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Abstract

This paper focuses on a discrete-time risk model in which both insurance risk and �nancial
risk are taken into account. We study the asymptotic behaviour of the ruin probability and the
tail probability of the aggregate risk amount. Precise asymptotic formulas are derived under weak
moment conditions on involved risks. The main novelty of our results lies in the quanti�cation of
the impact of the �nancial risk.
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1 Introduction and Preliminaries

In this paper, for every i � 1, let Xi be an insurer�s net loss (the total amount of claims less premiums)
within period i and let Yi be the stochastic discount factor (the reciprocal of the stochastic return rate)

over the same time period. Then the stochastic present values of aggregate net losses of the insurer can

be speci�ed as

S0 = 0; Sn =

nX
i=1

Xi

iY
j=1

Yj ; n � 1; (1.1)

with their maxima

Mn = max
0�k�n

Sk; n � 1: (1.2)

We are concerned with the asymptotic behaviour of the tail probabilities P (Sn > x) and P (Mn > x)

as x!1, in which P (Mn > x) coincides with the insurer�s �nite-time ruin probability within period

n given that the initial wealth is x.

In the literature fXi; i � 1g and fYi; i � 1g are usually called the insurance risk and the �nancial risk,
respectively. Under certain independence or identical distribution assumptions imposed on Xi�s and

Yi�s, the asymptotic tail behaviour of Sn and Mn has been extensively studied by many researchers.

See, e.g., Tang and Tsitsiashvili (2003, 2004), Konstantinides and Mikosch (2005), Tang (2006), Zhang

et al. (2009), Chen (2011), and Yang and Wang (2013) for some recent �ndings. Since the products

of Yi�s appearing in (1.1) essentially cause technical problems in the derivation of explicit asymptotic

formulas, most of existing works assumed that the �nancial risk is dominated by the insurance risk, i.e.,

the tails of Yi�s are lighter than the tails of Xi�s, usually through imposing strong moment conditions

on Yi�s. Then the problem becomes relatively tractable and the �nal results are mainly determined by

the tails of Xi�s.
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However, as shown by empirical data and the most recent �nancial crisis, the �nancial risk may impair

the insurer�s solvency as seriously as does the insurance risk and, hence, it should not be underestimated

as before; see Norberg (1999), Frolova et al. (2002), Kalashnikov and Norberg (2002), and Pergamen-

shchikov and Zeitouny (2006). Therefore, in the current contribution, we focus on the other directions

where the �nancial risk dominates the insurance risk or no dominating relationship exists between the

two kinds of risk. We aim at capturing the impact of the �nancial risk (the products of Yi�s) on the

tail behaviour of Sn and Mn. Loosening some independence and identical distribution constraints, we

derive precise asymptotic formulas under weak moment conditions on Yi�s and Xi�s.

Throughout this paper, an underlying assumption is the following:

Assumption A. fXi; i � 1g is a sequence of real-valued rv�s (random variables) with distribution

functions Fi�s, fYi; i � 1g is a sequence of positive and independent rv�s with distribution functions
Gi�s, and fXi; i � 1g and fYi; i � 1g are mutually independent.

It is worth mentioning that, if we further assume that both fXi; i � 1g and fYi; i � 1g are sequences of
iid (independent and identically distributed) rv�s in (1.1), then there is a natural connection between

this discrete-time risk model and the general bivariate Lévy-driven risk model with the form

Ut =

Z t

0

eQsdPs; t � 0;

where fQs; s � 0g and fPs; s � 0g are two independent Lévy processes; see Paulsen (1993, 2008), Hao
and Tang (2012), and the references therein. To see this, arbitrarily embed an increasing sequence

of stopping times, say f� i; i � 1g, to the continuous-time model. Then, after such a discretization
procedure, U�n takes the form as Sn in (1.1). Due to this reason, the results obtained in this paper can

provide us with some valuable insights to the general bivariate Lévy-driven case.

We restrict our discussions within the scope that Yi�s are regularly varying. A real-valued rv Z with

distribution function H is said to be regularly varying if its survival function H = 1 �H is regularly

varying at in�nity, i.e., limx!1H(xy)=H(x) = y
�� for every y > 0 and some � � 0. In this case, we

write Z 2 R�� or H 2 R��. A positive function regularly varying with � = 0 is also called slowly

varying function. See Bingham et al. (1987), Resnick (1987), or Embrechts et al. (1997) for more details

on regularly varying functions.

Hereafter, all limit relations hold as x!1 unless otherwise speci�ed. For two positive functions a(�)
and b(�), we write a(x) & b(x) or b(x) . a(x) if lim infx!1 a(x)=b(x) � 1 and write a(x) � b(x) if both
a(x) . b(x) and a(x) & b(x).
Our �rst result below shows that, in a special case of regular variation, the moment conditions of

involved rv�s can be dropped thanks to a Rootzén-type lemma stated in Section 3 (Lemma 3.1).

Theorem 1.1. Under Assumption A, let Xi�s be independent. If, for every i � 1, F i(x) � `�i (lnx) �
(lnx)

��1
x�� and Gi(x) � `i(lnx) (lnx)i�1 x�� for some positive constants �; �; i and some slowly

varying functions `�i (�); `i(�) then, for every n � 1, letting �n = � +
Pn

i=1 i, we have

P(Sn>x)�P(Mn>x)�P

0@Xn nY
j=1

Yj>x

1A� �n�(�)Qn
i=1 �(i)

� (�n)
`�n(lnx)

 
nY
i=1

`i(lnx)

!
(lnx)�n�1x��:

(1.3)

Remark 1.1. A well-known folklore in risk theory is that the ruin of an insurer, i.e., the tail of

Mn, will be determined by one of the insurance risk and the �nancial risk which has a heavier tail.

Nevertheless, Theorem 1.1 provides a counterexample violating the folklore. To see this more clearly,
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let both fXi; i � 1g and fYi; i � 1g be sequences of iid rv�s with common survival functions F (x) �
`�(lnx) (lnx)

��1
x�� and G(x) � `(lnx) (lnx)�1 x��, respectively. Then, according to the di¤erent

selections of �; `�(�) and ; `(�), Theorem 1.1 covers various asymptotic relationships between F and

G. However, we have the uni�ed asymptotic expansion determined by both F and G.

Remark 1.2. Tang and Tsitsiashvili (2003) gave a similar result for Mn in their Theorem 6.2. Their

result does not cover, and is not covered by, our Theorem 1.1, since their conditions on Xi�s and ours

are mutually exclusive. However, their assumptions imply F (x) = o
�
G(x)

�
, whereas our Theorem 1.1,

as stated in Remark 1.1, is valid for various relationships between F and G.

Theorem 1.1 presents an elegant result which is due to the special forms of F i�s and Gi�s. In the subse-

quent sections we focus on asymptotic analysis of Sn and Mn for general regularly varying conditions,

while the price to pay for it is the lack of elegance and the high technicalities of the proofs. Our main

results presented in Theorem 2.1 below show that, as expected, similarly to Theorem 1.1, both Sn
and Mn are regularly varying rv�s under some general conditions. Furthermore, we derive precise tail

asymptotics for both Sn and Mn. One remarkable feature of our Theorem 2.1 is the weakening of the

moment assumptions commonly imposed on Xi�s and Yi�s in the literature.

The rest of the paper is organized as follows. Section 2 shows our main theorem with several interesting

remarks. Section 3 gives the lemmas and proofs related to the results presented in Sections 1 and 2.

As an appendix, Section 4 discusses the constant weighted sums of the products of Yi�s (Xi � ci > 0
for every i � 1 in (1.1)), which model the stochastic present values of some risk-free bond with �xed
income ci in period i. We derive an asymptotic formula with the uniformity of the constant weights in

this case.

2 Main Results and Remarks

Hereafter, the summation and the product over an empty set of indices are considered as 0 and 1,

respectively. Moreover, to avoid triviality, every individual real-valued rv is assumed to be not only

concentrated on (�1; 0]. For a real number a, we write a+ = a _ 0.
Under the framework speci�ed in Assumption A, we continue to study the tail behaviour of Sn and

Mn de�ned in (1.1) and (1.2). For the conciseness in writing and presentation, we further de�ne

S
(l)
0 = 0; S(l)n =

n+l�1X
i=l

Xi

iY
j=l

Yj ; l; n = 1; 2; : : : ;

and

M (l)
n = max

0�k�n
S
(l)
k ; l; n = 1; 2; : : : :

Clearly, S(l)n describes the stochastic present value at time l � 1 of aggregate net losses occurring from
time l to time n+ l � 1. Note in passing that S(1)n = Sn, M

(1)
n =Mn, and further

S(l)n = Yl

�
Xl + S

(l+1)
n�1

�
and M (l)

n = Yl

�
Xl +M

(l+1)
n�1

�
+
; l; n = 1; 2; : : : : (2.1)

Our main results are given in the following Theorem 2.1, in which assertion (i) is valid for arbitrarily

dependent Xi�s, assertion (ii) drops the dominating relationship between F i�s and Gi�s, and neither

assertion (i) nor (ii) requires E (Xi)�+ <1 or EY �i <1 for every i � 1 and some � > �.

Theorem 2.1. Under Assumption A, assume that Gi 2 R�� for every i � 1 and some � � 0, and

EY �i <1 for every i � 2.
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(i) If XiYi 2 R�� and

P (jXij > x) = o
�
Gi+1(x)

�
(2.2)

for every i � 1 then, for every n � 1, Sn 2 R��, Mn 2 R��, and further

P (Sn > x) �
n�1X
i=1

Bn;iP

0@ iY
j=1

Yj > x

1A+ P
0@Xn nY

j=1

Yj > x

1A (2.3)

and

P (Mn > x) �
n�1X
i=1

Dn;iP

0@ iY
j=1

Yj > x

1A+ P
0@Xn nY

j=1

Yj > x

1A ; (2.4)

where

Bn;i = E
�
Xi + S

(i+1)
n�i

��
+
� E

�
S
(i+1)
n�i

��
+
and Dn;i = E

�
Xi +M

(i+1)
n�i

��
+
� E

�
M

(i+1)
n�i

��
:

(ii) If Xi�s are independent and F i 2 R�� with E (Xi)�+ < 1 for every i � 1 then, for every n � 1,
Sn 2 R��, Mn 2 R��, and further

P (Sn > x) �
n�1X
i=1

�
Bn;i � E (Xi)�+

�
P

0@ iY
j=1

Yj > x

1A+ nX
i=1

P

0@Xi iY
j=1

Yj > x

1A (2.5)

and

P (Mn > x) �
n�1X
i=1

�
Dn;i � E (Xi)�+

�
P

0@ iY
j=1

Yj > x

1A+ nX
i=1

P

0@Xi iY
j=1

Yj > x

1A : (2.6)

One important theoretical merit of Theorem 2.1 lies in that, through the transparent expansions (2.3)�

(2.6), it gives new criteria for the regular-variation membership of Sn andMn. A common shortcoming

of formulas (2.3)�(2.6) is the involved constants which can not be accurately calculated in general.

However, this is the price we have to pay for highlighting the impact of the �nancial risk Yi�s and

weakening the moment conditions. Moreover, our explicit expressions of Bn;i and Dn;i enable us to

easily conduct numerical estimates.

The following remarks and Corollary 2.1 contain some interesting special cases of Theorem 2.1, from

which one can realize to some extents the �exibility and generalization of our Theorem 2.1.

Remark 2.1. If � = 0 then assertion (i) gives

P (Sn > x) � P (Mn > x) � P

0@Xn nY
j=1

Yj > x

1A
and assertion (ii) reduces to

P (Sn > x) � P (Mn > x) �
nX
i=1

P

0@Xi iY
j=1

Yj > x

1A� n�1X
i=1

P

0@ iY
j=1

Yj > x

1A :
Remark 2.2. Clearly, if E jXij� <1 for every i � 1 and some � > � then the two special conditions
of assertion (i) hold in view of Lemma 3.2(a) below. In this case, the last term of (2.3) and (2.4) can

be expanded as follows by Breiman�s lemma; see Breiman (1965),

P

0@Xn nY
j=1

Yj > x

1A � E (Xn)�+ � P

0@ nY
j=1

Yj > x

1A :
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Plugging this relation into (2.3) and (2.4) and noting that E (Xn)�+ = Bn;n = Dn;n yield

P (Sn > x) �
nX
i=1

Bn;iP

0@ iY
j=1

Yj > x

1A and P (Mn > x) �
nX
i=1

Dn;iP

0@ iY
j=1

Yj > x

1A :
Remark 2.3. By the proofs of Theorem 2.1(i) and Lemma 3.3 below, if Xi�s are independent then

(2.2) in assertion (i) can be weakened to F i(x) = o
�
Gi+1(x)

�
.

In what follows, for a sequence fZi; i � 1g of iid rv�s, we always denote by Z its generic rv.
Remark 2.4. By Lemma 3.2(a), if both fXi; i � 1g and fYi; i � 1g are sequences of iid rv�s then only
F (x) = o

�
G(x)

�
su¢ ces for assertion (i). Moreover, we have

Bn;i = Bn�i = E
�
X1 + S

(2)
n�i

��
+
� E

�
S
(2)
n�i

��
+
= E (Sn�i+1)�+ (EY

�)
�1 � E (Sn�i)�+ ;

and

Dn;i = Dn�i = E
�
X1 +M

(2)
n�i

��
+
� E

�
M

(2)
n�i

��
= EM�

n�i+1 (EY �)
�1 � EM�

n�i:

Remark 2.5. The conditions of assertion (ii) do not exclude the simultaneous occurrence of F i(x) =
o
�
Gi+1(x)

�
for every i � 1. In such an intersectional case, Lemma 3.2(b) and Remark 2.3 imply that

assertion (i) also holds and, hence, (2.5) and (2.6) should be equivalent to (2.3) and (2.4), respectively.

The latter fact can be easily shown through Lemma 3.5 below. Actually, for every 1 � i � n � 1, by
F i(x) = o

�
Gi+1(x)

�
and Lemma 3.5, we have

P

0@Xi iY
j=1

Yj > x

1A� E (Xi)�+ � P
0@ iY
j=1

Yj > x

1A = o(1)P

0@i+1Y
j=1

Yj > x

1A :
On the other hand, it follows from Fatou�s lemma that, for every 1 � i � n� 1,

P

0@Xn nY
j=1

Yj > x

1A & E

0@Xn nY
j=i+2

Yj

1A�

+

� P

0@i+1Y
j=1

Yj > x

1A :
Hence,

n�1X
i=1

0@P
0@Xi iY

j=1

Yj > x

1A� E (Xi)�+ � P
0@ iY
j=1

Yj > x

1A1A = o(1)P

0@Xn nY
j=1

Yj > x

1A ;
which implies that (2.5) and (2.6) are equivalent to (2.3) and (2.4), respectively.

The following corollary concerns another special case of Theorem 2.1, in which the more explicit as-

ymptotics can be derived. The assertion for Mn was partially given by Theorem 6.1 of Tang and

Tsitsiashvili (2003). Recall that a real-valued rv Z with survival function H is said to belong to the

class S(�) for some � � 0 if

lim
x!1

H(x� y)
H(x)

= e�y; y 2 (�1;1); (2.7)

and

lim
x!1

H2�
+ (x)

H(x)
= 2Ee�Z <1;

where H+(x) = H(x)1fx�0g and H2�
+ stands for the 2-fold convolution of H+. In the literature, relation

(2.7) itself de�nes a larger class denoted by L(�). See, e.g., Cline (1987) and Pakes (2004, 2007) for
more details on the classes S(�) and L(�). Note that, for a positive rv Z, lnZ 2 S(�) implies Z 2 R��

and EZ� <1.
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Corollary 2.1. Under Assumption A, let both fXi; i � 1g and fYi; i � 1g be sequences of iid rv�s. If
lnY 2 S(�) for some � � 0 and limx!1 F (x)=G(x) = � 2 [0;1) then, for every n � 1,

P (Sn > x) � KnG(x) and P (Mn > x) � LnG(x); (2.8)

where

Kn =
nX
i=1

�
E (Sn�i+1)�+ (EY

�)
i�2

+ � (EY �)i
�
and Ln =

nX
i=1

�
EM�

n�i+1 (EY �)
i�2

+ � (EY �)i
�
:

Particularly, if � = 0 then, for every n � 1,

P (Sn > x) � P (Mn > x) � (� + 1)nG(x):

3 Lemmas and Proofs

The following result is due to Corollary 2.1 of Hashorva and Li (2013), which is motivated by Lemma

7.1 of Rootzén (1986); see also Rootzén (1987). Note that for iid Zi�s such that P(Z > x) � cx�� the
assertion was shown in Lemma 4.1(4) of Jessen and Mikosch (2006).

Lemma 3.1. Let Z1; : : : ; Zn be n positive and independent rv�s. If, for every 1 � i � n, P(Zi > x) �
`i(lnx)(lnx)

i�1x�� for some positive constants �, i and some slowly varying function `i(�) then we
have

P

 
nY
i=1

Zi > x

!
� �n�1

Qn
i=1 �(i)

� (
Pn

i=1 i)

 
nY
i=1

`i(lnx)

!
(lnx)

Pn
i=1 i�1x��:

Proof of Theorem 1.1: The last relation in (1.3) follows immediately from Lemma 3.1. It remains to

verify that both the tails of Sn and Mn are asymptotically equivalent to the right-hand side of (1.3).

We only prove the assertion for Sn, since the counterpart of Mn can be obtained similarly.

By Lemma 3.1, it is clear that the assertion holds for S1 = X1Y1. Now we assume by induction that

the assertion holds for n� 1 � 1 and prove it for n. Recalling (2.1), it holds that

P (Sn > x) = P
�
Y1

�
X1 + S

(2)
n�1

�
> x

�
: (3.1)

From the induction assumption, we know that S(2)n�1 2 R�� and F 1(x) = o(1)P
�
S
(2)
n�1 > x

�
. Noting

also that F 1 2 R�� and X1 is independent of S
(2)
n�1, we have (see, e.g., Feller (1971), pp. 278)

P
�
X1 + S

(2)
n�1 > x

�
� P

�
S
(2)
n�1 > x

�
� �n�1�(�)

Qn
i=2 �(i)

� (� +
Pn

i=2 i)
`�n(lnx)

 
nY
i=2

`i(lnx)

!
(lnx)

�+
Pn

i=2 i�1x��:

Then, applying Lemma 3.1 to Y1 and X1 + S
(2)
n�1 in (3.1) completes the proof. 2

The next lemma is a restatement of the Corollary of Theorem 3 in Embrechts and Goldie (1980).

Lemma 3.2. Let Y be a positive rv with survival function G 2 R�� for some � � 0 and let Z be a

real-valued rv with survival function H. Assume that Y and Z are independent. Then Y Z 2 R�� if

either (a) H(x) = o(G(x)) or (b) H 2 R��.

The �rst assertion of Lemma 3.3 below is borrowed from Lemma 3.3 of Hao and Tang (2012); see

also Lemma 4.4.2 of Samorodnitsky and Taqqu (1994), and the second assertion is a special case of

Proposition 2 of Rogozin and Sgibnev (1999).
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Lemma 3.3. Let Y and Z be two real-valued rv�s with survival functions G and H, respectively. If

G 2 R�� for some � � 0 and
P (jZj > x) = o

�
G(x)

�
(3.2)

then

P (Y + Z > x) � G(x):

Particularly, if Y and Z are independent then (3.2) can be weakened as H(x) = o
�
G(x)

�
.

Lemma 3.4 below is crucial for the proof of our main theorem.

Lemma 3.4. Let Y be a positive rv with survival function G 2 R�� for some � � 0 and let Z1; : : : ; Zn
be n real-valued rv�s satisfying E (Zi)�+ <1 for every 1 � i � n and

P

 
nX
i=1

Zi > x

!
�

nX
i=1

ciP (Zi > x) (3.3)

for n nonnegative constants c1; : : : ; cn such that max1�i�n ci > 0. Assume further that Y and fZ1; : : : ; Zng
are independent. Then

P

 
Y

nX
i=1

Zi > x

!
�
 
E

 
nX
i=1

Zi

!�
+

�
nX
i=1

ciE (Zi)�+

!
P (Y > x) +

nX
i=1

ciP (Y Zi > x) : (3.4)

One merit of Lemma 3.4 is that we do not require E (Zi)�+ <1 for every 1 � i � n and some � > �. In
return, the tails of products P (Y Zi > x) for 1 � i � n can not be expanded further. Otherwise, relation
(3.4) will reduce to Breiman�s formula. If Zi�s are independent then relation (3.3) with c1 = � � � = cn = 1
is usually called the max-sum equivalence property; see, e.g., Cai and Tang (2004) for some heavy-

tailed distribution classes satisfying such a property. Moreover, even under some special dependence

structures, including the pairwise negative dependence and (quasi) asymptotic independence, relation

(3.3) still holds with c1 = � � � = cn = 1 for Zi�s belonging to certain heavy-tailed distribution classes;
see Chen and Yuen (2009), Geluk and Tang (2009), and Tang (2008), among others.

Proof of Lemma 3.4: For every 0 < " < 1, by relation (3.3), there is some M > 0 such that the

relations

(1� ")
nX
i=1

ciP (Zi > x) � P
 

nX
i=1

Zi > x

!
� (1 + ")

nX
i=1

ciP (Zi > x) (3.5)

hold for all x �M . By this large M , we rewrite the left-hand side of (3.4) as

P

 
Y

nX
i=1

Zi > x

!
= P

 
Y

nX
i=1

Zi > x; Y >
x

M

!
+ P

 
Y

nX
i=1

Zi > x; Y �
x

M

!
= I1(M;x) + I2(M;x):

Applying Remark 4.1(a) below to I1(M;x), we have, for M large enough,

1� " � lim
x!1

I1(M;x)

E (
Pn

i=1 Zi)
�

+ � P (Y > x)
� 1 + ": (3.6)

Consider I2(M;x) =
R x=M
0

P (
Pn

i=1 Zi > x=y)G(dy). It follows from (3.5) that

(1� ")J(M;x) � I2(M;x) � (1 + ")J(M;x); (3.7)

where

J(M;x) =
nX
i=1

ciP (Y Zi > x)�
nX
i=1

ciP
�
Y Zi > x; Y >

x

M

�
:
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Using Remark 4.1(a) again to each summand of the second summation, we obtain that, for M large

enough,

1� " � lim
x!1

J(M;x)Pn
i=1 ciP (Y Zi > x)�

Pn
i=1 ciE (Zi)

�
+ � P (Y > x)

� 1 + ": (3.8)

Combining (3.6)�(3.8) and noting the arbitrariness of " complete the proof. 2

Lemma 3.5. Let Y be a positive rv with survival function G 2 R�� for some � � 0 and let Z1; Z2 be
2 real-valued rv�s with distribution functions H1;H2 satisfying H1(x) = o

�
H2(x)

�
and E (Z2)�+ < 1.

Assume that Y and fZ1; Z2g are independent. Then

P (Y Z1 > x)� E (Z1)�+ �G(x) = o(1)P (Y Z2 > x) :

Proof. For every 0 < " < 1, since H1(x) = o
�
H2(x)

�
, there is some M such that for all x � M the

relation H1(x) � "H2(x) holds. Write

P (Y Z1 > x) = P
�
Y Z1 > x; Y >

x

M

�
+ P

�
Y Z1 > x; Y �

x

M

�
= I1(M;x) + I2(M;x):

By Remark 4.1(a), choosing M large enough, it holds that

lim
x!1

I1(M;x)� E (Z1)�+ �G(x)
E (Z1)�+ �G(x)

� ": (3.9)

For I2(M;x), by conditioning on Y and noting that H1(x) � "H2(x) for x �M , we have

I2(M;x) � "P
�
Y Z2 > x; Y �

x

M

�
� "P (Y Z2 > x) : (3.10)

Moreover, Fatou�s lemma gives

P (Y Z2 > x) & E (Z2)�+ �G(x): (3.11)

Therefore,

lim sup
x!1

P (Y Z1 > x)� E (Z1)�+ �G(x)
P (Y Z2 > x)

= lim sup
x!1

 
I1(M;x)� E (Z1)�+ �G(x)

E (Z1)�+ �G(x)
�
E (Z1)�+ �G(x)
P (Y Z2 > x)

+
I2(M;x)

P (Y Z2 > x)

!

� "

�E (Z1)�+
E (Z2)�+

+ 1

�
;

where in the last step we used (3.9), (3.11), and (3.10) in turn. Noting the arbitrariness of " completes

the proof.

Proof of Theorem 2.1(i): We only derive relation (2.3) which implies Sn 2 R�� by Lemma 3.2(b),

then the assertions regarding Mn follow from the similar procedures with obvious modi�cations.

We proceed by the mathematical induction. Trivially, relation (2.3) holds for n = 1 with a by-product

P (S1 > x) & E (X1)�+ � P (Y1 > x) :

Assume by induction that relation (2.3) holds for n� 1 � 1 with

P (Sn�1 > x) & E
�
X1 + S

(2)
n�2

��
+
� P (Y1 > x) :

Now we consider Sn and recall that relation (3.1) holds. Applying the induction assumption to

fY2; : : : ; Yng and fX2; : : : ; Xng leads to

P
�
S
(2)
n�1 > x

�
& E

�
X2 + S

(3)
n�2

��
+
� P (Y2 > x) : (3.12)
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Combining (3.12) with (2.2) gives

P (jX1j > x) = o (1)P
�
S
(2)
n�1 > x

�
;

which together with Lemma 3.3 implies

P
�
X1 + S

(2)
n�1 > x

�
� P

�
S
(2)
n�1 > x

�
:

Applying Lemma 3.4 to (3.1) with Y , Z1, Z2 replaced by Y1, X1, S
(2)
n�1, respectively, and c1 = 0, c2 = 1,

we have

P (Sn > x) �
�
E
�
X1 + S

(2)
n�1

��
+
� E

�
S
(2)
n�1

��
+

�
P (Y1 > x) + P

�
Y1S

(2)
n�1 > x

�
= Bn;1P (Y1 > x) + P

�bS(2)n�1 > x� ; (3.13)

where bS(2)n�1 stands for S(2)n�1 with Y2 replaced by Y1Y2. Clearly, fY1Y2; Y3; : : : ; Yng and fX2; : : : ; Xng
also satisfy all the conditions of assertion (i). Thus, using the induction assumption to bS(2)n�1 yields

P
�bS(2)n�1 > x� � n�1X

i=2

Bn;iP

0@ iY
j=1

Yj > x

1A+ P
0@Xn nY

j=1

Yj > x

1A : (3.14)

A combination of (3.13) and (3.14) gives relation (2.3). 2

Proof of Theorem 2.1(ii): Similarly as before, we only derive relation (2.5) by the mathematical
induction. Trivially, relation (2.5) holds for n = 1. Assume by induction that relation (2.5) holds for

n� 1 � 1, which implies S(2)n�1 2 R��. Since F1 2 R�� and X1 is independent of S
(2)
n�1, it holds that

P
�
X1 + S

(2)
n�1 > x

�
� P (X1 > x) + P

�
S
(2)
n�1 > x

�
:

Now, applying Lemma 3.4 to (3.1) with Y , Z1, Z2 replaced by Y1, X1, S
(2)
n�1, respectively, and c1 =

c2 = 1, we have

P (Sn > x)

�
�
E
�
X1 + S

(2)
n�1

��
+
� E(X1)�+� E

�
S
(2)
n�1

��
+

�
P(Y1 > x)+ P(X1Y1 > x)+ P

�
Y1S

(2)
n�1 > x

�
=
�
Bn;1 � E (X1)�+

�
P (Y1 > x) + P (X1Y1 > x) + P

�bS(2)n�1 > x� : (3.15)

Since fY1Y2; Y3; : : : ; Yng and fX2; : : : ; Xng also satisfy all the conditions of assertion (ii), using the
induction assumption on bS(2)n�1 yields

P
�bS(2)n�1 > x� � n�1X

i=2

�
Bn;i � E (Xi)�+

�
P

0@ iY
j=1

Yj > x

1A+ nX
i=2

P

0@Xi iY
j=1

Yj > x

1A : (3.16)

A combination of (3.15) and (3.16) gives relation (2.5). 2

Proof of Corollary 2.1: Since lnY 2 S(�) and limx!1 F (x)=G(x) = �, we can derive by Proposition

2 of Rogozin and Sgibnev (1999) that, for every i � 1,

P

0@Xi iY
j=1

Yj > x

1A �
�
iEX�

+ + �EY �
�
(EY �)i�1G(x); (3.17)

and, particularly,

P

0@ iY
j=1

Yj > x

1A � i (EY �)i�1G(x): (3.18)
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If � = 0, i.e., F (x) = o
�
G(x)

�
, then Remark 2.4 indicates that Theorem 2.1(i) holds. Plugging (3.17)

and (3.18) into (2.3) and (2.4), and then rearranging the constants with keeping in mind the two

relations speci�ed in Remark 2.4, we obtain the relations in (2.8) with � = 0. On the other hand, if

� > 0 then Theorem 2.1(ii) is valid. Plugging (3.17) and (3.18) into (2.5) and (2.6), and then rearranging

the constants, we complete the proof. 2

4 Appendix

In this section, we derive some asymptotic results for the constant weighted sums of partial products of

Yi�s with the uniformity of the constant weights; see Theorem 4.1 below. We �rst prepare two important

lemmas.

Lemma 4.1. Let Y be a positive rv with survival function G 2 R�� for some � � 0 and let Z = fZg
be a set of positive rv�s satisfying inf Z > 0 and E (supZ)� < 1, where inf = supZ = inf = supZ2Z Z.

Assume that Y and Z are independent. Then it holds uniformly for Z 2 Z that

lim
M!1

lim
x!1

P (Y Z > x; Y > x=M)
EZ� �G(x)

= 1: (4.1)

Proof. For every M > 1 > � > 0 and x > 0, we have

P
�
Y Z > x; Y >

x

M

�
= P

�
Y >

x

M
;Z > M

�
+ P (Y Z > x; 0 < Z � �) + P (Y Z > x; � < Z �M)

= I1(M;x) + I2(M;x) + I3(M;x):

Since Y and Z are independent, it holds that

lim
M!1

lim
x!1

sup
Z2Z

I1(M;x) + I2(M;x)

EZ� �G(x)
� lim

M!1
lim
x!1

sup
Z2Z

P (Z > M)G (x=M) + P (Z � �)G(x=�)
EZ� �G(x)

� lim
M!1

lim
x!1

P (supZ > M)G (x=M) + P (inf Z � �)G(x=�)
E (inf Z)� �G(x)

= lim
M!1

P (supZ > M)M� + P (inf Z � �) ��

E (inf Z)�

� P (inf Z � �)
E (inf Z)� ; (4.2)

where in the third and the fourth steps we used G 2 R�� and E (supZ)� < 1, respectively. For
I3(M;x), we have

lim
M!1

lim
x!1

sup
Z2Z

���� I3(M;x)EZ� �G(x)
� 1
����

� lim
M!1

lim
x!1

sup
Z2Z

���RM� �
G(x=y)=G(x)� y�

�
P (Z 2 dy)

���+ EZ�1fZ>Mg[fZ��g

EZ�

� lim
M!1

lim
x!1

sup�<y�M
��G(x=y)=G(x)� y���+ E (supZ)� 1fsupZ>Mg + P (inf Z � �) ��

E (inf Z)�

� P (inf Z � �)
E (inf Z)� ; (4.3)

where in the last step we used Theorem 1.5.2 of Bingham et al. (1987) to neglect the �rst term of

the numerator as x ! 1. Combining (4.2) with (4.3) and noting the arbitrariness of � complete the
proof.
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Remark 4.1. Going along the same lines of the above proof with corresponding modi�cations, we
can obtain two variants of Lemma 4.1: Let Y be that in Lemma 4.1 and let Z be a set of real-

valued rv�s independent of Y , then (a) relation (4.1) with EZ� replaced by EZ�+, denoted by (4.10),
holds for every �xed Z with EZ�+ < 1; (b) relation (4.10) holds uniformly for Z 2 Z if � > 0 and

0 < E (inf Z)�+ � E (supZ)
�
+ <1.

Using Lemma 4.1 and the same idea as in the proof of Lemma 3.4, we have the following:

Lemma 4.2. In addition to the other conditions of Lemma 4.1, if P (Z > x� 1) � P(Z > x) holds

uniformly for Z 2 Z then it holds uniformly for Z 2 Z that

P (Y (1 + Z) > x) � [E (1 + Z)� � EZ�]P (Y > x) + P (Y Z > x) :

Theorem 4.1. Let fYi; i � 1g be a sequence of positive and independent rv�s with survival functions
Gi 2 R�� for every i � 1 and some � � 0. Assume that EY �i < 1 for every i � 2. Then, for every
n � 1 and 0 < a � b <1, it holds uniformly for (c1; : : : ; cn) 2 [a; b]n that

P

0@ nX
i=1

ci

iY
j=1

Yj > x

1A �
nX
i=1

An;iP

0@ iY
j=1

Yj > x

1A ; (4.4)

where

An;i = E

0@ nX
k=i

ck

kY
j=i+1

Yj

1A�

� E

0@ nX
k=i+1

ck

kY
j=i+1

Yj

1A�

:

Particularly, if � = 1 then it holds uniformly for (c1; : : : ; cn) 2 [a; b]n that

P

0@ nX
i=1

ci

iY
j=1

Yj > x

1A �
nX
i=1

ciP

0@ iY
j=1

Yj > x

1A ;
and if � = 0 then it holds uniformly for (c1; : : : ; cn) 2 [a; b]n that

P

0@ nX
i=1

ci

iY
j=1

Yj > x

1A � P

0@ nY
j=1

Yj > x

1A :
Proof. We prove relation (4.4) by mathematical induction. For n = 1, by Theorem 1.5.2 of Bingham

et al. (1987), it holds uniformly for c1 2 [a; b] that

P (c1Y1 > x) � c�1P (Y1 > x) = A1;1P (Y1 > x) :

Hence, the assertion holds for n = 1. Now we assume by induction that the assertion holds for n�1 � 1
and prove it for n. De�ne a set of positive rv�s as

Z =

8<:
nX
i=2

ci
c1

iY
j=2

Yj : (c1; : : : ; cn) 2 [a; b]n
9=; :

It follows from Lemma 3.2(b) that
Qi
j=2 Yj 2 R�� � L(0) for every 2 � i � n. Observing that

(c2=c1; : : : ; cn=c1) 2 [a=b; b=a]n�1, we obtain by the induction assumption that, uniformly for (c1; : : : ; cn) 2
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[a; b]n,

P

0@ nX
i=2

ci
c1

iY
j=2

Yj > x� 1

1A �
nX
i=2

c��1 An;iP

0@ iY
j=2

Yj > x� 1

1A
�

nX
i=2

c��1 An;iP

0@ iY
j=2

Yj > x

1A
� P

0@ nX
i=2

ci
c1

iY
j=2

Yj > x

1A :
Moreover, it is obvious that

inf Z =
nX
i=2

a

b

iY
j=2

Yj > 0 and E (supZ)� = E

0@ nX
i=2

b

a

iY
j=2

Yj

1A�

<1:

Hence, Z satis�es the conditions of Lemma 4.2, which implies that, uniformly for (c1; : : : ; cn) 2 [a; b]n,

P

0@ nX
i=1

ci

iY
j=1

Yj > x

1A = P

0@Y1
0@1 + nX

i=2

ci
c1

iY
j=2

Yj

1A >
x

c1

1A
� c��1 An;1P

�
Y1 >

x

c1

�
+ P

0@Y1 nX
i=2

ci
c1

iY
j=2

Yj >
x

c1

1A
� An;1P (Y1 > x) + P

0@ nX
i=2

ciY1

iY
j=2

Yj > x

1A : (4.5)

For the second term of (4.5), regarding Y1Y2 as a whole and using the induction assumption on

Y1Y2; Y3; : : : ; Yn, we have, uniformly for (c2; : : : ; cn) 2 [a; b]n�1,

P

0@ nX
i=2

ciY1

iY
j=2

Yj > x

1A �
nX
i=2

An;iP

0@ iY
j=1

Yj > x

1A : (4.6)

A combination of (4.5) and (4.6) completes the proof.

Similarly as in Corollary 2.1, assuming further that fYi; i � 1g is a sequence of iid rv�s and lnY 2 S(�)
for some � � 0 leads to a series of explicit results. We conclude them in the following Corollary 4.1.

Corollary 4.1. Let fYi; i � 1g be a sequence of positive and iid rv�s with common survival function
G. If lnY 2 S(�) for some � � 0 then, for every n � 1 and 0 < a � b < 1, it holds uniformly for
(c1; : : : ; cn) 2 [a; b]n that

P

0@ nX
i=1

ci

iY
j=1

Yj > x

1A �
nX
i=1

E

0@ nX
k=i

ck

k�i+1Y
j=1

Yj

1A�

(EY �)i�2 �G(x):

Particularly, if � = 1 then it holds uniformly for (c1; : : : ; cn) 2 [a; b]n that

P

0@ nX
i=1

ci

iY
j=1

Yj > x

1A �
nX
i=1

ici (EY )i�1 �G(x);

and if � = 0 then it holds uniformly for (c1; : : : ; cn) 2 [a; b]n that

P

0@ nX
i=1

ci

iY
j=1

Yj > x

1A � nG(x):
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