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A GENERAL MULTIVARIATE EXTENSION OF FISHER’S GEOMETRICAL MODEL AND
THE DISTRIBUTION OF MUTATION FITNESS EFFECTS ACROSS SPECIES
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Abstract. The evolution of complex organisms is a puzzle for evolutionary theory because beneficial mutations should
be less frequent in complex organisms, an effect termed ‘‘cost of complexity.’’ However, little is known about how
the distribution of mutation fitness effects (f(s)) varies across genomes. The main theoretical framework to address
this issue is Fisher’s geometric model and related phenotypic landscape models. However, it suffers from several
restrictive assumptions. In this paper, we intend to show how several of these limitations may be overcome. We then
propose a model of f(s) that extends Fisher’s model to account for arbitrary mutational and selective interactions
among n traits. We show that these interactions result in f(s) that would be predicted by a much smaller number of
independent traits. We test our predictions by comparing empirical f(s) across species of various gene numbers as a
surrogate to complexity. This survey reveals, as predicted, that mutations tend to be more deleterious, less variable,
and less skewed in higher organisms. However, only limited difference in the shape of f(s) is observed from Escherichia
coli to nematodes or fruit flies, a pattern consistent with a model of random phenotypic interactions across many traits.
Overall, these results suggest that there may be a cost to phenotypic complexity although much weaker than previously
suggested by earlier theoretical works. More generally, the model seems to qualitatively capture and possibly explain
the variation of f(s) from lower to higher organisms, which opens a large array of potential applications in evolutionary
genetics.
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Mutations are the raw material for evolution. As a con-
sequence, predicting and estimating the distribution of the
effects of mutations on fitness (hereafter f(s)) is a central
issue for many aspects of evolutionary theory (Lynch et al.
1999; reviewed in Charlesworth and Charlesworth 1998; Ba-
taillon 2000). Considerable effort has been devoted, mostly
empirically, to address this issue. Yet, we are still largely
ignorant of how this distribution varies among organisms and
how to explain this variation (Lynch et al. 1999; Bataillon
2003; Keightley and Lynch 2003; Shaw et al. 2003), although
significant differences across species can be observed, even
at small phylogenetic scales (Baer et al. 2005). From a the-
oretical standpoint, adaptive landscape modeling, such as
Fisher’s model (1930), is the most commonly used frame-
work to predict f(s). Fisher modeled an organism as a vector
of n trait values (i.e., a position in the phenotypic space),
whose fitness is determined by the distance of this phenotype
to a given optimum. Mutation randomly displaces phenotypes
in this n-dimensional space, which allows one to compute
f(s). Fisher’s model is appealing because it predicts f(s) based
on selective and mutational assumptions on the underlying
phenotypic traits (as in, e.g., Welch and Waxman 2003). Oth-
er approaches have been suggested to predict some features
of f(s). In particular, extreme value theory can be used to
characterize the right-tail behavior of f(s) (advantageous mu-
tations) with a minimal set of assumptions regarding f(s) itself
(Orr 2003, 2005a). However, by avoiding describing f(s), this
approach also has the weakness of disconnecting properties
of advantageous and deleterious mutations, which may joint-
ly affect some evolutionary process (e.g., the rate of adap-
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tation in asexuals; Gerrish and Lenski 1998). In contrast,
Fisher’s model predicts the full distribution with both del-
eterious and advantageous effects under a given set of as-
sumptions. Its prediction may thus be compared with most
empirical data on f(s), which mainly describe the distribution
of deleterious mutation effects (Lynch et al. 1999).

Fisher’s model makes simplifying assumptions, whose re-
alism may be questioned (Clarke and Arthur 2000; Orr 2000,
2001). As a consequence, this model is often considered to
have a heuristic but not a quantitative value (Orr 2005a). For
example, its predictions regarding f(s) have never been con-
fronted to empirical distributions although qualitative pre-
dictions on the adaptive process have received empirical sup-
port (Burch and Chao 1999; Imhof and Schlotterer 2001;
Rozen et al. 2002; Rokyta et al. 2005). Similarly, its predic-
tions regarding f(s) are rarely used within theoretical models
(but see Poon and Otto 2000) because its lack of realism may
then compromise the models’ conclusions. Therefore, many
theoretical approaches are limited to those that do not depend
too much on f(s) (Orr 2005b; Otto 2004) which is a desirable
property but potentially restrains the scope of theoretical in-
vestigation: when variation in f(s) affects theoretical predic-
tions, the problem is still ultimately to find what f(s) really
is. Paradoxically, the problem of f(s) has been much more
discussed for the statistical analysis of mutation accumulation
experiments (Keightley 1994; Keightley and Lynch 2003;
Shaw et al. 2003), without much guidance from a ‘‘realistic’’
theoretical expectation. More generally, although several pa-
pers sought to explain the variation in rates of mutation across
taxa (Drake et al. 1998; Lynch et al. 1999; Keightley and
Eyre-Walker 2000), variation in its fitness effect and its po-
tential causes has received much less attention (but see Lynch
et al. 1999; Bataillon 2000). The main goal of this paper is
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to describe this variation with a survey of the empirical lit-
erature, and to analyze it in the light of a generalized version
of Fisher’s model.

Building and testing a model for f(s) necessarily involves
simplifying assumptions because an exhaustive description
of the effect of all possible mutations on phenotype and their
fitness consequences is obviously intractable. Fisher’s model
makes several specific simplifying assumptions that have
been criticized. In this paper, we propose a model relaxing
some of these assumptions, but before describing our ap-
proach, we discuss the main criticisms of Fisher’s model that
have been put forward. This brief presentation draws on pre-
vious discussions of this issue (Orr 1998, 2005a; Poon and
Otto 2000; Welch and Waxman 2003).

Fisher’s Model Realism

Optimum and fitness

The first key assumption of the model is that there is a
single phenotypic optimum, so that it can only be used to
model stabilizing selection (around a single optimum) or di-
rectional selection (away from the optimum). Quantitative
genetic studies (reviewed in Kingsolver et al. 2001) and ex-
perimental evolution experiments (reviewed in Elena and
Lenski 2003) provide evidence for both types of selection,
but also for disruptive selection with alternative possible op-
tima. However, using Fisher’s model to predict f(s) only re-
quires that most of the range of possible mutations lies on
the slope of a single local fitness peak. It may indeed be quite
rare that a population stays long in a fitness valley. In any
case, predicting local f(s) is different from predicting long
term evolutionary change, and Fisher’s model may be less
appropriate for the latter than for the former. Similarly, al-
though the pattern of adaptation cannot be directly predicted
with a moving optimum (Orr 2005a), f(s) can still be predicted
at any given time. An additional restriction is that a given
fitness function must be chosen to map fitness with the phe-
notypic distance from the optimum. When close to the op-
timum, a quadratic or Gaussian fitness function is a straight-
forward local approximation for many arbitrary fitness func-
tions (Lande 1980) and is therefore widely used. Overall,
these assumptions of Fisher’s model on the way phenotype
determines fitness are not so unrealistic when considering a
population close to a local optimum, but may be less accurate
under strong environmental change.

Mutation and traits

In Fisher’s model, fitness is determined by the phenotype,
which is made of a set of n phenotypic traits describing ad-
aptations (hereafter ‘‘adaptation traits’’). A more specific as-
sumption is that the effect of mutation on these traits is con-
tinuous and symmetric. This assumption is also used in quan-
titative genetics and is useful for the mathematical analysis.
It has been criticized (Clarke and Arthur 2000), but is con-
sistent with some empirical evidence (Garcia-Dorado et al.
1999; Orr 2001); for example, based on the effect of single
P-element inserts on bristle numbers (Lyman et al. 1996).
There is obviously a qualitative difference between such ad-
aptation traits for which we can reasonably assume sym-

metrical mutation effects and fitness traits (e.g., survival,
fecundity, functional efficiency traits, etc.) which are known
to decrease on average by mutations, since most mutations
are deleterious (Lynch et al. 1999). For example, molecular
properties of the active site of an enzyme (e.g., volume,
charge, etc.) can be reasonably expected to change symmet-
rically by mutation. There are indeed no clear reasons why
mutations should bias toward higher or lower charge or vol-
ume; and if such a bias is present, it is likely to be small
compared to the mutational variance. In contrast, when con-
sidering a trait that measures a distance from a given value
(e.g., departure from the charge or volume corresponding to
maximal affinity), mutation effects cannot be symmetric since
a distance is never negative: both an increase and a decrease
in charge from the optimal value will decrease affinity. The
same difference applies between adaptation traits (the axes
in Fisher’s model) and fitness traits: the former have an op-
timal value which is defined by the latter. The aim of the
model is precisely to predict the distribution of the effect on
fitness traits of mutations affecting adaptation traits.

The distribution of mutation phenotypic effects is also of-
ten assumed to be Gaussian (we will use this assumption
too), again mainly for mathematical convenience. Empiri-
cally, this assumption is approximately valid for some traits,
but clearly fails for others (Garcia-Dorado et al. 1999). We
suggest here that the measure of each trait is somehow ar-
bitrary, so that, with appropriate scaling, it is possible to
reduce kurtosis as needed (in the same way as transforming
a response variable in a linear model, to conform to the hy-
pothesis of normal errors). Such a scaling would affect the
fitness function accordingly, but this new fitness function
could still be approximated by a quadratic function close to
the optimum. In all that follows, it will be important to keep
in mind the distinction between the effect of mutations on
phenotype (i.e., on adaptation traits) and on fitness (i.e., f(s)):
the former will be assumed Gaussian, whereas the latter will
be predicted by the model.

A perhaps stronger assumption of Fisher’s model is that a
single mutation can potentially affect all the phenotypic traits
of the organism (universal pleiotropy). There is empirical
evidence showing that pleiotropy and compensatory muta-
tions are widespread (reviewed in Poon and Otto 2000). How-
ever, studies of development and genetic regulatory networks
strongly suggest that the genotype-phenotype map may be
organized into modules. As a consequence, it is often argued
that compensation can only occur within modules or that a
change within a module leaves adaptation in other modules
undisturbed (Wagner and Altenberg 1996). Although this
view is certainly correct for phenotypic compensation, it may
not hold when considering fitness compensation. For in-
stance, if two traits in different modules are correlated in
their effect on fitness, then the fitness effect of a mutation
in a given module may be compensated by mutation in an-
other module. Similarly, with selective correlation among
traits in different modules, a mutation in a given module can
cause maladaptation in another module. The modularity of
mutation effects on phenotypes does not ensure the modu-
larity of their fitness effects. In any case, Fisher’s model only
requires a description of the net phenotypic effect of all mu-
tations averaged over modules and can thus accommodate
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modularity or partial pleiotropy (as in Welch and Waxman
2003).

Finally, the distribution of the phenotypic effects of mu-
tations in Fisher’s model is always assumed to be independent
of the genotype in which they arise (the genetic background).
This assumption is not a problem when considering the dis-
tribution of mutations effects on a single genotype. However,
considering that mutational effects vary with the background
may alter long-term predictions in which the background
changes. There is qualitative support for the idea that a given
allele has similar phenotypic effects when introduced in dif-
ferent genetic backgrounds as demonstrated by the success
of genetic engineering and improvement of domesticated spe-
cies. It is probably quantitatively inexact, but remains a good
working assumption, in the absence of alternative models.

Symmetry assumptions

Another strongly restrictive assumption in Fisher’s model
is that all traits are equivalent and independent of each other
with respect to both mutation and selection (Welch and Wax-
man 2003). This spherical symmetry is indeed an oversim-
plification that can hardly apply to real organisms. Given
appropriate scaling, it is possible to account for some cor-
relations between traits, but such scaling can only be per-
formed for either selection, or mutation effects, not for both
(Orr 1998, 2005a; Poon and Otto 2000). There is empirical
evidence showing that phenotypic correlations between traits
are widespread for both selection (Kingsolver et al. 2001)
and mutation (Garcia-Dorado et al. 1999; Keightley et al.
2000), so that relaxing the symmetry assumption would sig-
nificantly improve the model’s realism and the range of its
potential applications. Recently, Waxman and Welch (2005)
have proposed the first model to account for selective inter-
actions between traits, but still neglecting mutational cor-
relations. One of the aims of this paper is to relax the sym-
metry assumptions for both mutation and selection (using a
different approach from that of Waxman and Welch 2005).

Scaling and empirical predictions

The last problem when trying to use Fisher’s model is to
find an appropriate scaling in terms of measurable quantities.
For instance, we ignore the distribution of the size of mutation
in the phenotypic space, the phenotypic distance to an op-
timum, or the number n of adaptation traits. As a conse-
quence, even if it has a strong heuristic value, the whole
model may appear arbitrary and of little use when it comes
down to real and testable predictions (Orr 2005a). Fisher’s
model can make predictions that are scale independent and
testable; for instance, regarding the distribution of factors
fixed during a bout of adaptation. These predictions have
received empirical support (Imhof and Schlotterer 2001; Rok-
yta et al. 2005). However, the agreement is qualitative and
does not unambiguously support Fisher’s model since several
models make the same predictions (Orr 2005a).

Another prediction of the model with perhaps important
evolutionary implication is that the number of traits, n, in-
fluences the fitness effect distribution of mutations in such a
way that beneficial mutations are less likely and less favor-
able in more complex organisms (Orr 1998; Barton and Par-

tridge 2000). An important consequence of this is that more
complex organisms should adapt at slower rates, an effect
dubbed ‘‘cost of complexity’’ (Orr 2000). This prediction
has not been tested empirically. Similarly, it has not been
tested whether the distribution of mutation fitness effects
varies with complexity as predicted by this model because
testing this prediction would require scaling mutation fitness
effects to measurable quantities.

Possible Improvements and Tests

The first aim of this paper is to propose a model predicting
the fitness effect distribution of mutations without assuming
equivalence and independence between traits. This model
attempts to predict in a simple analytic form how the mo-
ments of f(s) should vary with phenotypic complexity (i.e.,
n, the number of adaptation traits under selection) and with
the level of covariation between traits. We then make ap-
proximations that allow one to use the empirical distribution
of mutation effects measured in a given environment (e.g.,
in the laboratory) to predict the new distribution in another
environment. The second aim of this paper is to survey the
available empirical data on f(s) across taxa to test our model’s
predictions with the appropriate scaling. More precisely, we
use gene number as a surrogate estimate of n and test for
correlations between gene number and empirical moments of
s across species. The third aim of this paper is to use our
model and survey to quantify the cost of complexity by com-
paring predicted rates of adaptation across species, based on
their empirical distribution of deleterious mutations. Overall,
our survey and model indicate that complexity—as measured
by gene number—and phenotypic correlations are critical fac-
tors shaping the fitness effect of mutations across taxa.

MODEL AND PREDICTIONS

As with other models based on Fisher’s geometric ap-
proach, we consider that fitness is determined by n adaptation
traits. As explained in the introduction, we use a Gaussian
distribution of mutation phenotypic effects on these traits.
Furthermore, we assume that these traits are under Gaussian
stabilizing selection around a fixed phenotypic optimum,
which will work best when close to the optimum. These
Gaussian assumptions allow the mathematical treatment of
the model for any arbitrary selective and mutational covari-
ance matrices for adaptation traits. This model of multivariate
stabilizing selection and mutation is similar to that introduced
by Zhang and Hill (2003) for the study of mutation-selection
balance on a quantitative trait, but extended to account for
beneficial mutations (i.e., phenotypes are not necessarily at
their optimum). The presentation of the model takes several
steps: we first derive the exact distribution of s under our
assumptions, then we give a general exact expression for the
moments of f(s) at the optimum (i.e., when there are only
deleterious mutations). Then we formulate testable predic-
tions on the effect of n on these moments. Next, we derive
an approximation for the probability density function of s,
f(s) at any distance to a new optimum defined by a new
environment. We show how the parameters of this distri-
bution can be estimated empirically and we use this approx-
imation to compute the rate of adaptation in this new envi-
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ronment. Next, because all our theoretical results depend on
the strength of mutational and selective correlations between
traits, we introduce a null model of phenotypic interactions
to evaluate their influence on f(s), based on random matrix
theory. Next, we present simulations to validate our approx-
imations. Finally, we confront our predictions with empirical
data from the literature.

Description of the Model

Phenotypes are modeled as a set of n continuous pheno-
typic traits represented by a column vector z. The fitness
W(z) of phenotype z is a multivariate Gaussian function of
the distance between z and a phenotypic optimum that is set
to zero for all traits, without loss of generality: W(z) 5
Exp(2½ztSz), where t denotes transposition. S is the n 3 n
matrix of the selective effects of all traits. Diagonal elements
in S measure the selection intensity on each trait while non-
diagonal elements measure selective interactions between
trait pairs. To describe the most general situation of stabi-
lizing selection, we assume that S is positive semidefinite
(not strictly definite as often assumed), which ensures that
no phenotype has a higher fitness than phenotype z 5 0. Note
that we will only consider traits under direct stabilizing se-
lection (i.e., with a strictly positive diagonal term), although
some linear combinations of these traits may be neutral be-
cause of selective interactions.

Consider now the effect of mutation on a single genotype,
referred to as the initial genotype (with phenotype zo). We
assume that the distribution of mutant phenotypes around zo

is multivariate Gaussian with mean zero and covariance ma-
trix M. As explained in introduction, this Gaussian assump-
tion is valid as long as there is a transformation from the
‘‘real’’ traits to a set of traits that are distributed as a mul-
tivariate Gaussian. As for selection, the model allows both
for differences in mutational variances across traits and for
mutational correlations between traits (nondiagonal elements
in M). We assume that M is positive semidefinite (the most
general structure for a covariance matrix). The selection co-
efficient s of a mutant phenotype zo 1 dz is defined relative
to the initial phenotype zo as W(zo 1 dz)/W(zo) 2 1. We
assume that s is small enough that s ø log(1 1 s) and we
define so [ 2log(W(zo)/W(0)), the selective disadvantage of
the initial phenotype zo relative to the optimal phenotype.
Under these assumptions, the joint effects of all selective and
mutational covariances (matrices M and S) reduce to the n
eigenvalues of the product S·M. The exact distribution of s
is a quadratic form in Gaussian vectors (Mathai and Provost
1992). The distribution is entirely determined by the distance
to the optimum so, the direction to the optimum in the phe-
notypic space, and the n eigenvalues {li}i∈[1,n] of S·M, as
shown in Appendix 1, available online only at http://
dx.doi.org/10.1554/05-412.1.s1. Each li corresponds to a
phenotypic direction (a linear combination of biological traits
zi) on which mutation and selection act independently with
a net effect li on fitness. Thus, a large li corresponds to a
combination of traits that displays a large mutational variance
and is under strong selection.

Exact Moments of f(s) at the Optimum

A distribution can be fully characterized by its moments.
Since the central moments of quadratic forms of Gaussian
vectors have analytic expression for any order (Mathai and
Provost 1992; online Appendix 1), f(s) is fully specified in
our model. However, we focus on the first three central mo-
ments of s that are the most available empirically. When most
mutations are deleterious, it can be assumed that the initial
genotype is close to the optimum (so K 1). Then, defining
the raw moments of the li across traits i as [1/n ,n rr S ll i51 i

the three first central moments (E(s), V(s), and m3(s)) of f(s)
are given by:

n
E(s) 5 2 l̄

2

n 2V(s) 5 l
2

3m (s) 5 2nl . (1)3

A more general expression for any distance to the optimum
(i.e., with beneficial mutations) can be found in equation (A3)
of Appendix 1 (available online). At the optimum, the mo-
ments of s depend only on the number of phenotypic traits
n and on the distribution of the eigenvalues of SM (the li).

Predicting the Effect of n on the Moments of f(s)

Equation (1) yields simple predictions on the three first
moments of empirical distributions of mutation effects when
there are few beneficial mutations (so K 1).

First, E(s) 5 2n /2, so that the average deleterious effectl̄
of mutations should be larger in organisms with a presumably
larger number of traits (e.g., in Drosophila vs. Escherichia
coli). Larger E(s) in Drosophila than in E. coli could be due
either to a larger n (larger number of traits under selection
in fruit flies than in bacteria) or a larger (same number ofl̄
traits in both species, but a larger effect of mutation on each
trait, in Drosophila) but the latter seems much less parsi-
monious. Note that, in addition, the expression for E(s) in
equation (1) is still valid when so ± 0, that is, if beneficial
mutations also occur (see eq. A3, Appendix 1 online). This
outcome results directly from the Gaussian approximation
(quadratic in log scale) of the fitness function: at the optimum,
all mutations are weakly deleterious, whereas, when away
from the optimum, deleterious mutations are more severe but
compensated by some beneficial mutations. The net outcome
depends only on the local curvature of the fitness function
around the initial phenotype. This curvature is constant at
any distance from the optimum with our quadratic fitness
function, so that E(s) is independent of so.

Second, rearranging equation (1) shows that both the co-
efficient of variation and the skewness of s should decrease
with n. More precisely, if we note 5 V(s)/E(s)2 and* *m m2 3
5 m3(s)/E(s)3, the second and third moments of s scaled to
the mean effect E(s), we obtain from equation (1) two in-
dependent quantities that should increase linearly with n:

2 31 l̄ 1 l̄
5 n and 5 n . (2)

2 3* !m *2l 8lÏm2 3
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These predictions are based on scale invariant measures
(scaled to E(s)), which should make them more robust for
comparisons across species. Again, finding that 1/ and*m2
1/ are larger, for example in Drosophila than in E. coli,*Ïm3
is more likely due to a larger number of traits in Drosophila
than to variation in the distribution of the li between these
species.

We propose below (see A Model of Random Phenotypic
Correlations) a null model for S and M to better understand
the possible dependence between n and the distribution of
the li. Under this model, E(s) increases linearly with n while
1/ and 1/ increase but plateau with large n. If this* *m Ïm2 3
model holds, we should indeed find larger E(s) in more com-
plex organisms (first prediction) but may not detect such an
increase for 1/ and 1/ (second prediction).* *m Ïm2 3

Distribution of Deleterious Effects and ‘‘Effective
Complexity’’ ne

Approximating the probability density of s is required for
computing the rate of adaptation and may be useful in max-
imum likelihood analyses of empirical distributions of s.
Equation (A2) in Appendix 1 (online), gives the exact dis-
tribution in the general case but its probability density is not
known. However, an approximation can be obtained from the
moments of s given above, using the moment matching meth-
od, which requires choosing an a priori distribution for the
density. We chose the negative gamma distribution because
it is the exact distribution of s corresponding to the simplest
situation: when all li 5 l are equal and so 5 0, f(s) is a
negative gamma distribution with scale l and shape n/2. Stay-
ing at the optimum (so 5 0) but with the li varying across
traits, with coefficient of variation CV(l), f(s) can be ap-
proximated by a negative gamma with scale le 5 (1 1l̄
CV(l)2) and shape ne/2 where ne is the effective number of
traits. ne is defined as the number of traits that would generate
the same mean and variance of f(s) (i.e., the same parameters
for the approximate gamma distribution), if all traits where
independent and of equal effect (le) as in the original Fisher
model. From equation (1), it is given by

n
n 5 . (3)e 21 1 CV(l)

This ne is lower than n and decreases relative to n when the
heterogeneity among traits (measured by CV(l)) increases.
This effect is strongest when only a few linear combinations
of traits display both large mutational variance and are under
strong selection (i.e., correspond to major li). A small ne

means that the distribution of s is highly skewed, while a
high ne corresponds to more symmetrical distributions, closer
to the Gaussian.

Based on a distribution of deleterious mutation effects (i.e.,
at the optimum so 5 0), both ne and le can be directly es-
timated from the mean and variance of s as

2E(s)
n 5 2 and (4a)e V(s)

V(s)
l 5 . (4b)e 2E(s)

This will be used later to estimate the effective number of
traits ne across species from empirical distributions of del-
eterious mutation effects.

Predicting f(s) Away from the Optimum

When the initial genotype is at the optimum, empirical
distributions of deleterious mutation effects can be used to
estimate ne and le. It is thus tempting to ask whether we can
then use this information to predict f(s) in any new environ-
ment, in which the initial genotype is not at the optimum but
at a distance so from the optimum. When the initial genotype
is away from the optimum (so . 0), we use a similar ap-
proximation as above, and f(s) becomes a ‘‘displaced gam-
ma’’ (Shaw et al. 2002)—the sum of a negative gamma and
the constant so: s 5 so2 g, where g is approximately gamma
distributed with scale a and shape b (see online Appendix 1).
We will denote fG(s) this approximation for the probability den-
sity f(s) of s, because it rests on the approximation that the
random part g of the distribution of s is a gamma deviate:

2(s 2s)/a b21 2boe (s 2 s) aof (s) 5 . (5)G G(b)

Such a distribution can account for both advantageous and
deleterious mutations in a continuous manner and with only
three parameters and can be implemented in maximum like-
lihood analysis of empirical f(s) (Shaw et al. 2002). As for
the case so 5 0, a and b must be set to match the mean and
variance of s away from the optimum E(s)’ and V(s)’. The
resulting approximation is accurate but depends on both the
distance to the optimum so and the particular direction zo of
the initial genotype (see eq. A3 in online Appendix 1). The
distance to the optimum so could be estimated in principle
(e.g., using long-term experimental evolution), whereas the
direction (zo) may not be measurable. As a consequence, this
approximation may be of little interest. Fortunately, f(s) does
not vary too much with the direction of zo, so that we can
find a less accurate approximation for f(s) that depends only
on the distance to the optimum so and on the moments of
f(s) at the optimum (eq. A4 in online Appendix 1). The re-
sulting a and b of the displaced gamma approximation in
equation (5) can then be predicted based on estimable quan-
tities (le, ne, and so) yielding

2n (1 1 «)eb 5 and (6a)
2 1 1 2«

1 1 2«
a 5 l , (6b)e 1 1 «

where ne and le can be estimated from a distribution of del-
eterious effects (equation 4) , and « 5 so/ z E(s) z 5 2so/(nele)
is the distance to the optimum relative to the average fitness
effect of a mutation E(s). With this approximation, it is pos-
sible to predict f(s) in a new environment (with a given so
. 0) from the mean and variance of mutation effects mea-
sured close to the optimum (i.e., on deleterious mutations).
Importantly, this means that we can predict the approximate
f(s) for any species in which deleterious mutation effects have
been measured and in an environment for which so is known.
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Rates of Adaptation and Cost of Complexity

The approximation fG(s) above (eq. 5) can now be used to
compute the rate of adaptation to a new environment (cor-
responding to a given so), defined as the per generation in-
crease in mean fitness, dW̄/dt. In a population of very large
size N, only beneficial mutations (s . 0) reach fixation (with
probability 2s, we ignore possible complications due to linkage)
so that using the displaced gamma approximation yields:

¯dW 2 2ø NU 2s f (s) ds 5 NmE(s) F(n , «), (7)E G edt s.0

where U is the per generation per genome mutation rate. E(s),
« 5 so/ z E(s) z , and ne have been defined above. The function
F(·) has a complicated expression but can be computed simply
from equations (5) and (7) Interpretation of equation (7) is
consistent with previous studies based on the Fisher-Orr mod-
el (Orr 2000; Welch and Waxman 2003). First, F is an in-
creasing function of «, meaning that the rate of adaptation
increases with the maladaptation of the initial genotype. Sec-
ond, F decreases with increasing complexity n: this is Orr’s
(2000) cost of complexity. The effect of n on the rate of
adaptation may also be influenced by any covariation of other
parameters (N, U, so, E(s)) with n. In particular, z E(s) z may
increase with n, as suggested by equation (1) (and confirmed
by our survey below). This has antagonistic effects on the
rate of adaptation by increasing E(s)2 but decreasing «. Most
importantly, our model shows that it is ne, not n, that deter-
mines the rate of adaptation. Therefore, including hetero-
geneity between traits greatly reduces the cost of complexity
by reducing the effective number of traits ne. Overall, vari-
ation in f(s) affects the rate of adaptation by changing E(s)2

F(ne, so/E(s)), in which both E(s) and ne can be estimated
from empirical distributions of deleterious mutation effects
(see eq. 4).

A Model of Random Phenotypic Correlations

We considered so far arbitrary mutational and selective
matrices S and M. To understand the relationship between
the strength of phenotypic correlations and f(s), we propose
here a model of random interactions between many traits,
using results from random matrix theory, a mathematical tool
widely used in physics and finance to model complex inter-
actions (Forrester et al. 2003). The available evidence sug-
gests that both positive and negative phenotypic correlations
are widespread (Lynch and Walsh 1998), so we considered
a case where correlations of both signs are equally probable.
Mutational and selective covariance matrices S and M can,
for example, be assumed to be drawn randomly into inde-
pendent Wishart distributions (a classic model for random
covariance matrices, see Appendix 2, available online only
at http://dx.doi.org/10.1554/05-412.1.s2). These matrices are
built by drawing the elements of a first matrix into the stan-
dard Gaussian distribution, and multiplying it by its transpose
to obtain a symmetric positive semidefinite matrix. Standard
Wishart matrices contain a random set of both positive and
negative correlations with a zero average. If the number of
traits is sufficiently large (e.g., n .15), the distributions of
phenotypic correlations in S and M converge to a simple
distribution with known probability density (see eq. A5 in

online Appendix 2). Let rS and rM be the standard deviations
of these asymptotic distributions around zero. rS and rM mea-
sure the strength of selective and mutational correlations av-
eraged over all traits: a large rS (respectively, rM) means that
there are many large correlations (of any sign) within matrix
S (respectively, M). Similarly with large n, the distribution
of the eigenvalues of S·M, for any random draw of S and
M, converges to an asymptotic distribution with known mo-
ments such that CV(l)2 5 n( 1 ) (online Appendix 2).2 2r rS M
We can then directly obtain an expression of ne (from eq. 3)
in terms of phenotypic correlations:

n→`n 1
n 5 → . (8)e 2 2 2 21 1 n(r 1 r ) r 1 rS M S M

Equation (8) shows that with random selective and/or mu-
tational correlations between traits, trait heterogeneity CV(l)
increases with the number of traits n. This effect drastically
reduces ne and hence the cost of complexity: as n increases
indefinitely, ne reaches a plateau 1/ 1 that depends only2 2r rS M
on the strength of phenotypic correlations and can be very
small. This behaviour is consistent with the observation that
empirical distributions of s are typically more asymmetric
than the Gaussian. This suggests that ne is typically small
although n is expected to be very large in most species.

Simulations and Scaling Issues

Simulations were run using the software R (Ihaka and Rob-
ert 1996) to jointly check the displaced gamma approximation
for f(s) in equation (5), and the approximation for ne based
on random matrix theory in equation (8). Mutational and
selective covariance matrices (S and M) were randomly
drawn as Wishart matrices with fixed correlation strength rS
and rM, and scaled to obtain a given value of E(s) 5
2½Tr(S·M) 5 2n /2, where Tr(.) denotes matrix trace. Thel̄
phenotypic distance to the optimum zo was then drawn as a
vector of n independent Gaussian deviates n(0,0.1), and
scaled to obtain a given value of so 5 ½z Szo. Each mutantt

o

phenotype was then drawn from a multivariate Gaussian with
mean zero and covariance M and the corresponding s was
computed following the exact distribution in equation (A1)
of Appendix 1 (available online).

Figure 1 shows how the approximate distribution matches
simulations of the exact distribution of s when mutational
and selective covariances (M and S) are drawn randomly.
The approximation fits the exact distribution very well when
only deleterious effects are considered (so 5 0, Fig. 1a for
n 5 40 traits). The shape and scale of the gamma approxi-
mation on Figure 1 were computed using the asymptotic re-
sult from random matrix theory: CV(l)2 5 n( 1 ). This2 2r rS M

approximation is almost as accurate as if using the exact
CV(l) computed from the eigenvalues of simulated matrices.
The left top panels in Figure 1a also show the distribution
of phenotypic correlations within the simulated Wishart ma-
trices together with the predicted asymptotic distribution
from equation (A5). The prediction remains accurate even
with a limited number of traits (e.g., n 5 15, not shown).
Finally, Figure 1 shows that stronger correlations can con-
siderably reduce ne, resulting in more skewed f(s) (a gamma
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FIG. 1. Distribution of s with random phenotypic covariances and displaced-gamma approximation. Distribution of mutation fitness
effect with n 5 40 traits and the initial genotype perfectly adapted (a; so 5 0) or away from the optimum (b; so 5 0.5; i.e., the fitness
of the initial genotype is 50% that of the best genotype). Dots show the density of s from 50 simulations (each with 20,000 mutants and
independent draws of S and M as 40 3 40 Wishart matrices, see A Model of Random Phenotypic Correlations). Plain lines show the
mean over these 50 simulated densities. In each panel, f(s) is illustrated with strong (black) or weak (gray) phenotypic correlations,
whose distributions are illustrated with histograms. Strong and weak phenotypic correlations are rS 5 rM 5 0.38 (corresponding to ne
5 3.2) or 0.1 (corresponding to ne 5 22), respectively. Dashed lines show the displaced gamma approximation in equation (5) with ne
values computed as in equation (8), ne 5 n/(1 1 n( 1 )).2 2r rS M

with smaller shape), at the optimum (so 5 0, Fig. 1a) or away
from it (so 5 0.5, Fig. 1b).

When so . 0 (e.g., so 5 0.5 in Fig. 1b.) the displaced
gamma approximation for f(s) is reasonably accurate, al-
though it tends to overestimate the proportion of advanta-
geous mutations. The discrepancy is almost entirely due to
our approximation for the variance of s at a given fitness
distance to the optimum so (eq. A4 in online Appendix 1).
Using the exact expression for this variance (eq. A3 in online
Appendix 1) results in a very accurate displaced gamma ap-
proximation. However, this more accurate approximation in-
volves some nonestimable quantities and was thus discarded
here.

TESTING THE MODEL WITH EMPIRICAL F(S)

Survey of the Moments of Empirical f(s) across Species

Principle of the approach

To test our predictions on the effect of n on the moments
of s (eq. 2), we compared the moments of empirical distri-
butions of mutational fitness effects across species ranging
from viruses to higher plants using the number of protein
genes per haploid genome as a surrogate measure of com-
plexity. We chose this measure mainly because it is the only
one available for all the species considered in our survey,
and to avoid any ranking of species according to an a priori
qualitative ‘‘complexity.’’ However, we do not equate genes
and traits in this approach. By definition, a single mutation
affects only one gene sequence but may have many pleio-

tropic effects on other gene products, so that a simple pro-
portional relationship between gene number and phenotypic
complexity is likely to be rather unrealistic. Instead, we as-
sume that, at the phylogenetic scale of our comparisons, gene
number is positively correlated with the number of adaptation
traits, because gene number is expected to determine the num-
ber of gene products and their interactions, and because the
evolution of new functions is currently sought to occur by
the addition of new genes (Vassilieva et al. 2000). This quan-
titative measure also provides an explicit way to describe the
(dis-)similarity between species more precisely and objec-
tively than some a priori attributed rank of complexity be-
tween species. We therefore test our model only by assuming
some ordered relationship: the larger the gene number, the
larger the number of traits. Such a relationship may not hold
at a finer scale of comparison (e.g., the plant Arabidopsis
thaliana has more genes than the fruit fly D. melanogaster,
but which has the largest number of traits under selection?).
However, it does not seem too unrealistic when comparing
viruses, microbes and higher organisms.

Estimates of E(s) were drawn from the literature on mu-
tation accumulation (MA), discarding cases with a large pro-
portion of beneficial mutations, suggesting that the initial
genotype was far from the optimum, in which case our Gauss-
ian fitness function may not apply. Our survey updates the
review by Bataillon (2000) including recent studies on Dro-
sophila, Caenorhabditis, vesicular stomatitis virus (VSV),
Saccharomyces cerevisiae and the fungus Cryptococcus neo-
formans, to a total of 33 E(s) estimates in eight taxa. Esti-
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TABLE 1. Gene count and average effect of mutations from mutation accumulation (MA) experiments. VSV, vesicular stomatitis virus;
spont, accumulation of spontaneous mutation; mmr, MA on mismatch repair deficient strains; ems, MA using EMS mutagenesis. II or
III refer to mutations on the second or third chromosomes in Drosophila. The fitness traits measured were: relative viability in competition
(viab), lifetime reproductive success (LRS), intrinsic growth rate (r) or relative growth rate in competition (RGR). GC is haploid gene
count. E(s) is the average haploid or homozygous effects of mutations.

Species Method Trait GC E(s) Reference

VSV spont RGR 5 20.0022 Elena and Moya 1999
VSV spont RGR 5 20.0024 Elena and Moya 1999
VSV spont RGR 5 20.0022 Elena and Moya 1999
Escherichia coli spont r 4970 20.034 Loewe et al. 2003
E. coli spont r 4970 20.012 Bataillon 2000
Saccharomyces cerevisiae1 mmr r 5855 20.075 Zeyl and DeVisser 2001
Cryptococcus neoformans2 spont r 6475 20.045 Xu 2004
Drosophila melanogaster spont viab 16,130 20.16 Bataillon 2000
D. melanogaster spont (II) viab 16,130 20.11 Bataillon 2000
D. melanogaster3 spont (II) viab 16,130 20.03 Bataillon 2000
D. melanogaster3 spont (II) viab 16,130 20.03 Bataillon 2000
D. melanogaster spont (II) RGR 16,130 20.1 Avila and Garcia-Dorado 2002
D. melanogaster spont (II) viab 16,130 20.08 Chavarrias et al. 2001
D. melanogaster4 spont (III) viab 16,130 20.1 Charlesworth et al. 2004
D. melanogaster5 ems viab 16,130 20.11 Keightley and Ohnishi 1998
Caenorhabditis elegans spont r 21,357 20.1 Bataillon 2000
C. elegans spont r 21,357 20.2 Bataillon 2000
C. elegans mmr r 21,357 20.413 Estes et al. 2004
C. elegans ems r 21,357 20.15 Keightley et al. 2000
C. elegans spont r 21,357 20.364 Baer et al. 2005
C. elegans spont r 21,357 20.25 Baer et al. 2005
C. briggsae spont r ,21,357 20.1 Baer et al. 2005
C. briggsae spont r ,21,357 20.198 Baer et al. 2005
Arabidopsis thaliana spont LRS 28,159 20.23 Bataillon 2000
Triticum durum spont LRS 40,000 20.2 Bataillon 2000

1 M grande lines in Zeyl and DeVisser (2001), that is, keeping only ‘‘petite’’ mutations in mmr strain. The normal ‘‘F’’ strain produced only a single
‘‘grande’’ mutant and is not reported here. Only heterozygous effect E(hs) are reported in Zeyl and DeVisser (2001). Homozygous effects in the table are
corrected using h 5 0.2 based on dominance estimates for point mutations in S. cerevisiae (Korona 2004).

2 Average effect in optimal environment (YEPD/378) from all MA lines in table 2 of Xu (2004).
3 Mukai-Ohnishi studies.
4 Average E(s) for all nonlethal mutations in table 4 of Charlesworth et al. (2004).
5 Maximum likelihood estimate in table 4 of Keightley and Ohnishi (1998).

mation of higher moments of s is very difficult using MA
data (Lynch et al. 1999; Keightley 2004), so only few esti-
mates of V(s) and m3(s) are available. To obtain them, we
surveyed empirical studies that directly measured the distri-
bution of fitness among lines carrying a single mutation, so
that the observed distribution of mutant fitnesses directly
gives estimates of the first moments of s. We found nine
estimates from five taxa.

Gene number

For most species, we used the number of open reading
frames (available on the Kyoto Encyclopedia of Genes and
Genomes [KEGG] website http://www.genome.jp). The val-
ue used for wheat (Triticum durum) was a recent estimate
from the rice genome (40,000; Bennetzen et al. 2004) based
on strong similarities between cereal genomes (Ware and
Stein 2003). The number of protein genes in C. briggsae was
considered equal to that of C. elegans for the statistical anal-
ysis (Stein et al. 2003). The number of protein genes in VSV
is five (Sanjuan et al. 2004a).

Empirical moments of s

Estimates of E(s) in Table 1 were obtained by surveying
mutation accumulation experiments, using either Bateman-
Mukai (BM) estimates or maximum likelihood estimates

when the latter were significantly better (i.e., in Keightley
and Ohnishi 1998; Vassilieva et al. 2000). We discarded two
recent studies on yeast (Joseph and Hall 2004) and Arabi-
dopsis (Shaw et al. 2002) in which a very large proportion
of mutations were beneficial, suggesting that the initial ge-
notype was far from the optimum. E(s) values in Table 2 are
direct measures from single mutation effects, except in two
cases. For C. elegans we used the corrected BM estimate
given in Vassilieva et al. (2000). For transposable element
(TE) single inserts on chromosomes II and III of Drosophila
(Lyman et al. 1996), E(s) is biased by a direct TE effect and
not given in this study. Therefore, we used the per insert
viability effect of third chromosome TE insertions for chro-
mosome III given by Mackay et al. (1992). For chromosome
II, we used the average E(s) of all second chromosome vi-
ability effects in Table 1. This average estimate was not, of
course, included in the statistical analyses of E(s). We did
not include the Mukai et al. (1972) and Ohnishi (1977) results
for the computation of this average E(s), because their va-
lidity has been questioned (Garcia-Dorado et al. 1999), but
we did include them in the statistical analysis of E(s) esti-
mates.

We surveyed estimates of higher moments of s from single
mutations and from one study reporting a precise estimate
(i.e., with limited confidence interval) of CV(s) obtained by
maximum-likelihood analysis of MA data in C. elegans (Vas-
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TABLE 2. Empirical distributions of s and empirical estimates of first moments of f (s). In all these studies, all moments of s (haploid
or homozygous effects) are estimated directly using single mutation lines except in Caenorhabditis elegans (see Empirical Moments of
s). Abbreviations as in Table 1 except subst, single point substitutions; TE, single transposable element insertion. , scaled variance*m2
(i.e., squared coefficient of variation) CV(s)2 5 V(s)/E(s)2; , scaled third moment m3(s)/E(s)3.*m3

Species Method Trait GC E(s)2 CV(s)2 m*3 n̂e 5 2/m*2 Reference

VSV1 subst RGR 5 20.139 1.87* 4.58 1.07 Sanjuan et al. 2004a
Escherichia coli TE r 4970 20.0275 9.55 259 0.21 Elena et al. 1998
Saccharomyces cereviae1 spont r 5855 20.109 2.07 8.59 0.96 Wloch et al. 2001
S. cereviae1 TE r 5855 20.05 2.25 4.59 0.89 Thatcher et al. 1998
S. cereviae1 ems r 5855 20.171 1.80 3.69 1.11 Wloch et al. 2001
S. cereviae1 mmr r 5855 20.183 1.12 1.64 1.78 Wloch et al. 2001
Drosophila melanogaster TE II viab 16,130 20.098 0.79 0.54 2.23 Lyman et al. 1996
D. melanogaster TE III viab 16,130 20.122 0.90 1.03 2.52 Lyman et al. 1996
Caenorhabditis elegans2 spont r 21,537 20.12 0.77 ? 2.58 Vassilieva et al. 2000

1 Moments of s directly computed from fitness effect values in supporting information of Sanjuan et al. (2004a), table 1 of Thatcher et al. (1998), and
provided by Wloch et al. (2001).

2 Maximum likelihood estimate of m and correspondingly corrected BM estimate of E(s) given in Vassilieva et al. (2000).*2

silieva et al. 2000). Studies on E. coli (Elena et al. 1998), S.
cerevisiae (Thatcher et al. 1998) and D. melanogaster (Lyman
et al. 1996) used TE insertions to generate single mutations.
Note that results on Drosophila are based on the viability
effects of either second or third chromosome TE inserts (as
indicated in Table 2), instead of the whole genome. In another
study on S. cerevisiae, Wloch et al. (2001) used tetrad analysis
to isolate single spontaneous or induced mutation events and
measure their fitness effect in the haploid stage. In the VSV
(Sanjuan et al. 2004a), single nucleotide substitutions are
produced by site-directed mutagenesis. No or very few ben-
eficial mutations were detected in these studies, except in
VSV with 4% of advantageous mutations (Sanjuan et al.
2004a). The initial genotype was therefore considered well
adapted to the laboratory environment (so K E(s)) so that
equation (2) applies.

Statistical analyses

We tested our predictions on E(s) using a linear model
accounting for gene number and four other potentially con-
founding variables that could covary with gene number and
produce false positive correlations. First, the measure of s
might be biased between microbes and higher organisms be-
cause a more integrative measure of fitness is used in the
former (e.g., growth rate over many generations) instead of
fitness components (e.g., viability) over one generation in the
latter. The level of integration of the fitness measure was
included as an ordered variable with values: 4, growth rate
in competition; 3, intrinsic growth rate; 2, lifetime repro-
ductive success; and 1, viability. Second, MA experiments
in microbes may underestimate E(s) because selection within
sublines is more likely when several generations occur be-
tween population bottlenecks (i.e., severely deleterious mu-
tations may not be detected in MA on microbes; Kibota and
Lynch 1996). Therefore, we included a factor discriminating
microbes versus nonmicrobes to avoid detecting a correlation
between E(s) and gene number that would in fact reflect a
bias in estimates between lower and higher organisms. Third,
the type of mutation was included as a factor: spontaneous
versus TE versus point mutations, the latter referring to ex-
periments based on single nucleotide substitutions, or mu-
tagenesis by EMS and mismatch repair deficiency, which are

known to cause mainly point mutations (Wloch et al. 2001).
Note that spontaneous mutations, as accumulated in standard
MA experiments, are a mix of different types of mutations
including TE and point mutations. Fourth, the type of esti-
mate and method of mutation accumulation, that is, MA (Ta-
ble 1) versus direct (Table 2) estimates of E(s), was included
as a factor. This factor discriminates between measures based
on an unknown number of mutational events (MA) versus a
single mutation per line (direct). The full model including
pairwise interactions was simplified backward to isolate the
significant factors. Regarding our predictions on and*m2

, we only tested for a correlation to gene number due to*m3
the limited number of estimates available. Finally, we did
not correct for phylogenetic independence given the phylo-
genetic scale of our comparisons. Similarly, we did not pool
different estimates for the same species, which would arti-
ficially mask the quite large within-species variation of the
estimates. However, pooling estimates per species does not
qualitatively alter our conclusions below.

The Effect of n on Empirical Moments of Deleterious
Mutation Effects

As predicted from equation (1) E(s) (33 estimates from
Tables 1 and 2) increases with gene number, our surrogate
measure of n (R2 5 0.33, F1,31 5 16.1, P 5 0.0004, Fig. 2),
and the trend remains significant when discarding viruses (R2

5 0.27, F1,27 5 10, P 5 0.0035) or among only eukaryotes
(R2 5 0.18, F1,24 5 5.2, P 5 0.031). It has been suggested
that, for D. melanogaster, the results of Mukai et al. (1972)
and Ohnishi (1977) may be less reliable than more recent
ones (Garcia-Dorado et al. 1999). When removing these es-
timates, the correlation is stronger (R2 5 0.38, F1,29 5 18,
P 5 0.0002). Finally, in the VSV, direct and BM estimates
are very different, and the most reliable measure is probably
the direct estimate (S. F. Elena, pers. comm.). Including only
this measure for the VSV in the analysis does not remove
the global trend of an increase in E(s) with gene number (R2

5 0.24, F1,28 5 8.8, P 5 0.006).
The effect of gene number also remains significant (F1,30

5 24.7, P , 0.0001) when including potentially confounding
factors (see Statistical Analyses). Among these, only the
method to obtain mutants has a significant effect: point mu-
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FIG. 2. Variation of the average deleterious effect of mutations
with gene number. Estimates of E(s) (y-axis, log-scale) are either
indirect estimates from mutation accumulation (MA) experiments
(MA, Table 1) or direct estimates from mutagenesis experiments
(direct, Table 2). The type of mutation is indicated on the graph
as: spont (spontaneous), TE (transposons), point (point mutations;
i.e., ems, mmr, and subst in Tables 1 and 2). The line indicates the
regression with intercept set to zero on all 33 estimates. E(s) in-
creases by about two orders of magnitude from viruses to higher
organisms.

FIG. 3. Variation of second and third moments of f(s) with gene
number and of the inverse of the scaled second moment, 1/ (dash-*m2

es), and the square root of the scaled third moment 1/ (circles)*Ïm2

with gene count. These measures are expected to correlate with n
in equation (2). , , and gene count are from Table 2. The line* *m m2 3
shows the regression of 1/ on gene number. The second and third*m2
moments of f(s) ( and ) tend to decrease with gene number.* *m m2 3

FIG. 4. Variation of the second and third scaled moments of f(s)
( and respectively, both in log-scale, from Table 2) across* *m m2 3
species. The line indicates the predicted relationship if s follows a
gamma distribution with shape ne/2 and so 5 0, where ne is 2/ .*m2
Second and third moments show a strong quadratic relationship
consistent with a gamma-like distribution.

tations tend to have more deleterious effects than spontaneous
mutations and transposable element insertions (F1,30 5 9.5,
P 5 0.004). However, point mutations were often obtained
by methods that artificially increase the mutation rate (using
EMS mutagenesis or mismatch repair deficient strains) so
that the effect detected might be due to increased number of
mutation per line (through, e.g., negative epistatic interac-
tions), rather than to the molecular nature of point mutations.
Our model also predicts that E(s) should not depend on the
level of adaptation of the initial genotype (whenever the
Gaussian fitness approximation is still valid; i.e., not too far
from the optimum). This is consistent with the estimates of
E(s) in the MA experiment on VSV (Table 1), which are very
similar for three initial genotypes that differed in fitness (0.8,
1, 2.5) (Elena and Moya 1999). The second prediction (eq.
(2) was that both 1/ and 1/ should increase linearly* *m Ïm2 3
with n. Although limited, data from Table 2 indicate that
both these quantities positively correlate with gene number:
Pearson’s r 5 0.84, n 5 9, P 5 0.0043 and r 5 0.80, n 5
8, P 5 0.018, respectively (see Fig. 3). The VSV is clearly
an outlier in the dataset, as it has much larger 1/ and*m2
1/ values than would be expected from its gene number.*Ïm3
This might be due to the fact that E(s), which scales both

and may have been overestimated in the VSV direct* *m m2 3
measure, as could be suggested by the fact that the E(s) es-
timate is much larger in the direct measure than in the MA
experiments (see Fig. 2).

Shape of Empirical Distributions and Estimates of ne

We now turn to testing whether our approximation for f(s)
in terms of a gamma is consistent with the available empirical
data. If f(s) is gamma distributed, we expect a quadratic re-
lationship between the scaled second and third moments such
that 5 2 2. The values of and (Table 2) exhibit* * * *m m m m3 2 2 3
such a relationship across species ( ø 3.07 2; 95%* *m m3 2

bootstrap slope CI 1.01–3.09; R2 5 0.99; P , 0.0001, Fig.
4). This strong relationship indicates that empirical f(s) be-
long to a gamma-like distribution family. Under such a gam-
ma approximation, the shape of the empirical f(s) for dele-
terious effects (i.e., when so 5 0), is simply ½ne (see above),
where ne can be estimated as ne 5 2E(s)2/V(s) 5 2/ (eq.*m2
4). The resulting ne estimates (reported in Table 2) increase
with increasing gene number (same P-values as 1/ , above),*m2
as predicted among species of increasing complexity. Over-
all, with the exception of the VSV, increasing gene number
(complexity) results qualitatively in gamma f(s) of increasing
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FIG. 5. Predicted rates of adaptation across species. Rates of ad-
aptation (scaled to NU) for different species for different distance
of the initial genotype relative to the optimum (so, x-axis). They
are computed from equation (7) using E(s) and ne estimates in Table
2. For yeast and Drosophila, the mean over 4 (2, respectively)
estimates is indicated. Predicted rates of adaptation decrease by an
order of magnitude from bacteria to fruit flies or nematodes.

shape parameter (½ne, see Fig. 4). In the following section
we use this finding to quantify the cost of complexity by
estimating how the effects of phenotypic complexity that we
observe in our survey may influence the rate of adaptation
across species.

Rates of Adaptation and Cost of Complexity across Species

Equation (7) can be used to evaluate approximately how
variation in f(s) across species may influence their rates of
adaptation for a given fitness distance to the optimum so and
a given flow of mutations Nm. Rates of adaptation (scaled to
Nm), based on E(s) and ne estimates in Table 2 for the dif-
ferent species, are shown in Figure 5 for so varying from 0.05
to 1. First, Figure 5 shows that the increase in ne values from
E. coli to higher organisms indeed translates into a reduction
in rates of adaptation, confirming the existence of a cost of
complexity. Second, Figure 5 also shows that only a modest
difference in the rate of adaptation is predicted among species
(as expected due to the small variation in ne), with an increase
of only an order of magnitude from E. coli to C. elegans. In
the next section we discuss how phenotypic correlations may
explain such a reduced cost of complexity.

Why Such a Low Cost? The Effect of
Phenotypic Correlations

A main conclusion of our survey is that the effective num-
ber of dimensions ne increases with complexity as predicted
by our model, but varies only by an order of magnitude from
bacteria to fruit flies, and remains very small (0.2–2.5). This
finding is surprising because our model predicts that ne 5 n/
[1 1 CV(l)2] (eq. 3) should be proportional to the actual
number of traits under selection, which, intuitively, should
vary by more than an order of magnitude across the species

considered. One possible explanation may be that trait het-
erogeneity CV(l) increases with the number of traits n, lead-
ing to a diminishing return of ne on n. We showed that such
a phenomenon occurs in the simplest case where mutational
and selective covariance matrices, S and M, are drawn ran-
domly (see eq. 8). For example, ne values as small as 2.5 (as
observed for C. elegans or D. melanogaster) can be obtained
for any large number of traits with correlation strength 52rS

ø 0.2. Note, however, that the very small ne value esti-2rM
mated for E. coli (ne 5 0.21) cannot be explained by this
model, even assuming very strong correlations (in eq. 8, ne

cannot be less than 0.5 for large n). Nevertheless, the model
predicts that large variation in the total number of traits n
may translate into limited differences in ne values, a pattern
fully consistent with our observations. It may be argued the
other way around that all species have a very large number
of traits but that higher organisms tend to have weaker phe-
notypic correlations, resulting in a higher ne (see eq. 8, limit
n → `). This hypothesis seems less parsimonious but remains
to be tested.

DISCUSSION

Predicting how the distribution of mutation fitness effects
should vary across species is a key issue in evolutionary
biology but has received little attention so far. In particular,
no study has been proposed to estimate and explain variation
in f(s) across species. In this paper, we proposed a model of
mutation fitness effects, that extends Fisher’s (1930) geo-
metric approach to take into account (co)variation between
traits in the effect of both mutation and selection (into a
multivariate Gaussian framework). The shape of the predicted
distribution depends on the number of phenotypic traits under
selection (n). We predicted how n should influence the three
first moments of f(s), and we tested these predictions using
gene number as a surrogate measure of phenotypic com-
plexity n. A comparison of data collected from several species
confirmed all three predicted trends: as n increases, the av-
erage s increases (Fig. 2), while the second and third moments
of f(s) decrease (Fig. 3). These results show that phenotypic
complexity has a strong influence on the distribution of s.
Our survey is based on a limited amount of data. However,
we find that different experiments for the same species are
consistent with each other except for VSV, where the direct
measure of E(s) differs markedly with BM estimates. More
studies are required to obtain consistent estimates of mutation
fitness effects in viruses, but it is probable that the direct
estimate is more reliable (S. F. Elena, pers. comm.), in which
case VSV indeed represents a striking exception in the ob-
served correlation. Alternatively, the quantitative genetic
framework used here might also not apply to very small viral
genomes. Next, we show that these empirical f(s) are gamma-
like (Fig. 4), as expected under our model (Fig. 1), and that
their shape measures an effective number of traits, ne. Al-
though rather indirect and qualitative, the results of this re-
view validate three clear predictions of the model, each of
which could have been invalidated by the data. Therefore,
this review provides a first test of fitness landscape models,
which calls for further confrontation with empirical data.

In our model, this effective number of traits is reduced
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relative to n when trait heterogeneity increases. We use this
finding to measure how variation in f(s) across species trans-
lates into variation in rates of adaptation; that is, to predict
the resulting cost of complexity. We predict only modest
decrease of this rate from lower to higher organisms in the
range of species for which empirical f(s) are available (Fig.
5). This moderate decrease confirms the existence of a cost
of complexity but minimizes its quantitative importance. Fi-
nally, we use random matrix theory to determine how f(s)
should vary with the number of traits if mutational and se-
lective covariance matrices are drawn randomly. We find that
under this simple model, trait heterogeneity scales with the
number of traits such that even organisms with a very large
number of traits exhibit a skewed and gamma-like f(s) and
pay a very low cost to complexity.

Comparison with Previous Theoretical Results

In a recent paper, Waxman and Welch (2005) proposed a
model of mutation that accounts for selective interactions
between traits (i.e., an arbitrary matrix S in our framework).
We briefly compare the two approaches. Waxman and
Welch’s approach allows for the effect of biased mutation
effects on phenotypes, which is neglected in ours. Mutational
bias may be included in our analysis, but the results rely on
some extra parameters which may be difficult to measure
empirically. Our prediction of f(s) based on deleterious mu-
tations and a measure of so also neglects the correlation be-
tween the zi and li across traits i (see online Appendix 1),
which are not neglected in Waxman and Welch (2005). This
was done to propose results in terms of measurable quantities,
but analytic arguments and simulations (G. Martin and T.
Lenormand, unpubl. data) suggest that this correlation may
have quantitatively limited impact on our results.

In addition to selective correlations, our model also ac-
counts for mutational correlations, which are ignored in Wax-
man and Welch (2005). However, we show in Appendix 1
(available online) that our more general model can be reduced
to a simpler model with spherically symmetrical mutation
and heterogeneous selection across traits (with selection ef-
fects equal to the li, the eigenvalues of S·M), as is assumed
in Waxman and Welch (2005). We therefore believe that their
results should hold in our context.

The link between the two models and results can be made
simply by considering the simplest situation common to both
models: initial genotype at the optimum, unbiased, and un-
correlated effects of mutation on phenotypes. The most re-
markable fact arising from this comparison is that both ap-
proaches yield very similar expressions for the effective num-
ber of dimensions, ne. When the initial phenotype is at the
optimum (zo 5 0), both predict the same reduction of ne

relative to n, when traits are heterogeneous: ne 5 n/(1 1
CV(l)2). This can be seen by comparing equation 27 of Wax-
man and Welch (2005) and equation (3) of the present paper:
CV(l)2 5 fz,s in Waxman and Welch’s notations, when z 5
0. When not at the optimum, our definition of ne differs from
that of Waxman and Welch (2005): ours is based on f(s) alone,
whereas that of Waxman and Welch (2005) is based on the
rate of adaptation, which depends on both f(s) and the distance
to the optimum. Overall, these similarities in the predicted

effect of phenotypic correlations on ne give strong support
to the idea that they have a very large impact on f(s) and on
rates of adaptation in general.

The Structure of Phenotypic Interactions

We find that random and independent mutational and se-
lective covariance matrices (M and S) generate distributions
of mutation fitness effects that are consistent with the avail-
able empirical f(s). However, this agreement does not rule
out that mutational and selective covariance matrices be in
fact nonrandom and/or interdependent. We used random ma-
trices to exhibit a simple situation in which the observed
pattern is predicted. However, we believe that random matrix
theory, which has proven fruitful in the analysis of complex
systems in physics and finance (Forrester et al. 2003), is a
promising avenue to analyze models of phenotypic interac-
tions with many traits, or selective interactions with many
genes (e.g., distribution of epistatic interactions Bonhoeffer
et al. 2004; Sanjuan et al. 2004b).

Why and when should we expect mutational and selective
covariance matrices to be nonrandom and mutually depen-
dent? We can discuss two extreme situations that reflect the
range of possibilities. In the first situation, M } S21, (where
S21 is the inverse of S) such that the traits under the strongest
selective pressure exhibit the lowest mutational variance.
Consequently, S·M } I, and all li are equal, so that ne 5 n,
even if traits are very heterogeneous within both M and S.
This situation would be theoretically expected under strong
canalization (Rice 1998). In the opposite situation, M } S,
such that traits under strong selection exhibit the highest
mutational variance. Consequently, S·M } M2, so that CV(li)
is maximized and ne K n. This situation, on the contrary,
would be expected under decanalization (Rice 1998). The
moderate increase in ne among species of presumably large
variation in phenotypic complexity (or at least gene number)
could thus be explained if more complex organisms tend to
show less canalization. Obviously, more work is needed to
determine how selection can shape mutational and selective
covariance matrices.

Small ne Values

Even assuming strong correlations, the very small ne values
obtained for E. coli (ne , 0.5) cannot be explained by our
model. In addition, in E. coli, unlike in the VSV, the estimates
of E(s) from two independent MA studies and from a direct
measure are consistent (Fig. 1). Therefore, an overestimation
of CV(s) (hence an underestimation of ne) due to imprecision
in E(s) estimates in this species seems unlikely at first glance.
However, the agreement between BM and direct estimates of
E(s) in E. coli is in fact surprising, because the former are
biased upward relative to the latter proportionately to 1 1
CV(s)2 (Lynch et al. 1999). Given the large values of CV(s)
reported for this species (Table 2), we would expect direct
measures of E(s) to be smaller than the corresponding BM
estimates (whereas this effect should be limited in yeast or
Drosophila, where CV(s) is much smaller). It is possible that
a direct deleterious effect of transposition biased upward the
estimates of E(s) in the direct measure based on single TE
insertions—such an effect has been reported in a later study
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using the same lines (Remold and Lenski 2001). This could
then lead to the unexpected agreement between BM and direct
estimates of E(s) in E. coli. In any case, correcting for such
overestimation of E(s) could only lead to an even smaller ne

estimate than the one reported here. More generally, if CV(s)
decreases with complexity, as suggested by our survey, the
BM estimates of E(s) should particularly overestimate E(s)
in lower organisms. As a consequence, the increase of E(s)
with gene number should be more radical than the one we
report here, based mostly on BM estimates.

A possible explanation to the very small ne estimate in E.
coli could be that we considered universal pleiotropy. Mod-
ularity may affect the distribution of s (Wagner and Altenberg
1996; Welch and Waxman 2003). However, as noted in the
introduction, with both mutational and selective covariances,
such ‘‘modularity’’ requires having matching blocks in both
S and M, such that mutations in a given module only affect
fitness in the same module. Such ‘‘matching blocks’’ mod-
ularity could explain low values of ne among species (i.e.,
not only in E. coli), and lead to a small value in this species.
For example, with m exactly equivalent modules, the three
first moments of s are obtained by simply replacing n by n/
m in equation (1) , which can help to explain the very low
ne values. However, the limited cost of complexity that we
predict across species in our survey is due to the limited
variation in ne across species rather than to ne values them-
selves. To explain such limited variation with modularity, a
very specific relationship between the number of modules
and the total number of traits would be required. A more
general model including modules of variable sizes and trait
heterogeneity within modules would be necessary to compare
their relative impact on f(s). Such a model could be developed
by considering a set of covariance matrices describing the
mutational phenotypic effects of each module. Weighting
each matrix by the probability of a mutation in the corre-
sponding module would yield the net effect of all modules
and could be summarized with a single matrix M.

Evolution of Complex Organisms

The relationship between gene number and phenotypic
complexity might be rather weak, beyond coarse phyloge-
netic divisions (for discussion see Otto and Yong 2002).
However, at the phylogenetic scale of our study, gene number
provides, at least, an intuitive measure of complexity by rank-
ing viruses, unicellular and multicellular organisms. In any
case, beyond our interpretation in terms of phenotypic com-
plexity, our survey shows that gene number is a good pre-
dictor of differences in f(s): increasing gene number results
in larger average deleterious effects and in approximately
gamma f(s) with increasing shape parameter, VSV being an
exception (Fig. 4).

Because the term ‘‘complexity’’ may have various mean-
ings according to authors, it is important to recall that the
definition we refer to here is a number of adaptation traits
under selection, as in the Fisher-Orr approach. However, even
in this context, the notion of complexity remains somewhat
vague and only defined in reference to a measurable quantity;
for instance, in reference to rates of adaptation. It may be
more straightforward to define it in reference to f(s) because

other factors may influence the rate of adaptation either fa-
voring (Orr 2000; Welch and Waxman 2003) or disfavoring
adaptation in higher organisms (e.g., longer generation time
and smaller population sizes or mutation rates; Lynch and
Conery 2003). Complexity in reference to f(s) is our effective
number of traits ne, which may be radically different from
complexity as perceived from organismal organization. This
idea of an ‘‘effective dimensionality’’ (Orr 1998, 2000; Bar-
ton and Keightley 2002) has already been put forward; we
intended here to provide a formal analysis of the influence
of explicit biological assumptions on this quantity. We found
that ne and consequently, predicted rates of adaptation, differ
little among species, and we showed that increasing the num-
ber of traits can have almost no effect on the rate of adaptation
if they are not independent. If mutational and selective co-
variances are drawn randomly, the outcome is even more
extreme: when the number of traits is large, ne (as both f(s)
and rates of adaptation) is determined primarily by pheno-
typic correlations and tends to a finite limit as the number
of trait increases. We therefore expect that f(s) in more ‘‘com-
plex’’ organisms should be similar to f(s) in fruit flies or
nematodes in our survey. In any case ‘‘complexity,’’ as de-
fined by a number of traits under selection (adaptation traits,
defined in the introduction), may not pose such an evolu-
tionary paradox as previously suggested.

Conclusions

Our model and analysis is an attempt to predict distribu-
tions of mutation fitness effects based on explicit biological
hypotheses and to validate it with empirical data. We also
intended to show that the Fisher-Orr geometric approach may
not be as unrealistic as it is sometimes suggested, provided
phenotypic correlations are accounted for. However, impor-
tant limitations remain (apart from the issue on phenotypic
modularity discussed above). First, frequency-dependent or
disruptive selection cannot be taken into account. While this
may not be a problem to predict f(s) in the context of lab-
oratory studies where each line’s fitness is assayed individ-
ually, it may limit the generality of predictions on the ad-
aptation of natural populations. Second, predictions far from
the optimum may be less robust, as we outlined in the in-
troduction. However, such predictions can still be made in
this situation (eq. A3 in online Appendix 1 shows the pre-
dicted effect of maladaptation on moments of f(s) in our
model). These predictions could be tested, by considering,
for example, the effect of stress on the distribution of mu-
tation fitness effects. Finally, we note that it remains difficult
to critically test Fisher’s model based on empirical data be-
cause of the lack of alternative models. One possibility would
be to compare rates of adaptation predicted using extreme
value theory (Orr 2002) or Fisher’s model, but this is beyond
the scope of this paper.

Our results suggest that mutation fitness effect distributions
have a predictable shape and variation from lower to higher
organisms, and that phenotypic landscape models may cap-
ture this variation. Furthermore, our approach suggests that
distributions of deleterious mutation effects can be used to
predict the distribution of beneficial ones for a given envi-
ronmental change, which is open to further empirical tests.



906 G. MARTIN AND T. LENORMAND

This opens a wide array of perspectives, as these distributions
may be important to a large diversity of questions in evo-
lutionary genetics.
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