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Social insects offer exciting prospects for ageing research due

to the striking differences in lifespan among castes, with

queens living up to an order of magnitude longer than workers.

A popular theory is that senescence is primarily the result of an

accumulation of somatic damage with age, balanced by

investment into processes of somatic maintenance.

Investigation of these predictions in social insects has

produced mixed results: neither damage accumulation nor

investment into somatic maintenance is consistently different

between castes with different lifespans. We discuss some

limitations of the studies conducted thus far and consider an

alternative proximate theory of ageing that has been recently

proposed.
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Introduction
Social insects capture the imagination because of their

organisation, their division of labour and the fact that

through force of numbers, small creatures can achieve

impressive cooperative feats of engineering. Something

that is under-appreciated is that they also provide an ideal

system to study the mechanisms of ageing. The evolution

of morphologically or behaviourally specialised castes is

associated with great variation in lifespan, despite the fact

that different castes can arise from the same genome [1].

Queens (the reproductive caste) have been recorded to

live as long as 29 years [2], making them the longest-lived

adult insects that we know of. Workers (which engage in

nest maintenance and brood care) are substantially less

long-lived [3] even in laboratory conditions where they

are protected from extrinsic sources of mortality such as

predation. Furthermore, variation in lifespan also exists

among worker castes that specialise in different tasks

[4,5]. Increasing efforts have therefore been devoted to
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studying these differences in lifespan, and many have

focused on the possibility that they are due to differences

in senescence linked to molecular damage accumulation

and somatic maintenance.

Senescence can be regarded as a deterioration of function

with age, typified by an increase in mortality and a decline

in functions such as reproduction. The underlying causes

of senescence are not fully understood, but one possibility

is that it is due to an accumulation of physiological

damage with age, for example as oxidative damage to

macromolecules [6]. Somatic maintenance is the process

of expending energy to avoid or repair damage, thus

preserving the integrity of the organism (Figure 1a).

The ‘disposable soma’ theory [7] predicts that investing

sufficiently into somatic maintenance to avoid completely

the accumulation of damage is not an optimal life-history

strategy because organisms do better by allowing some

amount of deterioration in order to invest extra energy

into reproduction (Figure 1b and c); senescence is then

the manifestation of this incomplete maintenance. The

optimal allocation of energy to somatic maintenance

will depend on the rate of mortality from extrinsic factors

such as predation and accidental death [7] (Figure 1c).

Social insect queens typically have low rates of extrinsic

mortality because of the care that they receive from the

workers and the protected environment provided by their

nest. From an evolutionary perspective, the long lifespan

of social insect queens may thus be explained by slow

senescence due to their low extrinsic mortality. The

physiological prediction of the disposable soma theory

is that, all else being equal, long-lived phenotypes such as

queens should invest more into processes of maintenance

than short-lived phenotypes. The challenge is to identify

the type of damage that underlies senescence and the

processes that can mitigate this damage.

Most of the research on somatic maintenance has focused

on damage to macromolecules because of the popular

view that the most important form of damage for senes-

cence is molecular oxidative stress [6,8]. Cellular pro-

cesses such as mitochondrial respiration create Reactive

Oxygen Species (ROS) [9] which can cause oxidative

damage to a range of macromolecules, including DNA,

proteins and lipids [8], and several processes have been

identified that can remove ROS or deal with oxidative

damage [9–11]. In this review, we summarise research

into damage accumulation and somatic maintenance in

social insects and discuss whether results so far support a

role for these processes in explaining differences in life-

span between castes. We examine how the data support

the following three predictions: that molecular damage
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Figure 1
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Somatic maintenance and the disposable soma theory. (a) Illustration of

somatic maintenance at the level of DNA damage and repair. Mutations

in DNA occur, for example due to replication errors or Reactive Oxygen

Species (ROS). Maintenance can act to control the levels of ROS or

repair damaged DNA. The balance between DNA damage and

maintenance determines the rate of accumulation of somatic mutations

with age. (b) Alternative investment strategies into maintenance and

reproduction. Boxes represent total available resources, red is the

investment into maintenance and blue is the investment into

reproduction. The maintenance threshold is the investment that is

necessary to avoid senescence. Even assuming an organism is able to

invest sufficiently into processes of somatic maintenance to completely

avoid senescence, this strategy will only evolve if it leads to higher

fitness than an alternative in which some deterioration is allowed in order

to increase reproduction. We therefore need to determine the optimal

allocation of resources to maintenance. (c) This cartoon shows how

investing into greater reproduction at the expense of some somatic

maintenance can be a successful strategy (LRS = Lifetime Reproductive

Success). This is because the risk of death from external factors means

that for the most part, individuals will not live long enough to enjoy the

benefits of their extended vitality (in the wild, few individuals reach the

age at which senescence becomes marked). The disposable soma

theory proposes that investing sufficiently into somatic maintenance to

entirely avoid senescence is not an optimal strategy.
accumulates with age, that it does so more slowly in

longer-lived castes, and that longer-lived castes show

higher investment into processes of somatic maintenance

such as antioxidant systems and DNA repair.
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Accumulation of damage with age
When investigating the effect of age in social insects, it is

important to consider that in many species workers

undergo an age-related transition in behavioural caste,

from a stage where they predominantly stay in the nest to

care for the queen and brood, to foraging where they leave

the nest to collect resources [1,12,13]. Care must there-

fore be taken not confuse the effects of age and beha-

vioural caste on the trait of interest. Furthermore, if

damage accumulates more quickly in one behavioural

caste, then time since a caste transition may be more

relevant to senescence than chronological age. The term

‘foraging age’ therefore refers to the time since an indi-

vidual’s transition from nursing to foraging.

A range of types of molecular damage has been investi-

gated. Oxidative damage to proteins and lipids results in

the formation of protein carbonyls and lipid peroxidation,

which can be detected in vitro [14–16]. The incomplete

degradation of lipids and proteins due to oxidative damage

can result in the accumulation of lipofuscins, which can be

detected under laser-scanning microscopy [17]. Further-

more, the accumulation of misfolded or damaged proteins

tagged with ubiquitin for degradation can be measured by

performing a Western Blot for ubiquitin [18��]. Damage

can also occur to DNA, either through mutations or

physical breaks in the chromatin [10].

Overall, the evidence for damage accumulation in social

insects is equivocal, with some results supporting the

notion that damage accumulates with age while others

have found no increase, or even evidence of a decrease

with age. In the honeybee, analyses of whole worker

heads and thoraces revealed no increase with age in

the levels of protein carbonyls [15]. Furthermore, the

abundance of ubiquitinated proteins or lipid peroxidation

does not increase with foraging age in the brain [18��]. In

fact, when foragers were allowed unrestricted flight, the

lipid peroxidation marker was lower in old foragers than in

young foragers. Similarly, mitochondrial DNA damage

does not seem to increase with foraging age in honeybee

worker brains. Of two measures of damage that were used,

one revealed no change with age, while the other

decreased with age [19�].

In contrast, studies in specific tissues revealed age-linked

accumulation of damage. In the hypopharyngeal glands of

honeybee foragers, lipofuscin was found to accumulate

with age [16]. Similarly, in the abdominal fat cells and

trophocytes of honeybee queens, the levels of lipofuscin,

protein carbonyls and lipid peroxidation also increased

with age [20]. Similar results were obtained for workers

[21], but age was confounded with behavioural caste in

this study.

The discrepancy between the results of these different

studies suggests that damage accumulates at different
www.sciencedirect.com
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rates in different tissues. It is likely that the impact of

damage on fitness varies with the type of damage and the

tissue in which it occurs. It would therefore be valuable to

conduct studies comparing the accumulation of damage

in different tissues and determine whether damage

accumulates faster in tissues that are less important for

an organism’s performance and survival.

Difference in the rate of accumulation of
somatic damage between castes with
different lifespans
The greatest disparity in lifespan in social insects is the

one between queens and workers. This contrast would

therefore offer the strongest test of whether differential

damage accumulation accompanies lifespan differences

between castes. Unfortunately, we know of no statistical

comparisons of the age-related accumulation of molecular

damage between queens and workers, although the low

levels of polyunsaturated fatty acids in queens should

make them less susceptible to lipid peroxidation [22].

Among workers, comparisons of damage have been per-

formed in honeybees, where three behavioural castes

exist. During the brood-rearing season, workers may be

nurses or foragers, but during the winter months, when

brood-rearing does not occur, workers become so-called

‘winter bees’. These bees engage in neither foraging nor

brood care, but instead work to maintain colony tempera-

ture during the winter [23]. They have the longest life

expectancy of the three worker behavioural castes, while

foragers have the shortest [4,24�].

Among these behavioural castes, there is tentative evi-

dence that short life expectancy is associated with a

greater molecular damage load. However, whether this

is due to a difference in the rate of accumulation of

damage with age or simply represents a stable difference

in damage levels between behavioural castes remains an

open question and further studies are needed to resolve

this. In localised areas of the honeybee head, damaged

proteins and lipids tend to be higher in foragers than in

the nurses and winter bees. Lipofuscin levels in the

hypopharyngeal glands and pars intercerebralis were

found to be higher in foragers than in winter bees of

similar age, while no difference was found between these

castes in the calyx [24�]. Seehuus et al. [14] used staining

and microscopy to investigate protein carbonyls and

nitrotyrosine (an indicator of nitration damage to proteins)

in three areas of the honeybee brain. While in general

they found little evidence of either type of damage, there

was a detectable amount of carbonylated proteins in the

optic lobe, which was significantly greater in foragers than

nurses and winter bees.

Levels of DNA damage between castes have been little-

investigated. A pilot study using only one pool of DNA

per behavioural caste found higher levels of DNA
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mutations (measured as the similarity of sequences with

the honeybee mitochondrial genome) in the wing

muscles of foragers compared to winter bees of at least

the same age [25]. Further work is needed to confirm this.

To the best of our knowledge, only two studies have

investigated age-related accumulation of damage in

different castes. In one of these studies, lipofuscin was

found to accumulate with age in the hypopharyngeal

glands of honeybee foragers but not nurses [16], despite

foragers and nurses in this study being matched for age.

However, a study of protein carbonyl content from whole-

tissue extracts of honeybee heads and thoraces found no

evidence that either nurses or foragers show an accumu-

lation of this form of damage with age [15]. These

contrasting results may be due to the fact that the second

study investigated whole brains rather than more loca-

lised tissues. As differences in protein damage levels

between foragers and other behavioural castes vary locally

[14], whole tissue analyses may be too coarse to detect

important differences.

Is there a difference in investment into
somatic maintenance between castes?
A slower accumulation of oxidative damage in longer-

lived phenotypes could be due to a lower rate of pro-

duction of ROS. There is some support for this possibility

in vertebrates, where interspecific comparisons have

revealed that longer-lived organisms have lower rates

of hydrogen peroxide production [26] (but see Ref.

[27]). To the best of our knowledge, this has not been

investigated in social insects. However, evidence that

queens are more resistant to induced oxidative stress

than workers [28�] suggests that queens have some mech-

anism which make them better able to deal with ROS.

The most important prediction of the disposable soma

theory is that the higher rate of damage accumulation in

short-lived organisms stems from reduced energetic

investment into processes of maintenance. Longer-lived

castes should therefore be those that have the highest

expression of antioxidant and molecular repair genes.

Studies in two ant species and in the honeybee did not

find support for this hypothesis.

In ants, antioxidant activity has been compared between

queens and workers. Contrary to predictions, workers and

males were found to have higher superoxide dismutase

activity than queens in the ant Lasius niger [29]. In

Harpegnathos saltator, some workers can become repro-

ductive workers (gamergates) after the queen’s death.

This transition has been shown to be associated with

increased lifespan and higher resistance to stress. How-

ever, the longer-lived gamergates do not have higher

activity of superoxide dismutase and glutathione peroxi-

dase, and have even less catalase activity, than the short-

lived workers [28�]. A shortcoming of both studies is that

they did not control for age.
Current Opinion in Insect Science 2014, 5:31–36
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In honeybees, comparisons have been made both among

worker behavioural castes and between queens and

workers. Among workers, two non age-controlled studies

found no support for the prediction that behavioural

castes with shorter life expectancies under-express anti-

oxidants. Expression of antioxidant genes was found to be

higher in foragers than nurses [30], while a study of whole-

body protein composition found that, out of five detected

antioxidant proteins, two were upregulated in foragers

and one was upregulated in nurses [31]. An age-controlled

comparison between workers and queens revealed that

young queens had higher levels of overall antioxidant

gene expression than young workers, while the opposite

was true in older individuals [30]. This age effect may be

due to the older workers being foragers rather than nurses;

the increased expression of antioxidant genes may there-

fore be due to the energetic demands of flight activity.

Finally, there is also only limited support for the hypoth-

esis that longer-lived castes invest more into repairing

damage after it occurs. While a whole-transcriptome RNA

sequencing study in honeybees revealed that winter bees

have a higher expression of DNA repair genes than do

nurses and foragers [32], a comparison between queens

and workers revealed that only one out of nine DNA

repair genes was significantly differentially expressed

between the two castes at all ages and that this gene

was upregulated in workers relative to queens [25].

What next?
Overall, the available data do not provide much support

for the view that lifespan differences among social insect

castes are primarily driven by differential somatic main-

tenance of oxidative damage. However, as the data are

still limited it would be premature to conclude that the

disposable soma theory and variation in somatic main-

tenance between individuals with contrasting lifespan

are irrelevant to patterns of social insect lifespan. Few

studies have so far investigated the accumulation of DNA

damage and mutations, while studies of damage accumu-

lation have compared different worker behavioural castes,

but not queens and workers, and have focused primarily

on the honeybee.

In model organisms such as flies, nematodes and mice,

there have also been mixed results concerning the

relevance of molecular damage to senescence

[11,33,34] (but see Refs. [35,36]). This has led to the

proposition of a new proximate theory of ageing [37],

which could have implications for social insects [38]. The

hyperfunction theory proposes that processes necessary

for growth or reproduction, typically regulated by nutri-

ent-sensitive pathways including Target of Rapamycin

(TOR), fail to become downregulated in older individ-

uals and lead to over-accumulation of biogenic products

and deleterious effects [39�,40]. Senescence is therefore

due to an excess of products that played important roles
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in a previous life stage, such as lipids and yolk [41].

Lifespan should therefore be linked to the rate at which

development progresses. For example, it has been

suggested that dietary restriction prolongs lifespan by

slowing the rate of growth and maturation [42]. Under

this scenario, the short lifespan of workers should be

associated with a faster progression of age-linked profiles

of physiological traits. This could be tested by comparing

proteomic or transcriptomic changes that accompany

ageing in both workers and queens, and asking whether

these changes occur at different rates. However, a diffi-

culty in applying the hyperfunction theory to social

insects comes from the behavioural caste transitions

which many species undergo. Hyperfunction is typically

applied to processes of growth and development which

result in the accumulation  of products causing senes-

cence in adulthood [40]. However, senescence in at least

one feature (learning ability) is slower in honeybee

nurses than in foragers [16,43] and appears to be reversed

if foragers revert to nursing [44]. How can hyperfunction

theory explain this? Senescence in foragers might be the

result of hyperfunction  of processes involved in the

behavioural caste transition, rather than in development

to adulthood. The changes in the levels of proteins and

hormones that occur during this transition may continue,

deleteriously, after transition is complete. The reverse

transition from foraging to nursing may then act to

reverse these trajectories and the senescence which

accompanied them. Nutrient signalling has been linked

to the nurse-forager transition [45], thus providing a

parallel with many of the processes that have been

proposed to be involved in hyperfunction.

This possibility has two implications. First, while senes-

cence is minimal in the nurse stage, it can be detected

[46]. If this senescence is due to the accumulation of

products that will subsequently be decreased during the

transition to foraging, then this transition should also

be associated with a transient reversal of senescence.

Second, pre-foraging and post-foraging nurses should

develop different senescent pathologies. This is because

the physiological trajectory from foraging to nursing is

likely to be different to that from larval development to

nursing, leading to the accumulation of different products

in the two groups.

In conclusion, social insects are increasingly recognised

as an interesting system to study patterns of ageing. An

important limitation of many of the studies that have

been performed is the lack of genetic tool to manipulate

patterns of gene expression between individuals with

contrasting lifespan. Progress in social insect genomics

and transcriptomics, as well as gene manipulation tech-

nologies such as RNA interference  (RNAi), now offer

opportunities to use these insects to study how genetic

and environmental contributions interact to control

ageing.
www.sciencedirect.com
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