
A Phylogeny-aware GWAS Framework to Correct for 
Heritable Pathogen Effects on Infectious Disease Traits
Sarah Nadeau ,1,2 Christian W. Thorball,3 Roger Kouyos,4,5 Huldrych F. Günthard,4,5 Jürg Böni,4 

Sabine Yerly,6 Matthieu Perreau,7 Thomas Klimkait,8 Andri Rauch,9 Hans H. Hirsch ,8,10,11 

Matthias Cavassini ,12 Pietro Vernazza,13 Enos Bernasconi,14 Jacques Fellay,2,3,15 Venelin Mitov ,†,1,2 

Tanja Stadler ,*,†,1,2 and the Swiss HIV Cohort Study (SHCS)

1Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
2

Swiss Institute of Bioinformatics, Lausanne, Switzerland
3

Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
4

Institute of Medical Virology, University of Zurich, Zurich, Switzerland
5

Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
6

Division of Infectious Diseases, Laboratory of Virology, Geneva University Hospital, Geneva, Switzerland
7

Division of Immunology and Allergy, University Hospital Lausanne, Lausanne, Switzerland
8

Department of Biomedicine, University of Basel, Basel, Switzerland
9

Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
10

Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
11

Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
12

Division of Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland
13

Division of Infectious Diseases, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
14

Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
15

Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

*Corresponding author: E-mail: tanja.stadler@bsse.ethz.ch.
†Co-last authors.
Associate editor: Keith Crandall

Abstract
Infectious diseases are particularly challenging for genome-wide association studies (GWAS) because genetic effects 
from two organisms (pathogen and host) can influence a trait. Traditional GWAS assume individual samples are in
dependent observations. However, pathogen effects on a trait can be heritable from donor to recipient in transmis
sion chains. Thus, residuals in GWAS association tests for host genetic effects may not be independent due to shared 
pathogen ancestry. We propose a new method to estimate and remove heritable pathogen effects on a trait based on 
the pathogen phylogeny prior to host GWAS, thus restoring independence of samples. In simulations, we show this 
additional step can increase GWAS power to detect truly associated host variants when pathogen effects are highly 
heritable, with strong phylogenetic correlations. We applied our framework to data from two different host–patho
gen systems, HIV in humans and X. arboricola in A. thaliana. In both systems, the heritability and thus phylogenetic 
correlations turn out to be low enough such that qualitative results of GWAS do not change when accounting for the 
pathogen shared ancestry through a correction step. This means that previous GWAS results applied to these two 
systems should not be biased due to shared pathogen ancestry. In summary, our framework provides additional 
information on the evolutionary dynamics of traits in pathogen populations and may improve GWAS if pathogen 
effects are highly phylogenetically correlated amongst individuals in a cohort.

Key words: genome-wide association study, infectious disease, phylogenetic mixed model, heritability.

Open Access
© The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in anymedium, provided the originalwork is properly 
cited. 

A
rticle 

Introduction

A key goal of genome-wide association studies (GWAS) is 
to understand the genetic basis of phenotypic variation 
among individuals. In a typical GWAS, millions of genetic 

variants from across an organism’s genome are screened 
for statistical association with a trait of interest. Ideally, 
this procedure identifies variants that are located in, or 
are in linkage disequilibrium with, alleles that directly af
fect the trait. If GWAS finds a variant strongly associated 
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with a disease trait, the gene product may be a good drug 
target (Okada et al. 2014). Even if no single variant has a 
strong association, many small associations can be aggre
gated into a polygenic risk score to identify susceptible in
dividuals (Dudbridge 2013).

It is well known that GWAS can be sensitive to con
founding variables. Shared ancestry among individuals, es
pecially between close relatives, can give rise to spurious 
genetic correlations with a trait. Corrections for these 
types of population structure in human GWAS cohorts 
are well developed and widely accepted (Price et al. 
2006; Astle and Balding 2009). More recently, analogous 
methods have been developed for microbial GWAS, where 
clonal reproduction exacerbates population structure 
(Power et al. 2017). Microbial GWAS-specific phylogenetic 
methods to account for population structure include ex
plicitly testing for lineage-specific effects as in Earle et al. 
(2016) and modified association tests that account for 
phylogenetic relationships amongst samples as in Collins 
and Didelot (2018). These approaches are designed to 
quantify genetic effects from one organism on a trait.

In the infectious disease context, genetic effects from two 
organisms—the host and the pathogen—may affect an in
fectious disease trait. GWAS using paired host–pathogen 
genotype data have previously been done to elucidate the 
marginal and interaction effects of host and pathogen gen
etic variants. Methods to account for microbial population 
structure when testing for marginal host associations or 
host–pathogen interaction effects include adding the mi
crobial kinship matrix as a random effect in a linear mixed 
model as in Wang et al. (2018) and using principle compo
nents derived from either this matrix or the pathogen phyl
ogeny as covariates in a linear model as in Naret et al. (2018). 
These methods focus on capturing and accounting for cor
relations due to the pathogen phylogeny, without further 
investigating the nature of these correlations.

In this work, we draw from the field of phylogenetic com
parative methods to propose a new two-step framework 
that corrects for pathogen population structure and thus 
satisfies the GWAS assumption of independent samples. 
The introduced framework relies on paired pathogen– 
host genotyping and is envisioned specifically for 
continuous-valued traits that are highly heritable from in
fection partner to infection partner. We hypothesized 
that our approach should improve GWAS power to identify 
host genetic variants broadly associated with disease traits.

In a first step, we fit an evolutionary model to trait data 
and the pathogen phylogeny. This first step provides an es
timate of the correlation structure of the trait due to her
itable pathogen effects. The estimate is used to remove 
pathogen effects on the trait. In the second step, the re
sulting corrected trait data are used in a GWAS with 
host genetic variants. The GWAS can be performed as nor
mal under the assumption of independent samples. The 
main advantage of this two-step approach compared 
with the previously outlined methods to correct for patho
gen population structure is that it generates additional in
formation on the evolutionary dynamics of the trait in the 

pathogen population. The advances presented here are on 
the first step, whereas in the second step existing, highly 
optimized tools to perform GWAS association tests under 
a variety of models can be employed.

In the following, we describe the evolutionary model for 
heritable, continuous-valued infectious disease traits upon 
which our method is based. We derive a maximum- 
likelihood estimate for the pathogen part of a trait under 
this model. We then describe a new infectious disease 
GWAS framework assessing associations of the trait with 
host genetic variants using the maximum-likelihood esti
mates. In simulations, we show that this framework can 
improve GWAS power to detect host genetic variants 
that affect disease traits. Finally, we apply our framework 
to paired host–pathogen genotyping data from the Swiss 
HIV Cohort Study (SHCS) and a previously studied 
Arabidosis thaliana–Xanthomonas arboricola pathosys
tem. We show that associations with set-point viral load 
(spVL) and quantitative disease resistance (QDR) traits, re
spectively, are robust to a correction for pathogen effects.

New Approaches
A Statistical Model for Heritable, Continuous-valued 
Infectious Disease Traits
Variation in infectious disease traits like viral load or infec
tion severity can come from several sources. These include 
host genetic factors, pathogen genetic factors, interaction 
effects between the host and the pathogen, or non-genetic 
factors like healthcare quality or temperature. GWAS typ
ically stratify samples or include covariates to correct for 
host genetic factors or non-genetic factors that may be 
correlated with a trait value. This leaves pathogen genetic 
factors as a remaining source of correlation, since close 
transmission partners may be infected with very similar 
pathogen strains. We aim to remove this pathogen- 
induced correlation in the trait data prior to performing 
GWAS on the host genomes.

Broad-sense pathogen heritability H2 quantifies the 
fraction of total variance in a trait that is “inherited” 
from infection partner to infection partner, that is, due 
to pathogen factors. To characterize H2 and the heritable 
and non-heritable factors that determine infectious dis
ease traits, we use a phylogenetic mixed model (PMM) 
(Housworth et al. 2004). PMMs assume continuous traits 
are the sum of independent heritable and non-heritable 
parts. In the infectious disease GWAS case, we assume 
the heritable part comprises pathogen genetic factors 
and all other factors are non-heritable. The heritable 
pathogen part is modeled by a random process occurring 
in continuous time along the branches of the pathogen 
phylogeny, as in figure 1A. The non-heritable part is mod
eled as Gaussian noise added to sampled individuals at the 
tips of the phylogeny.

PMMs have previously been applied to the study of in
fectious disease traits using two different types of random 
processes to model trait evolution. The Brownian Motion 
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(BM) process assumes unbounded trait values, that is, the 
trait can attain any value. The Ornstein–Uhlenbeck (OU) 
process assumes trait values fluctuate around an optimal 
value, that is, extreme trait values are unlikely. Here, we as
sume the more flexible OU process as it encompasses a 
wider variety of evolutionary scenarios. For example, 
Mitov and Stadler (2018) and Bertels et al. (2018) previous
ly showed the OU process has higher statistical support for 
HIV-1 spVL. This makes sense given that spVL is likely un
der stabilizing selection to maximize viral transmission po
tential (Fraser et al. 2014). The full model is called the 
phylogenetic Ornstein–Uhlenbeck mixed model (POUMM) 
and is described in detail by Mitov and Stadler (2018). 
Here, we review the main points relevant to our method.

Under the POUMM, the trait z is the sum of heritable 
genetic effects g, that is, due to the pathogen, and non- 
heritable “environmental” effects ϵ, that is, host genetic ef
fects and other environmental or interaction effects:

z = g + ϵ (1) 

g is a pathogen trait that evolves along the phylogeny ac
cording to an OU process. The OU process is defined by a 
stochastic differential equation with two terms. The first 
term represents a deterministic pull towards an optimal 
trait value and the second term represents stochastic fluc
tuations modeled by Brownian motion (Butler and King 
2004):

dg(t) = α[θ − g(t)] dt + σ dWt

g(0) = g0
(2) 

Here the parameter α represents selection strength to
wards an evolutionarily optimal value represented by par
ameter θ. The parameter σ measures the intensity of 
stochastic fluctuations in the evolutionary process. 
Finally, dWt is the Wiener process underlying Brownian 
motion. The OU process is a Gaussian process, meaning 
that g(t) is a Gaussian random variable. Assuming g(t) 
starts at initial value g0 at time t = 0 at the root of the phyl
ogeny, we can write the expectation for g(t) at time t:

E[g(t)] = g0 e−αt + (1 − e−αt)θ (3) 

and the variance in g(t) if we were to repeat the random 
evolutionary process many times (Butler and King 2004):

Var[g(t)] =
σ2

2α
(1 − e−2αt) (4) 

g evolves independently in descendent lineages after a 
divergence event in the phylogeny. The covariance 
between g(t) in a lineage i at time ti and another 
lineage j at time tj, Cov[gi(ti), g j(tj)], increases with the 
amount of time between t0 and the divergence of the 
two lineages, t0(ij), and decreases with the total amount 
of time the lineages evolve independently, dij (Butler 
and King 2004):

Cov[gi(ti), g j(tj)] =
σ2

2α
[e−αdij (1 − e−2αt0(ij) )] (5) 

Next, we recall that ϵ is the non-heritable part of the trait. 
ϵ is modeled as a Gaussian random variable that is time- 
and phylogeny-independent. The expectation of ϵ is 0, 
meaning non-heritable effects are equally likely to raise 
or lower the trait from the pathogen-determined level. 
The parameter σ2

ϵ measures the between-host variance 
of the non-heritable effect.

E(ϵ) = 0
Var(ϵ) = σ2

ϵ
(6) 

Finally, broad-sense trait heritability can be calculated as 
the fraction of total trait variance that is heritable:

H2
t =

Var[g(t)]
Var[g(t)] + Var(ϵ)

=
(σ2/2α)(1 − e−2αt)

(σ2/2α)(1 − e−2αt) + σ2
ϵ

(7) 

Teasing Apart Pathogen and Non-pathogen Effects 
on a Trait
Given the assumptions of the POUMM, we can estimate a 
heritable pathogen effect on a trait and a corresponding 
non-heritable, host, and environmental effect. Here, we de
rive a maximum-likelihood estimate for these values for 
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FIG. 1. A high-level schematic of our phylogenetic Ornstein–Uhlenbeck mixed model (POUMM)-based simulation framework in the context of 
HIV-1 spVL. (A) shows how the viral effects on spVL evolve along the viral phylogeny according to an Ornstein–Uhlenbeck process. (B) shows 
how human host genetic effects are the sum of independent effects from several causal variants. Each variant can be present in 0, 1, or 2 copies. 
Half the variants have a positive effect of size δ and half have a negative effect of size δ. (C ) shows how other environmental effects are inde
pendently drawn from a Gaussian distribution centered at 0. These three effects sum to the trait value for each simulated individual.
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individuals in a GWAS cohort, given measured trait values 
and a pathogen phylogeny linking the infecting strains.

Let g(t) be a vector of g values, one for each individual in 
the cohort. t are the sampling times of each individual rela
tive to the root of the phylogeny. To simplify notation, we 
omit the t from here on. g is a realization of a Gaussian ran
dom vector G ∼ N (μOU, ΣOU). The expectation μOU is de
fined by equation (3), the diagonal elements of the 
covariance matrix ΣOU are defined by equation (4), and 
the off-diagonal elements of ΣOU by equation (5). 
Similarly, let ϵ be a vector of the non-heritable part of 
the trait for each individual. ϵ is a realization of a 
Gaussian random vector E ∼ N (0, ΣE), where ΣE is a di
agonal matrix with diagonal elements equal to σ2

ϵ .
Considering that G and E are independent random vectors 

and that their realizations g and ϵ must sum together to equal 
the observed trait values z, we can write the following propor
tionality for the joint probability density of g and ϵ:

f (g, ϵ) ∝N (g; μG, ΣG) (8) 

where the expected value of g and the covariance matrix ΣG 
are defined as:

Exp(g) = μG = ΣG(Σ−1
OUμOU + Σ−1

E z) (9) 

ΣG = (Σ−1
OU + Σ−1

E )−1 (10) 

Proof. 

f(g, ϵ) = f(g | ϵ) × f(ϵ)

= f(g) × f (ϵ)

=N (g; μOU, ΣOU) ×N (ϵ; 0, ΣE)
=N (g; μOU, ΣOU) ×N (z − g; 0, ΣE)
=N (g; μOU, ΣOU) ×N (g; z, ΣE)

(11) 

Equations (9) and (10) follow from equations 11 and 371, 
p 42, section 8.1.8 “Product of Gaussian densities” in 
Petersen and Pedersen (2012).

Importantly, equation (9) is the maximum-likelihood 
estimate for g, the pathogen effect on the trait, taking 
into account all available information—measured trait 
values, the pathogen phylogeny, and inferred POUMM 
parameters. This estimator is an inverse-variance 
weighted average of measured trait (z) and information 
from the POUMM evolutionary model (μOU). In other 
words, g will be closer to the measured trait value if the 
trait is not very heritable. If the trait is highly heritable, 
g will be closer to the expected value under the 
POUMM, that is, take more information from the phylo
genetic relationships between infecting strains.

Given the estimator we just derived for g, we can now 
estimate ϵ, the trait value without pathogen effects:

ϵ̂ = z − Exp(g) (12) 

We will use this value to try to improve upon standard 
GWAS methods in infectious disease.

A POUMM-based GWAS Framework for Infectious 
Disease
We propose to improve standard GWAS for infectious dis
eases by estimating and removing trait variability due to 
pathogen effects. Our new framework is as follows:

1) Sample paired host genotypes, pathogen genome se
quences, and trait values from a cohort.

2) Construct a pathogen phylogeny using the pathogen 
genome sequences.

3) Estimate the parameters of the POUMM based on 
the trait values and the pathogen phylogeny. This 
can be done with the R package POUMM (Mitov 
and Stadler 2017).

4) Generate maximum-likelihood estimates for the 
pathogen and corresponding non-pathogen effects 
on the trait using equations (9) and (12).

5) Perform GWAS with only the non-pathogen effects 
on the trait as the response variable.

Results
Simulation Study
To test the theoretical best-case performance of our meth
od, we simulated data under the POUMM and applied our 
framework to the simulated data. We parameterized our 
simulation scheme with the time-scale and other para
meters of an HIV-1 outbreak in mind, with spVL as the trait 
of interest.

We first simulated a phylogeny of 500 tips with expo
nentially distributed branch lengths and mean root-to-tip 
time of 0.14 substitutions per site per year as in Hodcroft 
et al. (2014). Then, we simulated pathogen trait values g 
along this phylogeny using the POUMM package in R 
(Mitov and Stadler 2017). This part of the simulation is il
lustrated in figure 1A. For the simulation, we considered a 
range of pathogen heritability parameter values H2, from 
15 to 75%, and a range of selection strength parameters va
lues α, from 0.1 to 60 time−1. The intensity of stochastic 
fluctuations parameter σ was determined based on H2 

and α [a re-arrangement of equation (4), equation given in 
supplementary table S1, Supplementary Material online]. 
As shown in supplementary figure S1, Supplementary 
Material online, higher α values correspond to higher σ va
lues to maintain constant H2 under this parameterization. 
For each H2 and α value considered in the simulation, we 
recorded the simulated pathogen part of the trait value for 
each tip in the phylogeny.

We paired each tip’s simulated pathogen trait value 
with a simulated host trait value. Simulated hosts had 20 
genome positions. We sampled alleles (0, 1, or 2) for 
each position from a binomial distribution with probabil
ity 0.13. Ten random positions had an effect size of 0.2 on 
the trait and 10 had an effect size of −0.2. This part of the 
simulation is illustrated in figure 1B. Our parameterization 
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produced roughly normally distributed host trait values 
centered at 0 with variance equal to 25% of the total trait 
variance, which we constrained to 0.73 based on the vari
ance in log spVL values measured by Mitov and Stadler 
(2018). We used 25% host heritability for spVL based on 
McLaren et al. (2015).

Finally, we sampled an additional random environmental 
effect for each tip from a normal distribution centered at 0, as 
illustrated in figure 1C. The variance of this distribution was 
scaled based on the pathogen heritability of the trait, from 0 
(no affect) in the scenario with 75% pathogen heritability and 
25% host heritability to 0.44 in the scenario with 15% patho
gen heritability and 25% host heritability. Supplementary 
figure S2, Supplementary Material online provides a 
more detailed schematic of this simulation framework and 
supplementary table S1, Supplementary Material online gives 
the value or expression for each parameter.

Estimator Accuracy
First, we evaluated how well our method estimated the 
additive host genetic effects from the simulated data. 
Additive host genetic effects represent an ideal (albeit 

unattainable) baseline for infectious disease GWAS. 
Figure 2A shows that our method incorporating phylogen
etic information can more accurately estimate these value 
compared with the trait value. To ensure a fair compari
son, we scaled trait values to have the same mean, zero, 
as host genetic effects so as not to bias the root mean 
squared error (RMSE) by a constant factor. As shown in 
the Supplementary Material online, we can calculate the 
expected RMSE using the scaled trait value across scen
arios in our simulation scheme because the variance in 
the trait due to pathogen genetic effects and environmen
tal effects is fixed. Thus, we expect the RMSE using the 
scaled trait value to be 0.74 across all simulation scenarios. 
By incorporating phylogenetic information, we can im
prove upon this error in scenarios where the trait is highly 
heritable, under low selection pressure, and with relatively 
moderate stochastic fluctuations compared with outbreak 
duration. Figure 3 gives some intuition for how this correc
tion works by contrasting simulated scenarios with high 
and low heritability and low selection strength/low sto
chastic fluctuations. Depending on these parameters, trait 
values are more or less phylogenetically correlated (see 
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FIG. 2. Results from the simulation study. We simulated host, pathogen, and environmental effects on a trait under the POUMM with different 
heritability (H2; y-axis) and selection strength (α; x-axis) parameters. For each simulated dataset, we applied our method to estimate the non- 
pathogen effects and performed GWAS with these values. (A) shows the RMSE of our estimator (left) compared with un-corrected trait values, 
scaled by their mean (right) under each simulated evolutionary scenario. The RMSE is with reference to the true (simulated) host part of the trait 
values. Thus, more accurate estimates (lower RMSE) mean the trait value used for GWAS will be closer to the true host part of the trait value. 
(B) shows how GWAS power can improve given the true, simulated non-pathogen effect on spVL (left) and using our estimate for this value 
(middle) compared with using the scaled trait value (right). Each tile’s color corresponds to the average value across 20 simulated datasets of 500 
samples. The points highlight specific heritability and selection strength values from the A. thaliana–X. arboricola QDR analysis, HIV-1 spVL 
analysis, and four simulated scenarios that are presented in more detail in figure 4.
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also fig. 4) and the phylogeny is more or less useful for ac
curately estimating the heritable pathogen and corre
sponding non-heritable, non-pathogen part of the trait 
values.

Theoretical GWAS Improvement
Next, we characterized the evolutionary scenarios under 
which our framework can actually improve GWAS power. 
We used the true positive rate (TPR) to evaluate the frac
tion of simulated causal host genetic variants we could re
cover as being significantly associated with the trait. We 
performed three different GWAS for each simulated data
set: the first represents an ideal in which we can exactly 
know and remove pathogen effects from trait values, the 
second is using our method to estimate this value and re
move it, and the third represents a standard GWAS using 
the scaled trait value. Figure 2B shows that our framework 
can improve the TPR in simulated scenarios where selec
tion strength <10 time−1 and heritability >45%. If we 
were able to perfectly estimate and remove pathogen ef
fects from a trait, the TPR would increase across all values 
of selection strength so long as the trait is more than mar
ginally heritable. We estimate approximately 25% to be 
the heritability threshold above which GWAS power is 

negatively impacted by pathogen effects. In summary, we 
show that it is theoretically possible to improve GWAS 
power for heritable infectious disease traits by estimating 
and removing pathogen effects using information from 
the pathogen phylogeny.

Application to HIV-1 spVL
We applied our framework to empirical data from two dif
ferent host–pathogen systems with different experimental 
setups (fig. 5). First, we used data collected by the Swiss 
HIV Cohort Study (SHCS) from 1,493 individuals in 
Switzerland infected with HIV-1 subtype B between 1994 
and 2018. The SHCS provided viral load measurements, 
pol gene sequences, and human genotype data for these 
individuals. We followed the method outlined above to es
timate the pathogen and non-pathogen effects on spVL 
for the cohort from these data. Supplementary figure S3, 
Supplementary Material online shows the calculated (to
tal) spVL values, which vary between approximately 1 
and 6 log copies/mL in the cohort. We estimated spVL her
itability in this cohort to be 45% (95% highest posterior 
density, HPD, 24–67%) and selection strength to be 58 
time−1 (95% HPD 19–95) (supplementary fig. S4, table 
S2, Supplementary Material online). To put these values 
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trait values are more or less correlated at clustered tips. (C ) compares our method’s estimate for the non-pathogen part of trait values (y-axis) 
with true simulated host trait values (x-axis) with pathogen heritability of 15 and 75%. The solid line is the y = x line. Selection strength α was 
fixed to 0.1 time −1 for both scenarios and all other parameters were fixed as in the full simulation study.
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into the context of our simulation study, they are shown as 
points on figure 2. The highest expected correlation in trait 
values between any two tips in the HIV-1 phylogeny under 
the POUMM was 0.45. However, supplementary figure S5, 
Supplementary Material online shows that this trait is not 
obviously phylogenetically structured in the cohort in gen
eral, despite high heritability. Finally, supplementary figure 
S6, Supplementary Material online shows that the esti
mated non-pathogen effects on spVL correlate quite 
strongly with total spVL.

We compared our proposed GWAS framework with a 
more standard approach by performing two different 
GWAS on the same SHCS human genotypes. We retained 
1,392 individuals of European ancestry for the GWAS. In 
the (i) “GWAS with standard trait value” we used the total 
trait value, calculated spVL values, as the GWAS response 
variable. In the (ii) “GWAS with estimated non-pathogen 

part of trait” we used our estimates for the non-pathogen 
effects on spVL. Figure 6A shows that results are qualita
tively similar between the two GWAS. Q–Q plots show 
the distribution of P values are very similar as well 
(supplementary fig. S7, Supplementary Material online). 
Figure 6B shows how the strength of association changed 
for some variants in the MHC and CCR5 regions. Taking 
into account phylogenetic information slightly decreased 
association strength for most variants in the CCR5 region. 
Association strength increased for some variants in the 
MHC, for example, SNP rs9265880 had the greatest in
crease in significance in the MHC region, from a P value 
of 3.5 × 10−07 to 7.7 × 10−09. However, the top-associated 
variants in the MHC and CCR5 regions were consistent 
regardless of the GWAS response variable used 
(supplementary table S3, Supplementary Material online). 
Finally, table 1 shows how our GWAS results compare for 
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FIG. 4. Correlations between trait values in pairs of tips in four simulated scenarios. These examples correspond to the four unfilled points in 
figure 2. Correlations are calculated for pairs of tips binned by phylogenetic distance (into deciles) across the 20 replicate simulations for 
each of the four evolutionary scenarios. Trait values are only noticeably correlated for closely clustered tips under the scenario with high patho
gen heritability H2 and low selection strength α/low stochastic fluctuations σ (upper left facet).
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FIG. 5. A high-level schematic of the experimental setup for the two application datasets. For (A) HIV-1 spVL in the Swiss HIV Cohort Study, data 
are paired viral and human genotypes and associated spVL measurements. We fit the POUMM to the viral phylogeny and spVL values associated 
with each infected individual (z1, z2, . . . , z1493). For (B) A. thaliana–X. arboricola quantitative disease resistance (QDR) from Wang et al. (2018), 
data are bacterial and plant genotypes with QDR measurements for all possible combinations of pathogen and host plant strains. We fit the 
POUMM to the bacterial phylogeny and mean QDR calculated for each pathogen strain across all the hosts plant types (̅z1, z̅2, . . . , z̅22).
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the two top-associated SNPs identified by McLaren et al. 
(2015), who performed the largest standard GWAS for 
HIV spVL to date. Effect sizes are smaller with a phylogen
etic correction and P values are slightly increased. We re
peated the analysis using three different approximate 
maximum-likelihood phylogenies and these results were 
consistent (see Materials and Methods; supplementary 
table S4, Supplementary Material online). In summary, 
there are no clear patterns that point to new regions of as
sociation in the human genome with spVL when we take 
into account the pathogen phylogeny.

Application to the A. thaliana–X. arboricola 
Pathosystem
Next, we applied our method to data collected from the A. 
thaliana–X. arboricola pathosystem by Wang et al. (2018). 
Wang et al. (2018) performed a fully-crossed experiment in 
which they infected genetically diverse A. thaliana acces
sions with genetically diverse strains of the phytopatho
genic bacteria X. arboricola. They scored QDR on a scale 
of 0 (resistant) to 4 (susceptible) for up to four infected 
leaves for three replicates of each A. thaliana–X. arboricola 
pairing. Our method requires a single-trait value per 
pathogen strain, so we used mean QDR calculated for 

each pathogen strain across all the host A. thaliana types 
(fig. 5B). Supplementary figure S8A, Supplementary 
Material online shows the inferred X. arboricola pathogen 
phylogeny annotated with the mean QDR trait value used 
for each strain. Mean QDR was generally low, varying be
tween 0.11 for strain NL_P126 and 0.78 for strain 
FOR_F21. Fitting the POUMM yielded very low selection 
strength α and intensity of stochastic fluctuations σ par
ameter estimates (posterior mean 0.03 with 95% HPD 
0.0–0.05 and 0.03 with 95% HPD 0.0–0.06, respectively; 
supplementary table S5, Supplementary Material online). 
These values deviated significantly from the respective 
priors (supplementary fig. S9, Supplementary Material
online). Heritability, on the other hand, was quite uncer
tain (posterior mean 0.33 with 95% HPD 0.0–0.77; 
supplementary table S5, Supplementary Material online). 
The posterior mean selection strength and heritability va
lues are also shown in the context of the simulation study 
as points in figure 2.

Given the posterior mean estimates for the POUMM 
parameters, expected correlation in trait values between 
tips were very low (maximum value 3.2 × 10−12 compared 
with maximum value of 0.45 in the HIV-1 spVL applica
tion). Thus, the phylogeny is not very informative for a trait 
value correction. Indeed, the estimated pathogen part of 

FIG. 6. Results from comparative GWAS on HIV-1 set-point viral load (spVL) data. (A) shows association P values for the same host variants from 
the Swiss HIV cohort in GWAS with two different response variables. On the left, we used unmodified (total) spVL values. On the right, we used 
our estimates for the non-pathogen effects on spVL. The alternating shades correspond to different chromosomes. (B) compares the strength of 
association for variants in the CCR5 and MHC regions between the two GWAS (positions 45.4–47 Mb on chromosome 3 and 29.5–33.5 Mb on 
chromosome 6 for the CCR5 and MHC, respectively). Base positions are with reference to genome build GRCh37. The color of each point re
presents the difference in -log10 P value between the two GWAS. Red means taking into account phylogenetic information decreased the 
strength of association and blue means it increased it. The dashed lines show genome-wide significance at p = 5 × 10−8.
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the QDR trait calculated by our method is simply a scal
ing of the total QDR trait value (supplementary fig. S10, 
Supplementary Material online). We anyways selected 
22 random host–pathogen strain pairings to perform a 
comparative GWAS analogous to that for HIV-1 spVL, 
where each host is infected with a single pathogen strain. 
In the first GWAS, we used the specific QDR measure
ment for each selected host–pathogen pairing. That is, 
with reference to figure 5, we selected z11 for the first 
sample, z23 for the second sample, and so on. In the se
cond GWAS, we used our estimates for the non-pathogen 
effects on QDR for each pairing. Since our method did 
not utilize phylogenetic information in this case, the esti
mated non-pathogen part of the trait is simply the specif
ic QDR for each selected host–pathogen pairing, minus 
mean QDR for the respective pathogen strain, calculated 
across all the host A. thaliana types. That is, with refer
ence to figure 5, we used a scaled version of z11 − z̅1 for 
the first sample, z23 − z̅2 for the first sample, and so on. 
Figure 7 shows that results are qualitatively similar be
tween the two GWAS, with a slight decrease in associ
ation strength for the top-associated variants. Q–Q 
plots show the distribution of P values are also very simi
lar (supplementary fig. S11, Supplementary Material on
line). In the first, standard GWAS, one A. thaliana loci 
just exceeds the threshold for significant association after 
correction for multiple testing. In the second, corrected 

GWAS, no A. thaliana variants are significantly associated 
with QDR to X. arboricola.

Discussion
In this paper, we presented a new phylogeny-aware GWAS 
framework to correct for heritable pathogen effects on in
fectious disease traits. By using information from the 
pathogen phylogeny, we show that it is possible to im
prove GWAS power to detect host genetic variants asso
ciated with a disease trait. This improved power is 
envisioned to contribute to a better understanding of 
which host factors are broadly protective against a disease 
versus which increase susceptibility or disease severity.

The main novelty of our approach is to estimate para
meters governing the evolutionary dynamics of a trait in 
the pathogen population and use these estimates to cor
rect infectious disease trait values prior to performing 
GWAS, thereby estimating and removing pathogen effects. 
In simulations, we show that when trait heritability due to 
shared pathogen ancestry amongst infection partners is 
greater than approximately 25%, GWAS power to detect 
host genetic variants associated with the same trait is re
duced. Our method can correct for this effect in certain 
evolutionary scenarios by using information from the full 
pathogen phylogeny. Based on our simulation results, 
our method is anticipated to be very useful for disease 

Table 1. Top Association Results from McLaren et al. (2015) Compared with Results from this Study.

Region Variant McLaren et al. Standard Trait Value Estimated Non-pathogen Part of Trait

P value Effect Size P Value Effect Size P Value

MHC rs59440261 2.0 × 10−83 −0.4 3.3 × 10−11 −0.22 2.6 × 10−10

CCR5 rs1015164 1.5 × 10−19 0.15 7.5 × 10−7 0.078 8.5 × 10−6

Results from this study are for host variants from the SHCS in GWAS with two different response variables. “Standard trait value” means we used the unmodified (total) spVL 
Value and “Estimated Non-pathogen Part of Trait” Means we used our estimates for the non-pathogen effects on spVL.

FIG. 7. Results from comparative GWAS on A. thaliana QDR to X. arboricola. The two facets show association P values for the same host A. 
thaliana variants in GWAS with two different response variables. On the left, we used unmodified (total) QDR values for each of the 22 selected 
host–pathogen pairings on which these results are based. On the right, we used our estimates for the non-pathogen effects on QDR for these 
samples. In this case, estimated non-pathogen effects are the specific QDR for each selected host–pathogen pairing, minus mean QDR for the 
respective pathogen strain, calculated across all the host A. thaliana types. The alternating shades correspond to different chromosomes. The 
dashed lines show significance at significance level 0.05 with a Bonferroni correction for multiple testing.
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traits that are highly heritable from donor to recipient and 
maintain a high correlation between sampled individuals. 
In simulations, we showed this is the case when pathogen 
heritability is high, selection strength is low, and trait va
lues are not subject to strong stochastic fluctuations. In 
summary, cohort-level, phylogenetically structured differ
ences in the measured trait value are necessary for our ap
proach to outperform state-of-the-art methods.

We applied this model to two different host–pathogen 
systems where paired host and pathogen genetic data 
were generated alongside a measure of pathogen viru
lence. First, we fit the POUMM to spVL data from indivi
duals living with HIV in Switzerland. We estimated HIV-1 
spVL heritability to be 45% (95% HPD 24–67%) in this co
hort. Compared to previous studies, this estimate is at the 
higher end [see Mitov and Stadler (2018) and references 
therein]. Also using the POUMM, Bertels et al. (2018) esti
mated a spVL heritability of 29% (N = 2014, CI 12–46%) 
from the same cohort and Blanquart et al. (2017) esti
mated 31% (N = 2, 028, CI 15–43%) from a pan-European 
cohort. We note that our sample size (N = 1, 493 indivi
duals) is smaller than in these other studies. This might 
be because we restricted samples based on having pol 
gene sequences with at least 750 non-ambiguous bases. 
Our aim was to reconstruct a high-quality phylogeny, 
since the POUMM does not account for phylogenetic un
certainty and the POUMM parameter estimates are key 
to our downstream trait-correction method. Although 
our heritability estimate is rather high, the confidence 
interval largely overlaps with the intervals of other stud
ies and we note that estimating heritability per se was not 
our primary focus.

For comparison, we also fit the POUMM to QDR mea
surements from A. thaliana infected with the phytopatho
genic bacteria X. arboricola. We estimated X. arboricola 
virulence heritability to be 33% (95% HPD 0–77%). 
Wang et al. (2018) originally estimated a QDR heritability 
of 44% in this dataset, falling within the wide range of our 
estimate. We note that Wang et al. (2018) used a linear 
mixed model in which the experimental unit is QDR 
scored on individual leaves, whereas our estimate is based 
on much coarser binning of QDR scores into a mean score 
across all leaves on all host accessions and all replicates 
(N = 22). Furthermore, the QDR score trait values were 
not truly continuous (scores were measured on an integer 
scale from 0 to 4). Thus, these data partially violate the as
sumptions of the POUMM. We estimate very low selection 
strength for virulence in X. arboricola. As Wang et al. 
(2018) explain, X. arboricola strains with differing virulence 
can co-inhabit populations of A. thaliana. This might also 
point to low selection on X. arboricola virulence. 
Furthermore, expected correlation in virulence between 
related strains of X. arboricola was smaller than for HIV-1.

Given our estimates for trait heritability and selection 
strength on HIV-1 spVL and A. thaliana QDR to X. arbor
icola, our simulation results reveal that we cannot expect a 
significant improvement in GWAS power for these systems 
(fig. 2). Indeed, although certain pairs of samples in the 

HIV-1 cohort were expected to have phylogenetically cor
related spVL values (maximum expected correlation be
tween any two samples was 0.45), the overall effect on 
GWAS is small. For HIV-1 spVL, our phylogenetic correc
tion slightly decreases P values for variants in CCR5 and 
slightly decreases some and increases other P values for 
variants in the MHC (fig. 6B). Simulations show we 
shouldn’t expect a net P value decrease, but our simula
tions represent an ideal scenario since we simulate under 
the POUMM. For the empirical data, un-modeled evolu
tionary pressures like drug treatment and host-specific 
HLA alleles might cause the reduced P values. However, 
the overall picture is consistent between the two GWAS 
(fig. 6A). For A. thaliana QDR to X. arboricola, the trait va
lue correction does not utilize phylogenetic information 
because phylogenetic correlations between samples are 
too weak (maximum expected correlation between strains 
was 3.2 × 10−12). We anyways corrected QDR trait values 
based on average QDR for each pathogen strain across the 
full range of host types. Results show slight decrease in 
P values for the most-associated variants in this applica
tion as well, but the overall picture is consistent with pre
vious GWAS results from Wang et al. (2018). That study 
found no significant A. thaliana variants associated with 
QDR using a linear mixed model jointly accounting for 
host genetic effects, pathogen genetic effects, and inter
action effects. As with HIV-1 spVL, our results do not chal
lenge this previous finding. Therefore, we conclude that 
GWAS for host determinants of HIV-1 subtype B spVL 
and A. thaliana determinants of QDR to X. arboricola are 
robust to our correction for pathogen effects.

Our method has several limitations. When POUMM 
parameter estimates are highly uncertain, correcting trait 
values based on posterior mean or maximum-likelihood 
parameter estimates neglects this uncertainty. Then, as 
in the A. thaliana–X. arboricola application, fitting the 
POUMM may reveal that expected phylogenetic correla
tions between samples are not strong enough to justify 
using our method to correct trait values in a GWAS. In 
this case, one may wish to use a linear mixed model as 
in Wang et al. (2018), where the pathogen effect is 
co-estimated as a random effect. The expected correlation 
structure estimated under the POUMM could be used for 
the covariance of the random effect, taking the phylogeny 
into account differently but still utilizing information from 
the evolutionary model. Finally, as we show here, our 
method is not anticipated to be useful in certain evolu
tionary scenarios. For instance, traits like antimicrobial re
sistance may be under strong selection pressure and be 
highly heritable. In these instances, our simulations do 
not point to a large improvement when adding our pre- 
processing step. In any case, such traits might violate the 
POUMM assumption that trait values vary as a random 
walk in continuous space if they are caused by few muta
tions of strong affect, meaning our approach would not 
apply. In this situation, one would rather account for anti
microbial resistance as a covariate in the GWAS associ
ation model.
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The primary advantage of our approach is that it is com
plementary to previously developed methods for infectious 
disease GWAS. First, it provides additional information on 
the evolutionary dynamics of the trait in the pathogen 
population. Then, it is a convenient pre-processing step 
for GWAS because it simply produces a corrected response 
variable for GWAS association tests. In cases where a correc
tion can be estimated and applied using our method, the 
corrected trait values are envisioned to be used in any of 
the previously developed GWAS models for the actual asso
ciation testing (we used a linear model approach implemen
ted in PLINK (Chang et al. 2015), though a more advanced 
method would be to use a linear mixed model with host an
cestry as a random effect). Further, additional model com
plexity can be added to the GWAS association tests. For 
instance, our method does not account for co-infection, 
which might add additional variance to trait values and de
crease GWAS power. In this case, one could add co-infection 
status as a covariate in the GWAS association test to ac
count for this variable.

Our method relies on the freely available R package 
POUMM (Mitov and Stadler 2017), which scales to trees 
of up to 10,000 tips (Mitov and Stadler 2019). All code 
for the simulations and HIV spVL analysis presented in 
this study is available on the project GitHub at https:// 
github.com/cevo-public/POUMM-GWAS. Future applica
tions of our method might investigate other clinically sig
nificant disease traits and outcomes that are affected by 
both host and pathogen genetic factors, for instance 
Hepatitis B Virus-related hepatocellular carcinoma (An 
et al. 2018), Hepatitis C treatment success (Ansari et al. 
2017), and susceptibility to or severity of certain bacterial 
infections, for example, Messina et al. (2016) and 
Donnenberg et al. (2015). Transcriptomic data have also 
previously been modeled as an evolving phenotype using 
an Ornstein–Uhlenbeck model (Rohlfs et al. 2014). Thus, 
one could also estimate pathogen effects on host gene 
expression.

In summary, we present a coherent infectious disease 
GWAS framework that takes the pathogen phylogeny 
into account when searching for host determinants of a 
disease trait. We further show that the pathogen phyl
ogeny only has an impact on the GWAS outputs if herit
ability of the trait amongst infection partners is >25%. 
For the systems studied here, spVL in individuals living 
with HIV and QDR for X. arboricola infections in A. thali
ana, the phylogenetic correction does not change GWAS 
results. Our findings indicate previously published GWAS 
results for these systems are not biased by shared evolu
tionary history amongst infecting pathogen strains.

Materials and Methods
Simulation Model
Whenever possible, we tried to parameterize our simula
tion model using empirical data on the spVL trait. We 
set the total variance in spVL to 0.73 log copies2 mL−2 

based on UK cohort data (Mitov and Stadler 2018). 
Other studies have estimated slightly lower values though 
(supplementary table S6, Supplementary Material online). 
After allotting 25% of this variance to a host part of spVL h 
based on results by McLaren et al. (2015), we partitioned 
the remaining variance between a viral part g and an envir
onmental part e in different ratios to assess estimator per
formance across a range of spVL heritabilities. h was 
simulated as the sum of contributions from 20 causal 
host genetic variants, 10 of which had an effect size of 
0.2 log copies mL−1 and 10 of which had an effect size of 
−0.2 log copies mL−1. Host genetic variants were gener
ated from a binomial distribution with probability p calcu
lated such that h had the appropriate variance (see 
supplementary table S1, Supplementary Material online). 
We generated a random viral phylogeny with branch 
lengths on the same time scale as a previously inferred 
UK cohort HIV tree (Hodcroft et al. 2014) using the R pack
age ape (Paradis and Schliep 2018). g was simulated by run
ning an OU process along the phylogeny using the R 
package POUMM (Mitov and Stadler 2017) and sampling 
values at the tips. For the OU parameters θ and g0, we used 
4.5 log copies mL−1 based on previous estimates of mean 
spVL (supplementary table S6, Supplementary Material
online). This is similar to values previously inferred for 
HIV (supplementary table S7, Supplementary Material on
line). To assess our estimator’s performance under a range 
of evolutionary scenarios, we co-varied the heritability H2 

and selection strength α parameters. The intensity of ran
dom fluctuations σ was determined based on these para
meters (supplementary table S1 and fig. S1, Supplementary 
Material online). Finally, the environmental part of spVL e 
was generated from a normal distribution with mean 0. For 
a full graphical model representation of the simulation 
scheme, see supplementary figure S2, Supplementary 
Material online.

We performed GWAS on the simulated data using a lin
ear association model as implemented in the “lm” function 
in R. For each simulated dataset, we performed three asso
ciation tests: (i) using the true (simulated) non-pathogen 
part of the trait (host + environmental parts), (ii) using 
the estimated non-pathogen part of the trait according 
to the method presented in this paper, and (iii) using 
the total trait value, scaled by its mean. We assessed the 
significance of each associations at a significance level of 
0.05 with a Bonferroni correction for multiple testing. 
For our main results (fig. 2) we simulated 20 truly asso
ciated variants, as described above. To also check the false 
positive rate (FPR), we re-ran the simulations with an add
itional 80 non-associated variants. Across all the associ
ation tests in this second simulation setup (7 H2 levels × 
10 α levels ×100 variants ×20 replicates per scenario = 
140,000 association tests), FPR was 0.0005 using the true 
(simulated) non-pathogen part of the trait, 0.0005 using 
the estimated non-pathogen part of the trait, and 0.0006 
using the scaled total trait value. These rates are compar
able to the expected FPR of 0.0005 at significance level 0.05 
corrected for 100 tests. Given the stricter correction for 
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multiple testing in this second simulation setup, the TPR 
decreased significantly across all three GWAS response 
variables used.

Swiss HIV-1 Data
Human genotypes, viral load measurements, and HIV-1 pol 
gene sequences from HIV-1 positive individuals were all 
collected in the context of other studies by the Swiss 
HIV Cohort Study (SHCS) (www.shcs.ch, Schoeni-Affolter 
et al. 2010; Scherrer et al. 2021). All participants were 
HIV-1-infected individuals 16 years or older and written in
formed consent was obtained from all cohort participants. 
The anonymized data were made available for this study 
after the study proposal was approved by the SHCS.

For phylogenetic inference, we retained sequences from 
1,493 individuals with non-recombinant subtype B pol 
gene sequences of at least 750 characters and paired 
RNA measurements allowing for calculation of spVL, as 
well as five randomly chosen subtype A sequences as an 
outgroup. We used MUSCLE version 3.8.31 (Edgar 2004) 
to align the pol sequences with –maxiters 3 and otherwise 
default settings. We trimmed the alignment to 1505 char
acters to standardize sequence lengths. We used IQ-TREE 
version 1.6.9 (Nguyen et al. 2014) to construct an approxi
mate maximum likelihood tree with -m GTR+F+R4 for a 
general time reversible substitution model with empirical 
base frequencies and four free substitution rate categories. 
Otherwise, we used the default IQ-TREE settings. After 
rooting the tree based on the subtype A samples, we re
moved the outgroup. Viral subtype was determined by 
the SHCS using the REGA HIV subtyping tool version 2.0 
(de Oliveira et al. 2005). We calculated spVL as the arith
metic mean of viral RNA measurements made prior to 
the start of antiretroviral treatment. For a comparison of 
several different filtering methods, see supplementary 
figure S3, Supplementary Material online.

For GWAS, we retained data from 1,392 of the 1,493 
SHCS individuals with European ancestry who were not 
closely related to other individuals in the cohort 
(supplementary table S8, Supplementary Material online). 
These were 227 females and 1,165 males. Ancestry was de
termined by plotting individuals along the three primary 
axes of genotypic variation from a combined dataset of 
SHCS samples and HapMap populations (supplementary 
fig. S12, Supplementary Material online). Kinship was eval
uated using PLINK version 2.3 (Chang et al. 2015); we used 
the –king-cutoff option to exclude one from each pair of 
individuals with a kinship coefficient >0.09375. Initial 
host genotyping quality control and imputation were 
done as in Thorball et al. (2021). Subsequent genotyping 
quality control was performed using PLINK version 2.3 
(Chang et al. 2015). We used the options –maf 0.01, – 
geno 0.01, and –hwe 0.00005 to remove variants with min
or allele frequency less than 0.01, missing call rate greater 
than 0.05, or Hardy–Weinberg equilibrium exact test P 
value less than 5 × 10−5. After quality filtering, approxi
mately 6.2 million genetic variants from the 1,392 

individuals were retained for GWAS (supplementary 
table S9, Supplementary Material online).

A. thaliana–X. arboricola Data
Arabidosis thaliana and X. arboricola genotyping and QDR 
measurements were generated by Wang et al. (2018) and 
are described in detail in that publication. Briefly, Wang 
et al. (2018) infected different A. thaliana host accessions 
with different X. arboricola pathogen strains in a fully- 
crossed experimental design. They infected up to four 
leaves on each of three biological replicates for each 
host–pathogen pairing. Then, they scored QDR for each 
leaf on a scale of 0 (resistant) to 4 (susceptible). We down
loaded the genotype matrix with allele dosage of 33,610 
SNPs for the 22 X. arboricola pathogen strains generated 
by Wang et al. (2018) from their supplementary material. 
We additionally downloaded a VCF file with allele dosage 
of 12,883,854 SNPs for the different A. thaliana accessions 
from the 1,001 Genomes project (Alonso-Blanco et al. 
2016). QDR measurements were provided directly by the 
Wang et al. (2018) authors.

For phylogenetic inference, we used the “dist.gene” and 
“nj” functions from the ape package in R to construct a pair
wise genetic distance matrix and then a neighbor-joining 
tree from the X. arboricola pathogen genotype matrix. 
The inferred tree topology (supplementary fig. S8, 
Supplementary Material online) closely matches the hier
archical clustering presented in (Wang et al. 2018), which 
was generated using the unweighted pair group method 
with arithmetic mean (UPGMA). Compared to UPGMA, 
the neighbor-joining method we used relaxes the assump
tions of a strict molecular clock and sampling all at the 
same time-point. For the trait value to fit the POUMM, 
we calculated mean QDR across all leaves infected on all 
hosts for each X. arboricola strain (see fig. 5B) We used 
PLINK version 2.0 to select bi-allelic variants from the VCF 
file using option –max-alleles 2. We then used options – 
maf 0.1 and –max-maf 0.9 to remove variants with minor 
allele frequencies less than 0.1 as in Wang et al. (2018). 
After filtering, approximately 1.1 million genetic variants 
from A. thaliana were retained for GWAS (supplementary 
table S10, Supplementary Material online).

POUMM Parameter Inference
We used the R package POUMM version 2.1.6 (Mitov and 
Stadler 2017) to infer the POUMM parameters 
g0, α, θ, σ, and σe from the HIV-1 and X. arboricola phylo
genies and associated spVL and QDR trait values. The 
Bayesian inference method implemented in this package 
requires specification of a prior distribution for each 
parameter. For HIV-1 spVL, we used the same, broad 
prior distributions as in Mitov and Stadler (2018), 
namely: g0 ∼ N (4.5, 3), α ∼ Exp(0.02), θ ∼ N (4.5, 3), 
H2

t̅ ∼ U(0, 1), and σ2
e ∼ Exp(0.02). For X. arboricola 

QDR, we modified the g0 and θ priors to match the em
pirical mean and standard deviation of QDR trait values 
in the dataset: g0 ∼ N (0.4, 0.2) and θ ∼ N (0.4, 0.2). 
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We ran two MCMC chains for 4 × 106 samples each with a 
target sample acceptance rate of 0.01 and a thinning inter
val of 1000 for both analyses. The first 2 × 105 samples of 
each chain were used for automatic adjustment of the 
MCMC proposal distribution. Supplementary figures S4 
and S9, Supplementary Material online show the posterior 
distributions for inferred parameters for HIV-1 spVL and 
X. arboricola QDR, respectively. Supplementary tables S2 
and S5, Supplementary Material online give the posterior 
mean values used for subsequent calculations.

Phylogenetic Trait Correction
We estimated the pathogen and non-pathogen effects on 
HIV-1 spVL in humans and X. arboricola mean QDR in A. 
thaliana using the method described in this paper. For 
each individual, we estimated the pathogen part of the trait 
value using equation (9) and the corresponding non- 
pathogen part using equation (12). This is implemented 
in the function “POUMM:::gPOUMM” in the R package 
POUMM. In the HIV-1 case, each sample corresponds to 
one HIV-1 strain with one spVL value. In the X. arboricola 
case, each sample corresponds to one X. arboricola strain 
and the mean QDR score for that strain across all host types 
(see fig. 5). To calculate the expected correlation in trait va
lues between tips in the pathogen phylogeny, we used the 
function “covVTipsGivenTreePOUMM” in the same pack
age. For the POUMM parameters α, σ, θ, and σe, we used 
the posterior mean estimates generated as described above. 
All the code used to implement the method is available at 
https://github.com/cevo-public/POUMM-GWAS.

Association Testing
We performed two comparative GWAS for each system, 
using the same host genotype data across the two 
GWAS. For the first “GWAS with standard trait value”, 
we used the total (uncorrected) trait values (z) as the re
sponse variable for association testing, replicating a stand
ard GWAS set-up. For the second “GWAS with estimated 
non-pathogen part of trait”, we replaced total trait values 
with the estimated non-pathogen component of the trait 
(ϵ̂) as the response variable. Association testing was per
formed using a linear association model in PLINK version 
2.3 and 2.0, respectively (Chang et al. 2015) with the top 
5 principle components of host genetic variation included 
as covariates. For the HIV-1 spVL GWAS, we additionally 
included sex as a covariate. The sex and principle compo
nents covariates were included to reduce residual variance 
and control for confounding from host population struc
ture, respectively.

Phylogenetic Uncertainty
Our method assumes the phylogeny accurately reflects the 
evolutionary relationships between pathogen strains. 
Previously, Hodcroft et al. (2014) observed HIV spVL her
itability estimates based on pol gene sequences were ro
bust to including or not including resistance-associated 
codons. Our analysis includes these codons. For the HIV 

application, we additionally tested the sensitivity of the in
ference to phylogenetic uncertainty. We inferred the phyl
ogeny again, this time using the IQ-TREE option -wt to 
output all locally optimal trees. We fit the POUMM to 
two randomly selected trees from this set and repeated 
the trait correction and association testing steps using 
these trees and the corresponding POUMM parameter 
estimates.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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