair condition between all the parameters in order to generate a fair contract.
It creates a link between the two components of the mixed product. In particular, we can interpret
the relation as a feedback between the guaranteed rate i and the guarantee fee ε, depending on the
allocation level x between these two parts.

4.2. T
n -years guarantee

We introduce a new product in which the bonus is incorporated not at maturity but each period, as
represented in Figure 1. It is considered as a periodical guarantee contract since the guarantee and
the profit sharing are investigated and computed each period �s (or each T

n years). Similarly, in this
type of contract, we differentiate between periodically rebalancing or not rebalancing our portfolio
which is discussed, respectively, in Sections 4.2.1 and 4.2.2.
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4.2.1. T
n -years guarantee with rebalancing

Normally, the portfolio is rebalanced just after providing the guarantee and computing the profit shar-
ing. Therefore, we rebalance the portfolio each period in order to maintain the original level of risk.
To construct the benefit, we reinvest the capitalized amount each period with the same proportion, x
in a participating contract and 1−x in a pure unit-linked contract:

VT = V0 ·
n∏

t=1

[
x ·
(

(1 + i)
T
n +
(

β ·
(

Gt Tn
G(t−1) Tn

− 1

)
− ((1 + i)

T
n − 1)

)+)

+(1 − x) ·
(

Ft Tn
F(t−1) Tn

)]
. (10)

The time 0 price of VT is computed by applying the martingale approach which is exploited by the
following Q-expectation: EQ[e−rT · VT]. By replacing VT by its expression in Equation (10), taking
into consideration the stochastic independence of the periodical rates gt·�s for all t, as well as for ft·�s.
After algebraic manipulations, we get

V0 ·
n∏

t=1

⎡⎣x ·
⎛⎝(e−r · (1 + i))

T
n + β · e−r Tn · EQ

⎡⎣( Gt Tn
G(t−1) Tn

−
(
1 + (1 + i)

T
n − 1

β

))+⎤⎦⎞⎠
+ (1 − x) · e−r Tn · EQ

[
Ft Tn

F(t−1) Tn

]]
.

The term

c
{ Tn }
0 = e−r Tn · EQ

⎡⎣( Gt Tn
G(t−1) Tn

−
(
1 + (1 + i)

T
n − 1

β

))+⎤⎦
is obviously the time 0 value of a European call option with maturity T

n with the following formula:

c
{ Tn }
0 = 
(d1) −

(
1 + (1 + i)

T
n − 1

β

)
· e−r Tn · 
(d2),

where

d1 =
(r + σ 2

G
2 )Tn − ln(1 + (1+i)

T
n −1

β
)

σG

√
T
n

, d2 = d1 − σG

√
T
n

and 
 is the cumulative distribution function of a standard normal variable.
Recalling Equation (6), the Q-expectation of

Ft Tn
F(t−1) Tn

gives e
T
n (r−ε).

To this end, we can deduce the explicit formula of the premium equivalence:

x ·
[
((1 + i) · e−r)

T
n + β · c{

T
n }

0

]
+ (1 − x) · e−ε T

n = 1. (11)

It is worth mentioning that we have computed the reserve at time 0 to obtain the fairness relation
between the parameters. As well, we can compute the reserve at any moment where the moment in
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this case is expressed periodically. For instance, we can express the time t · T
n price of VT by solving

FVt· Tn = e−r(T−t· Tn ) · EQ[VT |Ft· Tn ], t � n.

By replacing Equation (10) in the Q-expectation and conditioning on the information available at
time t · T

n , we obtain the following:

FVt· Tn = Vt· Tn ·
n−1∏
s=t

⎡⎣x ·
⎛⎝(e−r · (1 + i))

T
n + β · e−r Tn · EQ

⎡⎣(G(s+1) T
n

Gs Tn

−
(
1 + (1 + i)

T
n − 1

β

))+⎤⎦⎞⎠
+(1 − x) · e−r Tn · EQ

[
F(s+1) T

n

Fs Tn

]]
.

Hence, the fair value will be FVt· Tn = Vt· Tn · [x · [((1 + i) · e−r)
T
n + β · c{

T
n }

0 ] + (1 − x) · e−ε T
n ]n−t .

Consequently, if the contract is fairly priced at origin following condition (11), it remains fair in
terms of the reserve at any time, by stating FVt· Tn = Vt· Tn .

4.2.2. T
n -years guarantee without rebalancing

If the portfolio is not rebalanced each period, each contract is capitalized separately with the pro-
portion invested in each asset at the beginning of the contract. At maturity, the structure of the
retrospective reserve is in the following form:

VT = V0 ·
[
x ·

n∏
t=1

(
(1 + i)

T
n +
(

β ·
(

Gt Tn
G(t−1) Tn

− 1

)
−
(
(1 + i)

T
n − 1
))+)

+ (1 − x) ·
n∏

t=1

(
Ft Tn

F(t−1) Tn

)]
.

To value this contract, we calculate the time 0 price of VT under the risk-neutral measure and then
deduce the premium equivalence in closed form. The fair value of the contract is written as follows:

FV0(VT) = e−rT · EQ[VT]

= V0 ·
⎡⎣x ·

n∏
t=1

⎛⎝(e−r · (1 + i))
T
n + β · e−r Tn · EQ

⎡⎣( Gt Tn
G(t−1) Tn

−
(
1 + (1 + i)

T
n − 1

β

))+⎤⎦⎞⎠
+(1 − x) ·

n∏
t=1

e−r Tn · EQ

[
Ft Tn

F(t−1) Tn

]]
.

To write the premium equivalence, we simply connect the last expression to the premium paid at
inception after considering the Q-expectations as in Section 4.2.1 to obtain the following fairness
relation:

x ·
[
((1 + i) · e−r)

T
n + β · c{

T
n }

0

]n
+ (1 − x) · e−εT = 1. (12)

4.2.3. Special case: annual guarantee (n = T)
We note that the annual guarantee (sometimes referred as reversionary bonus) is a special case from
the T

n -years guarantee contract and is obtained by considering n = T in Equations (11) and (12) for
rebalancing and non-rebalancing contracts, respectively.
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The premium equivalence of an annual guarantee with rebalancing is then

x · ((1 + i) · e−r + β · c1) + (1 − x) · e−ε = 1,

and without rebalancing is

x · ((1 + i) · e−r + β · c1)T + (1 − x) · e−εT = 1.

4.3. Numerical illustrations

In this section, we provide numerical solutions to the fairness relations obtained in each case. More
precisely, we present some examples to Equations (9), (11) and (12) with respect to the technical inter-
est rate i. The idea is to boost the minimum guaranteed rate by making a partial investment, which
means, by investing a part in the unit-linked contract. This is because by increasing the guarantee fee
ε, we are reinforcing the guaranteed rate i. For this reason, we will find thereafter solutions for the
fairness relations with respect to i according to different values of the investment share x for each type
of guarantee.

We consider a life insurance contract with a maturity T = 20 years. For the upcoming work, we
suppose that the risk-free rate is r = 1.5% and the volatility of the guarantee fund is σG = 3%. We
note that the initial reserve V0 does not need to be specified in the calculation of the fair guaranteed
rate for the different forms of contracts.

4.3.1. Numerical insights: Tn -years guarantee
By considering the general form of a partial guarantee contract which is the T

n -years guarantee with a
number of periods n = 4, we vary the share x invested in the participating contract and find the
guaranteed rates i that satisfy fairness relations (11) and (12) obtained in the theoretical part of
the rebalancing and non-rebalancing cases, respectively, supposing that the insurance company has
fixed all other parameters. Furthermore, we analyze the impact of the participation level β and the
guarantee fee ε on these findings.

Briefly, we assess the change of i with respect to different investment shares between the partic-
ipating life insurance contract and the pure unit-linked contract. For this valuation, we consider a
contract of 20 years divided in 4 periods with 5 successive years.

It is obvious from Table 1 the capacity of the insurance company to increase the guarantee by
investing more in the unit-linked contract. In addition, we notice that a higher participation level
leads to a lower guarantee; however, the more the company imposed fees the more it is able to give
guarantees. This is confirmed in the first column of Table 1 where no fees are charged to the customer,
which leads to a fixed guarantee regardless of the asset allocation x.

Besides, we can observe that the difference in the values of the guaranteed rates between a con-
tract with rebalancing and without rebalancing can be almost negligible especially when a higher
proportion is invested in the participating life insurance contract.

We note that, by taking n = T and n = 1, we come across the annual guarantee and the maturity
guarantee types, respectively. Hence, we will thereafter analyze the above points for these specific
types of contracts.

4.3.2. Numerical insights: annual guarantee
In the context of finding a solution to the fairness relation of an annual guarantee contract with respect
to i, we assess the impact of the participation levelβ for given values of ε, r and σG as well as the impact
of the guarantee fee ε for given values of β , r and σG on both rebalancing and non-rebalancing cases
(Table 2 ).

We point out that, in both cases, the fair guaranteed rate i increases with the decrease of the share
in the participating contract x. This is trivial because the more the insurance company invests in the
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Table 1. Fair guaranteed rates i (expressed in %) with respect to the share in the participating contract x for
different participation levels β and guarantee fees ε - n= 4 (T/n-years guarantee).

With rebalancing Without rebalancing

β = 70% β = 70% β = 50% β = 70% β = 70% β = 50% β = 70%
x ε = 0% ε = 0.25% ε = 0.25% ε = 0.5% ε = 0.25% ε = 0.25% ε = 0.5%

0.10 1.18 3.68 3.69 5.67 3.37 3.38 4.70
0.20 1.18 2.47 2.50 3.44 2.38 2.42 3.16
0.30 1.18 2.01 2.08 2.63 1.97 2.05 2.50
0.40 1.18 1.75 1.87 2.19 1.73 1.85 2.12
0.50 1.18 1.58 1.73 1.90 1.57 1.72 1.86
0.60 1.18 1.46 1.64 1.69 1.45 1.64 1.66
0.70 1.18 1.36 1.57 1.53 1.36 1.57 1.51
0.80 1.18 1.29 1.52 1.39 1.29 1.52 1.38
0.90 1.18 1.23 1.48 1.28 1.23 1.48 1.27
1.00 1.18 1.18 1.45 1.18 1.18 1.45 1.18

Table 2. Fair guaranteed rates i (expressed in %) with respect to the share in the participating contract x for
different participation levels β and guarantee fees ε - n= 20 (annual guarantee).

With rebalancing Without rebalancing

β = 70% β = 70% β = 50% β = 70% β = 70% β = 50% β = 70%
x ε = 0% ε = 0.25% ε = 0.25% ε = 0.5% ε = 0.25% ε = 0.25% ε = 0.5%

0.10 0.11 3.67 3.78 6.06 3.19 3.34 4.65
0.20 0.11 2.09 2.41 3.38 1.93 2.29 2.93
0.30 0.11 1.42 1.90 2.32 1.34 1.84 2.10
0.40 0.11 1.02 1.62 1.70 0.98 1.59 1.57
0.50 0.11 0.76 1.43 1.27 0.73 1.42 1.18
0.60 0.11 0.56 1.31 0.94 0.55 1.30 0.89
0.70 0.11 0.41 1.21 0.67 0.40 1.20 0.64
0.80 0.11 0.29 1.14 0.46 0.29 1.13 0.44
0.90 0.11 0.19 1.08 0.27 0.19 1.08 0.26
1.00 0.11 0.11 1.03 0.11 0.11 1.03 0.11

unit-linked contract, the less is its commitment to the customer, and thus, it is capable to give a higher
guarantee.Moreover, we observe that, for a fixed guarantee fee ε, a higher participation level produces
a low fair technical rate. For instance in the rebalancing case, taking x = 50% and ε = 0.25%, we can
guarantee to i = 1.43% for a participation level β = 50% and to i = 0.76% for a β = 70%. However,
for a fixed β , it is obvious that taking a higher fee results in a higher guarantee. Take an example in the
rebalancing case, for x = 50% and β = 70%, we can give a guarantee of i = 1.27% for ε = 0.50% and
i = 0.76% for ε = 0.25%. Whilst we have to note that in the case of x = 1, the technical interest rate
is constant for different values of ε and that is because we are going back to the classical life insurance
product where the ε does not have any effect. Similarly, the technical interest rate is constant when
ε is equal to 0 which confirms that ε is used to boost i. Furthermore, we notice that the guarantee
is slightly better in the rebalanced case, for all different values of β and ε, since by rebalancing the
portfolio we are avoiding somehow the exposure to undesirable risk. Overall, we can say that, in a
partial guarantee product, we can get a much higher guaranteed rate.

We present, in Figure 2, the effect of the guarantee fee on the guaranteed rate taking all other
parameters fixed.

It is noticeable that, in both cases, the fee does not have any effect when investing in a partici-
pating life insurance contract and then the more we invest in the unit-linked contract, the more the
guaranteed rate is increasing. In addition, it is increasing with the increase of the guarantee fee ε, and
besides, it goes up faster in a rebalanced portfolio than in a non-rebalanced portfolio.

Consequently, this figure confirms that the guarantee fee is financing the participating insurance
contract to boost the guaranteed rate.
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Figure 2. Sensitivity of the guarantee fee on the annual guarantee contract.

Table 3. Fair guaranteed rates i (expressed in%) with respect
to x for different σG .

With rebalancing Without rebalancing

x σG = 3% σG = 1% σG = 3% σG = 1%

0.10 3.67 3.79 3.19 3.38
0.20 2.09 2.52 1.93 2.41
0.30 1.42 2.08 1.34 2.03
0.40 1.02 1.84 0.98 1.82
0.50 0.76 1.69 0.73 1.68
0.60 0.56 1.58 0.55 1.58
0.70 0.41 1.50 0.40 1.50
0.80 0.29 1.44 0.29 1.44
0.90 0.19 1.39 0.19 1.39
1.00 0.11 1.35 0.11 1.35

We now examine the impact of the volatility coefficient σG on the technical interest rate i in order
to satisfy the fairness relations of the rebalanced and non-rebalanced annual guarantee contract for
given values of β = 70% and ε = 0.25% (Table 3).

It is obvious that for a very low G-fund volatility, the fairness relation is satisfied with a higher
guaranteed rate comparing to the results for a σG = 3%. For instance, with a high participation level
of β = 70% and a guarantee fee of ε = 0.25% and with an investment of x = 70% of the premium in
participating life insurance product, a volatility coefficient of σG = 3% leads to a fair technical rate
around i = 0.4% while a volatility coefficient of σG = 1% leads to a fair technical rate of i = 1.50% in
the with and without rebalancing cases.

In addition, we notice the effect of the volatility in the classical insurance product which means
when making a full investment in the participating life contract (x = 100%), the guaranteed rate is
increased when we decrease σG.

4.3.3. Numerical insights: maturity guarantee
Once again, we are going to give some solutions with respect to the guaranteed rate to hold the fair
relation of the maturity guarantee without rebalancing determined by Equation (9) in Section 4.1.1.
Table 4 analyzes the effect of the participating level and the guarantee fee on the positive guaranteed
rates.
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Table 4. Fair guaranteed rates i (expressed in %) with respect to
the share in the participating contract x for different participation
levels β and guarantee fees ε - n= 1 (maturity guarantee).

Without rebalancing

β = 70% β = 70% β = 50% β = 70%
x ε = 0% ε = 0.25% ε = 0.25% ε = 0.5%

0.10 1.43 3.38 3.38 4.70
0.20 1.43 2.42 2.42 3.16
0.30 1.43 2.05 2.06 2.53
0.40 1.43 1.85 1.87 2.19
0.50 1.43 1.72 1.75 1.96
0.60 1.43 1.63 1.67 1.80
0.70 1.43 1.57 1.61 1.68
0.80 1.43 1.51 1.57 1.58
0.90 1.43 1.47 1.53 1.50
1.00 1.43 1.43 1.50 1.43

Figure 3. Sensitivity of the guarantee fee and the participation level on the maturity guarantee contract.

By fixing the guarantee fee ε and looking at the different technical rates with respect to the partici-
pation level β , we notice that the more the investor is sharing the profits with the insurance company
the lower will be the guarantee. For instance, when ε is fixed at 0.25% and investing with a propor-
tion of x = 0.7 of the premium, the fair guarantee is i = 1.61% for β = 50% against i = 1.57% for
β = 70%. Whilst by fixing the participation level β and concentrating on the effect of the guarantee
fee ε, the guarantee is absolutely increasing with the guarantee fee. We can check this result from
Table 4 by taking β = 70% and x = 0.7, an ε of 0.25% gives a fair guarantee of 1.57% while an ε of
0.5% results in a fair guarantee of i = 1.68%. The results can be checked graphically.

The first chart in Figure 3 confirms the increase of the guaranteed rate with the increase of
the guarantee fee ε as well as with a greater investment in the unit-linked part. On the other side, the
impact of the participation level β on the guaranteed rate is negative that is decreasing the more the
insurance company is sharing its profits with the customer.

4.3.4. Comparison between annual andmaturity guarantee contracts
It is worth making a little comparison between the findings of the annual guarantee and the maturity
guarantee. Two points can be noticeable:
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Table 5. Solutions of Equations (9) with respect
to the guaranteed rate i for different maturities T
and volatilities σG .

Maturity Volatility (%) Guarantee (%)

20 10 0.60
7 1.00
3 1.43

Volatility (%) Maturity Guarantee (%)
3 20 1.43

10 1.35
1 0.11

(1) The participation level β causes a small effect on the results of the technical interest rates in a
fair maturity guarantee contract compared to the annual guarantee contract.

(2) When considering a pure participating insurance product, the guarantee is much higher in
the maturity guarantee contract than it is in the annual guarantee. Table 5 displays different
values ofT andσG and their impacts on the fair guaranteed rates derived fromEquation (9) for
β = 70%, ε = 0.25% and x = 1. Table 5 shows that the guarantee decreases with the decrease
of the maturity T for a given value of σG. Hence, the high value of the technical interest rate
in the maturity guarantee is proved since the annual guarantee is a maturity guarantee with
T = 1. In addition, the choice of a portfolio with a low volatility coefficient on a longmaturity
leads to a higher value of the guaranteed rate.

4.3.5. Sensitivity analysis
After analyzing the annual and maturity contracts, we can go back to the T

n -years guarantee contract
to check the sensitivity of the volatility of the fund G, the maturity T and the number of periods n on
the values of the technical interest rate with respect to x and fixing all other parameters.

Starting by the impact of the volatility, we consider a T
n -years guarantee contract with the same

assumptions as before in order to look at the variation of the technical rate.
Figure 4 shows the variation of the guarantee for different values of the parameter σG and with

respect to the investment strategy x. We notice that the volatility can have a significant effect when
we invest more in a participating life insurance contract. Furthermore, the insurance company can
give a better guarantee by investing in a portfolio less volatile in both contracts, with and without
rebalancing.

Subsequently, wewill examine the impact of the number of periods andmaturity on the guaranteed
interest rate. It is detected by fixing all the parameters and changing the interest rate according to the
number of periods n for two different maturities T with respect to an investment in the participating
life insurance contract and in the pure unit-linked contract.

In Figure 5, we consider a T
n -years guarantee contract with rebalancing. First, we fix the time to

maturity and all other parameters and then we look at the variation of the guaranteed interest rate i
with respect to x and for different values of n. We notice that the guarantee is increasing when we take
a fewer number of periods n. It is worth mentioning that in the rebalancing portfolio, the number of
periods is fixed from n> 1, since for n = 1 we come across the maturity guarantee contract. On the
other side, to check the effect of the maturity T on the guaranteed rate i for a different number of
periods, we observe that the guaranteed rate is increasing with the increase of T.

4.3.6. Short-term versus long-term contracts
Based on all the above different scenarios, we summarize with a comparison between a short- and
a long-term contract where we consider, in each one, two investment cases in order to observe the
variation in the guaranteed rate according to the different types of contracts that are supposed not to
be rebalanced. In this comparison, we choose the same parameters β , σG, ε and n as 70%, 3%, 0.25%
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Figure 4. Sensitivity of the volatility σG on a T
n -years guarantee contract.

Figure 5. Sensitivity of the number of periods n and the maturity T on a T
n -years guarantee contract.

and 4, respectively.Whilst regarding the interest rate, we are going to construct the first table with the
value assumed previously in the numerical illustrations r = 1.5% (Table 6) and in the second table
we try to get closer to the current situation and take r = 0.5% (Table 7).

From a general look at the above two tables, it is obvious that the guarantee can be boosted in
different ways:

• By considering a long-term contract because a higher time to maturity T leads to a higher
guarantee, except for the annual guarantee contract where the maturity T does not have any
effect.

• By combining a participating life insurance contract to a unit-linked contract.
• By turning into a maturity guarantee where the surplus does not occur until the end of the

contract.
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Table 6. Fair guaranteed rates i (expressed in %) for different
maturities T when r = 1.5%.

Pure participating Mixed product
product (x = 1) (x = 0.5)

Short-term contract T = 5, r = 1.5%
Annual guarantee 0.11 0.73
5
4 -years guarantee 0.34 0.94
Maturity guarantee 1.18 1.58

Long-term contract T = 20, r = 1.5%
Annual guarantee 0.11 0.73
20
4 -years guarantee 1.18 1.57
Maturity guarantee 1.43 1.72

Table 7. Fair guaranteed rates i (expressed in %) for different
maturities T when r = 0.5%.

Pure participating Mixed product
product (x = 1) (x = 0.5)

Short-term contract T = 5, r = 0.5%
Annual guarantee -1.88 -0.75
5
4 -years guarantee -1.54 -0.50
Maturity guarantee -0.24 0.39

Long-term contract T = 20, r = 0.5%
Annual guarantee -1.88 -0.78
20
4 -years guarantee -0.24 0.38
Maturity guarantee 0.26 0.66

As a conclusion from the above suggested products and the numerical illustrations, we are able
to mention some remarks and inferences. First of all, referring to the relations obtained, we can put
the light on the exclusion of the parameters σH and ρ from the pricing part of each type of product.
Hence, the changes in these parameters did not have an impact on the numerical solutions, particu-
larly on the fair guaranteed interest rates. Second, we observe two dimensions that allow us to present
a higher guarantee. The first dimension includes the concept of a partial guarantee which consists of
investing a part of the premium in a pure unit-linked contract where a fee is charged to finance the
participating life insurance contract in order to get a higher guarantee. While the second dimension
consists of expanding the first dimension and turning it into a maturity guarantee product where a
higher guarantee can be presented.

5. Customer utility and optimal investment

After pricing the different types of contracts, we aim to maximize the customers’ utility based on
individuals’ preferences in order to put the above products in an optimal utility framework. Under
this framework, the affiliate is the one responsible for his own investment strategy, and so decides to
invest a part of his initial wealth in the participating fund and the remaining in the risky fund.

To measure the preferences in terms of risk and return, we maximize the expected utility of the
terminal wealth over the decision variable which is the investment strategy chosen by the affiliate.
More precisely, it is the proportion x of the premium to invest in the participating life insurance
contract. Hence, for each of the above fair relations we introduce the following optimization problem:

max
x∈[0,1]

E [U(VT)], (13)

where U is the utility function of the affiliate assuming that U ′ > 0 and U ′′ < 0.
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Table 8. CEQ and optimal investment in the different types of contracts with respect to the risk
aversion γ .

γ = 3 γ = 4

Optimal Guarantee Optimal Guarantee
x (%) i (%) CEQ x (%) i (%) CEQ

With rebalancing
Annual guarantee 30 1.42 2160 48 0.80 1987
20
4 -years guarantee 28 2.07 2134 47 1.62 1957

Without rebalancing
Annual guarantee 27 1.49 2147 46 0.82 1968
20
4 -years guarantee 25 2.14 2126 46 1.62 1944
Maturity guarantee 26 2.17 2115 48 1.75 1938

Wemention that the previous maximization problem is solved subject to the following constraint:

EQ [e−rT · VT] = V0 = P,

which means that the fair pricing relation is satisfied.

5.1. Power utility

We assume that the preferences of the customer are modeled by a constant relative risk aversion
(CRRA) utility function with a risk aversion coefficient γ . The latter one is used to measure the level
of risk of the affiliate and his behavior towards the uncertainty of the amount of money received at
maturity. The utility function is described as a power utility function of the form

U(z) = z1−γ

1 − γ
, γ > 0, γ �= 1.

We note that the higher the customer’s unwillingness to take a risk, the greater the value of γ . Based
on Davies (1981), the best suggestion for γ may typically be between 3 and 5.

In order to solve numerically problem (13) for each type of contract, we refer to the same contract
we introduced in Section 4.3 for which T = 20 years, r = 1.5%, σG = 3%, β = 70% and ε = 0.25%.
In addition, we suppose the following values for the asset parameters:μG = 3%,μH = 7% and σH =
15%, whereas the correlation is ρ = 0.1 and the initial value is V0 = 1000.

The numerical results are based on the Monte Carlo simulations. We refer in our computation to
the certainty equivalent concept defined asU(CEQ) = E[U(VT)]. The investor is indifferent between
receiving a safe amount CEQ at time T and the random payout VT from the insurance contract. The
certainty equivalent allows us to easily compare risky payoffs. Under this framework, we compare the
CEQ to the different types of contracts according to various parameters as indicated below.

5.1.1. Optimality with respect to the risk aversion
Table 8 displays the optimal asset allocation given a fair guaranteed rate and based on the highest
value of CEQ for the different types of contracts. The results show that the higher CEQ is obtained
the lower the guarantee.

We note that the optimal asset allocation x obtained in Table 8, for instance, x = 0.3, confirms
that themixed product is more attractive than the pure participating (x = 1) and unit-linked (x = 0)
products. In addition, we notice that the risk aversion has a strong effect on the asset allocation. If
the customer is risk-averse, the larger share of the premium is invested in the participating fund and,
equivalently, he is less guaranteed. Comparing both cases, with andwithout rebalancing, better results
are obtained by rebalancing the portfolio yearly or periodically because we take the gains from high
average return investments and reinvest them in assets with low average returns.
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However, if we look at the table vertically, we remark that switching from one product to the other
does not affect significantly the investment strategy of the investor but we can deduce that by increas-
ing the number of periods n we get higher certainty equivalents. For instance, the table shows that
the annual guarantee (n = T) performs better than the maturity guarantee (n = 1) given a fair guar-
anteed rate and an optimal asset allocation. The results obtained are confirmed by the fact that the
guarantee and the surplus return are computed inside the contract on a shorter basis for a higher
value of n.

We want to also connect our results to the literature on participating and unit-linked insurance
contracts and optimal asset allocation, as, for example, Døskeland & Nordahl (2008) and Chen
et al. (2015). In Døskeland & Nordahl (2008), the riskiness of the underlying risky funds can be con-
trolled by the investment strategy of the insurance company. More specifically, it is possible to invest
or borrow at a risk-free rate r; a constant share θG > 0 of funds is invested in some risky asset. In our
previous setting, this means that the fund G is replaced by the fund G̃:

dG̃t

G̃t
= θG · dGt

Gt
+ (1 − θG) · rdt

= (r + θG(μG − r)
)
dt + θG · σGdWG

t , G̃0 = 1, t ∈ [0,T].

The parameter θG is a free parameter that may help to further increase the contract’s expected utility;
if θG = 1 we are back to our setting. The same can also be done for the unit-linked fund H that is
replaced by H̃:

dH̃t = (r + θH(μH − r)
)
H̃t dt + θHσH ρ H̃t dWG

t + θHσH
√
1 − ρ2 H̃t dWt , H̃0 = 1, t ∈ [0,T],

(14)

where θH > 0 is the share invested in the risky fund. Following Døskeland & Nordahl (2008), we
choose θ∗

G such that the utility of a participating contract (i.e. the case x = 1 in our setting) is max-
imized. Secondly, we choose θ∗

H such that the utility of a unit-linked contract with a guarantee fee
of ε = 0 is maximized (i.e. the case x = 0 in our setting). Given the two parameters θ∗

G and θ∗
H , we

can now compute the utility of a mixed product for any share x ∈ [0, 1]. As limiting cases x = 0
and x = 1, we obtain the same optimal contracts as considered in Døskeland & Nordahl (2008). As
expected, the optimal participating contract leads to a higher certainty equivalent than the optimal
unit-linked investment. However, we also see that a mixed product may lead to a higher certainty
equivalent than these two extremes. Figure 6 gives the certainty equivalent as a function of the share
x using the same parameter set as in Table 8 with a risk aversion γ = 3. We note that the large values
of certainty equivalents observed in Figure 6 are due to the optimal choice of asset allocations θ∗

G and
θ∗
H . The optimal mixing share is x = 0.62, confirming our previous results that mixed participating
products can be more attractive than participating and unit-linked products, respectively.

5.1.2. Optimality with respect to the volatility of the risky fund
On the other side, we present the sensitivity of the parameters of the risky fund on the certainty
equivalents. Table 9 shows that, for the same risk appetite, the optimal asset allocation is decreasing
with the choice of a fund that is less volatile, which means that the part invested in the risky fund is
higher when its volatility decreases. In addition, as shown above, the certainty equivalents increase
for greater investment in the unit-linked contract.

Consequently, it is worth noting that the risk aversion and the risky asset parameters are the most
important parameters in measuring the preferences of the affiliate in terms of risk and return since
they identify the profile of the customers.

5.1.3. Optimality with respect to the parameter of correlation
In addition to the sensitivity of the risk aversion and the volatility of the risky asset we check the
impact of the correlation parameter ρ on the optimal investment by fixing the risk aversion γ to 4
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Figure 6. CEQ as a function of the share x – Maturity guarantee.

Table 9. CEQ and optimal investment in the different types of contracts with respect to the volatility of the
risky fund σH .

σH = 15% σH = 20% σH = 25%

Optimal x (%) CEQ Optimal x (%) CEQ Optimal x (%) CEQ

With rebalancing, γ = 4
Annual guarantee 48 1985 71 1784 82 1697
20
4 -years guarantee 47 1958 71 1749 83 1662

Without rebalancing, γ = 4
Annual guarantee 46 1970 72 1755 84 1665
20
4 -years guarantee 46 1943 72 1729 84 1640
Maturity guarantee 48 1938 73 1730 85 1644

Figure 7. Sensitivity of the correlation parameter on the optimal investment in an annual guarantee contract.

and considering an annual guarantee contract. The first plot in Figure 7 shows that the correlation
is not a significant measure of the preference of the customer; however, it affects the CEQ as shown
in the second plot of Figure 7. The CEQ is decreasing with the increase of ρ and we mention that
in the case of perfectly negative correlation the portfolio is diversified which yields a maximum risk
reduction and as a result a higher certainty equivalent.
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Table 10. Optimal asset allocation parameter x and optimal certainty equivalents (CEQ) for different
contracts with respect to the guarantee fee.

ε = 0% ε = 0.25% ε = 0.5%

Optimal x (%) CEQ Optimal x (%) CEQ Optimal x (%) CEQ

With rebalancing, γ = 4
Annual guarantee 47 2006 48 1987 48 1969
20
4 -years guarantee 46 1987 47 1957 47 1932

Without rebalancing, γ = 4
Annual guarantee 47 1991 46 1968 45 1951
20
4 -years guarantee 46 1975 46 1944 45 1918
Maturity guarantee 46 1981 48 1938 47 1904

Table 11. Different sets of parameter values
(expressed in %) for the riskless and the risky
assets.

Scenario 1 Scenario 2 Scenario 3

μG 2 2 2
σG 6 6 6
μH 6 6 6
σH 14 20 15.5

5.1.4. Optimality with respect to the guarantee fee
In this section, we look at the effect of the guarantee fee ε on the optimal asset allocation decision
and the corresponding CEQ for the customer. Opposite to the effect of the risk aversion parameter,
Table 10 shows that the guarantee fee does hardly affect the optimal investment strategy of the affiliate.
In terms of the CEQ of the optimal contract, we analyze different parameter sets and find situations
where the introduction of the guarantee fee can increase the CEQ but also situations where the case
ε = 0% leads to the highest CEQ (in Table 10, for example, the CEQ is decreasing in ε). Overall, we
find three possible effects of ε on the CEQ of the optimal contract.

To demonstrate this, let us consider an annual guarantee contract with three different scenarios
defined by a set of different parameters for the riskless asset G and the risky asset F illustrated in
Table 11. All the other parameters are set as in the previous examples.

In Figure 8, we display graphically the impact of the guarantee fee ε on the CEQ for the three
parameter choices from Table 11. For ε ∈ [0, 0.01], we observe a decreasing, an increasing (first two
figures, scenarios 1, 2) or a hump-shaped effect (third figure, scenario 3) on the CEQ. The increase
of CEQ with ε can be explained by the fact that the constant fee ε due in both good and bad years is
used to reduce the risk in the part invested in the participating contract by increasing the investment
guarantee.

In conclusion, we point out that themain parameters for the optimal investment framework are the
risk aversion that represents the individual risk and the risky asset parameters. Therefore, the product
answers different profiles of customers from small to large risk aversion and allows for different unit-
linked funds based on each profile. The mixed product turns out to be more attractive than a single
investment in a participating or a unit-linked contract. Further, we observe that the introduction of
a guarantee fee can sometimes (but not always) help to further improve the optimal product’s CEQ
for the customer. In the next section, we confirm these results using prospect theory as preference
functions. Prospect theory takes into account risk preferences of customers who are more sensitive
to losses but are (at the same time) risk-seeking with respect to gains. Such a behavior is observed in
many empirical or experimental studies (see, e.g. Tversky & Kahneman 1992).
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Figure 8. Different effects of the guarantee fee on the CEQ for the annual guarantee contract.

5.2. Cumulative prospect theory

In this part, we describe an alternative behavioral model proposed by Tversky & Kahneman (1992)
called the cumulative prospect theory (CPT) that describes the human behaviors under risk and
uncertainty. Generally, people tend to value gains and losses differently. Experimental studies confirm
that they tend to be risk-averse with respect to losses (e.g. in an insurance product) but risk-seeking
with respect to gains (e.g. in a lottery) (see also Tversky &Kahneman 1992). In prospect theory, this is
accounted for by a reference point � that separates the portfolio values in a gain part (VT − � is pos-
itive) and a loss part (VT − � is negative). The different view towards gains and losses is accounted
for by an S-shaped preference function:

U(z) =
{
(z − �)φ z ≥ �,
−λ · (� − z)φ z < �,

where φ is the sensitivity parameter that measures gains or losses. z refers to the final retrospective
reserve where some values fall above the reference point and the others fall below. λ represents the
sensitivity to losses over gains and takes into account that losses ‘hurt more’. Prospect theory helps to
explain the high demand for guarantees in life and pension insurance – an observation that cannot be
explained by a power utility preference function. The second aspect of human behavior according to
prospect theory is a probability distortion: The likelihood of extreme events (e.g. a stockmarket crash)
is overweighted while the likelihood of ‘normal’ events is underweighted. This effect is modeled by
a weighting function w: [0, 1] −→ [0, 1] that is strictly increasing with w(0) = 0 and w(1) = 1. It
holds that w(p) > p for small values of p and w(p) < p for high values of p. We rely on Prelec (1998)
to define the weighting function as w(p) = e−(− log p)ϕ where ϕ is a free parameter that controls the
curvature of the function. Given the weighting function w and the function U, the prospect utility
function is defined as1

CPT(x) :=
∫ 0

−∞
U(x) d
(
w(F(x))

)+ ∫ ∞

0
U(x) d
(− w(1 − F(x))

)
1 To estimate the utility by Monte-Carlo simulation with N simulation runs, denote by V(1)

T ≤ V(2)
T ≤ . . . ≤ V(N)

T the ordered real-

izations of terminal wealth. If there is no distortion, expected utility is simply obtained asE[U(VT )] = 1
N

∑N
j=1 U(V(j)

T ). If extreme
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Table 12. CEQ and optimal investment in the different types of contracts with respect to the
sensitivity parameter φ.

φ = 0.15 φ = 0.18

Optimal Guarantee CEQ Optimal Guarantee CEQ
x (%) i (%) x (%) i (%)

With Rebalancing
Annual Guarantee 85 0.24 1869 79 0.30 2259
20
4 -years Guarantee 85 1.26 1814 82 1.28 2191

Without Rebalancing
Annual Guarantee 83 0.25 1896 80 0.29 2328
20
4 -years Guarantee 86 1.25 1833 80 1.29 2227
Maturity Guarantee 82 1.50 1797 76 1.53 2200

with distribution function of terminal wealth F(x) = P(VT ≤ x). This is a natural generalization (cf.
Hens & Rieger 2010, Ruβ & Schelling 2018) of the discrete case introduced by Tversky & Kahne-
man (1992).Without probability weighting (i.e. forϕ = 1 andw(x) = x), the prospect utility function
reduces to

CPT(VT) =
∫ ∞

−∞
U(x) dF(x) = E[U(VT)].

To solve the problem numerically, we refer to the concept of certainty equivalent defined previously
to a better comparison. We fix the same parameter values as in the power utility part, however, there
are several studies that estimate the parameters of CPT and based on these studies and on the long
time horizon T = 20 chosen in this paper, we assign the following values to our parameters: � =
(1 + r)T · V0 as a reference point,λ = 2.25 as estimated byTversky&Kahneman (1992) andϕ = 0.78
inspired by several studies that use Prelec (1998) to estimate the probabilityweighting function.Under
this framework, we compare the CEQ of the different types of contracts with respect to the sensitivity
parameter φ.

Table 12 shows that, consistently with the results of the power utility, the share in the participating
fund x is almost the same for different types of contracts for a given sensitivity parameter φ while
the CEQ is increasing in the number of periods n. On the other hand, the increase of the sensitivity
parameter φ, which indicates an increased sensitivity to gains than to losses, generates a higher CEQ
as well as a greater investment in the unit-linked contract.

5.2.1. Sensitivity analysis with respect to the sensitivity parameter and the guarantee fee
In the following, we analyze the effect of the guarantee fee ε for different values of the sensitivity
parameter φ by considering an annual guarantee contract. We notice that the CEQ is decreasing with
the guarantee fee while the asset allocation x is hardly affected (Table 13). This result depends on the
careful choice of CPT parameters.

Under the power utility and CPT framework, we get higher CEQ by considering a mixed product
under the annual guarantee contract. However, with the parameters we choose in this paper, the
investor has a preference to invest more in the participating contract under a CPT framework, while
he prefers to invest equally or more in the unit-linked contract under a power utility framework.

scenarios are perceived more likely, the expected utility is estimated as

E[CPT(VT )] = w(p) · U(V(1)
T ) +

N−1∑
j=1

[
w
(
(j + 1) · p)− w

(
j · p)] · U(V(j+1)

T ),

where p = 1
N is the true probability of each Monte-Carlo realization.
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Table 13. CEQ and optimal investment with respect to the sensitivity parameter and the guarantee fee.

φ = 0.12 φ = 0.15 φ = 0.18

Optimal Guarantee CEQ Optimal Guarantee CEQ Optimal Guarantee CEQ
ε x (%) i (%) x (%) i (%) x (%) i (%)

0.1% 87 0.22 1556 84 0.25 1877 76 0.34 2267
0.25% 86 0.23 1554 85 0.24 1869 79 0.30 2259
0.8% 89 0.20 1543 87 0.22 1851 83 0.26 2238

6. Conclusion

In this paper, we have designed a new life insurance product that combines features of participating
and unit-linked life insurance contracts and is adapted to the needs in a low interest rate environ-
ment. The product is not just a superposition of participating and unit-linked contracts but includes
a continuous guarantee fee on the unit-linked part that permits a transfer from the unit-linked part
to the participating part.

Under this framework, we have considered different forms of contracts, varying the guarantee
period (annual guarantee, maturity guarantee or periodical guarantee) and the type of investment
(rebalancing or non-rebalancing). In each contract, a minimum return is guaranteed to the customer
alongwith a participation in the profits of the insurer.Wehave developed fair parameter combinations
under a given valuation measure, demonstrating that our product allows for fair guaranteed rates in
the participating part that may even exceed the risk-free rate. This design leads to attractive guar-
anteed rates also in a low interest rate environment. The guaranteed rate is increasing with a greater
investment in the unit-linked part, a higher value of the guarantee fee as well as a lower participation
in the profits of the insurer. Furthermore, the model shows that the guaranteed rate can be boosted
by considering a long-term contract or by turning it into a maturity guarantee contract. Eventually,
the interference of the guarantee fee in the model improved the guarantee on the participating part.

Moreover, we have analyzed the set of fair products from the customer’s viewpoint working with
preference functions.We have discussed the optimal share in the different parts as well as the effect of
the guarantee fee on the attractiveness of themixed product.We use two behavioralmodels, the utility
approach and the cumulative prospect theory.Our numerical results show that themixed product is in
almost all cases more attractive than a simple participating or unit-linked contract. In some cases, the
introduction of the guarantee fee can further improve the attractiveness of the product. The numerical
results further show that the annual guarantee contract typically leads to the highest CEQ and that
the main parameters that affect the optimal investment strategy of the affiliate are the risk aversion
and the risky asset parameters. In addition, the product proves that the optimal level of fees strongly
depends on the risk/return profiles of the unit-linked and participating funds involved.
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