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Abstract

A metabolome-wide genome-wide association study (mGWAS) aims to discover the effects

of genetic variants on metabolome phenotypes. Most mGWASes use as phenotypes con-

centrations of limited sets of metabolites that can be identified and quantified from spectral

information. In contrast, in an untargeted mGWAS both identification and quantification are

forgone and, instead, all measured metabolome features are tested for association with

genetic variants. While the untargeted approach does not discard data that may have

eluded identification, the interpretation of associated features remains a challenge. To

address this issue, we developed metabomatching to identify the metabolites underlying

significant associations observed in untargeted mGWASes on proton NMR metabolome

data. Metabomatching capitalizes on genetic spiking, the concept that because metabolome

features associated with a genetic variant tend to correspond to the peaks of the NMR spec-

trum of the underlying metabolite, genetic association can allow for identification. Applied to

the untargeted mGWASes in the SHIP and CoLaus cohorts and using 180 reference NMR

spectra of the urine metabolome database, metabomatching successfully identified the

underlying metabolite in 14 of 19, and 8 of 9 associations, respectively. The accuracy and

efficiency of our method make it a strong contender for facilitating or complementing meta-

bolomics analyses in large cohorts, where the availability of genetic, or other data, enables

our approach, but targeted quantification is limited.
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Author summary

Metabolome-wide genome-wide association studies aim to discover how genetic variation

affects metabolome traits. Such studies typically follow an acquire-identify-associate pro-

cedure: metabolome data are acquired experimentally, metabolites are identified in the

experimental data and their concentrations quantified, and the metabolite concentrations

are tested for association with genetic variants. The untargeted approach follows instead

an acquire-associate-identify procedure: the experimental data are binned into metabo-
lome features, and the features tested directly for genetic association. When the metabo-

lome is measured by proton NMR spectroscopy, genetically associated features tend to

correspond to peaks in the NMR spectrum of the underlying metabolites. This inherent

property of the untargeted approach acts as a genetic spiking which informs on the identi-

ties of involved metabolites. Metabomatching is a method that uses genetic spiking infor-

mation to identify the metabolite candidates, listed in a spectral database, most likely to

underlie observed feature associations. Here, we present the method and its software, and

evaluate its performance.

Introduction

Since the seminal metabolome-wide genome-wide association study (mGWAS) by Gieger

et al. in 2008 [1], mGWASes performed on blood and urine spectral metabolome phenotypes

have uncovered an increasing part of the heritable variability of the human metabolome

through the discovery of hundreds of genetically influenced metabolome phenotypes [2–4].

Most mGWASes use estimated metabolite concentrations as phenotypes [1, 5–10]. In such

targeted mGWASes, metabolite concentrations are obtained by quantification [11] of spectral

metabolome data produced by mass spectrometry (MS) or nuclear magnetic resonance

(NMR) spectroscopy. While targeted approaches pave the way for reproducible metabolomics,

only a fraction of the measured metabolome data is quantified into metabolite concentrations

due to the arduous nature of metabolite identification [12–16]. In Rueedi et al. [17], we used

an untargeted approach [18–20]: we binned then normalized the NMR data, and tested the

resulting bin intensities, which we called metabolome features, for association with genotypes.

We then sought metabolite identification only for significantly associated metabolome

features. To do so, we employed an inherent characteristic of the untargeted approach:

genetic spiking. If the genetic component of a metabolite concentration is detected in the

untargeted mGWAS, then the relevant genotype will associate with metabolome features

that correspond to the peaks of the NMR spectrum of the metabolite. Much as metabolite

spiking does by flooding a sample with a metabolite of interest, genetic spiking isolates, by

genetic association, the spectrum of the genetically influenced metabolite. However, whereas

the aim of metabolite spiking is to determine an unknown spectrum for a known metabolite,

we developed metabomatching to use genetic spiking to identify an unknown metabolite

from a known spectrum.

We previously showed that metabolite identification using the metabomatching procedure

works in principle [17, 20], and applied it to identify the metabolite involved in a novel SNP-

feature association. Here, we further develop metabomatching, present its core concepts and

data, perform numerical simulations, and evaluate its performance on two sets of mGWAS

data. We also present the metabomatching software, describe its implementation and settings,

and highlight the best practices and pitfalls of its application.
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Materials and methods

Metabolome features are obtained by reducing the experimental NMR spectra into bins

along the chemical shift range. This binning can be uniform or adaptive [13, 21–23], and is

applied during standard processing of the NMR data, among other steps such as alignment or

normalization. In an untargeted mGWAS, the quantification into metabolite concentrations is

skipped, and the metabolome features are tested directly for association with genetic variants,

such as single nucleotide polymorphisms (SNPs).

Any observed SNP-feature association, however, is but a proxy for the genetic effect of the

SNP on the concentration of a certain metabolite. Metabolome features are derived from the

NMR spectra of the measured samples, which in turn are combinations of the NMR spectra of

the metabolites contained in the samples. Therefore, the genetic effect of a SNP on the concen-

tration of a metabolite can be detected by the associations between the SNP and the metabo-

lome features that match peaks in the NMR spectrum of the metabolite. This match between

associated features and peaks of the spectrum allows, in principle, to identify the underlying

metabolite.

To formalize the notion of genetic spiking, we call the collection of association p-values,

effect sizes (β), and standard errors (s) resulting from the simple linear regressions between a

SNP and all metabolome features the pseudospectrum of the SNP. As shown in Fig 1A for

rs37369 in AGXT2, the pseudospectrum (−log) p-values mirror the NMR spectrum of the

underlying metabolite 3-aminoisobutyrate almost exactly.

Metabomatching uses genetic spiking towards the identification of underlying metabolites:

for a SNP that associates significantly with at least one metabolome feature, metabomatching

compares the pseudospectrum of the SNP to the NMR spectrum of each metabolite listed in a

Fig 1. AGXT2 pseudospectrum and 3-aminoisobutyrate NMR spectrum, descriptions, and metabomatching match sets. (A) The upper plot shows

the experimental NMR spectrum of 3-aminoisobutyrate. The lower plot shows the (-log) p-values of the pseudospectrum of rs37369 in AGXT2, when

p < 10−3. There is a close match between the experimental spectrum and the pseudospectrum, as the four sets of features that associate (p < 5 × 10−8) with

rs37369 correspond to the principal peaks of the spectrum. (B) Taking a more detailed view of the spectrum descriptions (from HMDB), we see that the

peaks of 3-aminoisobutyrate group into six clusters (labeled A through F). The multiplet ranges for clusters A, C, and E enclose their corresponding peaks

well, padding by an average of 0.023 ppm. The multiplet range for cluster F is significantly wider, padding by 0.062 ppm. Approximating cluster areas as the

product of the width of the cluster with the average height of the peaks in the cluster, then scaling, we find area-derived proton counts of 2.8, 0.7, 1.1, 1.2 for

clusters A, C, E, and F, respectively. These counts are coherent with the listed proton counts of 3, 1, 1, and 1 for the respective multiplet ranges. Applying this

same approximation for clusters B and D results in area-derived proton counts of 0.0, and 0.2. Because this implies corresponding multiplet proton counts of

0, we may consider the two spectrum descriptions essentially coherent, even though no multiplet ranges are listed for clusters B and D. (C) Match sets

obtained from the peak and multiplet descriptions of the 3-aminoisobutyrate spectrum, for features resulting from a uniform NMR spectrum binning in

0.01 ppm increments, and with neighborhood parameter δ = 0.03 and 0.01, respectively. While the peak and multiplet descriptions of the 3-aminoisobutyrate

NMR spectrum may be essentially coherent, their resulting match sets do differ, with 22 features unique to either one of the match sets.

https://doi.org/10.1371/journal.pcbi.1005839.g001
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supplied spectral database. It then scores and ranks the compared metabolites, such that high

ranking metabolites are most likely to underlie the SNP-feature associations.

Spectral databases

The default spectral database used by metabomatching is acquired from the Human Metabo-

lome DataBase [24] (HMDB), which lists experimental proton NMR spectra for 835 metabo-

lites. In HMDB, the spectrum of a metabolite is described in two ways: as a list of peaks, and as

a list of multiplets (see Fig 1B). A peak is defined by a spectral position, expressed as a chemical

shift in parts per million (ppm), and a relative NMR intensity, that is the peak height expressed

relative to the highest peak in the spectrum. A multiplet is defined by a chemical shift range,

and a proton count. Peaks group into clusters, and for each such cluster in the peak descrip-

tion, there is, generally, a corresponding multiplet in the multiplet description whose range

encloses the cluster. Furthermore, the area under the curve delimiting the peaks of a cluster

can be related to the proton count of the corresponding multiplet [25]. The two descriptions

are usually, but not always, coherent.

Alternatively, metabomatching can use a database acquired from the Biological Magnetic

Resonance dataBank [26] (BMRB), which lists experimental proton NMR spectra for 670

metabolites. In BMRB, the spectrum of a metabolite is described only as a list of peaks.

Each metabolite, however, may have several peak description spectra, obtained in different

experiments.

Both HMDB and BMRB collect information on any metabolites found in the human

body. As a result, many of the spectra contained in the full spectral databases may be irrele-

vant for a specific mGWAS, typically because the corresponding metabolites may not be

contained in the studied biofluid. Metabomatching can therefore also use specific subsets of

the full spectral databases. For urine, the spectral database is derived from the urine metabo-

lome database (UMDB) [27] and contains proton NMR spectra for 180 metabolites, 124 if

based on BMRB. For serum, the spectral database is derived from the work of Gowda et al.

[12] and contains proton NMR spectra for 67 metabolites if based on HMDB, 49 if based on

BMRB.

Standard method

For the comparison of pseudospectra to reference spectra, we introduce a feature match set

Fδ(m) for every metabolite m in the reference database. Fδ(m) is defined to contain all features

f within a neighborhood of δ ppm of any spectrum peak listed in the peak description of m (see

Fig 1C). For the pseudospectrum of a given SNP r and the spectrum of every metabolite m, we

compute the match sum

X

f2FdðmÞ

b
2

rf

s2rf
; ð1Þ

with βrf the effect size and srf the standard error of the association between SNP r and feature f.
Even though the features are usually not independent, we consider the match sum to be χ2-dis-

tributed with |Fδ(m)| degrees of freedom, so as to define the score for the tested metabolite as

the negative logarithm of the corresponding p-value. As a result, while we use the scores to

rank metabolites for a given SNP, the scores do not inform on the statistical significance of a

spectrum-pseudospectrum match, nor do we compare scores obtained for the pseudospectra

of different SNPs.
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Settings

Because multiplet descriptions of the reference NMR spectra in HMDB can significantly differ

from peak descriptions, they can be considered as composing a separate spectral database. To

use this set, or its corresponding biofluid specific subsets, metabomatching can be run in mul-
tiplet mode, instead of the standard peak mode described above. The match set Fδ(m) used to

compute the match sum (1) for m is then defined to contain all features f falling in, or within δ
of, any multiplet range of metabolite m (see Fig 1C). Because multiplet ranges tend to pad their

corresponding peak cluster, the neighborhood parameter δ takes a smaller value in multiplet

mode than in peak mode. The resulting match sets are then comparable to their peak mode

counterparts, in general. However, differences between the two descriptions, in cluster posi-

tion, size, or even presence, occur for about 10% of metabolites in HMDB. These differences

can significantly affect metabomatching results.

Metabolome features that are common to the spectrum of a metabolite present in the study

samples correlate, and metabomatching can be set to take this correlation into account. The

correlation is strongest among neighboring features, which may be common to multiple

metabolites of spectra containing similar peak clusters, but also appears in features corre-

sponding to peaks in different spectrum clusters. Heuristically however, only the correlation

between neighboring features is detrimental to metabomatching, and decorrelation is there-

fore applied only to feature neighborhoods. Given the user-provided feature-feature correla-

tion matrix Ĉ, match sum (1) is then modified to

X

f ;g2FdðmÞ

brf

srf
C� 1

d;fg

brg

srg
; ð2Þ

where Cd;fg ¼
:
ð1 � lÞĈfg Jd;fg þ lIfg provides decorrelation, with λ 2 [0, 1] the shrinkage param-

eter [28], which serves to regularize. Restriction to feature neighborhoods results from the

block diagonal matrix Jδ, with Jδ;fg = 1 if f and g are members of the same neighborhood, that is

if they are connected by a sequence of features in Fδ(m) each at most 2δ ppm apart, and I the

identity matrix.

Metabomatching includes two variants for cases where a SNP affects a pair of metabolites:

2-compound metabomatching if the effects are of equal directions, and ±-metabomatching if

the effects are of opposite directions. For 2-compound metabomatching, we compute the

match sum for pairs of metabolites by running the sum over pair match sets, defined as

Fδ(m1, m2)¼
: Fδ(m1) [ Fδ(m2). Metabolite pairs are accordingly scored and ranked. In ±-meta-

bomatching, standard (1-compound) metabomatching is run separately for each effect direction,

setting to 0 the effect size for associations in the other direction that exceed a user-provided p-

value threshold. 2-compound and ±-metabomatching can be combined into ±-2-compound
metabomatching for SNPs affecting at most one pair of metabolites in each direction.

By squaring β/s in match sum (1) or (2), χ2-scoring increases signal to noise ratio, both by

amplifying the contribution of strongly associated features to metabomatching scores, and by

ignoring effect directions. This increase applies indiscriminately, however, and may actually

favor competing metabolites more than the metabolite to identify. Therefore, for pseudospec-

tra where this increase is not necessary, such as those produced in mGWASes of high statistical

power, for example, stronger matches may be obtained with Z-scoring. Here, scores are com-

puted according to the match sum

X

f2FdðmÞ

brf

srf
ð3Þ
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which we consider to be normally distributed, under the null hypothesis, with zero mean and

variance |Fδ(m)|, even though the sampled features are not independent. To apply decorrela-

tion in Z-scoring metabomatching, match sum (3) is not modified, but the variance is com-

puted as |∑fg Cδ;fg|, with Cδ the block diagonal matrix as previously defined. As in χ2-scoring,

multiplet-mode and 2-compound variants applied by using the corresponding match sets in

match sum (3). Because Z-scoring is explicitly sensitive to effect directions, ±-metabomatching

is not required for SNPs affecting two metabolites with opposite effect directions. However,

the separate presentation of results of ±-metabomatching may be useful in cases where the

effect sizes are such as to cause metabolites matched with one effect direction to systematically

outrank metabolites matched with the other direction.

Output

To summarize, metabomatching is run for a given pseudospectrum: against a set of match sets,

defined by the selected spectral reference database, the mode, and neighborhood parameter δ;

where appropriate, as 1-compound, 2-compound, ±-, or ±-2-compound variant; and depend-

ing on performance, with or without decorrelation, and with χ2- or Z-scoring. Metabomatching

outputs the score for each metabolite in the spectral database, and produces a figure showing

the pseudospectrum and the spectra of the highest ranked candidate metabolites (Fig 2).

Simulation

We bin the chemical shift range [0, 10] uniformly, in 0.01 ppm increments, and round refer-

ence spectra to the binning. We express the spectrum of each metabolite as a vector hm, with

Fig 2. Metabomatching results figure. The metabomatching results figure, shown here for the same AGXT2 pseudospectrum as in Fig 1.

The figure shows the metabomatching settings used, the pseudospectrum with features color-coded by effect size, and, for the eight highest

ranked candidate metabolites, the score, name, and reference NMR spectrum with match sets color-coded according to the height of the

NMR spectrum peak they derive from.

https://doi.org/10.1371/journal.pcbi.1005839.g002
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hmj the height of the peak in bin j, set to 0 if the spectrum does not include bin j, and define

the size of the spectrum as sm¼:
P

j h
m
j . To model the genetic association between a SNP and

metabolite m, we randomly assign a genotype gi 2 {0, 1, 2} to each individual (i 2 [1, 400]),

according to a minor allele frequency of 0.2, and build the feature metabolome M0 of elements

M0
ij ¼
:

bhmj gi þN ð0; 1Þ: ð4Þ

Because the number of individuals, the minor allele frequency and the amplitude of noise are

fixed, the strength of the association is controlled fully by the choice of effect size β. We then

associate the metabolome M0 with the genotype g, and apply metabomatching to the resulting

pseudospectrum. For each metabolite, we repeat this procedure 1 000 times, and compute rm
90

,

the 90th percentile over the 1 000 ranks of m. We consider metabomatching successful for m if

rm
90
¼ 1.

From the results of this simple model, shown in Fig 3A for UMDB, we can make two

important observations. First, that if the effect size is large enough, metabomatching can iden-

tify any metabolite. Second, that the performance of metabomatching, characterized here by

rm
90

, is strongly correlated with the spectrum size.

Fig 3. Metabomatching results on simulated metabolomes. A. Metabomatching performance, measured as rm
90

, the 90th percentile of 1 000 ranks

obtained for m by metabomatching pseudospectra build from the association with M0, for β = 0.2 (filled dots) and β = 1.6 (empty dots), as a function of the

size of the metabolite spectrum.For β = 0.2, the correlation between rm
90

and sm is −0.71, with p * 10−26. B. As in (A), but for metabolome Mα, with β = 1.6,

Na = 64 and α = 0.6. C. For UMDB and δ = 0.02, number of match sets (η) that contain each feature (uniform binning in 0.01 ppm increments). D.

Metabomatching performance, measured as rm
90

, for Mα, with β = 1.6, Na = 64 and α = 0.6, as a function of η of the leading peak of the metabolite spectrum,

that is the peak with hj = 1. Metabolite sizes are rounded. For sm = 1, 2, and 3, respectively, correlations ρ are 0.86, 0.79, and 0.76, with p-values *10−10,

10−4, and 10−4.

https://doi.org/10.1371/journal.pcbi.1005839.g003
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We then add genetic noise to the model, in the form of Na randomly drawn features that

also associate, with a randomly drawn direction, with genotype g. We insert these genetic

noise features in the model by adding the terms aj 2 {−1, 0, 1}, such that ∑j |aj| = Na, when

building the feature metabolome Mα of elements

Ma
ij ¼
:

bhmj gi þ abgiaj þN ð0; 1Þ;

where α< 1. As the amount Na, or amplitude α, of genetic noise increases, metabolite m faces

wider, respectively stronger, competition from other metabolites in the spectral database.

When β is small, random noise still determines metabomatching performance, and rm
90

is

similar to that for metabolome M0 shown in Fig 3A. When β is large, however, genetic noise

dominates. As shown in Fig 3B (and S4 Fig for other settings and for both UMDB and

HMDB), metabomatching can then no longer identify all metabolites consistently, because

other metabolites in the database outscore m by matching genetic noise features. Some of these

other metabolites may obtain their score from genetic noise features only, but true competition

for m is provided by metabolites that match both genetic noise features and features of m.

Because these competing metabolites have spectra similar to the spectrum of m, they tend to

be viable metabomatching candidates. For metabolites with a single peak f, we can count the

number of metabolites of match set that contain f to determine the size of this competing

group. In Fig 3C, we show this number, η(f) for UMDB, and in Fig 3D we see that rm
90

for

metabolites of size 1 correlates strongly with η. For larger spectra, where we take η for the lead

feature (the one of height 1), the correlation holds, but η is less representative of the size of the

competing group.

Results

We first tested metabomatching on pseudospectra obtained in the urine NMR mGWAS [17]

in the CoLaus study [29]. NMR data were aligned, normalized, and uniformly binned in

0.005 ppm increments. The resulting untargeted metabolome contained 1,276 features for 835

individuals. As references, we used SNP-metabolite associations that were previously reported

in targeted mGWASes on urine NMR [8, 18, 20] with a p-value below 10−5 and involving a

metabolite for which an NMR spectrum is listed in UMDB. If a CoLaus SNP located within

500kb of the reference SNP associated with p< 10−6 with at least one feature contained in the

match set of the reference metabolite (with δ = 0.03 in peak mode, 0.01 in multiplet mode), we

considered the CoLaus SNP pseudospectrum testable, and assumed the reference metabolite to

be the metabolite underlying the SNP-feature association. This resulted in nine testable pseu-

dospectra, each with a single reference metabolite.

Metabomatching with default settings (peak mode, χ2-scoring, and without decorrelation),

and using the urine specific UMDB reference database, was successful for eight of the nine

testable pseudospectra, ranking the reference metabolite first three times and in the top ten

five times (column PX
C of Table 1, detailed results in S1 Fig). For the SOSTDC1 SNP, the pseu-

dospectrum (S1C Fig) shows strong inflation across almost the entire chemical shift range,

making metabomatching fail systematically. Metabomatching in multiplet mode performed

better overall (column MX
C), ranking the reference metabolites first six times and second twice,

though the performance was qualitatively different only for the HPD SNP pseudospectrum,

for which the testable association involved a different reference metabolite (S1F and S1G Fig).

Decorrelation had little effect on rankings, in either mode, provided a shrinkage parameter λ
greater than 0.1 was used (results for λ = 0.5 in Table 1 columns PX

D and MX
D, other values of λ

in S1 Table).
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Z-scoring metabomatching properly ranked the reference metabolites for the pseudospectra

characterized by the strongest associations, that is those for SNPs in AGXT2, PYROXD2, and

SLC7A9. Pseudospectra with weaker associations fared worse, with Z-scoring metabomatching

ranks significantly lower than their χ2-scoring counterparts, except for the UPS9 pseudospec-

trum. For the SLC6A20 and SLC6A13 pseudospectra, the reference metabolite is outranked by

a number of metabolites of spectra that obtain their score by matching a group of strongly cor-

related features. Applying decorrelation reduces this correlation-based score, thereby signifi-

cantly improving the rank of the reference metabolite in both peak- and multiplet-mode (see

S3 Fig).

Using the full HMDB spectral database (S2 Table), metabomatching ranked the reference

metabolites for PYROXD2, PNMT, HPD markedly lower, due to stronger competition among

the larger pool of candidate metabolites. Using the UMRB or BMRB spectral databases (S2

Table), metabomatching ranks the reference metabolite for PNMT lower, for PYROXD2
higher, but is otherwise comparable to UMDB or HMDB, respectively.

We then tested metabomatching on pseudospectra obtained in the urine mGWAS [20] in

the SHIP study [30]. NMR data were normalized, binned in 0.0005 ppm increments, then pro-

cessed with FOCUS [31]. The resulting untargeted metabolome contained 166 features for

3,861 individuals. In addition, NMR data were manually annotated using Chenomx NMR

Suite 7.0. The resulting targeted metabolome contained the concentrations of 59 metabolites

for the same 3,861 individuals. Having both metabolome features and metabolite concentra-

tions in the same sample allowed for the direct comparison of SNP-metabolite association

results via metabomatching with targeted metabolite quantification followed by association.

We considered the pseudospectrum of a SNP associating with p< 10−6 with both a metabolite

and at least one feature contained in the metabolite spectrum testable. This resulted in nine-

teen testable SNP-metabolite associations involving fourteen SNPs.

Because testing is in the same samples, and because of the higher sample size of the study,

metabomatching results for SHIP pseudospectra are more nuanced than they were for CoLaus

pseudospectra. For the nine SNPs that associate with a single metabolite, metabomatching in

default settings ranked the reference metabolite first five times, and in the top ten four times

Table 1. CoLaus metabomatching results. Ranks of reference metabolites obtained for CoLaus pseudospectra, with UMDB as the spectral reference data-

base, and with: peak- (P) or multiplet-mode (M), χ2- (X) or Z-scoring (Z), and without (C) or with decorrelation (D). Neighborhood parameter is δ = 0.03 in

peak-mode, 0.01 in multiplet-mode. Shrinkage parameter is λ = 0.5 for decorrelation, 1 without. Reference metabolites are obtained from testable associations

collected from targeted mGWAS [8, 18, 19]. Squares (□) indicate ranks not in the top 10% of UMDB listed metabolites, that is ranks greater than 18. Individual

metabomatching figures including the eight highest ranked metabolite candidates for each pseudospectrum can be found in S1 Fig. Due to the differences in

the peak and multiplet descriptions, the association of the HPD SNP with α-hydroxyisobutyrate is testable only in peak mode (S1F Fig), the association with

3-hydroxyisovalerate only in multiplet mode (S1G Fig).

Locus Reference Association Feature Association Ranks

Gene Chr SNP Metabolite p SNP Feat. p PXC PXD MX
C MX

D PZC PZD MZ
C MZ

D

SLC6A20 3 rs17279437 dimethylglycine 1.1 × 10−46 rs4327428 2.933 7.3 × 10−10 2 1 2 1 □ 7 12 1

AGXT2 5 rs37369 3-aminoisobutyrate 2.4 × 10−252 rs37369 1.203 3.9 × 10−42 1 1 1 1 2 1 1 1

SOSTDC1 7 rs10238442 taurine 4.0 × 10−6 rs17169536 3.393 7.6 × 10−7 □ □ □ 12 □ □ □ □

PYROXD2 10 rs4539242 trimethylamine 2.8 × 10−23 rs4488133 2.857 1.3 × 10−98 5 4 2 2 4 1 4 3

SLC6A13 12 rs11613331 3-aminoisobutyrate 2.5 × 10−15 rs10774021 1.193 9.5 × 10−10 4 4 1 1 14 5 □ □

HPD 12 rs4760099 α-hydroxyisobutyrate 2.2 × 10−80 rs7314056 1.363 9.8 × 10−11 3 1 □ □

3-hydroxyisovalerate 2.4 × 10−7 2 5 □ □

PNMT 17 rs8069451 tyrosine 7.9 × 10−22 rs676882 6.897 1.8 × 10−8 3 3 1 1 □ □ □ □

SLC7A9 19 rs8101881 lysine 3.3 × 10−25 rs6510300 1.733 3.9 × 10−15 1 1 1 1 1 2 1 2

UPS9 19 rs13343495 sucrose 3.4 × 10−6 rs17273533 5.417 4.0 × 10−7 1 2 1 1 2 2 3 1

https://doi.org/10.1371/journal.pcbi.1005839.t001

Metabomatching: Using genetic association to identify metabolites in 1H NMR spectroscopy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005839 December 1, 2017 9 / 17

https://doi.org/10.1371/journal.pcbi.1005839.t001
https://doi.org/10.1371/journal.pcbi.1005839


(see Table 2 column PX
C, detailed results in S2 Fig). For the CPS1 and HPD SNPs, which associ-

ate with two metabolites each, metabomatching ranked one metabolite first, the second in the

top ten, and 2-compound metabomatching ranked the reference metabolite pair first. The

pseudospectra for the three remaining SNPs are more complex. While the NAT2 SNP only

associates with formate, its pseudospectrum (S2N Fig) indicates the presence of additional

associations, in both effect directions. We therefore applied ±-2-compound metabomatching

(S2O Fig), which ranks a metabolite pair that includes formate first, in the β> 0 direction.

With associations with three reference metabolites, the PNMT SNP pseudosepctrum (S2U Fig)

is too complex for metabomatching, or 2-compound metabomatching, to provide any of the

reference metabolites as plausible candidates. The SLC6A19 SNP pseudospectrum (S2J Fig) is

similar to the PNMT SNP pseudospectrum, but with weaker associations. Because the second-

ary associations are closer to the noise background, metabomatching still provides top ten

ranks for the two reference metabolites. 2-compound metabomatching, however, does not

properly rank the reference pair.

Metabomatching in multiplet mode shows similar results for most SNPs (column MX
C).

However, for the CPS1,XYLB, HPD SNPs, the multiplet ranges describing the spectra of the

respective reference metabolites are wide (between 0.16 and 0.28 ppm) even though each

range encloses only a single peak. The resulting multiplet-mode neighborhoods have a higher

number of degrees of freedom than their peak-mode counterparts, yet produce similar sum

values. This lowers the scores of the reference metabolites, which are then outranked by

Table 2. SHIP metabomatching results. Metabomatching ranks of reference metabolites obtained for SHIP pseudospectra, with UMDB as the spectral ref-

erence database, and with: peak- (P) or multiplet-mode (M), χ2- (X) or Z-scoring (Z), and without (C) or with decorrelation (D). Neighborhood parameter is δ =

0.03 in peak-mode and 0.01 in multiplet-mode. Shrinkage parameter is λ = 0.5 for decorrelation, 1 without. Ranks obtained with 2-compound metabomatching

are shown in bold, those obtained with ±-2-compound metabomatching in bold and italic. Squares (□) indicate ranks not in the top 10% of UMDB listed metab-

olites, that is ranks greater than 18. Individual metabomatching figures including the eight highest ranked metabolite candidates for each pseudospectrum can

be found in S2 Fig.

Locus Reference Association Feature Association Ranks

Gene Chr SNP Metabolite p Feature p PXC PXD PZC PZD MX
C MX

D MZ
C MZ

D

DAB1 1 rs558475 hippurate 3.9 × 10−7 3.949 3.6 × 10−8 1 1 1 1 1 1 1 1

CPS1 2 rs2216405 glycine 2.9 × 10−11 3.555 4.9 × 10−9 1 1 □ □ 3 1 □ □

creatine 7.5 × 10−11 1 1 □ □ 16 11 □ □

XYLB 3 rs2070486 glycolate 1.4 × 10−9 3.937 2.4 × 10−9 2 1 5 2 16 16 □ □

SLC6A20 3 rs17279437 dimethylglycine 1.1 × 10−46 2.916 1.1 × 10−21 1 2 2 2 1 1 1 1

ENTPPL 4 rs7654111 ethanolamine 2.3 × 10−26 3.126 5.0 × 10−16 1 1 4 5 1 1 2 2

SLC6A19 5 rs7719875 histidine 2.4 × 10−14 6.877 6.4 × 10−12 8 8 10 11 10 8 8 8

tyrosine 6.5 × 10−10 9 13 12 12 12 14 □ 14

AGXT2 5 rs37369 3-aminoisobutyrate 2.4 × 10−252 1.171 3.7 × 10−252 1 1 2 2 1 1 1 1

DMGDH 5 rs248386 dimethylglycine 1.0 × 10−13 2.916 1.8 × 10−8 5 5 □ □ 2 1 □ □

SLC36A2 5 rs3846710 glycine 1.1 × 10−10 3.555 6.3 × 10−9 1 1 2 2 1 1 2 5

NAT2 8 rs1495743 formate 9.5 × 10−60 3.189 1.6 × 10−104 1 1 1 1 1 1 1 1

SLC6A13 12 rs11613331 3-aminoisobutyrate 2.5 × 10−15 1.190 5.0 × 10−16 5 5 3 3 4 4 3 3

HPD 12 rs4760099 α-hydroxyisobutyrate 2.2 × 10−80 1.345 2.2 × 10−64 1 1 1 1 2 1 1 1

3-hydroxyisovalerate 2.4 × 10−7 1 1 1 1 3 4 2 5

PNMT 17 rs8069451 tyrosine 7.9 × 10−22 6.877 4.4 × 10−17 □ □ □ □ □ □ □ □

histidine 7.3 × 10−21 □ □ □ □ □ □ □ □

alanine 2.3 × 10−11 18 18 16 □ 17 □ 15 □

SCL7A9 19 rs8112297 lysine 5.0 × 10−16 3.003 9.4 × 10−7 9 9 15 17 15 11 17 □

https://doi.org/10.1371/journal.pcbi.1005839.t002
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competing metabolites, particularly in 2-compound metabomatching (S2D, S2E, S2G, S2S and

S2T Fig).

Z-scoring metabomatching underperforms χ2-scoring overall (columns PZ
C and MZ

C), yet

Z-scoring ranks obtained for the reference metabolites are close to their corresponding χ2-

scoring ranks for all but two pseudospectra. For the CPS1 and DMGDH pseudospectra, the

association of the lead feature is too weak to compensate for the associations of opposite effect

direction of other features captured by the match sets of the corresponding reference metabo-

lites (see S2B and S2L Fig). The resulting penalties incurred under Z-scoring produce low ref-

erence metabolite ranks.

FOCUS combines neighboring features into a single representative feature, obtained either

by peak picking or by integration of the NMR curve in the neighborhood. As a result, the effect

on metabomatching ranks of correlation in feature neighborhoods is weaker because neigh-

borhoods contain fewer features after FOCUS processing. Correspondingly, ranks with dec-

orrelation are essentially equal to ranks without decorrelation (columns PX
D, PZ

D, MX
D, and MZ

D).

Using the full HMDB spectral database (S3 Table), metabomatching ranked the reference

metabolites for SLC6A20, SLC7A9markedly lower. Using the UMRB or BMRB spectral data-

bases (S3 Table), metabomatching ranks the reference metabolites for SLC6A19, SLC6A13, and

PNMT higher, but is otherwise comparable to UMDB or HMDB, respectively.

Discussion

Under the test conditions used here, metabomatching has shown to be remarkably successful

in identifying the metabolites underlying the feature associations in the investigated pseudos-

pectra, by generally highly ranking the respective reference metabolites. In normal conditions,

where the underlying metabolites are not known, the performance of metabomatching

depends on the characteristics of the untargeted mGWAS.

First and foremost, metabomatching can only identify an underlying metabolite for which

a spectrum is listed in the supplied spectral database. Here, we only tested metabomatching on

untargeted associations that we could link to reference metabolites with listed spectra. How-

ever, both the CoLaus [17] and SHIP [20] mGWASes discovered feature associations to which

metabomatching did not assign plausible candidates, likely because the spectra of the underly-

ing metabolites are absent from HMDB.

Similarly, metabomatching can only properly rank the metabolite to identify if the NMR

spectrum in the provided database does not significantly deviate from the NMR spectrum as

measured in the experimental conditions specific to the mGWAS. Such deviations are com-

mon, and can be significant. For example, if we compare match sets pairs for the 318 metabo-

lites of spectra that are listed both in HMDB and BMRB, but were not necessarily acquired

under identical experimental conditions, we find that the match sets of 133 metabolites differ

by at least one feature and that the match sets of 29 metabolites have no common features.

Increasing the neighborhood parameter δ in the match set definitions can mitigate such

deviations, but in turn, larger neighborhoods make metabolites generally more difficult to

distinguish.

If the metabolite underlying an observed metabolome feature association is listed in the

database, and if the listed spectrum does not significantly deviate from the mGWAS specific

spectrum, then the underlying metabolite obtains a high metabomatching score. For the

metabolite to also obtain a high rank, however, it needs to outscore other listed metabolites.

If the observed feature association is strong enough, the underlying metabolite outscores all

those metabolites whose spectra do not include the associated feature, and whose scores there-

fore rely essentially on the level of noise in the pseudospectrum. The p-value threshold of
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5 × 10−8, the Bonferroni threshold for significance when correcting only for the number of

tested SNPs, is usually sufficient for signal-based scores to outrank almost all noise-based

scores.

The main competition for top metabomatching rank then stems from metabolites with a

listed spectrum which also matches the associated feature. Therefore, the more distinctive the

underlying metabolite, that is the more dissimilar it is from the other metabolites in the spec-

tral database, the higher it ranks. The distinctiveness of a metabolite is not an intrinsic prop-

erty of the metabolite spectrum, not only because it depends on the chosen database, but

because it depends on the mGWAS itself. For example, small peaks that contribute to the dis-

tinctiveness of a spectrum may be lost in a low powered mGWAS, thereby making metabolites

distinct in spectra indistinguishable for metabomatching. However, the strongest matches

among our test cases, that is those for loci AGXT2 and SLC7A9 in CoLaus (Table 1), and

DAB1, ENTTPL, and AGXT2 in SHIP (Table 2), follow a trend, similar to that suggested by

our simulation results: the greater the number of clusters of peaks in the spectrum of a metabo-

lite, the greater, and more resilient, its rank. Even though not all spectrum peaks will necessar-

ily show strong association, metabolites with high cluster count spectra do tend to produce

high cluster count pseudospectra. The corresponding matches are generally characterized in

both high score and high distinctiveness.

The ideal settings under which to run metabomatching are specific to every mGWAS, and

depend on the experimental conditions under which the feature metabolome was acquired,

the data processing applied, and the statistical power of the study. Consequently, while the

default settings (1-compound, HMDB, peak-mode, χ2-scoring, δ = 0.03 and without decorrela-

tion) provide a good starting point, the performance of metabomatching can be significantly

improved by adapting the settings to the study.

The greatest impact on performance is likely achieved simply by selecting the appropriate

biofluid-specific, and therefore smaller, spectral database. Then, it is advisable to run metabo-

matching with wide neighborhoods (δ = 0.05) first, to uncover potential issues of deviations

of study spectra from reference spectra. While wide neighborhoods tend to muddle metabo-

matching results in general, good matches should still be obtained in specific cases where

the SNP associates with multiple peaks in distinct clusters of a metabolite spectrum or with

peaks of a distinctive metabolite spectrum. Guided by the performance on such cases, metabo-

matching should be run with progressively smaller values of δ, until the smallest δ, which still

accounts for the observed deviations between study and reference spectra, is reached.

Pseudospectra should then be individually inspected for the need for multiple-compound

metabomatching: 2-compound metabomatching if the associations are of the same effect

direction, but no single metabolite matches them all; ±-metabomatching if the associations are

of opposite effect directions.

With biofluid, δ and metabomatching variants defined, runs with decorrelation (taking λ =

0.5) or Z-scoring can be tested. Which scoring or decorrelation setting performs better is diffi-

cult to evaluate, and may be essentially subjective unless prior knowledge about the underlying

metabolites is available.

Finally, metabomatching against other reference biofluid-specific subsets, such as those of

BMRB or of multiplet description HMDB, may prove to provide stronger matches due to bet-

ter conforming reference spectra, while metabomatching against full HMDB or BMRB may,

for unmatched pseudospectra, identify metabolites that occur in the studied biofluid, while not

being annotated as such.

Applying this procedure allows metabomatching to run in the settings best suited to the

investigated mGWAS, and present the most likely candidate metabolites, among the provided

set of reference metabolites, underlying observed SNP-feature associations. Because the
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spectral database never fully conforms to the set of metabolites investigated in any specific

study, however, metabomatching cannot provide definitive identification. In some cases,

additional evidence can strengthen metabomatching candidates, such as a direct biological

connection between gene and candidate metabolite (ENTTPL,DMGDH) or coherent targeted

mGWAS association results (all testable associations presented here, but CPS1,AGXT2,

SLC6A13, and HPD, in particular, for which targeted association results also exist in blood and

mass spectrometry mGWASes [7]). For the remaining cases, in-sample identification through

manual annotation or further measurement from spiking experiments or 2-dimensional NMR

spectroscopy may be required to verify the candidates provided by metabomatching.

Conclusion

While not yet as widespread as the targeted approach, the untargeted approach to metabo-

lome-wide genome-wide association studies has already shown compelling results. Because it

analyses all measured metabolome features, the untargeted approach more fully exploits exper-

imental data and may discover genetically determined metabolites that were missed, because

they eluded identification, by a targeted approach. By focusing the identification effort on the

comparatively few metabolites found to be genetically determined, the untargeted approach

also presents the pragmatic advantage of shortening the path from spectral metabolome data

to mGWAS results.

Metabomatching further reduces this identification effort, by combining genetic spiking

information with spectral reference data to assign candidate metabolites to genetically associ-

ated metabolome features. In addition, because identification through genetic spiking is not

an in-sample procedure, metabomatching becomes of particular interest when applied in an

mGWAS that combines untargeted and targeted approaches. In such a combined mGWAS,

metabomatching can both provide an independent line of evidence for in-sample identifica-

tions of metabolites, and inform on the identity of metabolites that were missed by the targeted

approach because they eluded in-sample identification.

Naturally, while focus was placed here, and in previous applications of metabomatching,

on pseudospectra resulting from genetic association with NMR features, metabomatching is

not limited to genome-wide association studies. Any trait that influences, or is influenced by,

metabolome features produces an association pseudospectrum to which metabomatching can

assign candidates. Notably, metabolome-wide association studies, analyzing the effects of the

metabolome on organismal traits, would similarly benefit from both the untargeted approach

and metabomatching.

The performance of metabomatching is inherently linked to the strength of genetic spiking

and the quality of spectral databases. With increasing mGWAS sample sizes, and the continu-

ing efforts to establish spectral databases that are more complete and better annotated, both

conditions are expected to improve. Metabomatching is therefore not only likely to become a

valuable tool for exploring the links to metabolites of listed spectrum, but may also provide

impetus to complete databases of spectral information for human metabolites, reducing

instances where no good match can be found.

Software

Metabomatching is written for Matlab and compatible with octave. Documentation and code

can be obtained from the metabomatching website http://www.unil.ch/cbg/index.php?title=

metabomatching or GitHub. Metabomatching is also available as a docker container, and

within the metabolomics e-infrastructure PhenoMeNal http://phenomenal-h2020.eu.
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Supporting information

S1 Table. CoLaus metabomatching results for different values of the shrinkage parameter

λ. Decorrelation has only a minor effect on metabomatching rankings. For λ 2 [0.1, 0.9] only

the HPD-α-hydroxyisobutyrate rank is significantly affected, going to 1 from 4 (at λ = 1).

Without any shrinkage (λ = 0), however, several metabolites acquire artificially high scores,

leading to lower ranks of the control metabolites for SLC6A20 and UPS9 in both peak- and

multiplet-mode.

(PDF)

S2 Table. CoLaus metabomatching results against HMDB, UMRB, and BMRB spectral

databases. Metabomatching performance using the spectral reference database UMRB, that is

the urine-specific subset of BMRB, is similar to the performance using the spectral reference

database UMDB. Trimethylamine ranks higher for PYROXD2, because the competing metabo-

lites score lower in UMRB than UMDB. Tyrosine ranks lower because the BMRB listed spec-

trum deviates more from its pseudospectrum-implied CoLaus spectrum than the HMDB

spectrum does. α-hydroxyisobutyrate and 3-hydroxyisovalerate do not have spectra listed in

BMRB. Using the full HMDB or BMRB databases introduces more competing metabolites, sig-

nificantly affecting the ranks of PYROXD2 and PNMT.

(PDF)

S3 Table. SHIP metabomatching results against HMDB, UMRB, and BMRB spectral data-

bases. We see that the spectra listed in BMRB tend to correspond better, overall, to the pseu-

dospectrum-implied spectra of the metabolites in SHIP, resulting in better metabomatching

ranks. This applies in particular to histidine, tyrosine, and 3-aminoisobutyrate, resulting in sig-

nificantly better ranks for SLC6A19, SLC6A13, and PNMT. Strong matches in DAB1, SLC6A20,

ENTPPL, AGXT2, SLC36A2, and NAT2 maintain their high ranks when metabomatching

is run against the full databases HMDB and BMRB. The ranks of weaker matches, which

already suffered strong competition when using the urine-specific subsets, drop; in cases such

as SLC6A20 and SLC7A9, significantly so.

(PDF)

S1 Fig. CoLaus metabomatching figures. Full results for UMDB peak-mode χ2-scoring

metabomatching for each of the nine testable CoLaus pseudospectra. Multiplet-mode

metabomatching results are shown only for HPD, where they differ notably from peak-

mode metabomatching results. The navigation table in the footer allows direct access to a

specific pseudospectrum. The reference metabolite is indicated by a hash mark (#) next to

its name.

(PDF)

S2 Fig. SHIP metabomatching figures. Full results for UMDB peak-mode χ2-scoring metabo-

matching for each of the fourteen testable SHIP pseudospectra. 2-compound metabomatching

results are shown for CPS1 and HPD, and ±-metabomatching results for NAT2. Multiplet-

mode metabomatching results are shown only where they differ notably from peak-mode

metabomatching results, that is for CPS1, XYLB, and HPD. The navigation table in the footer

allows direct access to a specific pseudospectrum. The table is repeated on subsequent pages.

The reference metabolites are marked with a hash mark (#) next to their name. To maintain

a consistent layout where necessary, long metabolite names are replaced by the metabolite

chemical abstract service registry number (CASRN), and a conversion table added to the bot-

tom of the figure.

(PDF)
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S3 Fig. An example of the effect of decorrelation in metabomatching. The pseudospectrum

of rs10774021 in SLC6A13 is characterized by a single significantly associated feature: feature

1.19. (A) With χ2-scoring metabomatching, the association with feature 1.19 is sufficient for

metabolites of spectrum matching feature 1.19, including the reference metabolite 3-aminoiso-

butyrate, to obtain top ranks. (B) With Z-scoring metabomatching, metabolites of spectrum

matching 1.19 are outranked by metabolites matching peaks in the region between 3.6 and

3.9 ppm, which produces, on its own, a score of 11.8. (C) The 3.6 to 3.9 ppm region is charac-

terized by strong correlation. By applying decorrelation, with λ = 0.5, the score produced by

the region, on its own, is reduced to 0.8. Correspondingly, with decorrelation, 3-aminoisobu-

tyrate outranks most metabolites that, without decorrelation, ranked highly by matching the

3.6 to 3.9 ppm region.

(PDF)

S4 Fig. Simulation results for metabolome model including genetic noise. Median rm
90

, with

metabolites grouped by their rounded size, and from light to dark blue, β = 0.2, 0.4, 1.6. We

show results for UMDB and HMDB, neighborhood parameters δ = 0.02 and 0.05, χ2- and Z-

scoring, and two genetic noise levels, defined by Na and α set to 16 and 0.4, and 64 and 0.6,

respectively. From these cases, we see that the performance of metabomatching is consistently

stronger in the smaller spectral database UMDB, and for smaller δ. For the weaker genetic

noise, the median rm
90

is equal to, or close to, 1, for sufficiently large β, except in the case of δ =

0.05 in HMDB for sm = 2. For strong genetic noise, metabomatching performance is consis-

tently poorer, with rm
90

often far from 1. χ2-scoring performs better than Z-scoring under weak

genetic noise. When genetic noise is strong, however, Z-scoring performs almost invariably

better: when β is large, there are sizes sm for which Z-scoring produces rm
90

close to 1 while χ2-

scoring fails to do so.

(PDF)
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