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ABSTRACT

We present vec2pix, a deep neural network designed to predict categorical or continuous 2D subsurface
property fields from one-dimensional measurement data (e.g., time series), thereby offering a new
approach to solve inverse problems. The performance of the method is investigated through two
types of synthetic inverse problems: (a) a crosshole ground penetrating radar (GPR) tomography
experiment with GPR travel times being used to infer a 2D velocity field, and (2) a multi-well
pumping experiment within an unconfined aquifer with time series of transient hydraulic heads being
used to retrieve a 2D hydraulic conductivity field. For each type of problem, both a multi-Gaussian
and a binary channelized subsurface domain with long-range connectivity are considered. Using a
training set of 20,000 examples (implying as many forward model evaluations), the method is found
to recover a 2D model that is in much closer agreement with the true model than the closest training
model in the forward-simulated data space. Further testing with smaller training sample sizes shows
only a moderate reduction in performance when using 5000 training examples only. Even if the
recovered models are visually close to the true ones, the data misfits associated with their forward
responses are generally larger than the noise level used to contaminate the true data. If finding a
model that fits the data noise level is required, then vec2pix-based inversion models can be used
as initial inputs for more traditional multiple-point statistics inversion. Uncertainty of the inverse
solution is partially assessed using deep ensembles, in which the network is trained repeatedly with
random initialization. Overall, this study advances understanding of how to use deep learning to infer
subsurface models from indirect measurement data.

1 Introduction

Deep learning [DL, see, e.g., the textbook by 9] is currently having a profound impact on the Earth sciences [27} 132} 30].
Important advances have been made for clustering and classification tasks [e.g.,[37], forward proxy modeling [39]
and learning tailor-made model encodings of complex geological priors into low-dimensional latent variables for
geostatistical inversion [[15 [16] and simulation [22} [16} 3] purposes. In remote sensing and geophysics, significant
emphasis has been placed on how to turn low resolution images into high-resolution images using concepts of super
resolution [34]. Lately, researchers in active seismics have started to approach inversion by transferring reflection data
represented as images into geological images [[1} 123} 35]. However, most geoscientific data do not lend themselves to
a spatial representation that is visually similar to the type of final model that is sought. One example is hydrological
time-series (pressure, temperature and concentration) measured at one or several locations that are only indirectly
related to the underlying hydraulic conductivity field through a non-linear function. For the 2D-to-2D image transfer
case, DL architectures have been proposed within the influential pix2pix (and follow-up cycleGAN) image-to-image
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translation framework [[12}[38]]. Using a deep neural network (DNN) to turn geoscientific data vectors such as time-series
into 2D or 3D subsurface models is a challenging task because, in contrast to the pix2pix image-to-image translation
framework, there is no low-level information shared between the two considered domains. Independently of our work,
Earp and Curtis 5] recently proposed a 2D-to-2D DNN for travel time tomography that does not require common
low-level information to be present, which, in principle, makes it amenable to 1D-to-2D domain transfer. In this
contribution, we propose a 1D-to-2D network that takes one or multiple time series or other data represented in a
data vector and map them into a subsurface model. This implies that we bypass conventional inversion by instead
learning a mapping between 1D measurement data and a corresponding 2D subsurface model. Our presented examples
focus on inferring ground-penetrating radar (GPR) velocity and hydraulic conductivity for given 2-D channelized and
multi-Gaussian prior models, but the potential of the approach is much wider than this. To assess uncertainty in the
inverse solutions, we use the recently developed deep ensembles approach [6]. The results produced by our so-called
vec2pix algorithm demonstrate the feasibility of 1D-to-2D transfer, thereby allowing for many possible applications in
hydrology, geophysics and Earth system science.

The remainder of this paper is organized as follows. Section [2]summarizes related work and how it differs from our
method. Section[3]describes our proposed domain transfer network and its training, together with the considered inverse
problems. This is followed by section [4] that presents our domain transfer inversion results. In section[5] we discuss our
main findings and outline current limitations and possible future developments. Finally, section [6|provides a conclusion.

2 Related Work

Inversion using image-to-image domain transfer networks has been proposed in the context of 2D seismic inversion
[LL} 23} 135]]. In subsurface hydrology, the study by Sun [31] is a first step towards inverting steady-state groundwater
flow data with image-to-image domain translation. Both Mosser et al. [23]] and Sun [31] added loss functions to the
cycleGAN network by Zhu et al. [38] to promote reconstruction of paired images. The works listed so far require that
the two considered 2D domains share some low-level information. As written above, independently of our work Earp
and Curtis [5] proposed a 2D-to-2D transfer network for inversion of 2D travel time tomography data which does not
have that requirement. In this study, we explicitly cast the problem within a vector-to-image transform framework.
Our network is however conceptually similar to that of Earp and Curtis 5] in the sense that the 1D input processed
by our network gets projected in a 2D space at some point (see section [3.2). The main differences between our work
and the study by Earp and Curtis 5] are as follows. First our work is rooted within an informative prior framework
aiming at obtaining solutions with a high degree of prescribed geological realism [[18]. While Earp and Curtis [S] use a
completely uncorrelated prior parameter space, we consider the common case in hydrogeology and hydrogeophysics
where prior information on the considered subsurface structure is available under the form of a geologically-based prior
model. Compared to Earp and Curtis |3, this allows us to work with significantly higher-dimensional output model
domains and, perhaps more importantly, with much less training samples for learning the weights and biases of our
network. Indeed, we consider (at most) 20,000 training samples and model sizes of 128 x 64 and 160 x 256. In contrast,
Earp and Curtis 3] consider small 8 x 8 and 16 x 16 model domains, and use as many as 2.5 million training samples
(i.e., 125 times more). This has a high impact on computational feasibility as obtaining one training sample requires
one forward model evaluation. Second, Earp and Curtis [5] focus on 2D travel time tomography only while we also
consider a rather nonlinear transient groundwater flow problem. Lastly, we use a different neural network architecture.

3 Methods

3.1 Vector-to-image transfer network
Let us denote by Y the measurement data (vector) domain, and by X the model (2D subsurface property field) domain.
Our model consists of the mapping function, Gy x:

GYX SRY%RX. (1)

The Gy x operator predicts the model X corresponding to the measurement data vector y it is fed with, X = Gy x (y).
At training time, Gy x is learned using a 1; reconstruction loss:

win {Lree (Gyx,¥,¥)} = B [[lx—Gyx (¥)[l1]- &)

Px

3.2 Implementation

As stated above, the main methodological difference between our network architecture and most of those used previously
within the 2D-to-2D transform paradigm [[12} |38 |23} [31]] is that our code processes a 1D (input) vector to output a 2D
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array. Our generator network architecture is based on Zhu et al. [38]] and follows the state-of-the-art in computer vision.
To make our vec2pix generator suitable to the 1D-to-2D (Gy x ) domain transfer, we first project the input data vector
onto an increasingly larger number of lower-dimensional representations (or latent spaces or manifolds) using a series of
1D convolutions with increasing number of channels (or filters, see Figure[T]and Appendix A). Then we apply a reshape
operation to convert the final 1D representations into 2D representations before (i) further processing this information
through a series of so-called “ResNet" residual blocks [11] and (ii) projecting the derived latent spaces into increasingly
larger-dimensional representations while reducing their numbers, until the final 2D model is produced. This is achieved
by using a combination of 2D transposed convolutions and a final 2D convolution (Figure I)). The key step of going
from a 1D to a 2D domain therefore consists in the simple yet practical reshaping operation. Our generator is detailed in
[l Note that projecting the input data onto an increasingly large number of low-dimensional representations allows our
network to learn many different features from the input data. If not all of the different low-dimensional representations
are needed to perform the mapping between the considered domains, then during training the network is expected to
learn the relevant representations only.

The Adam optimization solver [14] was used for training. We used a learning rate of 0.00001 for the multi-Gaussian
case and a learning rate of 0.0002 for the categorical case (see section [3.3]for details about these two cases), and values
of 0.5 and 0.999 for the 8; and S5 momentum parameters. For the multi-Gaussian case, the vec2pix model realizations
were post-processed with a median filter (see section [3.3]for details). Unless stated otherwise, the number of epochs
used in training is 200 for the GPR case studies (see section and 300 for the flow case studies (see section ,
and the batch size is 25. For every experiment, we first used 20,000 examples of x; - y, pairs. To study the sensitivity of
our results to the training set size, we also considered training with 5,000 and 10,000 training examples for every case
study (see section[4.6). We used an additional small validation set of 100 pairs (unseen by the training algorithm) to
monitor the evolution of the loss function during training (see Figure [2). The indices of the input-output training pairs
are shuffled at the beginning of every epoch to help the gradient descent escape local minima. Furthermore, to make
training robust to the noise in the data, that is, to account for the data measurement error during training, each true data
vector used for training was corrupted with a new Gaussian white noise realization prior to the next epoch. With respect
to performance evaluation, an independent test set made of 1000 examples was used to assess the performance of the
proposed approach. Hence, inversion performance is assessed by evaluating how well each of those 1000 test models
are recovered when the trained Gy x transformer is fed with the corresponding noise-contaminated data.



A PREPRINT - NOVEMBER 11, 2020

Figure 1: Simplified illustration of the vec2pix architecture. The gray signifies the input data vector (left) and output
image or model (right). The 1D input data are standardized such that they have a zero-mean and unit variance. The
output models are in [—1, 1]. The orange and violet colors denote the 1D and 2D parts of the network, respectively.
The sketch is not to scale and the depths of the convolutions are either represented by a single extra unit length in
the horizontal direction (central orange rectangle and Resnet blocks) or are not represented at all (orange and violet
trapezoids). More specifically, y and X are the input vector and reconstructed model, respectively, G1p denotes the
series of 1D convolutions with increasing depths, r represents the 1D-to-2D reshape operation, Gop signifies the series
of 2D transposed convolutions and final 2D convolution with decreasing depths, and ResNet refers to the ensemble of
“ResNet" residual blocks.
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Figure 2: Convergence of the used (mean 1;) reconstruction loss for an independent test set of 100 samples and Case
study 4: transient pressure data and binary channelized domain. The Tr 5k, Tr 10k and Tr 20k labels denote training
with 5000 training samples, 10,000 training samples and 20,000 training samples, respectively.

3.3 Synthetic Inverse Problems

To test vec2pix, we consider both crosshole ground penetrating radar (GPR) data and transient pressure data acquired
during pumping. As for prior geologic models, we consider two common cases: a 2D multi-Gaussian prior and a 2D
binary channelized aquifer prior. Regarding the latter, the DeeSse (DS) MPS algorithm [20] was used to generate
the training and test models from the channelized aquifer training image proposed by Zahner et al. [36]. To produce
the multi-Gaussian realizations for training and test purposes, we used the circulant embedding method [4]. For the
multi-Gaussian case, the vec2pix predictions were postprocessed by application of a median filter with a kernel size of
either 3 (GPR case) or 5 (hydraulic case) pixels in each spatial direction. No postprocessing was applied to the vec2pix
predictions for the categorical case, except for thresholding before running the forward solver.

3.3.1 Crosshole GPR data

Crosshole GPR imaging uses a transmitter antenna to emit a high-frequency electromagnetic wave at a location in
one borehole and a receiver antenna to record the arriving energy at a location in another borehole. The considered
synthetic measurement data are first-arrival travel times for several transmitter and receiver locations. These data
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contain information about the GPR velocity distribution between the boreholes. The GPR velocity primarily depends
on dielectric permittivity, which is strongly influenced by water content and, consequently, porosity in saturated media
[28]]. The considered model domain is of size 128 x 64 with a cell size of 0.1 m, and our setup consists of two vertical
boreholes that are located 6.4 m apart placed at the left and right hand sides of the domain. Sources (left) and receivers
(right) are located between 0.5 and 12.5 m depth with 0.5 m spacing (Figures 3 and [3¢), leading to a total dataset of
y = dgpr of 625 travel times. The forward nonlinear ray-based response is simulated by the pyGIMLi toolbox [29]
using the Dijkstra method. The measurement error used to corrupt the data is a zero-mean uncorrelated Gaussian with a
standard deviation of 0.5 ns, which is typical for high-quality GPR field data.

For the binary channelized aquifer case, the channel and background facies are assigned velocities of 0.06 m ns~!

and 0.08 m ns !, respectively (Figure ). For the multi-Gaussian case, a zero-mean anisotropic Gaussian covariance
model with a variance (sill) of 0.5, integral scales in the horizontal and vertical directions of 2 m (20 pixels) and 4 m
(40 pixels), respectively, and anisotropy angle of 60° was selected. The model realizations, were then scaled in [—1, 1]
using the minimum and maximum pixel values over the 20,000 training models before the following relationship was
used to convert a scaled model, x, into a velocity model, xygr, = 0.06 + 0.02 (1 — x) m/ns (Figure ). For illustrative
purposes, the simulated data vectors corresponding to the models depicted in Figures [3p and [3¢ are shown in Figures

and (k.

3.3.2 Transient pumping data

Our second type of data consists of transient piezometric heads induced by pumping. The 80 x 128 aquifer domain
lies in the x — y plane with a grid cell size of 1 m and a thickness of 10 m. For the binary channelized aquifer case,
channel and matrix materials (see Figure ) are assigned hydraulic conductivity values, K, of 1 x 1073 m/s and 1
x 10~ m/s, respectively. For the multi-Gaussian case, the same geostatistical parameters as for the GPR setup are
used for log; (K), except that the mean is -3 and the variance 0.1. The assumed specific storage and specific yield of
the aquifer are 0.0003 m~*! and 0.3 (-), respectively. The MODFLOW-NWT [23] code is used to simulate unconfined
transient groundwater flow with no-flow boundaries at the upper and lower sides and a lateral head gradient of 0.01
(-) with water flowing in the z-direction. Four wells are sequentially extracting water for 20 days at a rate of 0.001
m?>/s (red dots in Figures[3p and d). The measurement data were formed by acquiring daily simulated heads in the four
pumping wells (red dots in Figures 3p and d) and nine measuring wells (white crosses in Figures [3p and [3d) during
the 80 days simulation period. The synthetic measurement data comprises y = dpjow Oof 1040 heads. The standard
deviation of the measurement error used to contaminate these data with a Gaussian white noise is set to 0.01 m. Figures
Mb and [id display the concatenated data vectors corresponding to the models depicted in Figures [3p and [3d.
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Figure 3: Four considered synthetic case studies. The GPR tomography case with (a) multi-Gaussian and (c) channelized
bimodal surface structures with red triangles and orange squares representing the GPR source and receiver positions,
respectively. The transient pumping cases with (b) multi-Gaussian and (d) channelized bimodal surface structures and
red dots and white crosses representing the pumping/observation and observation-only wells, respectively. The models
displayed in subfigures (a-d) are randomly chosen from the 20,000 training models considered for each of the four
examples.
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Figure 4: Simulated data corresponding to the training models depicted in Figure 3]
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3.4 Uncertainty Quantification

Most high-dimensional inverse problems are under-determined, implying that the mapping from noise-contaminated
data to a model is non-unique. For this reason, it is important to explore different mappings such that uncertainty in the
inverse solution can be assessed. Recent work on understanding the loss landscape of high-dimensional deep networks
[7, 6] has shown that building deep ensembles by training the network multiple times using random initialization
of weights and biases works well empirically, and is currently the most viable strategy for exploring multi-modal
landscapes. In particular, it has been found to outperform Monte Carlo dropout and various subspace sampling strategies,
which often drastically underestimate uncertainty [6]. Here we adopt such an ensemble framework to investigate
predictive uncertainty, using a small ensemble of five trained models. That said, we stress that uncertainty quantification
in the context of deep learning is still largely an unresolved problem.

4 Results

For each of the four considered case-studies, we investigate the performance of G'y x based on the independent
1 =1,---,1000 test pairs of model, x;, and data, y,. For each test model, x;, the root-mean-square error (RMSE)
between the associated data y; and the j = 1, --- ,20000 training data vectors y; is computed and the minimum RMSE
over the resulting 20,000 values is retained as the smallest distance in data space between the considered test model and
the training set. On this basis, we specifically compare the true and predicted model for cases where:

1. The true model is taken as the most different test model from the set of training models in the data space.

2. The true model is taken as the second most different test model from the set of training models in the data
space.

3. A representative model of the test set is chosen and this procedure is repeated four times.

Cases 1 and 2 serve to highlight the capacity of vec2pix to generalize for cases that are distinctively different from
the training data. This leads to six cases where differences between true models and those predicted by vec2pix are
scrutinized. For each case we perform two predictions (#1 and #2) based on two different noise realizations used to
corrupt the true measurement data. This is done to assess the impact of the measurement data noise realization on
prediction accuracy, which should be limited because of our robust training strategy. Thus, the smaller the differences
between these two model predictions the better. These two predictions are not be confounded with our main uncertainty
quantification estimates which, a stated earlier, are based on deep ensembles (see section @ Furthermore, the
complete distribution of 1000 RMSEs between the test data and the data simulated by feeding the forward solver with
the models predicted by G'y x for these test data is also considered. In addition, two similarity indices between true
and generated vec2pix models are computed for the 1000 test examples: the 1; norm, and the widely-used structural
similarity index (SSIM) [33]
2,Ufu,ufv + C120—uv +c2

P2+ pi +cio2 + 0 + o’
where u and v denote two IV, x N,, windows subsampled from x and X, respectively, x and o2 are the mean and variance
of u and v, oy represents the covariance between u and v, and ¢; = 0.01 and ¢y = 0.03 are two small constants [33]].
Averaged over all u and v sliding windows, the mean SSIM ranges from -1 to 1, with 1 implying that the two compared
images are identical. Similarly to Sun [31] and Earp and Curtis (3], we set Nj, = 7.

SSIM (u,v) = 3)

4.1 Case study 1: crosshole GPR data and multi-Gaussian model domain

The vec2pix results for the GPR first-arrival travel time tomography within a multi-Gaussian domain are presented in
Figure [5]and Table [I] for the six selected true models, while Table [2]lists the corresponding performance statistics for the
1000 test examples. The produced vec2pix models always induce a lower data misfit and are more similar to the true test
models than the corresponding closest training models in data space (Tables[I]and 2). For instance, the vec2pix models
display a two times smaller 1;-norm than the closest training models in data space (Table[I). Also, the SSIMs of the
vec2pix models are 10% to 30% larger than those of the closest training models in data space (Tables[I|and [2). Using
20,000 training examples, it is consequently a better option to train and use vec2pix to invert the “measurement” data
than to simply pick up the training model with the best corresponding data fit. This shows that vec2pix can generalize.
The data RMSE of the forward-simulated vec2pix realizations are globally in the 0.5 ns - 0.9 ns range with a median
of 0.58 ns (Table[2)), which is reasonably close to the “true” noise level of 0.5 ns used to contaminate the data (“true"
measurement error). Overall, as compared to using the closest training model, vec2pix allows for a reduction in data
RMSE by a factor of two for the considered multi-Gaussian problem (Table[T). However, the vec2pix models are a bit
too smooth.



z-direction (m) z-direction (m)

z-direction (m)

|_|

w

o)}

©o

N

6

9

6

9

A PREPRINT - NOVEMBER 11, 2020

(@) True (b) Closest TR (c) Pred #1 (d) Pred #2 (m) True (n) Closest TR (o) Pred #1 (p) Pred #2

0.0750

0.0725

0.0700

0.0675 .

0.0650

0.0625

0.076
0.074
0.072
0.070
0.068
0.066
0.074
0.072
0.070
0.068
0.066

X~ d|rect|on (m) X- d|rect|on (m) X- dlrect|on (m) X- dlrectlon (m)

Velocity (m/ns) Velocity (m/ns)

Velocity (m/ns)

3 3 6
x-direction (m) x-direction (m) x-direction (m) x-direction (m)

Figure 5: Results for crosshole GPR data in a multi-Gaussian domain. (a-d) The true model is the most different test model from
the 20,000 training models in data space: (a) true model, (b) closest training model in data space, (c, d) predicted models from two
different noise realizations (Pred #1 and Pred #2). The same plotting style is adapted for cases (e-h) where the true model is the
second most different test model in data space, and (i-1), (m-p), (g-t) and (m-x) for four representative test models. Table|I| lists the
prediction quality statistics associated with the models displayed in the (a - x) subfigures.
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Table 1: Statistics of the results obtained for crosshole GPR data in a multi-Gaussian domain. The naming convention is the same
and the letters (a-x) refer to the models in Figure[d] RMSEdas. denotes the RMSE in data space, 11 refers to the 11 -norm and SSIM
to the structural similarity index. The 1;-norm is calculated in terms of velocity (m/ns) while the SSIM is computed in the rescaled
[0, 1] domain. Closest TR means the closest training model in data space and Predicted #1 and Predicted #2 signify predicted models
from two different noise realizations.

True model RMSEq.t, (ns) 1; (m/ns)  SSIM (-)

(a) True 0.5 0 1

(b) Closest TR 1.73 18.92 0.72

(c) Predicted #1 0.72 8.07 0.92

(d) Predicted #2 0.73 8.10 0.92
(e) True 0.5 0 1

(f) Closest TR 1.44 15.35 0.77

(g) Predicted #1 0.63 6.26 0.93

(h) Predicted #2 0.68 6.60 0.92
(i) True 0.5 0 1

(j) Closest TR 0.98 13.31 0.79

(k) Predicted #1 0.56 6.26 0.93

(1) Predicted #2 0.59 5.89 0.94
(m) True 0.5 0 1

(n) Closest TR 1.01 12.37 0.82

(o) Predicted #1 0.60 7.20 0.93

(p) Predicted #2 0.63 7.23 0.92
(q) True 0.5 0 1

(r) Closest TR 1.16 13.17 0.78

(s) Predicted #1 0.58 5.89 0.93

(t) Predicted #2 0.61 6.65 0.92
(u) True 0.5 0 1

(v) Closest TR 1.05 12.65 0.81

(w) Predicted #1 0.63 7.83 0.90

(x) Predicted #2 0.67 7.55 0.91

Table 2: Statistics for the case of crosshole GPR data in a multi-Gaussian domain when considering the 1000 independent test
models. The comparison is made between the predicted model (Predicted #1) and the closest training model in data space (Closest
TR) within the training set of 20,000 examples using the RMSE in data space ( RMSEqata), the 11-norm (11) and the structural
similarity index (SSIM). For each metric, the minimum (Min), median (Median) and maximum (Max) values are reported together
with the 10%2, 25", 75*® and 90" percentiles (P10, P25, P75, P90), respectively. The TR size variable signifies the number of
training examples used to train vec2pix.

Model TR size Min P10 P25 Median P75 P90 Max

RMSEdata (HS)

Closest TR 20,000 0.77 0.92 0.97 1.03 1.10 1.16 1.73
Predicted 20,000 0.50 0.55 0.56 0.58 0.61 0.63 092
Predicted 10,000 0.53 0.59 0.61 0.64 0.68 0.73 1.12
Predicted 5,000 056 0.63 0.67 0.81 1.08 1.39 2.24

1; (m/ns)

Closest TR 20,000 6.92 10.57 1141 1236 13.56 14.56 19.27
Predicted 20,000 3.68 5.19 5.80 6.50 7.35 828 12.16
Predicted 10,000 429 577 647 7.24 8.16 9.05 1348
Predicted 5,000 420 6.48 7.11 7.97 8.83 10.00 13.14

SSIM (-)

Closest TR 20,000 0.66 0.75  0.78 0.80 0.83 084 0091
Predicted 20,000 0.87 091 0.92 0.93 094 095 096
Predicted 10,000 0.84 0.89 091 0.92 093 094 096
Predicted 5,000  0.84 0.88 0.89 0.91 0.92 0.93 0.95

11



z-direction (m)

m)

z-direction (

z-direction (m)

0

6

6

9

6

9

(a)

A PREPRINT - NOVEMBER 11, 2020

4.2 Case study 2: crosshole GPR data and binary channelized domain

Results for travel time tomography within a binary channelized domain are displayed in Figure[6] Table[3]and Table

These results are in line with those obtained for the multi-Gaussian case: the predicted test models show lower

data RMSE, lower 1; and larger SSIM statistics than the closest training models in data space. Also, the predicted test
models look visually close to their true counterparts. With a median data RMSE of 0.87 ns and min and max data
RMSE:s of 0.58 ns and 1.98 ns (Table[d)), the predicted test models induce data RMSE values that are significantly
larger than the “true" noise level of 0.5 ns. Nevertheless, vec2pix permits reduction in data RMSE of a factor two to
three compared to the closest corresponding training model (Table [3). The associated SSIM indices are smaller than for
the multi-Gaussian case: the P10 and median SSIM values are 0.72 and 0.81 (Table[d) against 0.91 and 0.93 for the
multi-Gaussian case (Table[2). Globally, despite leading to larger data RMSEs compared to the prescribed noise level
of 0.5 ns, the vec2pix models are similar to the true ones (Figure @ and Tables E])
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Figure 6: Results for crosshole GPR data in a binary channelized domain. (a-d) The true model is the most different test model
from the 20,000 training models in data space: (a) true model, (b) closest training model in data space, (c, d) predicted models from
two different noise realizations (Pred #1 and Pred #2). The same plotting style is adapted for cases (e-h) where the true model is the
second most different test model in data space, and (i-1), (m-p), (g-t) and (m-x) for four representative test models. Tablelists the
prediction quality statistics associated with the models displayed in the (a - x) subfigures.
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Table 3: Statistics of the results obtained for crosshole GPR data in a binary channelized domain. The naming convention is the
same and the letters (a-x) refer to the models in Figure[5] RMSEqata denotes the RMSE in data space, 11 refers to the 1;-norm
and SSIM to the structural similarity index. The 1;-norm is calculated in terms of velocity (m/ns) while the SSIM is computed in
the rescaled [0, 1] domain. Closest TR means the closest training model in data space and Predicted #1 and Predicted #2 signify
predicted models from two different noise realizations.

True model RMSEg.t, (ns) 1; (m/ns)  SSIM (-)

(a) True 0.5 0 1

(b) Closest TR 3.50 45.36 0.40

(c) Predicted #1 1.05 11.04 0.71

(d) Predicted #2 1.06 10.98 0.72
(e) True 0.5 0 1

(f) Closest TR 3.06 42.42 0.41

(g) Predicted #1 1.31 14.42 0.67

(h) Predicted #2 1.26 15.20 0.66
(i) True 0.5 0 1

(j) Closest TR 2.46 49.28 0.39

(k) Predicted #1 1.24 9.90 0.78

(1) Predicted #2 0.90 10.50 0.77
(m) True 0.5 0 1

(n) Closest TR 2.14 20.06 0.60

(o) Predicted #1 0.99 10.70 0.74

(p) Predicted #2 0.98 9.46 0.77
(q) True 0.5 0 1

(r) Closest TR 1.20 14.92 0.70

(s) Predicted #1 0.66 4.90 0.87

(t) Predicted #2 0.61 4.52 0.88
(u) True 0.5 0 1

(v) Closest TR 2.54 24.66 0.64

(w) Predicted #1 0.96 5.24 0.86

(x) Predicted #2 0.90 5.88 0.84

Table 4: Statistics for the case of crosshole GPR data in a binary channelized domain when considering the 1000 independent test
models. The comparison is made between the predicted model (Predicted #1) and the closest training model in data space (Closest
TR) within the training set of 20,000 examples using the RMSE in data space ( RMSEqata), the 11-norm (11) and the structural
similarity index (SSIM). For each metric, the minimum (Min), median (Median) and maximum (Max) values are reported together
with the 10*2, 25", 75*® and 90*® percentiles (P10, P25, P75, P90), respectively. The TR size variable signifies the number of
training examples used to train vec2pix.

Model TR size Min P10 P25 Median P75 P90 Max
RMSEdata (HS)

Closest TR 20,000 0.77 1.31 1.53 1.78 2.09 2.35 3.50
Predicted 20,000 0.58 0.70 0.77 0.87 1.00 1.13 1.98
Predicted 10,000 0.56 0.79 0.89 1.02 1.17 1.40 2.36
Predicted 5,000 0.58 0.83 0.94 1.11 1.32 1.57 2.59

1; (m/ns)

Closest TR 20,000 4.82 13.88 17.59 2242 2897 3529 56.74
Predicted 20,000 2.06 4.46 6.04 7.76 10.03 1248 24.88
Predicted 10,000 3.06 5.80 7.48 9.70 12.53 15.16 25.20
Predicted 5,000 278 6.18 8.36 10.89 14.60 17.46 27.32

SSIM (-)

Closest TR 20,000 0.32 0.50 0.56 0.63 0.70 0.75 0.90
Predicted 20,000 0.59 0.72 0.77 0.81 0.85 0.88 0.94
Predicted 10,000 0.57 0.69 0.73 0.78 0.82 0.86 0.92
Predicted 5,000 0.54 0.66 0.71 0.77 0.81 0.85 0.93
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4.3 Case study 3: transient pressure data and multi-Gaussian domain

For the transient pumping experiment within a multi-Gaussian domain, the vec2pix models are visually close to the true
ones (Figure[7), even if they appear slightly too smooth. The RMSEs in data space produced by the vec2pix models
are overall similar to those produced by the closest training models (Tables[5]and [6]), and are mostly distributed in the
0.02 m - 0.03 m range that is to be compared with the “true" noise level of 0.01 m. However, the model reconstruction
statistics, 1;-norm and SSIM, are substantially better for the vec2pix models than for the closest training models in
data space (Tables [5]and[6). Indeed, the vec2pix models display 40% to 60% smaller 1;-norms and 15% to 25% larger
SSIMs.

Table 5: Statistics of the results obtained for transient subsurface pressure data in a multi-Gaussian domain. The naming convention
is the same and the letters (a-x) refer to the models in Figure@ RMSEuata denotes the RMSE in data space, 1; refers to the 1; -norm
and SSIM to the structural similarity index. The l;-norm is calculated in terms of log,, K (-) while the SSIM is computed in
the rescaled [0, 1] domain. Closest TR means the closest training model in data space and Predicted #1 and Predicted #2 signify
predicted models from two different noise realizations.

True model RMSEgata (m) 1 (m) SSIM (-)

(a) True 0.010 0 1

(b) Closest TR 0.060 2807 0.79

(c) Predicted #1 0.023 1837 0.90

(d) Predicted #2 0.021 1788 0.90
(e) True 0.010 0 1

(f) Closest TR 0.049 2886 0.77

(g) Predicted #1 0.054 1559 0.92

(h) Predicted #2 0.041 1629 0.91
(i) True 0.010 0 1

(j) Closest TR 0.027 2848 0.75

(k) Predicted #1 0.018 1612 0.93

(1) Predicted #2 0.021 1503 0.93
(m) True 0.010 0 1

(n) Closest TR 0.022 3575 0.76

(0) Predicted #1 0.017 1913 0.89

(p) Predicted #2 0.023 1820 0.90
(q) True 0.010 0 1

(r) Closest TR 0.024 3122 0.74

(s) Predicted #1 0.017 1954 0.88

(t) Predicted #2 0.019 2048 0.88
(u) True 0.010 0 1

(v) Closest TR 0.020 3644 0.76

(w) Predicted #1 0.016 1524 0.91

(x) Predicted #2 0.013 1442 0.91

14



A PREPRINT - NOVEMBER 11, 2020

Table 6: Statistics for the case of transient subsurface pressure data in a multi-Gaussian domain when considering the 1000
independent test models. The comparison is made between the predicted model (Predicted #1) and the closest training model in data
space (Closest TR) within the training set of 20,000 examples using the RMSE in data space ( RMSEqata), the 1;-norm (1) and the
structural similarity index (SSIM). For each metric, the minimum (Min), median (Median) and maximum (Max) values are reported
together with the 100, 250, 750 and 90t percentiles (P10, P25, P75, P90), respectively. The TR size variable signifies the number
of training examples used to train vec2pix.

Model TR size  Min P10 P25 Median P75 P90 Max

RMSEdata (m)

Closest TR 20,000 0.015 0.019 0.021 0.023 0.026 0.029 0.061
Predicted 20,000 0.011 0.016 0.019 0.024 0.031 0.039 0.070
Predicted 10,000 0.011 0.017 0.020 0.025 0.034 0.046 0.091
Predicted 5,000 0.013 0.021 0.026 0.033 0.043 0.055 0.096

1y (m)

Closest TR 20,000 1819 2408 2616 2848 3088 3321 3984
Predicted 20,000 1273 1527 1623 1753 1894 2035 2408
Predicted 10,000 1176 1586 1703 1832 1983 2130 2597
Predicted 5,000 1203 1600 1734 1929 2108 2294 3055

SSIM (-)

Closest TR 20,000  0.58 0.71 0.74 0.76 0.79  0.81 0.86
Predicted 20,000  0.81 0.86  0.88 0.89 090 092 094
Predicted 10,000 0.80 0.86 0.87 0.88 0.90 091 0.93
Predicted 5,000 0.80 085 0.86 0.88 0.89 090 093
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Figure 7: Results for transient subsurface pressure data in a multi-Gaussian domain. (a-d) The true model is the most different test
model from the 20,000 training models in data space: (a) true model, (b) closest training model in data space, (c, d) predicted models
from two different noise realizations (Pred #1 and Pred #2). The same plotting style is adapted for cases (e-h) where the true model
is the second most different test model in data space, and (i-1), (m-p), (g-t) and (m-x) for four representative test models. Tablelists
the prediction quality statistics associated with the models displayed in the (a - x) subfigures.
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4.4 Case study 4: transient pressure data and binary channelized domain

The hydraulic case with a binary channelized domain is by far the most challenging as the relationship between a binary
channelized model and the resulting simulated transient flow data is highly nonlinear. As a consequence, across the
20,000 training models, the signal-to-noise-ratio (SNR) defined as the ratio of the average RMSE obtained by drawing
prior realizations from the training image by MPS simulation to the noise level is in the 60 - 100 range. It is seen that
the vec2pix models are in better visual agreement with the true model than the closest training models in data space
(Figure[8). This is confirmed by two to three times smaller 1;-norms and 10% to 220% larger SSIM indices (Tables
and ). Even if vec2pix produces models that are of much better quality than the closest training models in data space,
the resulting RMSEs in data space are often not better than those produced by the closest training models in data space.
This is because a change of facies in the surroundings of a pumping well (red dots in Figure [3d) can dramatically affect
the corresponding simulated data.

Table 7: Statistics of the results obtained for transient subsurface pressure data in a binary channelized domain. The naming
convention is the same and the letters (a-x) refer to the models in Figure[7]] RMSEqata denotes the RMSE in data space, 1; refers
to the 1;-norm and SSIM to the structural similarity index. The 1;-norm is calculated in terms of log,, K (-) while the SSIM is
computed in the rescaled [0, 1] domain. Closest TR means the closest training model in data space and Predicted #1 and Predicted #2
signify predicted models from two different noise realizations.

True model RMSEgata (m) 17 (m) SSIM (-)

(a) True 0.010 0 1

(b) Closest TR 0.385 9908 0.21

(c) Predicted #1 0.589 2504 0.67

(d) Predicted #2 0.590 2594 0.67
(e) True 0.010 0 1

(f) Closest TR 0.281 8180 0.28

(g) Predicted #1 0.363 2536 0.64

(h) Predicted #2 0.215 2246 0.65
(i) True 0.010 0 1

(j) Closest TR 0.052 8028 0.32

(k) Predicted #1 0.229 3068 0.64

(1) Predicted #2 0.067 2950 0.65
(m) True 0.010 0 1

(n) Closest TR 0.037 2754 0.71

(o) Predicted #1 0.021 1338 0.81

(p) Predicted #2 0.033 1420 0.80
(q) True 0.010 0 1

(r) Closest TR 0.027 3398 0.68

(s) Predicted #1 0.014 1638 0.80

(t) Predicted #2 0.014 1624 0.80
(u) True 0.010 0 1

(v) Closest TR 0.067 9774 0.20

(w) Predicted #1 0.379 3418 0.60

(x) Predicted #2 0.416 3334 0.60
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Table 8: Statistics for the case of transient subsurface pressure data in a binary channelized domain when considering the 1000
independent test models. The comparison is made between the predicted model (Predicted #1) and the closest training model in data
space (Closest TR) within the training set of 20,000 examples using the RMSE in data space ( RMSEqata), the 1;-norm (1) and the
structural similarity index (SSIM). For each metric, the minimum (Min), median (Median) and maximum (Max) values are reported
together with the 100, 250, 750 and 90t percentiles (P10, P25, P75, P90), respectively. The TR size variable signifies the number
of training examples used to train vec2pix.

Model TR size  Min P10 P25 Median P75 P90 Max

RMSEdata (m)

Closest TR 20,000 0.011 0.024 0.030 0.043 0.064 0.092 0.385
Predicted 20,000 0.011 0.016 0.020 0.031 0.083 0.248 0.713
Predicted 10,000 0.011 0.018 0.023 0.039 0.105 0.276 8.981
Predicted 5000 0.011 0.020 0.028 0.051 0.128 0.308 8.981

1y (m)

Closest TR 20,000 548 2335 3251 4359 5665 7049 11160
Predicted 20,000 316 1064 1436 1990 2559 3222 6634
Predicted 10,000 348 1174 1608 2154 2838 3504 6692
Predicted 5,000 456 1316 1796 2415 3171 4015 6750

SSIM (-)

Closest TR 20,000  0.11 0.37 047 0.55 0.64 0.72 0.89
Predicted 20,000 036 0.62 0.67 0.73 0.79 0.84 0.93
Predicted 10,000 034 059  0.66 0.71 0.77 0.82 0.93
Predicted 5,000 034 056 0.62 0.70 0.76  0.81 0.91
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Figure 8: Results for transient subsurface pressure data in a binary channelized domain. (a-d) The true model is the most different
test model from the 20,000 training models in data space: (a) true model, (b) closest training model in data space, (c, d) predicted
models from two different noise realizations (Pred #1 and Pred #2). The same plotting style is adapted for cases (e-h) where the true
model is the second most different test model in data space, and (i-1), (m-p), (g-t) and (m-x) for four representative test models. Table
[Mlists the prediction quality statistics associated with the models displayed in the (a - x) subfigures.
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4.5 Predictive Uncertainty

To assess predictive uncertainty using deep ensembles [[7], we trained the networks five times using random initialization
and present the results obtain for the multi-Gaussian (Figure[9]and Table[9) and binary channelized hydraulic cases
(Figure[T0]and Table[I0). These estimates should only be considered qualitatively as it is based on a small ensemble
of five members and the resulting errors only refer to errors induced by training the neural networks. For instance,
it is difficult to see a clear pattern for the multi-Gaussian case, except for an expected general tendency of larger
uncertainties away from the measurement points. For the categorical case, the predictive uncertainty is as expected the
largest at boundaries between the two categories [c.f., Figure 3 in[36] with the thickness of the uncertainty bands being
the largest at the sides of the domain, that is, the furthest away from the measurement points. Moreover, all members of
the considered ensembles capture the same main spatial patterns (Figures [9]and[T0) and show comparable performance

(Tables 9] and [T0).

Table 9: Statistics of the ensemble-based uncertainty quantification results obtained for transient subsurface pressure data in a
multi-Gaussian domain. The True and Mean models are those depicted in Figure[§] The mean model is obtained from the deep
ensemble models #1 to #5. RMSEqat. denotes the RMSE in data space, 1; refers to the 1;-norm and SSIM to the structural similarity
index. The 1;-norm is calculated in terms of log,, K (-) while the SSIM is computed in the rescaled [0, 1] domain.

True model RMSEgata (m) 1y (m) SSIM (-)

(a) True 0.010 0 1
(b) Mean 0.032 1858 0.71
(d) Model #1 0.023 1837 0.73
(e) Model #2 0.040 1965 0.68
(f) Model #3 0.025 1949 0.67
(g) Model #4 0.032 1876 0.73
(h) Model #5 0.028 2073 0.67
(i) True 0.010 0 1
(j) Mean 0.068 1597 0.73
(1) Model #1 0.054 1559 0.76
(m) Model #2 0.046 1779 0.68
(n) Model #3 0.055 1513 0.72
(0) Model #4 0.059 1660 0.71
(p) Model #5 0.061 1922 0.64
(q) True 0.010 0 1
(r) Mean 0.016 1571 0.77
(t) Model #1 0.016 1525 0.75
(u) Model #2 0.020 1572 0.75
(v) Model #3 0.015 1795 0.72
(W) Model #4 0.018 1492 0.77
(X) Model #5 0.016 1752 0.74
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Table 10: Statistics of the ensemble-based uncertainty quantification results obtained for transient subsurface pressure data in a
binary channelized domain. The True and Mean models are those depicted in Figure[0] The mean model is obtained from the deep
ensemble models #1 to #5. RMSEqat, denotes the RMSE in data space, 1; refers to the 1;-norm and SSIM to the structural similarity
index. The 1, is calculated in terms of log,, K (-) while the SSIM is computed in the rescaled [0, 1] domain.

True model RMSEgata (m) 13 (m) SSIM (-)

(a) True 0.010 0 1
(b) Mean 0.577 2492 0.67
(d) Model #1 0.590 2594 0.67
(e) Model #2 0.095 2908 0.66
(f) Model #3 0.267 2254 0.71
(g) Model #4 0.523 2912 0.64
(h) Model #5 0.523 1782 0.73
(i) True 0.010 0 1
(j) Mean 0.449 2321 0.62
(1) Model #1 0.216 2246 0.65
(m) Model #2 0.426 2558 0.63
(n) Model #3 0.183 2486 0.63
(0) Model #4 0.187 1988 0.67
(p) Model #5 0.233 2356 0.63
(q) True 0.010 0 1
(r) Mean 0.377 3046 0.60
(t) Model #1 0.416 3334 0.60
(u) Model #2 0.252 3422 0.58
(v) Model #3 0.271 3226 0.59
(w) Model #4 0.049 2520 0.64
(X) Model #5 0.397 2728 0.63
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Figure 9: Predictive uncertainty of inverse mapping using deep ensembles associated with the previously selected six true models
for the case with transient subsurface pressure data and a multi-Gaussian domain. The True label indicates the true model while the
Mean and STD labels denote the mean predicted model and its associated standard deviation map calculated over an ensemble of five
members. Table[]lists the prediction quality statistics associated with the mean model and the five ensemble models.

22



A PREPRINT - NOVEMBER 11, 2020

—~ 0 0.98
£

-2

S

54

o

-_56

>~8 0
—~ 0 0.98
£

c2-

S

t 49

o

-_56

>8 0
—~0 0.98
£

-2

S

54

o

-_56

g 0
0 0.98
£

z2

S

54

o

507

>~8 0
—~0 0.98
£

z2

o

4

o

-_56

>8 0
—~ 0 0.98
£

-2

(o]

= 4

o

-_56

>8 0

x-direction (m) x-direction (m) x-direction (m)

Figure 10: Predictive uncertainty of inverse mapping using deep ensembles associated with the previously selected six true models
for the case with transient subsurface pressure data and a binary channelized domain. The True label indicates the true model while
the Mean and STD labels denote the mean predicted model and its associated standard deviation map calculated over an ensemble of
five members. Table[T0]lists the prediction quality statistics associated with the mean model and the five ensemble models.
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4.6 Effect of the Size of the Training Set

The experiments described in sections[d.1|to[d.4] were repeated using 5000 and 10,000 training examples to train vec2pix.
The resulting peformance statistics for the same true models as those considered before are reported in Tables [2] 4 [6]
and[8] Compared to using a training set size of 20,000, reducing the size of the training set degrades performance only
moderately. For instance, it remains a better strategy to train vec2pix with 5000 training examples than to pick up the
best model in the data space among 20,000 examples. Figures[TT]and[I2]depict models produced by vec2pix when
trained with 5000 training examples for the case of a binary channelized model domain. Even if the results are less good
than the corresponding results in Figures [p]and [§]for 20,000 training examples, we still find that the produced models
are visually close to the true models. Typical evolutions of the 1; loss during training are depicted in Figure 2] for the
three training set sizes and the case of transient flow within a binary channelized model domain (Case study 4, section
[.4). It is observed that for every training set size the major 1; reduction occurs within the first 50 - 100 training epochs.

True (b) Closest TR (c) Pred #1 (d) Pred #2 (m) True (n) Closest TR (o) Pred #1 (p) Pred #2

i (u) (v) L (w) (x)
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Figure 11: Results for crosshole GPR data in a binary channelized domain when vec2pix is trained with 5000 training examples
only. (a-d) The true model is the most different test model from the set of 20,000 training models in data space: (a) true model, (b)
closest training model in data space, (c, d) predicted models from two different noise realizations (Pred #1 and Pred #2). The same

plotting style is adapted for cases (e-h) where the true model is the second most different model test model in data space, and (i-1),

(m-p), (g-t) and (m-x) for four representative test models.
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Figure 12: Results for transient subsurface pressure data in a binary channelized domain when vec2pix is trained with 5000 training
examples only. (a-d) The true model is the most different test model from the set of 20,000 training models in data space: (a) true
model, (b) closest training model in data space, (c, d) predicted models from two different noise realizations (Pred #1 and Pred #2).
The same plotting style is adapted for cases (e-h) where the true model is the second most different model test model in data space,
and (i-1), (m-p), (g-t) and (m-x) for four representative test models.
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4.7 Pure Regression Versus Adversarial Learning

Previous geoscientific applications of deep domain transfer based on the pix2pix - cycleGAN framework relied on
adversarial training [8] of Gy x. We have done so herein too and, as described below, noticed no real added value
of using adversarial learning. We tested with the Wasserstein generative adversarial network [WGAN, 2] training
framework, in which the Wasserstein distance between the probability distributions of the true and generated data is
minimized. Furthermore, we used the Wasserstein GAN with gradient penalty [WGANGP, [10] which has been shown
to further stabilize training compared to the WGAN.

The full model now consists of the mapping function, G'y x with an associated critic function, D x:
Gyx :RY - R¥ Dy : R* - [0,1]. 4)

The critic or discriminator, D x, tries to distinguish between the true and predicted models, x and X. For this experiment
we used a fully convolutional Dx such as in Laloy et al. [16]. At training time, Gy x and Dx are jointly learned using
the sum of two losses: an adversarial loss and a reconstruction loss. The motivation for using an adversarial loss is to
ensure that a realistically-looking X model is predicted for any given y vector, while as for pure regression training the
reconstruction loss is required to enforce that each X is in close agreement with its corresponding x.

The WGANGP objective function is given by
Lwean (Gyx,Dx,y,x) = E [Dx (Gyx (y))] - E [Dx (x)]+

Y~Py X~ Px

. 2 o)
Aar B [(I9Dx ()]l = 17]

where py is sampling uniformly along straight lines between pairs of points sampled from the data distribution, py, and
the generator distribution, pz. This means that the X models are interpolations between the real, X, the and generated, X,
models. The penalty coefficient, Agp, is set to 10 [10].

Combining equations (2)) and (5), the full objective function for training vec2pix becomes

min max { Lwcan (Gyx, Dx, ¥, X) + ArecLree (Gyx, ¥, X)}, (6)
Gyx Dx

where ). determines the relative importance of each objective. Extensive testing revealed that )., needs to be
set to a rather large value to get the most accurate reconstruction: Ayec > 10%. Given the actual values taken by
Lwean (Gyx,Dx,y,x) and ApecLrec (Gy x,Y, X), this means that the adversarial loss has virtually no influence on
the total loss function, and therefore, adversarial training is not needed for the problems considered herein.

5 Discussion

We have introduced vec2pix, a deep neural network for predicting 2D subsurface property fields from one-dimensional
measurement data (e.g., time series). Our approach is illustrated using (1) synthetic crosshole first-arrival GPR travel
times for recovering a 2D velocity field, and (2) time series of transient hydraulic heads to infer a 2D hydraulic
conductivity field. For each problem, both a multi-Gaussian and a binary channelized subsurface domain with long-
range connectivity are considered. Training vec2pix is achieved using (at most) 20,000 training examples. For every
considered case, our method is found to retrieve a model that is much closer to the true model than the closest training
model in data space. Even if these recovered models generally look similar to the true models, the data RMSE obtained
when forward simulating the vec2pix models are higher than the prescribed noise level (that is, Gaussian white noise
used to contaminate the true data). This is particularly true for our fourth case study that considers a transient pumping
experiment within a channelized subsurface domain for which the relationship between model and simulated pressure
data is highly nonlinear and, to some extent, not unique. If data fitting to the noise level is needed, we suggest that the
solution derived by vec2pix could be used as a starting point for a multiple-point statistics (MPS) based inversion such
as sequential geostatistical resampling [e.g., 21]]. The computational cost incurred by this additional MPS-based step
will largely depend on the quality of the vec2pix-derived solutions.

Uncertainty quantification based on deep ensembles obtained by training the network repeatedly with random initial-
ization provides, at least, qualitatively-meaningful results. Although we only considered ensembles of five, we note
that the uncertainty grows as expected with distance from the measurement points. For the binary channelized case,
we reproduce similar patterns of uncertainty as found with completely different inversion approaches [36l], with the
uncertainty being the highest at channel boundaries. More work with larger deep ensembles is needed to understand
to which extent the uncertainty quantification can be interpreted more quantitatively. We clarify that the uncertainty
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assessed herein is not directly based on the data misfit, that is, the produced ensemble models may not induce a data
misfit that is in accordance with the underlying noise model. So a suggested above, for a pure Bayesian interpretation
of uncertainty it is necessary to use the vec2pix results as a starting point for a MCMC-based MPS inversion.

A training set of 20,000 examples was used as baseline in this study. Considering a larger training base would likely
further improve prediction quality, but at the cost of a larger computational demand since obtaining one training sample
requires one forward model evaluation. When reducing the training set to only 10,000 and 5000 training examples,
we find that the resulting reduction in performance is rather moderate. This suggests that vec2pix could be used with
less training examples than 20,000 either for less complex subsurface heterogeneities than those considered in this
work or if less accurate results are acceptable. In this trade-off between cost of building the training set and vec2pix
performance, the actual choice of the training size needs to be determined based on the test example and study objectives.
Furthermore, we stress that parallel computing can be used to build the training set since this is to be done offline. The
resulting speedup can thus be large if many parallel cores are available. Physics-informed deep networks [e.g.,[26] have
been shown to drastically reduce the training needs when building proxy forward models. Including such concepts for
inverse mapping could further reduce the training demand.

Prior studies relying on the pix2pix - cycleGAN framework [23| 31]] used adversarial training [8]], of which the current
standard is the Wasserstein generative adversarial network [WGAN, 2. We evaluated this alternative herein, using the
state-of-the-art Wasserstein GAN with gradient penalty [WGANGP, [10] method. Doing so, the total loss function used
to train Gy x becomes a weighted sum of two losses: the WGANGP loss (equation (5)) and the reconstruction loss
(equation @)). ‘We observed that for the considered case studies, adversarial training is not needed. Indeed, to achieve
the most accurate results the relative weight of the reconstruction loss compared to the WGANGP loss needs to be so
large that the WGANGP loss has negligible influence on the total loss function.

As an alternative to the vec2pix architecture, we tested for the flow problem if it is better to reshape the 1D input vector
to 2D at the entry of the network instead of achieving this reshaping in the center of our “diabolo"-like network (Figure
[I). Since padding the input 2D matrix is necessary, we considered two padding options: zero-padding and replication
padding. Our results consistently showed a 10% reduction in performance based on the 1; norm.

In field applications, the measurements presented to vec2pix will be contaminated with measurement errors. This is why
we trained vec2pix with noise-contaminated data. However, limited testing showed that noise-corrupting the training
data or not does not lead to important differences at test time, when the test data are noise-contaminated. That said,
we have used realistic, but low, noise levels to corrupt our data and the situation may change if larger noise values are
prescribed. Furthermore, real-world applications will bring more complexities such as forward model errors and the
degree of inadequacy of the prior geologic model (training image). This warrants further investigations with real data.

Lastly, our approach requires a new training of vec2pix for each measurement configuration (measurement locations
and acquisition times). This limitation does not apply to GAN-based inversion [[16}[17] where a GAN is trained once
for a given training image and inversions of different direct and indirect measurement datasets can be performed in the
latent space of the GAN [[L6l 24]. However, GAN-based inversion still has a substantial computational demand when
done probabilistically [[16], while the nonlinearity of the GAN transform may prevent deterministic gradient-based
inversion [[17]] from being effective.

6 Conclusion

We introduce vec2pix, a deep neural network for predicting categorical and continuous 2D subsurface property fields
from one-dimensional measurement data (e.g., time series) and, thereby, offering an alternative approach to solve
inverse problems. The method is illustrated using (1) synthetic first-arrival GPR travel times to infer a 2D velocity field,
and (2) synthetic time series of transient hydraulic heads to retrieve a 2D hydraulic conductivity field. For each problem
type, both a multi-Gaussian and a binary channelized subsurface domain with long-range connectivity are considered.
Using a training set of 20,000 examples, our approach always recovers a 2D model that is much closer to the true model
than the closest training model in the forward-simulated data space. Despite a moderate decrease in performance, this
remains also true when using only 5000 training examples. The inferred models generally look visually similar to the
true ones, but the data misfits obtained when forward simulating these models are generally larger than the noise level
used to corrupt the true data. To assess uncertainty, we have used a small deep ensemble, implying that the network is
trained multiple times with random initialization. Qualitatively-speaking, these uncertainties are in agreement with the
expected uncertainty patterns. This work opens up new perspectives on how to use deep learning to infer subsurface
models from indirect measurement data.
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8 Appendix: Network details

The Gy x network is made of convolutions, transposed convolutions and a series of “ResNet" residual blocks [[L1]. We
use 6 residual blocks for cases involving binary images (or models) and 9 residual blocks for cases involving continuous
images. Our used activation functions are either rectified linear unit: ReLU (maxq ,,) or hyperbolic tangent: Tanh,
and we use reflection padding in the first and last layers of Gy x. Let coq7 — s1 — kinl — kous64 — pO denote a 7 x 7
2D Convolution-InstanceNorm-ReLU layer with &;,, = 1 incoming channels (or filters), k.t = 64 outgoing channels,
stride 1 and zero padding. We call cozq7 — s1 — ki1 — kout64 — p0 the same layer without normalization and with a
Tanh activation function. Furthermore, tcoq signifies a 2D Transposed Convolution-InstanceNorm-ReLLU, opl means
output padding of 1 and R4 — k512 represents a residual block that contains two 3 x 3 2D convolutional layers
with InstanceNorm and k£ = 512 channels on both layers, and a ReLU activation function on the first layer. Lastly,
Re (zy, 2.) and Fla mean reshaping a vector into a z,. X z. array and flattening an 2D array, respectively. From input
to output layer, our generator is built as follows

* [c1a7 — 81 — kin1 — kout64 — pO]

[c1a3 — 52 — kin64 — kout 128 — pl]
* [c1d3 — 82 — kin128 — Koyt 256 — pl]

[c1a3 — 82 — kin256 — kou:512 — pl]
* Re(zr, 2c)
¢ Nyes X [Roq — k512]
o [te2a3 — 82 — kin512 — kout 256 — pl — opl]
[tcaa3 — 82 — kin256 — kout 128 — pl — opl]
o [tc2a3 — 82 — kin128 — kout64 — pl — opl]
[co2qT — 81 — kin64 — kout1 — p0]

X, X. . . .
where z,, = ry and z, = ? with X, and X, the numbers of rows and columns of a model X, the incoming data

vector y is padded with zeros such as its size matches %, and [V, is the selected number of residual blocks (6 or 9,
see above).
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