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Abstract. Let (S1, S2) be a bivariate spherical random vector with associated

random radius which has distribution function in the Gumbel max-domain of
attraction. In this paper we obtain an exact asymptotic expansion of the

tail probability P {S1 > un, ρnS1 +
p

1− ρ2
nS2 > vn}, ρn ∈ (−1, 1) with

un, vn, n ≥ 1 constants letting un → ∞ and ρn → ρ ∈ (−1, 1). As an
application of our result the limit distribution of the joint and the partial

excess distribution is obtained.

1. Introduction

Let (S1, S2) be a spherical random vector with associated random radius R :=√
S2

1 + S2
2 > 0 almost surely. Basic properties of spherical random vectors are

obtained in Cambanis et al. (1981). So if R > 0 almost surely, then we have the
stochastic representation

(S1, S2) d= (RO1, RO2),
with (O1, O2) uniformly distributed on the unit circle of R2 being further indepen-
dent of R ( d= stands for equality of distribution functions).
A natural generalisation of this class is the class of elliptical random vectors, de-
fined as linear combination of spherical random vectors. Elliptical random vectors
are both from the theoretical and the practical point of view very interesting. This
class is very large, including the prominent Gaussian and Kotz distribution.
Throughout this paper we consider elliptical random vectors (X0, Y0), (X1, Y1), . . .
in R2 with stochastic representation

(Xn, Yn) d= (S1, ρnS1 +
√

1− ρ2
nS2), ρn ∈ (−1, 1), n ≥ 0.(1)

The basic distribution properties of elliptical random vectors are well-known, see
e.g., Kotz (1975), Cambanis et al. (1981), Anderson and Fang (1990), Fang et.
al (1990), Fang and Zhang (1990), Szab lowski (1990), Berman (1992), Gupta and
Varga (1993), Kano (1994), Kotz and Ostrovskii (1994) among several others.
The main asymptotic properties of bivariate elliptical random vectors are derived
by Berman (1982,1983) culminating in his excellent monograph Berman (1992).
Berman’s focus was the asymptotic properties of the Berman processes. The work
of Berman has been therefore not referred for a long time in the literature of mul-
tivariate distributions. Similar results for bivariate spherical random vectors are
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obtained in Carnal (1970), Gale (1980), Eddy and Gale (1981) in the context of
convex hull asymptotics.
In this paper we are interested in the exact asymptotics of the tail probability

P {Xn > un, Yn > vn} = un, vn ∈ R, n ≥ 1(2)

letting un tend to ∞.
Intuitively, since the associated random radius R is the only unknown component
of the elliptical random vectors, we expect that its tail asymptotic behaviour deter-
mines the asymptotic behaviour of (2). This is the case for the Gaussian random
vectors (see e.g., Hashorva and Hüsler (2003) or Hashorva (2005a)).
Indeed the Gaussian case has been treated in very many papers. The result for the
case un = vn, n ≥ 1 is given in Berman (1962). See Dai and Mukherjea (2001) or
Hashorva (2005a) for further references.
The square of the associated random radius of a d-dimensional Gaussian vector is
chi-squared distributed with d degrees of freedom. From the extreme value theory
we know that R in the Gaussian case has distribution function F in the max-domain
of attraction of the Gumbel distribution function Λ(x) := exp(− exp(−x)), x ∈ R.
Motivated by this fact, in the recent paper Hashorva (2006b) an asymptotic ex-
pansion of the tail probability for a general multivariate setup is obtained. Those
results can be applied to our case when ρn does not depend on n.
Making use of a tractable formula for the bivariate elliptical distributions we obtain
in this paper the asymptotic expansion of the tail probability of interest allowing
ρn to depend on n, and provide a simpler proof than that in the aforementioned
paper.
Further, we apply our result to study the asymptotics of bivariate excess distribu-
tions.

2. Preliminaries

In this section we present some standard notation and give few preliminary
results. The main results are given in Section 3, followed by the proofs in Section
4 (last one).
Given a random variable Y with distribution function H, we shall denote this
alternatively as Y ∼ H. If F is the Gamma distribution with positive parameters
a, b we write Y ∼ Gamma(a, b).
Next, let (Xn, Yn), n ≥ 0 be a bivariate elliptical random vector as in (1), and write
throughout this paper (X,Y ), ρ instead of (X0, Y0), ρ0.
We assume in the following that the associated random radius R has distribution
function F such that F (0) = 0. Further, we impose a certain asymptotic restriction
on the distribution function F , namely we suppose that there exists a positive
scaling function w such that

lim
u↑xF

1− F (u+ x/w(u))
1− F (u)

= exp(−x), ∀x ∈ R(3)

is valid with xF ∈ (0,∞] the upper endpoint of F . The above condition is equivalent
(see the standard monographs de Haan (1970), Leadbetter et al. (1983), Galambos
(1987), Resnick (1987), Reiss (1989), Falk et al. (2004) or Kotz and Nadarajah
(2005), or de Haan and Ferreira (2006)) with the fact that F is in the Gumbel
max-domain of attraction, meaning the sample maxima of a random sample with
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underlying distribution function F converges in distribution (after an affine nor-
malisation) to a Gumbel random variable.
We refer to (X,Y ) in the case F satisfies (3) as Type I elliptical random vector.
The scaling function w can be defined by

w(u) :=
1− F (u)∫ xF

u
[1− F (s)] ds

, u ∈ (0, xF ].(4)

Further, uniformly on the compact sets of z ∈ R

lim
u↑xF

w(u+ z/w(u))
w(u)

= 1,(5)

and

lim
u↑xF

uw(u) = ∞.(6)

In view of Lemma 6.2 of Berman (1982) (given also in Lemma 12.1.2 in Berman
(1992))

aS1 + bS2
d=

√
a2 + b2S1, ∀a, b ∈ R,

hence for (Xn, Yn) d= (S1, ρnS1 +
√

1− ρ2
nS2) with ρn ∈ (−1, 1), n ≥ 0 (as in (1))

we have

Xn
d= Yn

d= S1.(7)

Applying Theorem 12.3.1 of Berman (1992) we obtain (n→∞)

P {X > un} = P {S1 > un} = (1 + o(1))
(

1
unw(un)

)1/2 1√
2π

[1− F (un)],(8)

provided that limn→∞ un = xF ∈ (0,∞] and F satisfies (3) with the scaling function
w. Consequently, when (Xn, Yn) is a Type I elliptical random vector, then the
asymptotic tail behaviour of its components is known. In the special case that
(Xn, Yn) has independent components we have

P {Xn > un, Yn > vn} = P {Xn > un}P {Yn > vn}, n ≥ 1,

hence for this instance there is nothing to investigate.
Provided that (Xn, Yn) has a density function, we know that Xn and Yn are inde-
pendent (see e.g., Fang et al. (1990), Hashorva et al. (2007)) only when Xn and Yn
are standard Gaussian random variables. Therefore the above simplification of our
problem of interest is only possible for a trivial case. In the case (Xn, Yn) is Gauss-
ian and Xn, Yn are correlated (ρn 6= 0), the exact asymptotics of the probability of
interest is know (see e.g., Hashorva (2005a)). The general elliptical case is derived
in Hashorva (2006b).
Next, we consider briefly the bivariate Gaussian case and then give a conditional
limiting result which will be utilised in Section 3. Assume for simplicity that

vn = aun, a ∈ (−∞, 1], n ≥ 1,

and un, n ≥ 1 is a positive sequence converging to infinity.
It turns out that the correlation ρ plays via the Savage condition (see e.g.,

Hashorva and Hüsler (2003)) a crucial role in determining the joint tail asymp-
totic behaviour of (X,Y ). In the bivariate case this condition is very simple to
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formulate, namely if a > ρ we have

P {X > un, Y > aun} = (1 + o(1))Ca,ρ
exp(−(unαa,ρ)2/2)

2πu2
n

, n→∞,

with

αa,ρ :=
√

(1− 2aρ+ a2)/(1− ρ2) > 1, Ca,ρ :=
(1− ρ2)3/2

(1− aρ)(a− ρ)
> 0.(9)

If a ≤ ρ then

P {X > un, Y > aun} = (1 + o(1))1ρ,a
exp(−u2

n/2)√
2πun

, n→∞(10)

is valid with 1ρ,a := 1/2 if ρ = a and 1ρ,a := 1, otherwise.
If the Savage condition holds, i.e., ρ > a then αa,ρ > 1, implying that the joint
tail asymptotics is faster than the convergence rate to 0 of P {X > un}. Moreover,
the speed of the convergence is governed by αa,ρ, which is actually the attained
minimum of a related quadratic programming problem (see e.g., Hashorva (2005a)).
If the Savage condition does not hold, then (10) shows that the asymptotics is of
the same rate as of P {X > un}, n→∞. The later asymptotics is well-known and
related to Mills Ratio (see e.g., Berman (1962)).
In the Gaussian case (3) holds with w(t) = t, t > 0, hence we may write (10) using
further (8)

P {X > un, Y > aun}
= (1 + o(1))1ρ,aP {X > un}

= (1 + o(1))1ρ,a

(
1

unw(un)

)1/2 1√
2π

[1− F (un)], n→∞

showing that the asymptotics is defined by 1 − F (un) and unw(un). This is the
case for Type I elliptical random vectors in general as shown in Hashorva (2006b)
(corresponding to our case ρ not depending on n). We shall present in this paper
another proof of that result (see Theorem 2 below), and consider further the case
ρn depends on n.
Finally for ease of reference we present next a conditional limiting theorem proved
in Theorem 4.1 of Berman (1983) (see also Theorem 12.4.1 of Berman (1992)).
That result first appears in Lemma 8.2 of Berman (1982) (with some additional
restrictions). More special case are dealt with in Gale (1980), Eddy and Gale (1981).
See for details Abdous et al. (2005), Abdous et al. (2006), Hashorva (2006a), or
Hashorva et al. (2007).
Recent deep articles on the subjects are Heffernan and Tawn (2004), Butler and
Tawn (2005) and Heffernan and Resnick (2005).

We denote throughout the paper a Gaussian random variable with mean 0 and
variance

√
1− ρ2 ∈ (0, 1] by Zρ, i.e.,

Zρ
d=

√
1− ρ2W,(11)

where W is a standard Gaussian random variable.

Theorem 1. [Berman (1992)] Let (S1, S2) be a spherical bivariate random vector
with associated random radius R :=

√
S2

1 + S2
2 > 0 almost surely. If the distribution
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function F of R satisfies (3) with the scaling function w, then we have for any
ρ ∈ (−1, 1) and un < xF , n ≥ 1 such that limn→∞ un = xF

qn

(
ρS1 +

√
1− ρ2S2 − ρun

)∣∣S1 > un
d→ Zρ, n→∞,(12)

with qn :=
√
w(un)/un and Zρ as in (11).

For the case ρ = 0 the proof is given in Theorem 12.4.1 of Berman (1992). The
case ρ ∈ (−1, 1) is proved in Berman (1992) in Theorem 12.5.1 (see (12.5.5)). In
fact from (12.5.7) therein we have the convergence in probability

qn|S1 − un|
∣∣S1 > un

p→ 0, n→∞,(13)

hence the proof of the case ρ 6= 0 is a simple consequence of Theorem 12.4.1 of
Berman (1992) and (13).

3. Main Results

In this section we consider bivariate elliptical random vectors (X,Y ), (X1, X2), . . .
with stochastic representation (1) and associated random radius R ∼ F . We con-
sider for simplicity only the case F has an infinite upper endpoint.
Given two sequences un, vn, n ≥ 1 we derive in the main result below an asymp-
totic expansion for P {Xn > un, Yn > vn} letting un tend to ∞. For vn, n ≥ 1 we
require that limn→∞ vn/un = a ∈ (−∞, 1]. As illustrated by the Gaussian example
above the pseudo-correlation coefficient ρ (recall (1)) plays a central role for the
asymptotics via the Savage condition.
The main assumption in this section is that (Xn, Yn) is a Type I elliptical random
vector, i.e., the distribution function F of the associated random radius R is in the
Gumbel max-domain of attraction.

Theorem 2. Let (X,Y ), (X1, Y1), . . . be Type I bivariate elliptical random vector
with stochastic representation (1), where ρ, ρn ∈ (−1, 1), n ≥ 1, and let un, vn ∈
R, n ≥ 1 be given constants such that limn→∞ un = ∞. Assume that the associated
random radius R ∼ F is almost surely positive with F in the Gumbel max-domain
of attraction satisfying (3) with the positive scaling function w, and upper endpoint
xF = ∞. Suppose further that limn→∞ ρn = ρ ∈ (−1, 1) and let Zρ be as in (11).
i) If for some z ∈ [−∞,∞)

lim
n→∞

qn[vn − ρnun] = z(14)

holds with qn :=
√
w(un)/un, n ≥ 1, then for any sequence yn ∈ R, n ≥ 1 such that

limn→∞ yn = y ∈ [−∞,∞)

P {Xn > un, Yn > vn + yn/qn}

= (1 + o(1))P {Zρ > y + z} 1√
2π

(
1

unw(un)

)1/2

[1− F (un)](15)

= (1 + o(1))P {Zρ > y + z}P {X > un}(16)

holds as n→∞.
ii) Set an := vn/un, n ≥ 1 and suppose further that an ∈ (ρn, 1] for all large n and

lim
n→∞

an = a ∈ (ρ, 1].(17)
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Then we have

P {Xn > un, Yn > vn}

= (1 + o(1))
αa,ρCa,ρ

2π
1

unw(u∗n)
[1− F (u∗n)](18)

= (1 + o(1))
α2
a,ρCa,ρ√

2π

(
1

u∗nw(u∗n)

)1/2

P {X > u∗n}, n→∞,(19)

with αa,ρ, Ca,ρ as in (9) and u∗n := αn,a,ρun, n ≥ 1 where

αn,a,ρ :=
√

(1− 2anρn + a2
n)/(1− ρ2) → αa,ρ > 1, n→∞.(20)

Remarks 1. a) Since F is in the Gumbel max-domain of attraction we have

lim
t→∞

1− F (ct)
1− F (t)

= 0, ∀c > 1,

hence (8) yields also

lim
t→∞

P {Xn > ct}
P {Xn > t}

= lim
t→∞

P {S1 > ct}
P {S1 > t}

= 0, ∀c > 1.

Consequently by (20)

lim
n→∞

P {Xn > u∗n}
P {Xn > un}

= 0.

Further (6) implies

lim
n→∞

unw(un) = lim
n→∞

unw(u∗n) = ∞,(21)

hence the asymptotics in (18) is faster than the one in (15).
b) If the distribution function F has a finite upper endpoint xF ∈ (0,∞), then the
first statement above still holds for un → xF as n → ∞ and vn, n ≥ 1 satisfying
further

u2
n − 2ρnunvn + v2

n < 1− ρ2
n, n ≥ 1.(22)

c) Our asymptotic results in the above theorem confirm (for the case ρn = ρ, n ≥ 1)
the ones previously obtained in Hashorva (2006b).
Note that if ρn depends on n, then the rate of convergence in (18) depends explicitly
on ρn. Furthermore, the conditions leading to both statements above need to be
formulated with ρn instead of ρ (see (14)).

In the special case (which is common in applications), namely vn = una, ρn =
ρ, n ≥ 1 with a ∈ (−∞, 1] and ρ ∈ (−1, 1) we have:

Corollary 3. Under the assumptions and the notation of Theorem 2, if further
an = a ∈ (−∞, 1] for all large n then we have:
i) In the case a < ρ

lim
n→∞

P {X > un, Y > aun + yn/qn}
P {X > un}

= 1.(23)

ii) In the case a = ρ

lim
n→∞

P {X > un, Y > aun + yn/qn}
P {X > un}

= P {Zρ > y}.(24)
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iii) If a ∈ (ρ, 1] then we have as n→∞

P {X > un, Y > aun}

= (1 + o(1))
α

3/2
a,ρCa,ρ√

2π

(
1

unw(αa,ρun)

)1/2

P {X > αa,ρun},(25)

with Ca,ρ,αa,ρ as in Theorem 2.

Corollary 4. Under the assumptions of Theorem 2 we have:
i) In the case ρ ∈ (0, 1)

P {X > un, Y > y} = (1 + o(1))P {X > un}, n→∞(26)

is valid for any y ∈ R.
ii) In the case ρ = 0 and

lim
n→∞

(
w(un)
un

)1/2

= b ∈ [0,∞),(27)

we have for y ∈ R

P {X > un, Y > y} = (1 + o(1))P {Zρ > by}P {X > un}, n→∞.(28)

iii) If ρ ∈ (−1, 0) then for any y > 0

P {X > un, Y > y}

= (1 + o(1))
(

(1− ρ2)3

2πρ2

)1/2( 1
unw(u∗n))

)1/2

P {X > u∗n}, n→∞,(29)

is valid with
u∗n :=

√
(y2 − 2ρuny + u2

n)/(1− ρ2), n ∈ N.

Remark 1. The above corollary is important also in a distributional context. In
view of (26) and (29), X and Y cannot be independent if (X,Y ) is a Type I ellip-
tical random vector with pseudo-correlation ρ ∈ (−1, 1), ρ 6= 0.
When X,Y are independent with (X,Y ) Type I, then we have thus ρ = 0, hence if
further (27) holds, then (28) implies that Y d= Zρ/b.

We consider next an illustrating example:
Example 1. [Kotz Type III] Let (X,Y ) = R(O1, ρO1 +

√
1− ρ2O2), with R a

positive random radius independent of the bivariate random vector (O1, O2) which
is uniformly distributed on the unit circle of R2. We call X a Kotz Type III elliptical
random vector if further

P {R > u} = (1 + o(1))KuN exp(−ruδ), K > 0, δ ∈ R, N ∈ R, u→∞,

with δ ≤ 0 if N < 0. We consider next only the case δ > 0. Define the function w
by

w(u) = rδuδ−1, u > 0.

For any x ∈ R we have

P {R > u+ x/w(u)}
P {R > u}

= (1 + o(1)) exp
(
−ruδ

[(
1 +

x

rδuδ

)δ
− 1

])
→ exp(−x)
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as u → ∞, implying that F is in the Gumbel max-domain of attraction with the
scaling function w. In view of (8) we have

P {X > u} = (1 + o(1))
K√
2rδπ

uN−δ/2 exp(−ruδ), u→∞.

Let un →∞ and yn → y ∈ R be two given sequence and let a ∈ (−∞, 1] be a given
constant. Then by the above results we have if ρ < a

P
{
X > un, Y > aun + yn

√
rδuδ−1

n /un

}
= (1 + o(1))

K√
2rδπ

uN−δ/2n exp(−ruδn), n→∞.

If a = ρ similar asymptotics follows where the constant is additionally multiplied
by P {Zρ > y}.
Assuming that a ∈ (ρ, 1] we obtain as n→∞

P {X > un, Y > aun} = (1 + o(1))
Kα2−δ+N

a,ρ Ca,ρ

2rδπ
uN−δn exp(−r(αa,ρun)δ).

Note in passing that the Gaussian case corresponds to the choice of parameters

K = 1, N = 0, δ = 2, r = 1/2.

4. Approximation of Excess Distribution

Consider (X,Y ), (X1, Y1), . . . Type I elliptical bivariate random vector with sto-
chastic representation (1) and associated random radius R ∼ F . Let un, n ≥ 1 be
a positive sequence such that limn→∞ un = xF , |un| < xF , n ≥ 1. The random
variable Xn − un|Xn > un is the excess of Xn above the threshold un given Xn

jumps the threshold.
An immediate consequence of the assumption F is in the Gumbel max-domain of
attraction with the positive scaling function w is the convergence in distribution of
the corresponding excess random variables above the threshold un

w(un)(Xn − un)|Xn > un
d→ U, w(un)(Yn − un)|Yn > un

d→ U,(30)

with U ∼ Gamma(1, 1) a unit Exponential random variable.
Another interesting situation arises when we additionally condition on the other

component being large, i.e., considering the joint excess bivariate random sequence
(with respect to un, vn, n ≥ 1)

(Xun,Y,vn
, Yvn,X,un

) := (Xn − un, Yn − vn)
∣∣Xn > un, Yn > vn, n ≥ 1.

With the above notation we can re-write (12) and (13) as(
qn(Yn − ρnun), qn(Xn − un)

)∣∣∣Xn > un
d→ (Zρ, 0

)
, n→∞,(31)

where qn :=
√
w(un)/un, n ≥ 1 and Zρ as in (11).

Convergence in distribution is stated in the next theorem, which is a slight modifi-
cation of Berman’s result presented in the previous section.

Theorem 5. Let (S1, S2) be a Type I bivariate spherical random vector with asso-
ciated random radius R ∼ F , where F satisfies (3) with upper endpoint xF ∈ (0,∞]
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and the scaling function w. Let un < xF , n ≥ 1, ρn ∈ (−1, 1) be constants such that
limn→∞ un = xF and set

Xn := S1, Yn := ρnS1 +
√

1− ρ2
nS2, n ≥ 1.

If limn→∞ ρn = ρ ∈ (−1, 1), then we have the convergence in distribution (n→∞)(
qn

(
Yn − ρnun), w(un)(Xn − un)

)∣∣∣Xn > un
d→

(
Zρ, U

)
, n→∞,(32)

where qn :=
√
w(un)/un, n ≥ 1, and Zρ as in (11) independent of U ∼ Gamma(1, 1).

Hashorva (2006b) obtains in Theorem 5.1 the convergence in distribution of the
joint excess sequence (Xun,Y,un

, Yun,X,un
), n ≥ 1. A similar (independent) result

appears in Asimit and Jones (2007) under the further restriction that the scaling
function w is regularly varying and F has an infinite upper endpoint.
We apply our previous results to derive several approximations in the next theorem.

Theorem 6. Let F, (X,Y ), ρ, Zρ, (Xn, Yn), ρn, an, un, vn, n ≥ 1 be as in Theorem
2, F satisfies (3) with the scaling function w and upper endpoint xF = ∞, and let
hni, n ≥ 1, i = 1, 2 be positive constants such that

lim
n→∞

qnhni = ci ∈ [0,∞), i = 1, 2,(33)

with qn :=
√
w(un)/un, n ≥ 1.

i) If (14) holds with z ∈ [−∞,∞), then we have for any x, y ∈ R

lim
n→∞

P {Xun,Y,vn > hn1x, Yvn,X,un > hn2y}
P {X > un + hn1x|X > un}

= Φρ,z(c2y − ρc1x),(34)

where Φρ,z(s) := P {Zρ > s+ z}/P {Zρ > z}, s ∈ R.
Furthermore, in the case that z ∈ R we have the convergence in distribution(

w(un)Xun,Y,vn
, qnYvn,X,un

)
d→ (U, Vz), n→∞,(35)

with U ∼ Gamma(1, 1), Vz ∼ 1− Φρ,z.
ii) Set u∗n :=

√
(u2
n − 2ρnunvn + v2

n)/(1− ρ2
n), n ∈ N. If further (17) is satisfied,

we then have the convergence in distribution(
w(u∗n)Xun,Y,vn , w(u∗n)Yvn,X,un

)
d→ (U1, U2), n→∞,(36)

where

U1 ∼ Gamma(1,
1− aρ

αa,ρ(1− ρ2)
), U2 ∼ Gamma(1,

a− ρ

αa,ρ(1− ρ2)
),

with U1, U2 being further independent and αa,ρ :=
√

(1− 2aρ+ a2)/(1− ρ2) > 1.

We give next an illustrating example.
Example 2. Let X,Y, ρ, F,w, un, u∗n, vn, n ≥ 1 be as in Theorem 6. Assume that
for all c > 1

lim
u→∞

w(cu)
w(u)

= cλ, λ ∈ (−1,∞).(37)

If (17) holds, then we obtain (the convergence above is locally uniformly)

lim
n→∞

w(u∗n)
w(un)

=
w(unαa,ρ)
w(un)

= αλ
a,ρ > 1,
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hence for any x, y positive

lim
n→∞

P
{
X > un +

x

w(un)
, Y > vn +

y

w(un)

∣∣X > un, Y > vn

}
= lim

n→∞
P

{
X > un +

α−λa,ρx

w(un)
, Y > vn +

α−λa,ρy

w(un)

∣∣X > un, Y > vn

}
= exp

(
−α−λa,ρ([Ka,ρx+Ka,ρy]

)
= exp

(
− 1− aρ

αλ+1
a,ρ (1− ρ2)

x+
a− ρ

αλ+1
a,ρ (1− ρ2)

y
)
.

Note in passing that if (X,Y ) is a Kotz Type III elliptical random vector with δ > 0
then (37) holds with λ = δ − 1.

5. Proofs

For the proof of Theorem 2 we need the next lemma, which could be of some
interest on its own.

Lemma 7. Let F be a univariate distribution function with upper endpoint xF ∈
(0,∞] such that F satisfies (3) with the positive scaling function w. Let further
an < bn ≤ xF , un, rn, n ≥ 1 be four sequences of positive constants such that
u∗n := anun < xF ,∀n ≥ 1

lim
n→∞

u∗n = xF , and lim
n→∞

unw(u∗n)[bn − an] = η ∈ [0,∞].(38)

If further ψn, hn, n ≥ 1 are positive measurable functions such that for all large n

ψn(an + x/(unw(u∗n))) = rnhn(x), ∀x > 0,(39)

where

lim
n→∞

hn(x) = h(x),

and for all n large and any x > 0

hn(x) ≤ K max(xλ1 , xλ2), K ∈ (0,∞), λi ∈ (−1,∞), i = 1, 2,

is satisfied, then we have for any ξn → ξ ∈ [0,∞) with ξ ≤ η ≤ ∞∫ bn

an+ξn/(unw(u∗n))

[1− F (unx)]ψn(x) dx = (1 + o(1))
rn[1− F (u∗n)]
unw(u∗n)

I(h, η, ξ)

as n→∞ with I(h, η, ξ) :=
∫ η
ξ
h(x) exp(−x) ds ∈ [0,∞).

Proof. Set for any n ∈ N

u∗n := anun, tn := unw(u∗n), ηn := tn[bn − an].

Since limn→∞ u∗n = xF the assumption on F implies

lim
n→∞

1− F (u∗n + x/w(u∗n))
1− F (u∗n)

= exp(−x), ∀x ∈ R.
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Next, applying Fatou Lemma we obtain

lim inf
n→∞

∫ bn

an+ξn/w(u∗n)

[1− F (unx)]ψn(x) dx

≥ lim inf
n→∞

t−1
n

∫ ηn

ξn

[1− F (un[an + x/tn])]ψn(an + x/tn) dx

≥ [1− F (u∗n)]rnt−1
n

∫ η

ξ

lim inf
n→∞

1− F (u∗n + x/w(u∗n)
1− F (u∗n)

hn(x) dx

= (1 + o(1))rn[1− F (u∗n)]t−1
n

∫ η

ξ

exp(−x)h(x) dx, n→∞.

Since for all x positive it follows that h(x) ≤ K max(xλ1 , xλ2) we have

0 ≤
∫ η

ξ

exp(−x)h(x) dx <∞.

The proof for the lim sup follows (non-trivially) along the lines of the proof of
Lemma 4.2, 4.3, 4.5 in Hashorva (2006a) utilising ideas and results in Berman
(1992). The case λ ≥ 0 follows easily with the arguments from Berman (1992) (see
(12.3.7) therein). The case α ∈ (−1, 0) is established using further the fact that for
any ε > 0, x ∈ [0, 1]∣∣∣1− F (τn + x/w(τn))

1− F (τn)
− exp(−x)

∣∣∣ < ε exp(−x)

holds uniformly for any sequence τn < xF , n ≥ 1, such that limn→∞ τn = xF , hence
the proof. �

Proof of Theorem 2 Set for n ∈ N

an := vn/un, wn := w(un), qn :=
√
wn/un.

(6) implies limn→∞ unwn = ∞. In view of (12) we have

qn(Yn − ρnun)|Xn > un
d→ Zρ, n→∞,

with Zρ/
√

1− ρ2 a standard Gaussian random variable. Consequently for all n
large we have

P {Xn > un, Yn > vn + yn/qn}
= P {X > un}P {qn(Yn − ρnun) > qn[anun + yn/qn − ρnun]|Xn > un}
= P {X > un}P {qn(Y − ρnun) > yn +

√
unwn[an − ρn]|X > un}

= (1 + o(1))P {Zρ > y + z}P {X > un}, n→∞.

Using now (8) establishes the first claim.
ii) For simplicity assume that ρ, ρn ∈ [0, 1], n ≥ 1 and vn, n ≥ 1 is a positive
sequence. The other case follows with similar arguments.
In view of Lemma 3.3 of Hashorva (2005b) we obtain

P {Xn > un, Yn > anun}

=
1

2π

∫ π/2

βn

[1− F (x/ cos(α))] dα+
1

2π

∫ βn

ψn−π/2
[1− F (y/ cos(α− ψn))] dα

=: In1 + In2,
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with βn := arctan((an − ρn)/
√

1− ρ2
n), ψn := arccos(ρn), n ≥ 1.

Define next for any n ∈ N

αn,a,ρ := 1/ cos(βn) =
√

(1− 2ρnan + a2
n)/(1− ρ2

n) ≥ 1,

and
u∗n := αn,a,ρun w∗n := w(u∗n).

By the assumptions

lim
n→∞

βn = β := arctan((a− ρ)/
√

1− ρ2),

and

lim
n→∞

αn,a,ρ = 1/ cos(β) =
√

(1− 2ρa+ a2)/(1− ρ2) > 1, lim
n→∞

αn,a,ρun = ∞.

A simpler formula as the above one for the bivariate tail probability is given in
Abdous et al. (2006), Klüppelberg et al. (2007). Transforming the variables (bor-
rowing the idea and the formula from Abdous et al. (2006)) we obtain applying
Lemma 7

In1 =
1

2π

∫ ∞

1/ cos(βn)

[1− F (unx)]
1
x

1√
x2 − 1

dx

= (1 + o(1))
1− F (u∗n)
2πunw∗n

1
1/ cos(β)

1√
(1/ cos(β))2 − 1

∫ ∞

0

exp(−x) dx

= (1 + o(1))
1− F (u∗n)
2πunw∗n

1
αa,ρ

1√
(αa,ρ)2 − 1

, n→∞,

and similarly for any a > 0

In2 =
1

2π

∫ ∞

an/ cos(βn)

[1− F (anuny)]
1
y

1√
y2 − 1

dy

= (1 + o(1))
1− F (u∗n)
2πunw∗n

1
αa,ρ

1√
(αa,ρ)2/a2 − 1

, n→∞.

Consequently we may write as n→∞ using further (8)

P {Xn > un, Yn > anun}

= (1 + o(1))
1

αa,ρ

[ 1√
(αa,ρ)2 − 1

+
1√

(αa,ρ)2/a2 − 1

]1− F (u∗n)
2πunw∗n

= (1 + o(1))
αa,ρCa,ρ

2π
1− F (u∗n)
unw∗n

= (1 + o(1))
α2
a,ρCa,ρ√

2π

(
1

u∗nw
∗
n

)1/2 1− F (u∗n)√
2παn,a,ρunw∗n

= (1 + o(1))
α2
a,ρCa,ρ√

2π

(
1

u∗nw
∗
n

)1/2

P {X > u∗n}, n→∞.

In the case a = 0 we obtain the same asymptotics since In2 = o(In1), n→∞. Thus
the claim follows. �

Proof of Corollary 3 In view of (21)

lim
n→∞

√
unw(un)[a− ρ] = 0, if a = ρ
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or
lim
n→∞

√
unw(un)[a− ρ] = −∞, if a < ρ

implying that (14) holds with z = 0 or z = −∞, respectively. Hence the proof
follows immediately from Theorem 2. �

Proof of Corollary 4 i) Since un →∞ we get using (6)

lim
n→∞

√
unw(un)[y/un − ρ] = −∞,

hence (14) holds with z = −∞. Applying Theorem 2 establishes the first claim.
ii) In this case (14) holds with z = by, thus the claim follows again by a direct
application of the mentioned theorem.
iii) For all large n we have an := y/un > ρ and further limn→∞ an = 0. Utilising
again Theorem 2 establishes the proof. �

Proof of Theorem 5 (5) and (8) imply that both S1 and S2 are in the Gumbel
max-domain of attraction with the scaling function w. Consequently

lim
n→∞

P {S1 > un + xrn/w(un)}
P {S1 > un}

= 0

for any rn, n ≥ 1 tending to ∞. Hence the proof follows easily from (12). �
Proof of Theorem 6 Set for n ≥ 1

qn :=
√
w(un)/un, u′n := un + hn1x, yn = yqnhn2.

By the assumptions and using (6) we obtain for any x, y ∈ R

lim
n→∞

u′n = ∞, lim
n→∞

yn = c2y

and

lim
n→∞

u′n
un

= lim
n→∞

[1 + xhn1/un] = lim
n→∞

[1 + x
(1 + o(1))c1√
unw(un)

] = 1,

hence

lim
n→∞

(
w(u′n)
u′n

)1/2

[vn − ρnu
′
n] = lim

n→∞
qn[vn − ρnun]− ρnx lim

n→∞
hn1qn

= z − ρc1x,

consequently applying Theorem 2 we obtain for any x, y ∈ R

P {Xn > un + hn1x, Yn > vn + hn2y}
= P {Xn > u′n, Yn > vn + yn

√
un/w(un)}

= (1 + o(1))P {Zρ > c2y − ρc1x+ z}P {X > un + hn1x}, n→∞.

Thus we have if x, y are positive (recall (7))

P {Xn > un + hn1x, Yn > vn + hn2y
∣∣Xn > un, Yn > vn}

=
P {Xn > un + hn1x, Yn > vn + hn2y}

P {Xn > un, Yn > vn}

= (1 + o(1))Φρ,z(c2y − ρc1x)
P {X > un + hn1x}

P {X > un}
, n→∞,

with Φρ,z := P {Zρ > s + z}/P {Zρ > z}, s ∈ R and Zρ/
√

1− ρ2 a standard
Gaussian random variable, hence (34) follows.
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Next, if the sequence hn1, n ≥ 1 is asymptoticaly equivalent with w(un), n ≥ 1, i.e.,
limn→∞ hn1w(un) = 1, then

lim
n→∞

qnhn1 = 0,

and further ∀x ∈ R (recall (8))

lim
n→∞

1− F (un + hn1x)
1− F (un)

= lim
n→∞

P {X > un + x/w(un)}
P {X > un}

= exp(−x).

Consequently if additionally limn→∞ hn2w(un) = 1 we obtain for any x, y ∈ [0,∞)

lim
n→∞

P {Xn > un + hn1x, Yn > vn + hn2y
∣∣Xn > un, Yn > vn} = exp(−x)Φρ,z(y).

We thus have the convergence in distribution

w(un)(Xn − un)
∣∣Xn > un, Yn > vn

d→ U, n→∞,

with U a unit exponential random variable, and for any z ∈ R√
w(un)/un(Yn − vn)

∣∣Xn > un, Yn > vn
d→ Vz, n→∞,

where Vz is a positive random variable with survival function Φρ,z(y), y ≥ 0. Fur-
thermore, the joint convergence in distribution holds, hence (34) follows.
ii) Since limn→∞ unw(un) = ∞ we have that (14) holds with z = ∞, hence Theorem
2 implies for any x, y ∈ R as n→∞

P {Xn > un + hn1y, Yn > vn + hn2y}

= (1 + o(1))
αa,ρCa,ρ

2π

(
1

unw(t∗n)

)
[1− F (t∗n)],

with Ca,ρ defined in (9) and

t∗n = u∗n + (1 + o(1))[(αa,ρ − aKa,ρ)x+Ka,ρy]/w(u∗n), n→∞,

where u∗n := αn,a,ρun,αn,a,ρ :=
√

(1− 2ρnan + a2
n)/(1− ρ2

n), and

αa,ρ :=
√

(1− 2aρ+ a2)/(1− ρ2) > 1, Ka,ρ :=
a− ρ

αa,ρ(1− ρ2)
> 0.

Since

αa,ρ − aKa,ρ =
1− aρ

αa,ρ(1− ρ2)
=: Ka,ρ > 0

we may further write (n→∞)

P
{
Xn > un +

x

w(u∗n)
, Yn > vn +

y

w(u∗n)

}
= (1 + o(1))

αa,ρCa,ρ
2π

exp(−Ka,ρx−Ka,ρy)
(

1
unw(u∗n)

)1/2

[1− F (u∗n)],

thus the proof follows. �
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