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Short summary 

Plant growth is tightly controlled through the integration of environmental cues 

with the physiological status of the seedling. A recent study now proposes a model 

explaining how the plant hormone ethylene triggers an opposite growth response 

depending on the light environment. 

 

 

Being sessile, plants adapt to their surrounding environment by changing their shape 

and their development. Different environmental cues such as light quantity, quality or 

temperature are integrated with the physiological and hormonal status of the plant to 

trigger appropriate organ and tissue-specific responses [1]. The embryonic stem 

(hypocotyl) of Arabidopsis thaliana is a good model to study the crosstalk between 

environment and hormones in the control of growth [2, 3]. When seed germination 

occurs in darkness (in the soil), the hypocotyl quickly elongates to reach the light to 

allow the seedling to start its photoautotrophic life style (de-etiolation) [4]. In direct 

sunlight hypocotyl growth slows down and presents a rhythmic pattern controlled by 

the circadian clock [3]. Increased temperature or changes in the light quality indicative 

of the presence of neighbour plants also modulate the rate of hypocotyl elongation in de-

etiolated seedlings [5-9].  

 

Hypocotyl elongation depends on the interplay between at least 4 different classes of 

hormone: auxin, gibberellins, brassinosteroids and ethylene [2, 3]. They each have their 
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own perception and signalling pathways, in addition these pathways influence each 

other at different levels. Furthermore sensitivity to one hormone depends on the 

physiological status of the seedlings. This internal/hormonal status of the seedling is 

influenced by the environment explaining why the effect of hormone application 

depends on the surrounding environment. For instance auxin-induced hypocotyl 

elongation presents a typical bell-shaped dose response that is modulated by the light 

intensity [7, 10]. Recent work by Zhang et al revisits another environment-dependent 

hormone response: the influence of light on the effect of ethylene on hypocotyl 

elongation [11].   

 

Ethylene is a gaseous hormone well known for its effect on fruit ripening that also 

affects numerous aspects of plant development [12]. Treatment with an ethylene 

precursor triggers two opposite responses on Arabidopsis hypocotyls with inhibition of 

elongation in the dark and promotion of elongation in the light. Zhang et al now show 

that the ethylene-induced hypocotyl elongation requires not only the presence of light 

but also a certain quantity of light since in low fluence rates or in days with less than 8 

hours of light, ethylene treatments inhibit hypocotyl elongation [11].  

 

In the search for proteins involved in this response, Zhang et al tested whether the usual 

suspects linking light and hypocotyl elongation, the PIFs (Phytochrome Interacting 

Factor), were involved {Lau, 2010 #20}{Leivar, 2011 #7}. These proteins are bHLH 

transcription factors that interact with red/far red photoreceptors called the 

Phytochromes [13]. In red-rich environments typical of direct sunlight the active 

phytochromes inhibit the PIFs through phosphorylation and/or degradation, leading to 

reduced hypocotyl elongation [13]. However in conditions where phytochromes are 

inactive such as in darkness or in far-red rich environments (foliar shade), PIF proteins 

accumulate and promote hypocotyl growth. Interestingly depending on the stimulus 

PIFs either play redundant, additive or specific roles. For instance PIF1, 3, 4 and 5 are all 

required to promote full hypocotyl elongation in the dark [14, 15]. Proximity of 

neighbour plants is detected through changes in light quality (red/far-red ratio) and 

triggers hypocotyl elongation that is primarily dependent on PIF7 [9]. On the other hand 

promotion of hypocotyl elongation in response to a reduction of photosynthetically 

active radiation (PAR) indicative of direct shading mainly involves PIF4 and PIF5 [7, 16]. 
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Finally enhanced hypocotyl growth triggered by an increase in temperature is mediated 

by PIF4 in light-grown plants [5, 6]. 

  

Interestingly in constant light ethylene-induced hypocotyl elongation specifically 

requires PIF3 and not PIF1, 4 or 5 [11]. Ethylene perception directly activates PIF3 

expression through binding of an ethylene-responsive transcription factor called EIN3 

on the PIF3 promoter. While PIF3 is required for ethylene-induced hypocotyl elongation 

in the light it is not involved in the ethylene response in darkness, when hypocotyl 

elongation is inhibited. This cannot be explained by the redundant/additive activity of 

PIFs in darkness since ethylene still inhibits hypocotyl growth in a mutant lacking PIF1, 

3, 4 and 5 [11]. On the other hand a previous study has shown that over-expression of 

PIF5 leads to an overproduction of ethylene and reduced hypocotyl elongation 

specifically in darkness [17]. The crosstalk between PIFs and ethylene in the 

environmental control of growth may thus be more complex.  

 

The next question is how a hormone triggers an opposite response in the same organ 

depending on the light environment. It appears that this is controlled by the light-

environment and not by the hormone itself as ethylene triggers PIF3 expression in the 

dark as well as in the light [11]. However PIF3 protein accumulation is light controlled 

with the protein being more stable in the dark than in the light. Thus changes in PIF3 

protein accumulation due to increased gene expression have a more pronounced effect 

(in relative terms) in the light. However this does not explain why ethylene perception 

inhibits hypocotyl elongation in darkness. Zhang et al showed that ERF1, another target 

of EIN3, inhibits hypocotyl elongation and thus the activities of ERF1 and PIF3 

antagonize each other [11]. ERF1 expression is induced by ethylene but the protein is 

stabilised in the light and destabilized in darkness. Furthermore ERF1 over expression 

inhibits hypocotyl elongation in darkness as well as in the light. Thus the PIF3 and the 

ERF1 pathways are both activated by ethylene but depending on the light environment, 

one or the other dominates the growth response. The balance of these activities that is 

influenced by light ultimately determines the effect of ethylene on hypocotyl elongation 

[11].  
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As in many studies, these results raise new questions such as whether the ERF1 and the 

PIF3 pathways interact and if so how? Furthermore, if PIF3 is a major component in 

ethylene-mediated hypocotyl growth, which pathways are downstream of PIF3? Does 

PIF3 control the biosynthesis, transport or signalling of the growth-promoting hormone 

auxin as it has been recently shown for PIF4, 5 and 7 [7, 9, 10, 18, 19]? The role of PIF3 

in ethylene-mediated hypocotyl growth was analyzed by artificially increasing the 

ethylene production, how does this data relate to what happens in normal conditions 

with physiological level of ethylene? One possibility would be that in darkness when the 

soil is compact the seedlings produce the stress hormone ethylene leading to a 

thickening (and reduced lengthening) of the hypocotyl that may be required to grow 

through the soil [12]. In the light ethylene production has been shown to occur in 

shaded environments [20], this hormone production may contribute to the elongation 

response typical in shaded plants by triggering PIF3 expression that is required for full 

shade-induced growth [8]. 
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