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Introduction

This thesis is about cultural evolution. Cultural evolution is a specific research field that does

not tell by its name what it is about. "Culture" here does not refer to intellectual or artistic

creations. Instead, culture means the information stored in people’s heads, learned by others, and

susceptible to modify people’s behaviors (Richerson & Boyd 2005). "Evolution" does not refer to

some recent development. Instead, evolution means the change of these cultural characteristics

over hundreds of thousands of generations under the influence of evolutionary processes such as

natural selection and genetic drift.

Evolutionary approached to social sciences

As an evolutionary approach to social sciences, cultural evolution offers to apply principles of

evolution, such as natural selection, adaptation, and survival of the fittest, to understand human

behavior and societal dynamics. Evolutionary approaches suggest that human behaviors, social

norms, and institutions evolve over time in response to social learning dynamics, much like

biological traits. They offer a comprehensive framework for analyzing how behaviors and social

systems develop and change. An illustrative example of the power of evolutionary explanations is

the study of cooperation (Axelrod & Hamilton 1981, Efferson et al. 2024). Evolutionary theories

propose that cooperative behaviors may have evolved because they increase individuals’ chances

of survival and reproduction within a group. This perspective helps us design policies and

interventions promoting cooperative behaviors in modern contexts, such as business environments

or conservation efforts.

Cultural evolution

Cultural evolution is a subset of evolutionary approaches that focuses on how culture changes

and adapts over time. Evolution operates through two primary processes: genetic and cultural
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INTRODUCTION

evolution (Laland 2008). Genetic evolution involves changes in gene frequencies within a

population over time, driven by natural selection, mutation, and genetic drift. On the other

hand, cultural evolution involves changes in cultural traits driven by social learning and cultural

transmission. Cultural evolution researchers study the transmission and transformation of

cultural traits—such as beliefs, practices, and technologies—across generations.

Culture is defined as the set of learned behaviors, beliefs, and technologies transmitted

through social learning rather than genetic inheritance or individual learning (Richerson & Boyd

2005). This includes everything we learned from others, from language and religious practices

to technological innovations and social norms. The field of cultural evolution relies on two key

assumptions:

• Learning from others influences behavior: Individuals adopt behaviors, beliefs, and knowl-

edge from others within their society. This social learning is a primary mechanism through

which culture is transmitted.

• Social learning is not random: Individuals do not learn randomly(McElreath et al. 2008).

Instead, they are selective in whom they learn from and what they learn (Mesoudi et al.

2016, Morgan et al. 2012). This selectivity implies that cultural evolution is a systematic

process.

These assumptions lead to the conclusion that culture evolves in a systematic way at the

group level (Granovetter 1978, Young 2009, Efferson et al. 2008). Cultural traits that confer

advantages—such as higher prestige or greater success—are more likely to be transmitted and

adopted, leading to cumulative cultural evolution (Henrich & Gil-White 2001, Muthukrishna

et al. 2016). The consequences of these assumptions are profound. Cultural evolution would be

an adaptive process, much like biological evolution. Understanding this process would help us

address societal challenges by leveraging cultural dynamics for positive outcomes.

Causal effect of culture

The first assumption of cultural evolution—that learning from others influences behavior—focuses

on understanding the causal effect of culture. Understanding the causal effect of culture allows

us to disentangle the influences of culture from other factors, such as genetics or environmental

factors. However, identifying culture in the field is an empirical challenge as culture often

18



INTRODUCTION

covaries with many cofounds such as country, institutions, environment, and genetics. That is

the challenge my coauthor and I tackled in my first thesis chapter.

To meet this challenge, we exploit the Rostigraben, a linguistic and cultural border that divides

Switzerland in ways independent of institutional, environmental, and genetic variation. Using a

regression discontinuity design, we estimate discontinuities at the border regarding preferences

related to fertility and mortality, the two basic components of genetic fitness. We specifically

select six referenda related to health and fertility and analyze differences in the proportion

of yes votes across municipalities on the two sides of the border. Our results show multiple

discontinuities in voting behaviors at the language border. Of those significant discontinuities,

three are related to fertility, and one is related to health. These discontinuities suggest the

potential for culture to create stable differences between groups in domains related to health and

fertility, where cultural explanations are distinct from institutional, genetic, and environmental

explanations.

Further, for each of the referenda, we speculate how these cultural differences could affect

the relative fitness values of individuals in the two cultural groups. In this way, although we do

not examine genetic fitness directly, we do lean in this direction by focusing on cultural variation

in support for policies that should influence fertility, health, and survival. The variation in

question is a group-level phenomenon based on cultural evolutionary processes, but it should have

consequences for individual reproduction and, by extension, fitness. Our ultimate goal would

be to demonstrate the interplay between genetic and cultural evolution processes. Genes could

influence culture, and culture could influence genes, leading to a gene-culture co-evolutionary

process.

Social learning complexity

Back to cultural evolution, the second assumption—social learning is systematic—emphasizes

the importance of understanding how individuals learn from each other. Social learning is the

primary mechanism through which cultural traits are transmitted. Despite recognizing that social

learning is non-random, we still face challenges defining what "non-random" means. Further,

small differences at the individual level can have far-reaching consequences on cultural evolution

at the aggregate level (Granovetter 1978, Young 2009, Efferson et al. 2020). In my second chapter,

I aim to answer part of that question by exploring the complexity of success-biases social learning

19



INTRODUCTION

strategies.

People tend to imitate successful individuals more than those who are not successful, and

leaders leverage this tendency when "leading by success." However, social learning strategies are

more complex than we often assume. People do not simply follow success; they can do much more.

The added complexity and flexibility could challenge current success-based leadership techniques

and cultural evolution dynamics. Focusing on success-biased social learning, we studied how

individuals adapt their behaviors based on the actions of successful leaders.

Through an incentivized experiment, we examine participants’ decision-making after observing

the behavior of a successful leader and two additional signals: the leader’s group affiliation and

affiliation implications. An accompanying gene-culture co-evolutionary agent-based simulation

integrates cognitive mechanisms to process the same three types of social information, along with

private information. Our findings highlight three critical aspects of success-biased social learning.

First, strategies are multi-dimensional. Participants and agents adjust their responses based

on multiple pieces of social information. They integrate all the available pieces of information

into their strategies: success, group membership of the successful leader, and relevance of

that information. Second, while adjustments are symmetric in the simulation, the experiment

shows participants perform better in certain conditions than others, indicating cognitive biases.

Learning is easier in certain conditions than in others. Finally, the simulation and the experiment

demonstrate significant heterogeneity and flexibility in the use of social learning strategies.

Our results show that followers adjust to success-dependent social information in complex and

heterogeneous ways, including using successful leaders as negative examples.

Collective intelligence

Culture is not a human’s prerogative, but cumulative cultural evolution is, which would be the

key to human adaptation success (Henrich 2016). Humans’ groups and societies became collective

brains (Muthukrishna & Henrich 2016). Collective brains refer to the enhanced capacity for

problem-solving, innovation, and decision-making that arises when individuals work together

compared to isolated individuals. The performance of the collective brain is a function of three

levers: size and connectivity, transmission fidelity, and cultural trait diversity (Schimmelpfennig

et al. 2022). Each of them has the potential to improve or impair innovation rate. This

phenomenon is called the paradox of diversity and can lead to counterintuitive findings.

20



INTRODUCTION

For example, larger populations tend to generate more ideas and innovations due to the

diverse range of experiences and knowledge within the group. Increased connectivity facilitates

the sharing and refinement of these ideas, enhancing the group’s overall problem-solving. However,

highly connected teams perform worse than moderately connected teams. Connectivity can lead

people to over-rely on social information. Conformity homogenizes the population and stifles

innovation.

My third chapter examines the issue of overexploitation in highly connected teams. I wonder

whether turnover and new team members’ arrival can compensate for a team’s high connectivity.

Turnover is costly in many ways, but its virtue may lie in the diversity that newcomers bring. In

a lab experiment, participants had to solve a complex task in teams of three people. Two forms

of disruption were introduced. First, some teams experienced turnover, while others remained

stable. Second, among teams that had not reached the highest-performing solution, some were

selectively informed about the existence of superior solutions, while others were not. The results

indicate an increase in search distance following the disruptions in all treatment conditions.

However, the increase was modest and temporary, insufficient to create alternative solutions and

improve performance. Instead, payoffs decreased significantly after the treatment in all conditions

before returning to their initial improving trend. Interestingly, newcomers did not explore more

than oldtimers. Instead, they quickly conformed to the group solution and exploitation rate.

Comparison with simulated performance benchmarks suggests that increased exploration would

have led to a better overall performance.

Evolutionary approaches to social sciences and cultural evolution offer powerful frameworks

for understanding human behavior and group dynamics, whether at the team or the societal

level. By integrating these perspectives into various fields, including management, leadership,

and organizational theory, we can develop more effective strategies for addressing complex

organizational and social challenges.
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Abstract

Results from cultural evolutionary theory often suggest that social learning can lead cultural

groups to differ markedly in the same environment. Put differently, cultural evolutionary processes

can in principle stabilise behavioural differences between groups, which in turn could lead selection

pressures to vary across cultural groups. Separating the effects of culture from other confounds,

however, is often a daunting, sometimes intractable challenge for the working empiricist. To meet

this challenge, we exploit a cultural border dividing Switzerland in ways that are independent of

institutional, environmental, and genetic variation. Using a regression discontinuity design, we

estimate discontinuities at the border in terms of preferences related to fertility and mortality,

the two basic components of genetic fitness. We specifically select six referenda related to health

and fertility and analyse differences in the proportion of yes votes across municipalities on the

two sides of the border. Our results show multiple discontinuities and thus indicate a potential

role of culture in shaping stable differences between groups in preferences and choices related to

individual health and fertility. These findings further suggest that at least one of the two groups,

in order to uphold its cultural values, has supported policies that could impose fitness costs on

individuals relative to the alternative policy under consideration.

Social media summary: Discontinuities at a language border in Switzerland show that culture

can shape choices related to health and fertility.

Keywords: gene-culture coevolution, social learning, cultural variation, cultural border,

regression discontinuity design



CHAPTER 1. CAUSAL EFFECT OF CULTURE

1.1 Introduction

Gene-culture coevolutionary theory argues that human populations are subject to two evolutionary

processes, genetic and cultural (Laland 2008). Genetic variants influence the development and

spread of cultural traits, while cultural practices affect selection on genes. As a result, genes and

culture coevolve as linked dynamical processes. As a kind of corollary hypothesis, an especially

controversial claim is that social learning stabilises cultural differences at the group level, which

in turn is a necessary but not sufficient condition for any kind of selection at the level of the

cultural group (Henrich 2004, Richerson et al. 2016).

We examine a kind of proof of concept for these ideas. Specifically, we do not directly consider

culture’s influence on genetic fitness, but we do insist on an attempt to identify cleanly the

causal influence of culture on decisions affecting health and fertility. Identifying cultural variation

as a group-level phenomenon is often a difficult empirical challenge because culture typically

covaries with many other variables related to institutions, the environment, and possibly even

genes. To meet this challenge, we exploit a distinctive feature of Switzerland’s geography, a

linguistic and cultural border that separates the German-speaking part of the country from the

French-speaking part. Right at the border, the environments for French speakers and German

speakers are necessarily identical. Moreover, the French- and German-speaking parts of the

country are genetically similar in general (Buhler et al. 2012). Finally, in some regions, the border

does not match any institutional boundary. Thus, right at the border, we have the possibility

of observing variation in preferences and norms that we can say is cultural in the precise sense

that it cannot be institutional, environmental, or genetic. This situation represents an unusual

opportunity because cultures often covary with one or more of these variables.

Consider two examples that illustrate the challenges of isolating culture in domains that could

influence selection on genes. First, lactase persistence is a classic example. In most mammals,

including humans, lactase production declines after weaning, but some populations have evolved

the ability to produce lactase throughout adulthood, a condition known as lactase persistence.

This adaptation is thought to have arisen in response to the cultural practice of dairy farming,

which allowed people to consume milk and dairy products as a significant part of their diet.

Nonetheless, recent evidence suggests that multiple factors, including different environmental

conditions, have contributed to lactase persistence, and that dairying alone is probably insufficient

to explain the spread of the trait. In particular, exposure to famine and diseases has played a
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crucial role in the evolution of lactase persistence (Evershed et al. 2022).

Second, the cultural practice of cooking and its influence on human gut size is another

classic example. Cooking allows us to pre-digest our food over the campfire or on the stove,

which improves the biological availability of the nutrients in the food. Cooking as a cultural

innovation likely allowed our ancestors to evolve smaller guts because they were able to extract

more energy from their food for a given metabolic cost (Wrangham & Carmody 2010). Thus,

energetic resources within the body became available for other functions such as brain growth

and development. This shift in energy allocation is thought to have played a key role in the

evolution of larger brains and shorter digestive tracts in humans compared to our primate

relatives (Navarrete et al. 2011). However, cooking is one of the few human cross-cultural

universals. There is no such thing as a human group that does not engage in cooking. Therefore,

establishing a causal link between the cultural practice of cooking and alterations in the human

gut remains impossible, given the absence of a counterfactual. Stories of this sort are interesting

and compelling, and they may very well be correct. They are not, however, causal explanations.

Valid comparisons that we could rely on to represent the counterfactual state are not available

to us and probably never will be.

1.1.1 Identifying Culture

Identifying the causal influence of culture on gene selection is a challenge. Comparing the average

behaviours of two populations (Bell et al. 2009) often cannot provide evidence for cultural

variation . If environmental conditions, institutions, and other socioeconomic variables covary

with culture, isolating the extent to which group-level variation is specifically cultural can be

exceedingly difficult. Lamba & Mace (2011), for example, compared groups within the same

culture but living in different locations, and they found substantial variation across the groups.

This kind of result suggests that large differences among groups can be environmental just as

surely as they can be cultural, and indeed recent evidence suggests that ecology can explain a

substantial amount of human population diversity (Wormley et al. 2022).

That said, a number of new tools have been developed to allow the identification of causal

effects without randomised experiments, and these tools can potentially help us identify culture.

These quasi-experimental methods include the regression discontinuity design (RDD). The basic

idea of the regression discontinuity design is to compare the outcomes of individuals just above

and below some threshold. Intuitively, researchers estimate two regression lines, one on each
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side of the threshold, and doing so identifies any discontinuities in the response variable that

occur right at the threshold (Lee & Lemieux 2010, Cattaneo et al. 2019). A few studies have

used a variant of this method, the spatial regression discontinuity design, to identify cultural

discontinuities and the Swiss language border. We adopt the same basic approach here.

These studies are known as “Röstigraben studies”, a type of spatial regression discontinuity

design that examines cultural differences in behaviour in Switzerland. The term “Röstigraben” –

German for “hash brown trench” – refers to a linguistic and cultural border within Switzerland.

The border separates the German-speaking part from the French-speaking part of the country, and

in some regions it does not match any institutional boundary. With appropriate data, researchers

could in principle check for discontinuities in any variable of interest right at the language border,

and by doing so the researcher would effectively isolate cultural differences, as a group-level

phenomenon, in identical institutional and ecological settings. Using this technique, Eugster et al.

(2011) document a persistent difference in the demand for social insurance at the border, and

Eugster et al. (2017) also found a significant discontinuity in unemployment duration. Focusing

on the bilingual canton of Fribourg, Brown et al. (2018) discovered a systematic difference in

the financial literacy of students across the border, and their analyses suggest that the effect is

driven by cultural differences rather than unobserved heterogeneity in policies.

1.1.2 Switzerland’s Linguistic and Cultural Landscape

Switzerland is a multilingual country with four official languages: German, French, Italian, and

Romansh. German is the most widely spoken language at home (62%), while French is second

(22.8%). Switzerland’s linguistic diversity is a unique feature that has played a significant role

in shaping its culture and society. Multilingualism is a common characteristic among Swiss

people. However, the historical border between the French- and the German-speaking regions

has remained clear-cut. A sharp change in the main language spoken at home persists when

switching from one side of the border to the other (OFS 2022a). Because the language border is

clear and well-defined in space, we can meaningfully isolate discontinuous differences that occur

right at the border.

Beyond language, conventional wisdom posits that this linguistic border also captures dif-

ferences in values, norms, and preferences. Swiss media and citizens often view it as a cultural

divide that marks contrasting attitudes. During federal elections, when voting on shared issues,

these differences become especially apparent (Etter et al. 2014). Furthermore, the French- and
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German-speaking regions show distinct patterns of health-related behaviours on average. For

instance, French speakers typically consume more red meat but less butter, milk, and coffee than

their German-speaking counterparts (Chatelan et al. 2017, Rochat et al. 2019). These compar-

isons of group averages do not provide causal evidence, but they do fit with the conventional

wisdom within Switzerland. When you cross the Röstigraben, it’s not just the language that

changes; culture more broadly changes, too. That said, we can check to see if this is the case

with a spatial regression discontinuity design. The basic idea is to code variables of interest

as a function of distance from the language border, and then use the method to estimate any

discontinuities in the variables right at the border. Doing so is effectively like comparing what

happens one meter to the east of the border to what happens one meter west of the border.

1.1.3 The Cultural Components of Fitness

Having explained our strategy to isolate culture’s causal effect, we now turn to the second

consideration. Namely, what kinds of available data connect possible cultural differences within

Switzerland to fertility and mortality, the two basic components of genetic fitness? In our study,

we focus on the tendency of people to vote for or against policies that should impact either

the survival or reproduction of individuals. In Switzerland, the leading causes of death are

predominantly disease. In 2018, cardiovascular diseases contributed to 31% of the deaths, while

cancer accounted for 26%. Dementia is third at 10%. Because the majority of deaths are related

to (the absence of) health, we focus on choices related to health to understand how culture could

influence survival rate. Specifically, we investigate choices related to the healthcare system and

the management of pandemics.

Shifting to fertility and drawing on Hrdy’s work on the evolutionary basis of parenthood

(1999), we focus on women’s freedom of choice regarding investments in offspring. Human infants

are highly resource-intensive, and raising a human child requires cooperation among multiple

caregivers. Humans are cooperative breeders, and presumably women have long been subject

to selection for the ability to assess the social support available for raising a child. If adequate

support is lacking, women may choose not to invest in the child and prioritise potential future

offspring instead. In terms of genetic fitness, women need the freedom to manage trade-offs

between investing in current offspring versus conserving resources for potential future offspring.

In that sense, cultural practices that limit women’s autonomy could be viewed as imposing a

detrimental effect on the fitness of women who have not completed reproduction and on the
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inclusive fitness of any genetic relatives. We investigate potential differences in support for three

types of policy that should influence women’s freedom of choice and degree of social support

during and after pregnancy. These three types of policy pertain to abortion access, assisted

reproduction, and paid parental leave.

1.1.4 Discontinuities in Voting Behaviours and Fitness Costs

We would like to explain the generic argument for why discontinuities in these voting behaviours

are interesting from a gene-culture coevolutionary perspective. First, we select referenda regarding

health and reproduction policies that affect fitness through their implications on mortality and

fertility. Some policies might favour more children and other policies fewer children. This would

mean, in turn, that policies, if enacted, would vary in terms of how they incentivise individuals

to manage the trade-offs between the quantity and quality of their offspring. Analogously, some

policies might augment the scope for individuals to rely on social support when raising offspring,

while other policies might do the opposite. In this way, if enacted, policies would vary in terms

of how they incentivise individuals to manage the trade-offs between current and future offspring.

Lastly, policies related to pandemics should affect the risk of infectious disease and by extension

the risk of mortality. Policies related to healthcare more broadly should affect the extent to

which individuals invest in their health and in turn survival. For example, one of the referenda

below concerned how to organise health insurance. Even if we imagine that the alternatives

would have no consequences in terms of the quality of healthcare supplied, we can easily imagine

that different insurance schemes would affect behaviour on the demand side. Some schemes

might incentivise healthy lifestyles and preventative treatments, while other schemes might tip

the balance in favour of treating people after they get sick.

Second, we estimate potential differences in voting behaviour at the language border. Right

at the border, we assume that, among the policies under consideration, one policy is better than

the other on average in terms of expected fitness. By this, we do not mean that one policy is best

or optimal in absolute terms. Rather, we mean that, between the policies for which citizens vote,

one is better than the other. We call this the “better” policy, and our working assumption is

that this better policy is the same on both sides of the border. This is a fundamental assumption

for our approach. The assumption might be wrong, of course, but focusing on discontinuities

right at the border maximises the chances that it is correct. In any case, our task is to examine

both the implications and the limitations of this assumption.
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This assumption does not mean that the same policy is better than the other throughout

all of French- and German-speaking Switzerland. It simply means that the better policy is the

same immediately to the west and immediately to the east of the border. In addition, this

assumption does not mean that one policy is better for the expected fitness of every individual.

Instead, we assume that one is better than the other on average in terms of the expected fitness

of individuals in the group. We do not deny individual heterogeneity. Instead, by using the

regression discontinuity design and the linguistic border, we aggregate individual differences and

focus on the average outcome at the group level.

We do not know which policy is better, nor does the answer to this question matter for

present purposes. We simply assume that at the border one is better than the other in terms of

average expected fitness. If this is true, then a discontinuity implies that at least one of the two

groups does not favour the best of the two policies for cultural reasons, where cultural reasons,

by this account, must be separate from institutions, genes, and environment. If enacted, the

inferior policy would bring an expected fitness cost, however small, on some individuals of the

group relative to the other policy under consideration.

Nonetheless, one can challenge the assumption that right at the border one policy is better

than the other in fitness terms. We would like to highlight two possibilities. First, in high-

dimensional choice spaces with a complex fitness topography, multiple optima can easily exist.

Two groups can thus favour two different policies, both of which are roughly equivalent local

optima. The two optima in question may or may not be globally optimal. Regardless, the

point is that the two policies differ in the details, but they are extremely similar in terms of

ultimate outcomes. Second, by examining discontinuities at the border, our approach controls

for institutional, geographic, and genetic variation as potential confounds. It does not, however,

control for all sources of social variation. People living on the two sides of the border may have

different social networks, which could lead the value of a given policy to vary as we move from

one side of the border to the other. Such scenarios could challenge our assumption that right

at the border, on both sides of the border, one single policy is better than the other in terms

of average fitness. We cannot definitively rule out such scenarios, but we should reduce the

probability they play a large role precisely because we limit attention to discontinuities.

In sum, our study aims to investigate the causal influence of culture on health- and fertility-

related choices and to discuss how any differences might relate to genetic fitness. To meet this

goal, we use a quasi-experimental design based on distance from the Röstigraben, a linguistic and
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cultural border in Switzerland. We are looking for discontinuities in choices at the border. Any

discontinuities at the border would suggest a cleanly identified cultural difference that shapes

preferences and behaviour. We will then discuss, somewhat speculatively, how these cultural

differences could affect the relative fitness of individuals in the two cultural groups.

1.2 Methods

1.2.1 Referanda Data

To explore potential cultural differences in decision-making domains related to fertility and

mortality, we use data from referenda in Switzerland. The use of a regression discontinuity design

necessitates a substantial amount of geographically precise data, which the referenda data provide.

We focus on referenda held at the Swiss level and thus common to all cantons. Importantly,

referenda occur multiple times a year and encompass a wide range of topics, including health, the

healthcare system, and fertility. However, our sample represents only the voting population and

excludes non-voters’ opinions on both sides of the border. Nonetheless, the laws are based on the

decisions of voters. As such, even though our data are not fully representative of the entire Swiss

population, they can help identify cultural differences in the voting population. Further, our data

are aggregated at the municipal level, rather than at the individual level, presenting a notable

limitation in assessing the impact of cultural differences on individual fitness within the two

groups. A more direct assessment would involve individual-level data. However, the requirements

of our study for large datasets with precise geographical accuracy, combined with the sensitive

nature of voting, health, and fertility data, ensure that access to individual-level data is strictly

limited. Therefore, we have employed municipal-level data as a feasible and effective solution.

We use the percentage of “yes” votes by municipality in referenda as our response variables,

and we estimate discontinuities in referenda results across municipalities on both sides of the

border. Our analysis focuses on a preregistered list of referenda related to health or fertility in

the past decade (Faessler et al. 2022). The data are provided by the Federal Statistical Office and

include referenda results across municipalities, with our unit of analysis being the municipality.

We selected municipalities within 100 km of the language border, totalling 1,409 municipalities.
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1.2.2 Regression Discontinuity Design

A regression discontinuity design has three essential elements: a threshold, a running variable,

and a treatment. In our case, the threshold is the cultural border, the continuous variable is

the distance from this border, and the treatment is the culture. Starting from these elements,

we estimate two regression lines on each side of the border to examine whether voting results

are discontinuous at the border. As such, we study the effect of moving from one side of the

language and cultural boundary to the other on referenda outcomes and the distribution of policy

preferences these outcomes represent.

The generic regression model for these regression discontinuity designs can be represented as

follows.

ym = β0+β1Germanm+β2f0(Distancem)+β3Germanm∗f1(Distancem)+controls+εm (1.1)

In detail, ym denotes the outcome of interest for municipality m, which is the proportion of

“yes” votes for a referendum. Germanm is a dummy variable that takes the value of 1 if the

municipality is on the German side of the border and 0 otherwise. In that sense, β1 captures

the discontinuity of interest, the cultural discontinuity at the border. A significant β1 value

indicates a causal effect of culture on voting decisions at the border. Distancem is the running

variable that measures the distance from the border. f0() and f1() are functions of distance

to the border that will be estimated. Both Distancem and its interaction with Germanm take

care of controlling for effects that happen away from the border and that could be driven by

environmental differences. Throughout the study, we will estimate different versions of this

generic regression discontinuity model, each of which will focus on a distinct referendum.

In this analysis, municipality language Germanm and distance from the language border

Distancem are our main independent variables. Distance from the border, in particular, plays

a crucial role, and we explain in detail how the measure is constructed. First, using the same

distance data as Eugster et al. (2011), each municipality is assigned a language according to

the language spoken by most of its population. Second, the distance to the language border is

calculated by determining the shortest road distance between the focal municipality and the

nearest municipality where the other language is spoken. Further, the distance is set as negative

for French-speaking municipalities and positive for German-speaking municipalities.

Our statistical model controlled for municipality type because rural and urban areas could
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exhibit different voting patterns. We control for this possibility by including a dummy for

municipality type, i.e. whether the municipality is located in an urban or rural area. We also

include canton fixed effects. In Switzerland, a federal system divides power between the state

and the cantons. Cantons are administrative subdivisions of the country and have authority over

education, health care, policing, and taxation. In particular, institutions related to health and

fertility may vary across cantons. By incorporating a canton fixed effect, we address disparities

among cantons and restrict our analysis to variations within each canton. Nevertheless, the

language border crosses some cantons and does not correspond to an institutional boundary for

this part.

A fundamental assumption of regression discontinuity design is that at the threshold, the

treated and control groups differ only by treatment. Because our unit of analysis is the mu-

nicipality, we necessarily move from one municipality to another at the threshold. However,

while municipalities have a certain degree of autonomy, their powers are limited by cantonal

and federal laws. Municipalities are mainly responsible for local governance, including waste

management, water supply, social welfare and public transport. Thus, even though institutions

change from one municipality to another, the institutional changes are limited and not directly

related to health and fertility.

Mean all French l. German l. Difference At the border
Population size 3163.38 2609.39 3576.18 966.79 −796.118
Population variation (%) 8.83 13.36 5.45 −7.91∗∗∗ −6.784∗∗∗
Density 323.73 203.00 413.69 210.69∗∗∗ 126.498
Immigrants (%) 14.19 16.14 12.74 −3.40∗∗∗ −5.219∗∗∗
Average household size 2.31 2.37 2.27 −0.10∗∗∗ -0.016
0-19 years (%) 20.45 21.97 19.32 −2.65∗∗∗ −2.184∗∗∗
20-64 years (%) 59.74 59.75 59.73 −0.02 0.303
+65 years (%) 19.81 18.28 20.95 2.67∗∗∗ 1.882∗∗∗
Young dependency ratio 34.52 36.81 32.81 −4.00∗∗∗ -3.571∗∗∗

Mean taxable revenue 69,762 66,617 72,275 5,658∗∗∗ 6,079∗
Tax rate for families 5.30 4.94 5.57 0.63∗∗∗ −0.182∗∗∗
Tax rate for singles 15.40 15.33 15.45 0.12 −0.373∗∗∗
Social assistance (%) 2.69 2.80 2.61 −0.19 −1.087∗∗∗

Table 1.1: Municipalities and population characteristics around the border. Notes: “Mean all”
refers to the mean of municipalities within 50 km of the language border. “French language” includes only
the municipalities where most of the population speaks French, within a 50km range. “German language”, the
municipalities where most of the population speaks German, within a 50km range. “Difference” shows the mean
difference between French-language municipalities and German-language municipalities. “At the border” shows
the difference estimated at the language border using regression discontinuity design and controlling canton, and
whether the municipality is urban or rural. †p <0.1; ∗p <0.05; ∗∗p<0.01; ∗∗∗p<0.001. Source: Swiss Federal
Statistical Office (SFO). Distances from search.ch.

Aside from institutions, population characteristics may also vary at the border. Table 1.1
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provide the statistics for a selection of population and municipality variables likely to influence

choices related to health and fertility. The variables include population size and characteristics,

age structure within the population, and a series of wealth indicators. Most of the variables are

not perfectly balanced at the border, but regions are more balanced at the border than overall

(column "Difference" has larger differences than "At the border"). In particular, the age structure

and wealth seem to differ on the border’s two sides. The municipalities on the German-speaking

side count more older individuals and fewer younger individuals while having higher revenues and

smaller tax ratios. These differences could suggest that the population on the German-speaking

side of the border is more preoccupied with health, but it also benefits from higher revenues to

prevent disease or provide medical care.

To ensure that our results are not influenced by these disparities across French and German-

speaking municipalities, we incorporate additional municipality-level controls in a robustness

analysis (presented as model (4) in the results regression tables). Specifically, we account for

age structure differences by introducing the following variables: the proportion of individuals

below 19 years old, those exceeding 64 years old, the youth dependency ratio, the birth rate,

and the average household size. Additionally, we address wealth disparities by integrating the

average taxable revenue and the tax rates for families and singles. Because we do not know if

some of these variables are influenced by culture, we do not treat the analysis that includes these

variables as our baseline analysis. Instead, we treat the analysis with these additional variables

as a robustness validation, even though some of the variables could be colliders.

Importantly, our setting cannot exclude that some individuals decide to move to the other

side of the border. If so, people would self-select their treatments, which would undermine to

some extent our identification strategy. While people could decide to live in the region that best

matches their values, the language border is sharp. Our data indicate that the mean proportion of

French speakers shifts from 74% to 12% within a distance of only 6 km. Similarly, the proportion

of German speakers shifts from 24% to 86%. Moving to another linguistic region would require

the individual to learn the other language with a fluency level comparable to speaking a language

at home, which necessarily constitutes a barrier. Further, the average moving distance for

Switzerland is 13 km, and most of the moves (58%) happen within a distance of 5km (OFS

2022b). Although we cannot exclude that some individuals self-select in treatments, we suspect

this mechanism has limited effects.
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1.3 Results

Our results show multiple discontinuities in voting behaviours at the language border. Of those

significant discontinuities, three are related to fertility, and one is related to health. These

discontinuities suggest the potential for culture to create stable differences between groups in

domains related to health and fertility, where cultural explanations are distinct from institutional,

genetic, and environmental explanations. For each of the referenda, we further speculate how

these cultural differences could affect the relative fitness values of individuals in the two cultural

groups.

1.3.1 Health-related Referanda

28 September 2014, the referendum for a single public health insurance company.

First, we analysed the results of the referendum on creating a single public health insurance

company, which took place on 28 September 2014. Under the proposed single-payer system, a

public insurance company would have replaced the current private insurance companies, and

all residents would have been required to enrol in the public plan. Supporters argued that the

single-payer system would reduce administrative costs and improve access to healthcare. At the

same time, opponents claimed that it would lead to longer waiting times and lower quality of

care.
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Figure 1.1: Average proportion of “yes” votes to the referendum for a single public health
insurance, by distance to the language border. Notes: The left-hand side of the graph displays French-
speaking municipalities; the right-hand side, German-speaking municipalities. The red lines are the linear regression
lines. Source: Federal Statistical Office. Distances from search.ch.
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Figure 1.1 shows a strong discontinuity at the border in the pattern of “yes” votes proportions

across municipalities. The left-hand side of the graph displays French-speaking municipalities,

while the right-hand side shows German-speaking municipalities. In almost all municipalities

on the French-speaking side of the border, the proportion of “yes” votes is higher than in

municipalities on the German-speaking side. The red lines represent linear regression lines.

Linear regression results in Table 1.2 confirm the presence of a discontinuity in voting results

at the border (estimate = −0.221, p < 0.001). Further, the German language estimate is not

sensitive to controlling for additional municipality-level controls.

(1) (2) (3) (4)
Baseline

German Language −0.199∗∗∗ −0.219∗∗∗ −0.221∗∗∗ −0.209∗∗∗
(0.009) (0.009) (0.009) (0.009)

German*Distance −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗
(0.0002) (0.0002) (0.0002) (0.0002)

Distance 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.0001) (0.0001) (0.0002) (0.0001)

Urban 0.022∗∗∗ 0.021∗∗∗
(0.004) (0.004)

Constant 0.558∗∗∗ 0.574∗∗∗ 0.554∗∗∗ 0.766∗∗∗
(0.007) (0.016) (0.016) (0.056)

Cantons FE No Yes Yes Yes
Municipality Controls No No No Yes
Observations 1,409 1,409 1,353 1,353
Adjusted R2 0.662 0.804 0.807 0.819

Table 1.2: Referenda for a single public health insurance company: regression analysis at the
language border. Notes: The regression analysis shows the impact of switching from the French-speaking side of
the border to the German-speaking side on voting results, that is, the proportion of “yes” votes in a municipality.
“German language” indicates that the primary language of a municipality is German and is our variable of interest.
“Distance” is the road distance to the language border. “Distance” and its interaction with “German language”
control for effects that happen away from the border and environmental differences. We restrict our analysis to
municipalities within 100km of the language border. Models (2) and (3) include controls for the canton. Model (3)
includes a control variable for municipality characteristics, whether the municipality is located in a rural or urban
area. Model (4) includes additional controls at the municipality level. Controls include population age structure,
average household size, birth rates, average revenue, and tax rates. Robust standard errors are in parenthesis.
†p <0.1; ∗p <0.05; ∗∗p<0.01; ∗∗∗p<0.001. Source: Federal Statistical Office. Distances from search.ch.

The referendum on a single health insurance company highlights an interesting example of

the potential influence of culture on fitness. Swiss citizens were asked if they would like a single

public health insurance system or multiple private health insurance companies. To illustrate the

significance of this choice, imagine two extremes. At one extreme, a single insurance company

would pool risk over the entire Swiss population. At the other extreme, each individual would
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self-insure and be responsible for her own healthcare and associated costs. Whatever the details,

the best system in terms of an individual’s health, survival, and fitness for the people at the

border must lie between these two extremes. We observed that the two groups supported different

policies at the border. If, however, the better policy on average is the same right at the border,

the discontinuity in preferences at the border means that at least one of the two groups supported,

for cultural reasons, a worse policy in terms of expected fitness compared to the other policy.

22 September 2013, revision of the law on epidemics and 13 June 2021, Covid law.

The second example comes from two referenda related to the management of epidemics. The

two referenda are 8 years apart. On 22 September 2013, Switzerland held a first referendum

on revising the law on epidemics, and the proposed changes aimed to enhance the country’s

response to any future pandemics. The revised law would have expanded the government’s

powers to contain outbreaks, require vaccinations, and collect health data for public health

reasons. However, groups such as anti-vaxxers and privacy advocates were concerned about

the increased surveillance and data collection that could follow. Eight years later, on 13 June

2021, Swiss citizens voted on a related question, namely the Covid law. The proposal was to

give the government extraordinary powers to manage the Covid-19 pandemic, such as imposing

restrictions on public life and providing financial aid to those affected. However, the law faced

opposition from groups who believed it gave the government too much power and infringed on

individual freedoms. A majority vote of around 60% approved both laws.

(a) The revision of the epidemics law
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(b) The Covid law
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Figure 1.2: Average proportion of “yes” votes to the two referenda on epidemics management
across municipalities, by distance to the language border. Notes: The left-hand side of the graph
displays French-speaking municipalities; the right-hand side, German-speaking municipalities. The red lines are
the linear regression lines. Source: Federal Statistical Office. Distances from search.ch.

Figure 1.2 plots the average proportion of “yes” votes for these two referenda across munici-

palities on the two sides of the language border. The two figures present similar patterns, namely

39



CHAPTER 1. CAUSAL EFFECT OF CULTURE

a negative slope on both sides and a steeper slope on the French side. However, these two graphs

by themselves do not allow us to confirm or disconfirm the presence of discontinuities at the

border.

(1) (2) (3) (4)
Baseline

German Language −0.050∗∗∗ −0.014 −0.016† −0.026∗∗
(0.009) (0.010) (0.010) (0.009)

German*Distance 0.001∗∗∗ −0.0003 −0.0004† −0.0005∗
(0.0002) (0.0002) (0.0002) (0.0002)

Distance −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.0004∗
(0.0001) (0.0002) (0.0002) (0.0002)

Urban 0.062∗∗∗ 0.048∗∗∗
(0.004) (0.004)

Constant 0.592∗∗∗ 0.695∗∗∗ 0.639∗∗∗ 0.826∗∗∗
(0.007) (0.018) (0.018) (0.060)

Cantons FE No Yes Yes Yes
Municipality Controls No No No Yes
Observations 1,409 1,409 1,353 1,353
Adjusted R2 0.382 0.525 0.594 0.635

Table 1.3: Revision of the epidemics law: regression analysis at the language border. Notes: The
regression analysis shows the impact of switching from the French-speaking side of the border to the German-
speaking side on voting results, that is, the proportion of “yes” votes in a municipality. “German language”
indicates that the primary language of a municipality is German and is our variable of interest. “Distance” is the
road distance to the language border. “Distance” and its interaction with “German language” control for effects
that happen away from the border and environmental differences. We restrict our analysis to municipalities within
100km of the language border. Models (2) and (3) include controls for the canton. Model (3) includes a control
variable for municipality characteristics, whether the municipality is located in a rural or urban area. Model (4)
includes additional controls at the municipality level. Controls include population age structure, average household
size, birth rates, average revenue, and tax rates. Robust standard errors are in parenthesis. †p <0.1; ∗p <0.05;
∗∗p<0.01; ∗∗∗p<0.001. Source: Federal Statistical Office. Distances from search.ch.

Tables 1.3 and 1.4 present the results of the regression analyses. Both results show quan-

titatively small estimates whose significance varies across models. In 2013, the municipalities

on the German-speaking side of the border were less likely to accept the law, but the difference

is not significant in the baseline model (estimate = −0.016, p < 0.1). In 2021, the effect goes

in the opposite direction. Municipalities on the German-speaking side of the border are more

likely to vote “yes” (estimate = 0.027, p < 0.05). However, the significance disappears in model

(4) with the addition of controls at the municipality level. These results should be interpreted

with caution, and we treat them as neither significant nor robust. Further analyses are needed

to understand whether culture can influence pandemic-related behaviours.
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(1) (2) (3) (4)
Baseline

German Language −0.0005 0.029∗ 0.027∗ 0.013
(0.010) (0.012) (0.011) (0.011)

German*Distance 0.001∗∗∗ −0.0003 −0.0004† −0.001∗
(0.0002) (0.0003) (0.0002) (0.0002)

Distance −0.002∗∗∗ −0.0002 −0.0002 0.0001
(0.0002) (0.0002) (0.0002) (0.0002)

Urban 0.094∗∗∗ 0.079∗∗∗
(0.005) (0.005)

Constant 0.541∗∗∗ 0.617∗∗∗ 0.528∗∗∗ 0.746∗∗∗
(0.008) (0.022) (0.020) (0.069)

Cantons FE No Yes Yes Yes
Municipality Controls No No No Yes
Observations 1,409 1,409 1,353 1,353
Adjusted R2 0.186 0.272 0.440 0.489

Table 1.4: Revision of the Covid law: regression analysis at the language border. Notes: The
regression analysis shows the impact of switching from the French-speaking side of the border to the German-
speaking side on voting results, that is, the proportion of “yes” votes in a municipality. “German language”
indicates that the primary language of a municipality is German and is our variable of interest. “Distance” is the
road distance to the language border. “Distance” and its interaction with “German language” control for effects
that happen away from the border and environmental differences. We restrict our analysis to municipalities within
100km of the language border. Models (2) and (3) include controls for the canton. Model (3) includes a control
variable for municipality characteristics, whether the municipality is located in a rural or urban area. Model (4)
includes additional controls at the municipality level. Controls include population age structure, average household
size, birth rates, average revenue, and tax rates. Robust standard errors are in parenthesis. †p <0.1; ∗p <0.05;
∗∗p<0.01; ∗∗∗p<0.001. Source: Federal Statistical Office. Distances from search.ch.
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1.3.2 Fertility-related Referanda

9 February 2014, referendum prohibiting the reimbursement of abortion. We now

provide three examples related to fertility. We start with the referendum on the reimbursement

of abortion. On 9 February 2014, Swiss citizens voted on the prohibition of the reimbursement of

abortion by health insurance companies. Proponents of the proposal argued that taxpayers should

not be forced to pay for a procedure they consider morally objectionable. Conversely, opponents

argued that women should have access to safe and affordable abortion services, regardless of

their financial situation.
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Figure 1.3: Average proportion of “yes” votes to referendum prohibiting the reimbursement of
abortion across municipalities, by distance to the language border. Notes: The left-hand side of the
graph displays French-speaking municipalities; the right-hand side, German-speaking municipalities. The red lines
are the linear regression lines. Source: Federal Statistical Office. Distances from search.ch.

Figure 1.3 presents the percentage of votes in favour of the initiative across municipalities at

different distances of the language border. The data show an evident discontinuity at the border.

Municipalities on the French-speaking side of the border were less likely to vote in favour of

modifying the law than municipalities on the German-speaking side. Regression analysis results

in Table 1.5 confirm these descriptive results. The German language estimate is significant in the

four models, and adding controls does not change this in any way (estimate = 0.127, p < 0.001).

Restricting women’s access to abortion could have considerable genetic fitness implications,

particularly for women. As cooperative breeders, mothers, and by extension fathers, require

social support to raise their children. They must balance investment in their current offspring

with investment in potential future offspring (Hrdy 1999). In that sense, any restrictions on

access to abortion would limit women’s ability to manage this trade-off and impose a fitness
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(1) (2) (3) (4)
Baseline

German Language 0.122∗∗∗ 0.125∗∗∗ 0.127∗∗∗ 0.132∗∗∗
(0.008) (0.009) (0.009) (0.009)

German*Distance −0.001∗∗∗ 0.0003 0.0003† 0.0005∗
(0.0002) (0.0002) (0.0002) (0.0002)

Distance 0.002∗∗∗ 0.0005∗∗ 0.0005∗∗ 0.0003†
(0.0001) (0.0002) (0.0002) (0.0002)

Urban −0.041∗∗∗ −0.029∗∗∗
(0.004) (0.004)

Constant 0.236∗∗∗ 0.133∗∗∗ 0.174∗∗∗ −0.041
(0.006) (0.017) (0.017) (0.058)

Cantons FE No Yes Yes Yes
Municipality Controls No No No Yes
Observations 1,409 1,409 1,353 1,353
Adjusted R2 0.676 0.756 0.770 0.786

Table 1.5: Referendum prohibiting the reimbursement of abortion: regression analysis at the
language border. Notes: The regression analysis shows the impact of switching from the French-speaking side of
the border to the German-speaking side on voting results, that is, the proportion of “yes” votes in a municipality.
“German language” indicates that the primary language of a municipality is German and is our variable of interest.
“Distance” is the road distance to the language border. “Distance” and its interaction with “German language”
control for effects that happen away from the border and environmental differences. We restrict our analysis to
municipalities within 100km of the language border. Models (2) and (3) include controls for the canton. Model (3)
includes a control variable for municipality characteristics, whether the municipality is located in a rural or urban
area. Model (4) includes additional controls at the municipality level. Controls include population age structure,
average household size, birth rates, average revenue, and tax rates. Robust standard errors are in parenthesis.
†p <0.1; ∗p <0.05; ∗∗p<0.01; ∗∗∗p<0.001. Source: Federal Statistical Office. Distances from search.ch.
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cost on women. Acknowledging men’s commitment to their offspring, these constraints and

costs might not pertain to women only, but in some cases may extend to the couple. The 2014

referendum prohibiting the reimbursement of abortion in Switzerland could have resulted in

such a cost, given the potential restrictions on access that the initiative could have imposed.

Assuming that at the border one policy is better than the other in terms of average fitness, the

discontinuity in the voting results suggests that one group was more willing to support a policy

that would presumably impose an additional fitness cost on some individuals in the population

relative to the other policy under consideration.

5 June 2016, referendum on assisted reproduction. On 5 June 2016, Swiss citizens voted

to modify the medically assisted reproduction law. The proposed amendment aimed to legalize,

under certain conditions, the genetic diagnosis of embryos derived from in vitro fertilization before

implanting the embryos. The amended law would have allowed pre-implementation diagnosis

only for carriers of alleles associated with severe hereditary disease or those who cannot have a

child naturally. Supporters argued that the law was necessary to provide couples with the same

reproductive options already available in neighbouring countries. On the other hand, opponents

feared that the revision would have led to an ethically unacceptable expansion of genetic testing

on human embryos and undermined the traditional family structure.
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Figure 1.4: Average proportion of “yes” votes to referendum allowing genetic diagnosis of embryos,
across municipalities, by distance to the language border. Notes: The left-hand side of the graph
displays French-speaking municipalities; the right-hand side, German-speaking municipalities. The red lines are
the linear regression lines. Source: Federal Statistical Office. Distances from search.ch.

Figure 1.4 shows the average proportion of “yes” votes across municipalities at various
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distances from the language border. Data present a clear discontinuity at the border. Further,

most data points on the French-speaking side of the border are above the data points on

the German-speaking side. At the border, the French-speaking group is more likely to favour

amending the law than the German-speaking group. These results are confirmed by the regression

analysis results presented in Table 1.6. The German language estimate is significant and robust

to additional municipality-level controls (estimate = −0.097, p < 0.001).

(1) (2) (3) (4)
Baseline

German Language −0.131∗∗∗ −0.099∗∗∗ −0.097∗∗∗ −0.109∗∗∗
(0.010) (0.010) (0.010) (0.009)

German*Distance 0.002∗∗∗ −0.001∗ −0.001∗∗ −0.001∗∗∗
(0.0002) (0.0002) (0.0002) (0.0002)

Distance −0.002∗∗∗ −0.0004∗ −0.0003∗ −0.0001
(0.0002) (0.0002) (0.0002) (0.0002)

Urban 0.050∗∗∗ 0.033∗∗∗
(0.004) (0.004)

Constant 0.664∗∗∗ 0.809∗∗∗ 0.758∗∗∗ 0.998∗∗∗
(0.007) (0.018) (0.018) (0.059)

Cantons FE No Yes Yes Yes
Municipality Controls No No No Yes
Observations 1,409 1,409 1,353 1,353
Adjusted R2 0.638 0.772 0.792 0.820

Table 1.6: Referendum on assisted reproduction: regression analysis at the language border.
Notes: The regression analysis shows the impact of switching from the French-speaking side of the border to the
German-speaking side on voting results, that is, the proportion of “yes” votes in a municipality. “German language”
indicates that the primary language of a municipality is German and is our variable of interest. “Distance” is the
road distance to the language border. “Distance” and its interaction with “German language” control for effects
that happen away from the border and environmental differences. We restrict our analysis to municipalities within
100km of the language border. Models (2) and (3) include controls for the canton. Model (3) includes a control
variable for municipality characteristics, whether the municipality is located in a rural or urban area. Model (4)
includes additional controls at the municipality level. Controls include population age structure, average household
size, birth rates, average revenue, and tax rates. Robust standard errors are in parenthesis. †p <0.1; ∗p <0.05;
∗∗p<0.01;∗∗∗p<0.001. Source: Federal Statistical Office. Distances from search.ch.

The outcome of the 5 June 2016 referendum on pre-implantation genetic diagnosis could have

had fitness consequences at the individual level. By allowing couples with serious hereditary

diseases to implant healthy embryos selectively, the legalisations of pre-implantation diagnosis

could have increased their offspring’s chances of survival and reproduction, ultimately positively

impacting individual fitness. However, genetic screening implies an opportunity cost. Using

genetic screening for non-medical reasons, such as selecting specific traits such as eye colour or

height, could result in a waste of resources. Unnecessary screening might divert limited resources
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away from other procedures that could matter more in terms of health. We do not know what

screening level maximised individual fitness in that particular environment. Nonetheless, we

observed that at the border the two groups had different preferences and associated voting

behaviours. Assuming that at the border one policy is better than the other in terms of average

fitness, supporting one policy would presumably impose a fitness cost on individuals relative to

the other policy.

27 September 2020, referendum on paternity leave. Our last example focuses on pater-

nity leave. On 27 September 2020, Swiss citizens had to decide whether fathers should be granted

two weeks of paid paternity leave. The proposed amendment to the Swiss Federal Constitution

aimed to give fathers the right to take two weeks off work after the birth of a child. This

leave would have been financed by the government. Proponents of the amendment argued that

paternity leave would have provided fathers with the opportunity to bond with their newborns

and help reduce gender inequality in the workplace and society. On the other hand, opponents

claimed that the proposed paternity leave policy would have increased costs for employers and

should not be legislated at the federal level.
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Figure 1.5: Average proportion of “yes” votes to referendum on paternity leave across munici-
palities, by distance to language border. Notes: The left-hand side of the graph displays French-speaking
municipalities; the right-hand side, German-speaking municipalities. The red lines are the linear regression lines.
Source: Federal Statistical Office. Distances from search.ch.

Figure 1.5 presents the average proportion of “yes” votes for the referendum on paid paternity

leave across municipalities at different distances from the language border. We observe an

apparent discontinuity at the language border. Municipalities on the French-speaking side of the
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border were more likely to approve a paid paternity leave than those on the German-speaking

side. Table 1.7 presents the regression analysis. The results confirm the descriptive evidence

from the graph. The German language estimate is significant and not sensitive to additional

controls (estimate = −0.160, p < 0.001).

(1) (2) (3) (4)
Baseline

German Language −0.171∗∗∗ −0.155∗∗∗ −0.160∗∗∗ −0.159∗∗∗
(0.009) (0.010) (0.009) (0.010)

German*Distance 0.001∗∗∗ −0.0003 −0.0003 −0.001∗
(0.0002) (0.0002) (0.0002) (0.0002)

Distance −0.002∗∗∗ −0.001∗∗∗ −0.001∗∗ −0.0003†
(0.0001) (0.0002) (0.0002) (0.0002)

Urban 0.067∗∗∗ 0.058∗∗∗
(0.004) (0.004)

Constant 0.665∗∗∗ 0.769∗∗∗ 0.704∗∗∗ 0.843∗∗∗
(0.007) (0.019) (0.018) (0.061)

Cantons FE No Yes Yes Yes
Municipality Controls No No No Yes
Observations 1,409 1,409 1,353 1,353
Adjusted R2 0.715 0.773 0.811 0.822

Table 1.7: Referendum on paternity leave: regression analysis at the language border. Notes: The
regression analysis shows the impact of switching from the French-speaking side of the border to the German-
speaking side on voting results, that is, the proportion of “yes” votes in a municipality. “German language”
indicates that the primary language of a municipality is German and is our variable of interest. “Distance” is the
road distance to the language border. “Distance” and its interaction with “German language” control for effects
that happen away from the border and environmental differences. We restrict our analysis to municipalities within
100km of the language border. Models (2) and (3) include controls for the canton. Model (3) includes a control
variable for municipality characteristics, whether the municipality is located in a rural or urban area. Model (4)
includes additional controls at the municipality level. Controls include population age structure, average household
size, birth rates, average revenue, and tax rates. Robust standard errors are in parenthesis. †p <0.1; ∗p <0.05;
∗∗p<0.01;∗∗∗p<0.001. Source: Federal Statistical Office. Distances from search.ch.

Paternity leave may have had positive fitness consequences. Paternity leave allows fathers

to spend more time with their newborn children. The more the father invests, the better

the outcomes should tend to be for the current offspring. However, we could also imagine a

countervailing effect for men. By investing time and resources in current offspring, fathers

are potentially hindering their careers, which could make them less attractive in the future.

Consequently, fathers are potentially hindering their ability to identify opportunities to mate

with other women. In this sense, paternity leave could partially harm fathers’ fitness. We observe

that the two groups adopted different voting behaviours at the border. Assuming the acceptance

of paternity leave has fitness consequences and that at the border the optimal policy was the
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same, then one group showed stronger support for a policy that would have imposed fitness costs

on some individuals compared to the other policy.

1.4 Discussion

We have investigated the causal influence of culture on health- and fertility-related choices using

a spatial regression discontinuity design and Swiss referenda data. Our results show multiple

discontinuities at the language border, especially with regard to fertility. Such discontinuities

isolate cultural variation in preferences for policies that, if enacted, would have presumably

affected health and fertility choices at the individual level. We have also speculated about

connections between possible referenda outcomes and downstream effects on genetic fitness.

Although the details of these speculations differ, the generic logic is always the same. For a

given referendum, assume that one policy was better than the other policy in the sense that

it would have promoted choices and created incentives that would have been better – in terms

of individual expected fitness. We do not know which policy was better in this sense, but we

assume that one was better, and the other was worse. If, in addition, the better policy right

at the border was the same on both sides of the border, then any discontinuity in voting at

the border implies that one of the two groups showed relative support for the worse policy for

cultural reasons. More to the point, one of the two groups supported a policy that would have

negatively affected health, survival, and fertility relative to the other policy. By extension, the

individuals in this group were ready to pay an opportunity cost in terms of fitness, and they

were willing to impose this fitness cost on their Swiss fellows who would have been subject to

the policy if enacted. We can view this opportunity cost in two ways. First, it would have

represented an opportunity cost relative to the other policy under consideration. Second, it would

have represented an opportunity cost in the form of reduced fitness relative to other societies, for

example other countries in continental Europe.

While our findings emphasise cultural differences in health- and fertility-related voting

decisions at the language border, our study comes with several limitations. First, our study

employs municipal-level data and not individual-level data. This approach is well-suited for

the central part of our analysis. We effectively demonstrate the capacity of culture to create

stable differences between groups in domains related to health and fertility. However, this

approach presents a significant limitation in exploring the potential impact of these cultural
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differences on variation in individual fitness values. Future research would benefit greatly by

using individual-level data to assess more accurately how cultural differences affect the individuals

who make up the cultural groups under study.

Second, individuals could have, in principle, self-selected into treatments. People born on the

French-speaking side of the border could have moved to the German-speaking region in search

of a cultural environment more aligned with their personal values and vice versa. Although

we suspect associated effects are trivial, we cannot definitively dismiss the potential impact of

endogenous sorting into location at the border. Future research, equipped with more extensive

data regarding the place of birth in lieu of the place of residence, would be better poised to

control for any possible selection bias of this sort. Third, our sample consists solely of voters

and is thus unrepresentative of the Swiss population. That said, laws and policies are enacted

precisely on the basis of the preferences and decisions of voters, and in this sense our sample

represents the politically engaged part of the population. As such, our data demonstrate how

culture can shape voting decisions and policy outcomes.

Fourth, we do not know how cultural variation in voting translates into cultural variation in

behaviour. For instance, we found clear distinctions in voting about paternity leave. Yet, we

do not know how these kinds of differences might relate to the time fathers spend with their

children, and we do not know how people on both sides of the border might react to one policy

versus another. In general, we can imagine that the two groups might often support different

policies, but they might also react differently to the policy that prevails after all the votes are

tallied. Future research could examine these kinds of questions by exploring cultural differences

in behavioural responses to political outcomes.

Finally, the data only pertain to referenda results and do not distinguish between the different

reasons people vote one way or another. Our task was to isolate, as much as possible, the effects

of culture from the effects of environments, institutions, and even genes. Our approach separates

the influence of culture on voting in this way, but it cannot identify which components of culture

drive results. Similarly, we cannot control for variation in the social environment. Observed

variation at the border could be driven by differences in cultural domains related to religion,

political affiliation, media consumption, or secular values. Future studies could unpack the

discontinuities by investigating these kinds of underlying mechanisms.

Within the boundaries of these limitations, we have attempted to add a crucial element to

the discussion of gene-culture processes by pushing for the clean identification of culture as a
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distinct cause of health- and fertility-related choices. In particular, genetic evolutionary processes

do not favour stable differences between groups. Minimal gene flow between groups is enough

to render groups nearly identical genetically (Frankham et al. 2002, Bell et al. 2009), and this

seems to be the state of affairs at the Röstigraben in Switzerland (Buhler et al. 2012). This is

crucial because, if groups are genetically similar, selection at the group level is irrelevant. If

groups are different, in contrast, selection at the group level could easily matter. In this latter

case, group selection can shape evolutionary dynamics in addition to selection at the individual

level, and the result can be entirely new evolutionary regimes that would not otherwise be

possible. Although the workaday evolutionary ecologist generally ignores such possibilities in

strictly genetic systems, cultural evolutionary processes may be completely different (Mesoudi &

Danielson 2008, Richerson et al. 2016). Our results show that cultural evolution can stabilise

differences between groups, even amid ongoing contact, and it can do so in decision-making

domains that should have a relatively close link to genetic fitness.

In particular, under the assumption that fitness effects are equivalent right at the border on

both sides of the border, our results suggest that voters on one side or another routinely support

a policy that was worse in terms of expected fitness than the other policy under consideration.

The policy is worse in the sense that it should impose a cost in terms of expected fitness on

individuals subject to the policy, but support for the policy is to some extent a group-level

cultural phenomenon. This suggests the potential for cultures to maintain preferences detrimental

to fitness when compared to some relevant benchmark. However, there are exceptions where this

assumption does not hold; cases with complex fitness landscapes where multiple equivalent optima

exist and variations in social environments that affect policy fitness consequences. These scenarios

are crucial for a comprehensive understanding, yet they complement rather than contradict our

primary observation. Cultural influences have the potential to shape preferences in ways that

may not always align with optimal fitness outcomes.

These results are especially surprising because they hold in contemporary Switzerland.

Switzerland is one of the easiest places in the world to get from one place to another. The

distances are short, and the trains are clean, pleasant, frequent, extremely long, and exceedingly

reliable. Moreover, this has been the state of affairs for a long time. The flow of cultural

information across the border on a daily basis must be extreme, and thus one might naively

expect the Röstigraben to be a cute vestige of former times. Our results, however, show that the

reality is quite the opposite.
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Altogether, given the limitations of our approach, our contribution is twofold. First, we

highlight the value of using a quasi-experimental design to isolate the causal influence of culture on

decision making. Strangely, many of us are probably comfortable with the notion that somehow

cultural differences exist. However, from a strictly empirical perspective, cultures routinely

covary with other confounds, and separating the effects of culture from these confounds can often

be difficult or impossible. Our approach does so by essentially identifying systematic group-level

differences that cannot be genetic, environmental, or institutional. Second, we specifically isolate

cultural effects of this sort in decision-making domains related to health and fertility. In this

way, although we do not examine genetic fitness directly, we do lean in this direction by focusing

on cultural variation in support of policies that should influence fertility, health, and survival.

The variation in question is a group-level phenomenon based on cultural evolutionary processes,

but it should have consequences for individual reproduction and by extension fitness.
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Abstract

People tend to imitate successful individuals more than those who are not successful, and leaders

leverage this tendency when "leading by success." However, recent theoretical and empirical

evidence suggests that social learning strategies, including success-biased social learning, are more

complex than previously thought. The added complexity and flexibility could challenge current

success-based leadership techniques. Focusing on success-biased social learning, we studied

how individuals adapt their behaviors based on the actions of successful leaders. Through an

incentivized experiment, we examine participants’ decision-making after observing the behavior

of a successful leader and two additional signals: the leader’s group affiliation and affiliation

implications. An accompanying gene-culture coevolutionary agent-based simulation integrates

cognitive mechanisms to process the same three types of social information, along with private

information. Our findings highlight three critical aspects of success-biased social learning.

First, strategies are multi-dimensional. Participants and agents adjust their responses based on

multiple pieces of social information. Second, while adjustments are symmetric in the simulation,

the experiment shows participants perform better in certain conditions than others, indicating

cognitive biases. Finally, the simulation and the experiment demonstrates significant heterogeneity

and flexibility in the use of social learning strategies. Our results show that followers adjust

to success-dependent social information in complex and heterogeneous ways, including using

successful leaders as negative examples. More effective success-based leadership strategies would

integrate the complexity and flexibility of followers’ cognition.

Keywords: organizational behavior, decision-making, social learning strategies, success bias,

group affiliation effects



CHAPTER 2. SUCCESS-BIASED SOCIAL LEARNING

2.1 Introduction

People tend to imitate successful individuals more than those who are not successful. This

tendency is called success-biased social learning and is well-documented in social sciences and

evolutionary science (Offerman & Sonnemans 1998, Henrich & Gil-White 2001). Leaders can and

do leverage this tendency to follow success in several ways. They showcase their own success to

encourage others to emulate their behaviors. They highlight successful team members, making

successful behaviors visible and hoping that followers will get inspired by these behaviors. Or

they pair successful mentors with individuals in mentorship programs, hoping they will naturally

follow successful examples. However, recent theoretical and empirical evidence suggests that

social learning strategies, including success-biased social learning (Ehret et al. 2021), are more

complex than previously thought. This added complexity would challenge current "leading by

success" practices.

Followership theory emphasizes the active role followers play in shaping leadership outcomes

(Uhl-Bien et al. 2014). In particular, followership research explores how followers’ cognition,

traits, and values can moderate the impact of leader behaviors (Matthews et al. 2021, Oc et al.

2023). Central to understanding followership is social learning, also called vicarious learning,

where individuals observe and learn from the behaviors of others (Bandura & Walters 1977,

Manz & Sims Jr 1981). Humans rely heavily on others to learn and adapt to their environment

(Cavalli-Sforza & Feldman 1981, Boyd & Richerson 1985). By imitating what others are doing,

they spread behaviors, and because humans do not imitate random fellow humans, some behaviors

are more likely to spread, and others disappear (Laland 2004, McElreath et al. 2008).

A social learning strategy is a relatively simple strategy that summarizes how an agent

responds to a given type of social information. We can imagine social learning strategies of all

levels of complexity. However, many social scientists and cultural evolutionists focus on quite

simple strategies, for example, strategies that are one-dimensional in the sense that they represent

a response to one and only one observed variable (Efferson et al. 2008). Individuals focus on a

single variable and vary their behavior only according to this variable. For example, they respond

to the behavior of a successful demonstrator (Offerman & Sonnemans 1998). Influential leaders

serve as role models, but many factors can moderate their influence on followers, including the

perceived relevance of the leader to the follower’s environment (Offerman & Sonnemans 1998).

However, recent empirical evidence suggests that social learning strategies are more complex
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than we thought. Individuals can consider multiple variables in social learning and express

social learning strategies of higher orders (Mesoudi et al. 2016, Efferson et al. 2016). Strategies

could involve flexibility and adjustments to multiple pieces of information such as individual

characteristics, group affiliations, and the perceived relevance of specific behaviors (Myers

2018, Bellamy et al. 2022). In the context of success-biased social learning, individuals do not

simply mimic successful leaders universally. Instead, they could adjust their strategies to group

membership, the context, or the perceived relevance of the leader. This complexity implies that

followers might even do the opposite of what successful leaders do under certain conditions.

Aside from complexity, theoretical work in gene-culture coevolution tends to assume that

social learning strategies are homogeneous as it vastly simplifies, for example, developing and

analyzing simulations (Boyd & Richerson 1985). This assumption leads to two erroneous ideas

about social learning. First, social learning strategies tend to be the same across agents; many

or even all agents rely on the same strategy. Second, social learning strategies are fixed at the

individual level. Intuitively, a strategy is homogeneous in the sense that the agent relies on the

same strategy across decision-making settings. With the expansion of experimental research

on social learning and cultural evolution, we now know that both ideas are probably wrong

(Mesoudi et al. 2016, Kendal et al. 2018). Social learning strategies are radically heterogeneous.

Complexity and heterogeneity in social learning have significant implications for leaders

who rely on success to guide their teams. A leader might demonstrate the success of a new

tool, expecting widespread adoption, or promote in-office work by showcasing their productivity,

assuming it will inspire the same behavior in employees. If followers do not perceive these leaders

and their actions as relevant to their own circumstances, they might not follow or, worse, might

use these examples as counter-examples. For instance, a mentorship program designed to have

all followers emulate their mentors may fail if followers view the mentors as outgroup members

and adjust their strategies accordingly. Understanding these dynamics is crucial for predicting

and enhancing the effectiveness of leadership strategies. This study contributes to followership

theory by exploring the cognitive processes of followers in response to successful leaders when

additional pieces of information are available. By expanding our understanding of social learning

strategies and their complexities, we aim to improve leadership practices, enabling leaders to

better predict and influence the behaviors of their followers.

Further, complexity and heterogeneity in social learning strategies at the individual level can

significantly impact the dynamics at the aggregate level, from teams to the entire organization
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(Granovetter 1978, Young 2009, Efferson et al. 2020). How individuals interpret and react to

their peers’ actions shapes decision-making, team dynamics, and organizational culture dynamics

(Levitt & March 1988, Argote et al. 2000, Argote & Levine 2020). Allowing multiple variables

to feed social learning strategies can change the cost of social learning compared to individual

learning, affecting cultural evolution dynamics (Efferson et al. 2016).

This was the point of departure for the present study. Focusing on success-biased social

learning, we studied social learning complexity and heterogeneity at the individual level through

a simulation and a lab experiment. In both the simulation and the experiment, followers were

exposed to three pieces of social information. In the first part, we investigate the complexity of

social learning strategies. Both the simulation and experiment show that followers expressed

complex social learning strategies, and that includes the use of a successful demonstrator as

a negative example. Followers adjust how they respond to the successful demonstrator based

on the three pieces of social information: the demonstrator’s allocation, group affiliation, and

the meaning of group affiliations. However, these adjustments are symmetric in the simulation

but not in the experiment. Holding the value of social information constant, experimental

social learners perform best when observing successful ingroup demonstrators when shared

group affiliation predicts similar decision-making environments. The second part focuses on

the two types of heterogeneity discussed above: how learners vary their responses to social

information from one situation to another and how the same situation can trigger different

responses from one learner to another. Results demonstrate tremendous heterogeneity of social

learning strategies at the individual level. Strategies vary between individuals in the same

situation and across situations for a single individual. Our results show that followers adjust to

success-dependent social information in complex and heterogeneous ways that include the use

of successful leaders as negative examples. The findings from our simulation and experiment

have significant implications for real-world organizations, where leaders can use these insights

to foster more effective success-based leading strategies by adjusting to followers and context

characteristics.
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2.2 Complex, biased and heterogenous social cognition

2.2.1 Social learning strategies complexity

We do not know how complex social learning strategies are and how they vary across individuals

and situations. Here, we investigate social learning complexity and flexibility when learners

make decisions with information about successful others’ choices. We first focus on complexity

defined as the number of variables that feed into social learning strategies. In that sense, simple

strategies are based on a single variable. In the case of payoff-dependent social learning, for

example, learners would respond to success but would not consider the other information pieces.

Complex strategies, on the contrary, would integrate multiple variables. Learners would respond

to success but could also adjust to other variables, such as the leader’s characteristics, context,

or relevance.

To illustrate, here are different strategies of various complexity, all derived from the same

generic strategy, following success. In the simplest version, an individual relies on a single

variable and, for example, always follows the behavior of a successful demonstrator. From an

evolutionary perspective, this makes sense; imitating successful behaviors is likely to make you

successful as well. This is the first layer of complexity. In a slightly more complex version,

we can imagine that two variables feed into the strategy. For example, an individual selects

a successful person but from a subsample based on observable markers. That is, restricting

the sample to people who share some readily observable characteristics with her, such as dress,

language, or ethnicity. Thus, the learner pays attention to two variables, the successful behavior

and the demonstrator’s group membership, based on observable traits. Until recently, we were

more likely to share our environment with people similar to us; thus, imitating people like us

tended to be a successful strategy. Note that this could imply not imitating (even doing the

opposite) a successful individual if she does not share some observable markers. In a third version,

the learner would pay attention to three variables, for example, the successful behavior, the

demonstrator’s group membership, and the meaning of group membership information. The

social learner observes a successful person who is more or less similar to the social learner based

on some readily observable trait, and the social learner has additional information about the

relevance of the observed similarity. These three strategies could initially seem very similar, yet

they would produce very different cultural evolutionary dynamics at the aggregate level (Efferson

et al. 2020).
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To distinguish between complexity levels, we developed a gene-cultural coevolutionary sim-

ulation and conducted an incentivized experiment. Participants were given three pieces of

social information: a successful demonstrator’s choice, the demonstrator’s group affiliation, and

additional context about that affiliation. Treatments varied based on these information pieces,

and we assessed how they influenced social learning strategies. Specifically, we examined the

number of variables affecting these strategies. If participants respond to multiple variables, that

would confirm that social learning strategies are multidimensional.

2.2.2 Biased cognition

Allowing for more complex social learning strategies does not necessarily imply that individuals

do not evolve a biased cognition. The term "biased" can have two different meanings in this

setting, and we want to clarify what those two concepts are and which terms we will use in the

rest of the paper to call each of them. As described by Boyd & Richerson (1985), the first meaning

refers to cultural evolution bias. Specific social learning strategies generate endogenous cultural

evolutionary dynamics. That is what we refer to when we say social learning is not random or

biased. People follow specific social learning strategies that cause behaviors and practices to

spread and evolve within a culture. For example, people imitating successful individuals, leading

to widespread adoption of those behaviors. In the rest of the paper, we only refer to this type of

bias by saying success-biased social learning.

The second meaning pertains to cognitive bias in the context of error management theory

(McKay & Efferson 2010). Here, a cognitive bias can be trivial or interesting. A trivial cognitive

bias means a tendency to hold beliefs that are not uniformly distributed but may be justified by

evidence. For example, believing certain outcomes are more likely based on past experiences.

An interesting cognitive bias involves systematic deviations from Bayesian updating, where

individuals consistently process information in a way that leads to sub-optimal decisions. A

biased cognition in that sense would lead the learner to use social information better in some

situations than others, making better choices in some situations than others. The intuition

is that some learning settings in the ancestral past were more frequent than others, and this

persistent asymmetric exposure to learning settings in the past has shaped the evolution of

human cognition (Barrett 2014). Evolution has retained a higher level of learning complexity

only for frequent environments in our ancestral past. Consequently, if the contemporary settings

are similar to ancestral ones, learners will demonstrate a higher level of complexity in their
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social learning strategy. They will better integrate information and perform better, regardless of

explicit contemporary incentives (Cosmides & Tooby 2013). Namely, learners would not adjust

symmetrically in two informationally equivalent settings but rather perform better in a situation

consistent with the ancestral setting. For example, learners would perform better when learning

from an ingroup member than an outgroup member, even though the incentive structure is

rigorously the same in the two situations. In the rest of the paper, we call that type of bias

"cognitive bias."

In our research, both types of bias are involved. First, we study specifically success-biased

social learning, where individuals tend to follow successful demonstrators, aligning with Boyd

and Richerson’s concept (1985). However, simultaneously, the experiment design allows us to

identify cognitive biases of the second sort. We constructed four informationally equivalent

treatments. All four convey the same amount of information. The only difference is the framing

of information. Participants can observe either an ingroup member or an outgroup member, and

they can be similar (dissimilar) with ingroup members. By extension, in principle, participants

can earn equivalent amounts of money on average in these four treatments. However, if they form

beliefs under a biased cognition, they will perform better in some treatments than others. In

particular, they will perform better in the most "natural" scenarios. We anticipate two potential

biases. First, participants will perform better when observing a demonstrator from the same

group, an ingroup member, compared to an outgroup member. Second, participants will perform

better when they share their environment with ingroup members rather than outgroup members.

2.2.3 Social learning strategies heterogeneity

Aside from complexity, social learning strategies might be more heterogeneous than we currently

assume. Even though homogeneity has been a useful hypothesis in cultural evolution theory

(Boyd & Richerson 1985), recent empirical evidence suggests that social learning is radically

heterogeneous (Mesoudi et al. 2016). Social learning varies across individuals and situations

for the same individual. All agents do not rely on the same strategies (Muthukrishna et al.

2016), and the same agent could rely on different strategies as she develops and moves from one

situation to another (Morgan et al. 2012). Many simulations lead social learners to misapply

a strategy sometimes, applying rigid social learning strategy. It might not always be correct,

especially since allowing heterogeneity in social learning strategies drastically reduces situations

where agents misapply some strategies. For example, an agent could adopt a different strategy
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from one period to the next, expressing temporal heterogeneity (Perreault et al. 2012, Efferson

et al. 2016). She could also vary strategies across environments or demonstrators. In a way,

social learning heterogeneity suggests that agents face different incentives and learn to play

the game in different ways as a result (Efferson et al. 2008). Our experimental design allows

us to describe and analyze heterogeneity in social learning strategies across participants and

situations. Multiple participants will face the same scenario, and the same participant will

encounter multiple scenarios.

2.3 Gene-culture coevolutionary simulation

2.3.1 Simulation setup

Simulation description

To formally test our intuitions and obtain predictions for the experiment, we built an agent-based

gene-culture coevolutionary simulation. The basic process of a gene-culture coevolutionary

simulation is as follows. Each generation, individuals come to the world with an inherited

genetically encoded strategy. Individuals receive some information, both social and private, and

make a decision. Their decision depends both on their inherited strategies and the information

received. Further, these decisions result in payoffs. Based on the relative payoff values, individuals

potentially reproduce and transmit their genetically encoded strategies to the next generation,

subject to mutations. As generations pass, the relative value of social learning strategies and

behaviors vary. Culture and the genetically encoded strategies that generate cultural evolution

evolve, and the system potentially stabilizes on a set of culturally evolved behaviors and genetically

evolved strategies. We then compare the equilibrium strategies with those used by the experiment

participants.

Task In each generation, individuals have to allocate all of their endowment between two

projects, which we label here 0 and 1. One project is optimal in the sense that the return per unit

invested is greater than one. The other project is suboptimal, and the return is less than one.

Project 1 is optimal in Environment 1, and Project 0 is optimal in Environment 0. Individuals

receive some social and private information before making their decision but do not know with

certainty which environment they face. However, they enjoy a high payoff if they allocate most

or all of their endowment to the optimal project.
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Cultural model Agents belong to a triangle or circle group, each with distinct optimal projects.

In each generation, the triangle group’s optimal project is always the opposite of the circle group’s

optimal project. Imagine, for example, a division of labor setting where each group specializes in

opposing tasks to enhance overall efficiency and adaptability. In the simulation, if the optimal

project for triangle individuals in generation t is 0, then the optimal project for circle individuals

in the same generation (t) is Project 1.

Table 2.1: Simulation parameters and functions

Parameters Function Data condition

φ
Environment change probability. Controls
the probability that the environmental state
changes between generations.

φ ∈ 0.05, 0.5, 0.95

σ
Signal reliability. Indicates the probability
that the private signal correctly indicates the
winning project.

σ ∈ 0.5, 0.6, 0.9

πh Payoff per unit invested in the optimal project. πh = 10

πl
Payoff per unit invested in the suboptimal
project. πl = 0.1

µ Mutation rate. Controls the probability of
mutations occurring in the genotype. µ = 0.02

n Number of agents in the population. n = 1, 000

tmax
Maximum number of generations in the simula-
tion. tmax = 3, 000

rmax
Maximum number of independent simulation
runs. rmax = 50

Individuals receive information about which project is optimal but do not know it with

certainty. Namely, they receive five pieces of information they can use in their strategy, 3 pieces

of social information, and 2 pieces of private information. They observe (1) the allocation of the

most successful individual in the previous generation, (2) the group affiliation of the individual

learners whose choice they observe, and (3) the probability of the optimal project to alternate

from one generation to the next, φ ∈ {0.05, 0.5, 0.95}. φ can also be interpreted as information

on the value of the group affiliation information. Aside from social information, they receive (4) a

private signal, indicating which project is optimal, and they observe (5) the probability that this
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signal is correct σ ∈ {0.5, 0.6, 0.9}. Table 2.1 summarizes the parameters’ functions and values.

Genetic model Agents are characterized by a genotype with seven variables, c1, c2, d1, d2,

γ1, γ2, γ3. The strategy function includes 7 inherited quantities and two information pieces, the

most successful allocation x, and the changing rate of the environment φ.

a = c1 + (d1 − c1)φγ2

φγ2 + (1− φ)γ2

b = c2 + (d2 − c2)φγ3

φγ3 + (1− φ)γ3

y = a+ (b− a)xγ1

xγ1 + (1− x)γ1

(2.1)

Individuals can face four different scenarios, observing either an ingroup or an outgroup

demonstrator and a private signal equal to s = 0 or s = 1. The quantities can be different in

each scenario; that is, individuals can adjust their strategy to group membership and private

signal, too.

Gene and culture interaction Descendants come to the world with a particular strategy

stored in their genes. To make their decisions, individuals use their genetically inherited strategies

to process information and produce decisions. They can adjust to a maximum of five pieces

of information. In each generation, individuals receive some information and adopt a behavior

consistent with the information received and their inherited strategy.

As generations pass, the distribution of inherited strategies and behaviors evolves. Different

behaviors produce different payoffs. As the strategies that yield higher payoffs have higher

chances of reproducing, the distribution of behaviors can change and change the relative value of

genetically encoded strategies. Some strategies are selected over others, and the distribution of

strategies changes. The distribution of behaviors and strategies evolve together in a gene-culture

coevolutionary system. The system potentially stabilizes on a set of behaviors and strategies.

The equilibrium strategies represent predictions for settings involving the same information. We

test these predictions in a companion experiment.

Procedure

The simulation starts by setting initial parameters: environment change probabilities (φ ∈

{0.05, 0.5, 0.95}), signal reliability (σ ∈ {0.5, 0.6, 0.9}), payoff per unit invested in the optimal
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project (πh = 10), payoff per unit invested in the suboptimal projectπl = 0.1), mutation rate

(µ = 0.02), population size (n = 1000), number of generations (tmax = 1000), and number of

independent runs (rmax = 50). Parameters and initial conditions are summarized in Table 2.1.

Agents’ genotypes are first initialized with random values between 0 and 1 for 4 of the 7 variables

(c1, c2, d1, d2 and with 1 for the factorial values γ1, γ2, γ3). Agents are assigned to the circle or

triangle group, each with a designated optimal project.

In the first generation (t = 1), agents observe private signals indicating the environment state

(s = 0 or s = 1) and its reliability (σ ∈ {0.5, 0.6, 0.9}). They do not receive social information.

Agents make decisions based on their genotypes and the private information received. Payoffs

are calculated based on each agent’s optimal project and allocation decision. Fitness is computed

as a combination of these payoffs, endogenous fitness, and an exogenous fitness component. The

best-performing agent in each group (triangle and circle) is selected as the demonstrator. We

record population-level statistics, such as mean allocation, payoff, and fitness. Agents reproduced

based on relative fitness. A higher fitness increases the likelihood of passing on genotypes.

Offspring genotypes are subject to mutations.

In subsequent generations (t > 1), a round proceeds as follows. First, the environment

changes with probability φ. When φ is low, the environment is stable, and optimal projects

will likely be the same as in t− 1. When φ is high, the environment is unstable, and optimal

projects are likely to differ from t− 1. Private signals are generated for each agent, reflecting

the updated environment state. Additionally, agents receive social information. They observe

the allocation of the most successful individual in the previous generation, its group affiliation

(triangle or circle), and the probability of the optimal project to alternate from one generation

to the next, φ ∈ {0.05, 0.5, 0.95}. Agents make allocation decisions based on their genotypes

and the observed behaviors. Payoffs are calculated based on the optimal project and the agent’s

decision. Fitness values are computed, and agents reproduce based on relative fitness. Mutations

can occur. The best-performing agents in each group are selected as the new demonstrators.

This process is repeated for 3,000 generations (tmax). Due to variability and drift, the system

does not entirely stabilize. However, we observe that genotype variables under selection stabilize

within a specific range from about generation 1000 onward. To allow for some margin, we decide

to stop at 3,000 generations. Each simulation includes 1000 individuals and is repeated 50

times. Some parameters vary within a simulation. The observed allocation depends on the most

successful allocation in the previous generation and varies from generation to generation. The
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demonstrator group alternates as agents observed alternatively a circle or a triangle demonstrator.

φ and σ vary across simulations. We ran separate simulation for the 9 parameters combinations

(φ ∈ {0.05, 0.5, 0.95}, σ ∈ {0.5, 0.6, 0.9}.

The gene-culture coevolutionary simulation explores the evolution of social learning strategies

by modeling how agents observe and learn from successful agents. By observing behaviors and

genotypes when the system stabilizes, we can understand if agents adjust to multiple pieces

of information, exhibit biases, and show heterogeneity in their strategies. These benchmarks

provide a valuable basis for comparing experimental results and understanding the potential

evolution of social learning cognition complexity.

2.3.2 Simulation results

Figure 2.1: The average strategies when the system stabilizes

Notes: The average strategies when the system stabilizes. For each treatment combination and each simulation, we
computed the average strategy. Each red line represents the average strategy in the last generation of a simulation.
The black dotted line is the average of all simulations.

Multidimensional social learning strategies evolve. Below, we focus on scenarios that

match our experimental design, when agents can only learn socially (σ = 0.5). Private information
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has no value. The curious reader can find the results for scenarios involving both social learning

and individual learning in appendix 2.7.1. The results suggest that evolved strategies include both

social information and private information. The valence of one type of information compared to

the other depends on the context, specifically how reliable the private signal is.

Regarding scenarios where only social learning is available, two key findings follow. First,

when social information is valuable, the system stabilizes on complex social learning strategies,

that is, strategies that include all pieces of information available. Agents adjust how they respond

to a successful demonstrator based on the demonstrator’s group affiliation and the meaning of

group affiliations. The set of strategies includes using a successful ingroup member as a negative

example. Figure 2.1 shows the equilibrium strategies in each scenario. Each red line represents

the average strategy at the end of one simulation.

When social information is valuable (φ = {0.05; 0.95}), social learners’ allocation varies

according to the observed demonstrator’s allocation, affiliation, and φ the meaning of the

affiliation information. In figure 2.1 panel A and F, agents likely imitate the demonstrator; the

bigger the proportion of the endowment the demonstrator allocates to Project 1, the bigger the

proportion of their own endowment they allocate to Project 1 as well. The system stabilizes on the

opposite strategy in figure 2.1 panels C and D. The bigger the proportion of the endowment the

outgroup demonstrator allocates to Project 1, the bigger the proportion of their own endowment

they allocate to Project 0. These findings suggest that agents adjust to affiliation information

(ingroup versus outgroup) and φ the meaning of the group affiliation, too. Adjustments include

the use of a successful demonstrator as a negative example. In figure 2.1 panels C and D, agents

do the opposite of a successful demonstrator; they allocate most of their endowment to the

project, whereas demonstrators do not.

Adjustments are symmetric. Second, these adjustments are symmetric. Agents perform

equally well in all scenarios, keeping social information’s value constant. They can learn similarly

from ingroup and outgroup members and adjust perfectly to φ, the likelihood of the environment

changing from generation to generation. Figure 2.2 describes the average performance over agents

and simulations across treatments. We considered the last generations of each simulation when

the system had stabilized. The graph shows no difference between the average payoffs in the four

informationally equivalent scenarios: ingroup 0.95, outgroup 0.95, ingroup 0.05, and outgroup

0.05. We observe similar performance across ingroup and outgroup treatments and φ levels. The
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Figure 2.2: Average performance across scenarios
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Average performance over agents and simulations across treatments. We average agents’ performance across
treatments in the 100 last generations of each simulation. Agent performance is the number of points obtained by a
single agent. Each agent receives 10 points per unit invested in their optimal project and 0.1 points per unit invested
in their suboptimal project. The blue bars represent treatments where agents observe an ingroup demonstrator,
while the red bars represent outgroup treatment. φ indicates the likelihood of the optimal project changing from
generation to generation. Results show no significant performance difference in information equivalent treatments

results suggest that the agents show no cognitive biases. Agents were equally able to learn from

ingroup and outgroup members in stable or changing environments.

Heterogenous genotypes evolve. Having discussed the phenotypic behaviors and perfor-

mance outcomes, we now turn to the underlying genotypes. The advantage of a gene-culture

coevolutionary simulation is that we can analyze both behaviors and the inherited strategies

driving them. By examining the evolution of these genotypes, we explore the mechanisms behind

the observed behaviors and variability within the population. To this end, we analyze the

genotypic variance over simulation rounds. Specifically, we look at the seven inherited quantities

that define the inherited social learning strategy (c1, c2, d1, d2, γ1, γ2, γ3). We aim to observe

how these genetic parameters evolve and potentially stabilize over time.

Figure 2.3 displays the variance in all quantities included in the genotypes of the agents
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Figure 2.3: Variance of Genotypic Quantities in Agents
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Notes: This graph displays the variance in all quantities included in the genotypes of the agents over simulation
rounds. Each panel plots variance for different parameters (e.g., c1, c2, d1, d2, gamma1, gamma2, gamma3)
against simulation rounds (0 to 1000). Some variables exhibit increased variance due to a lack of selection pressure
and are subject to drift, while others are more stable, indicating different levels of selection pressure.

over simulation rounds. Diverse evolutionary patterns emerge for different genetic parameters.

Some variables, c1, c2, c3, d1, and d2, exhibit a decreasing then relatively stable variance over the

simulation rounds. This pattern suggests that some selection pressures constrain these values

within a specific range. These parameters are under stronger selection pressures than gamma

variables. Despite the stronger pressures, c and d parameters still exhibit some variability. This

variability indicates that multiple strategies can produce outcomes that are payoff-equivalent.

Thus, we expect a degree of heterogeneity to persist within the population, even though these

variables face some selection pressures.

Conversely, other variables, γ1, γ2, and γ3, show increasing variance over time. These variables

become increasingly diverse, suggesting random fluctuations due to drift rather than adaptive

changes. Genetic drift is a process where certain traits change randomly over generations. Traits

can take on multiple values without being strongly selected for or against, increasing traits’

variance over time. This randomness contributes further to the heterogeneity of strategies within

the population.

The simulation results suggest, first, that evolution selects the most complex learning strategies.

The strategies present when the system stabilizes integrate the three pieces of social information.

We test these predictions in a lab experiment. The lab experiment involves the same three pieces

of social information. The simulation can accommodate up to five pieces of information; three

pieces are social information, and two pieces are private information. In the experiment, we

omitted the two private pieces of information to concentrate on social information and isolate

social learning strategies. This method counters the reflection problem by separating individual

learning from social learning. In the experiment, we test whether participants use social learning
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strategies of the same complexity level and whether they adapt their strategies to the three

pieces of social information.

Second, in the simulation, adjustments are symmetric. That makes sense, as our simulation

relies on two critical assumptions. First, agents inherit strategies that can process all the relevant

variables. Second, there is no cost for associated cognitive complexity. However, human cognition

could easily be different. For example, humans could have evolved better learning abilities in some

scenarios compared to others due to more frequent exposure. Learning in some scenarios could

be more costly than in other scenarios. Our current model does not incorporate cognitive costs or

varying exposures to different scenarios, which could potentially lead to asymmetric adjustments.

While this is a limitation of our simulation, we address this aspect in our experiment. We tested

the presence of cognitive biases in our experiment by exposing the participants to four scenarios

where the information value is the same but where the framing differs. Because the scenarios

carry the same amount of information, any significant difference in performance will tell us that

adjustments are not symmetric and that humans have evolved cognitive biases to learn more

easily in some scenarios than others.

Third, our findings indicate that some genetic parameters are loosely regulated by selection

pressures, leading to convergence in those traits, while others are subject to drift, fostering

greater variability. We also anticipate some heterogeneity in social learning strategies to manifest

in the experiment.

2.4 Experimental methods

2.4.1 Experiment overview

We conducted the following experiment with 133 students at the University of Lausanne. In each

round, each participant had to allocate an endowment of 100 tokens to two projects, "Project A"

and "Project 1." One project is optimal as the return per unit is greater than one. The other

project is suboptimal, and the return per token invested is less than one. Participants maximize

their profit by allocating their tokens to the optimal project. The optimal project is randomly

selected from a uniform distribution at the beginning of each round. Participants do not know

which project is optimal with certainty but can have some information. Information varies across

treatments.
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2.4.2 Task

Sessions last for 90 rounds, and all participants make one choice per round. In each round,

participants have to make an investment decision about how to allocate 100 tokens to two

projects, "Project A" and "Project 1." They have to allocate all of their endowment. To allocate

the tokens, participants use a slider. They can decide to allocate any amount between 0 and

100 to project 1, in 1 increments. Figure 2.9 in the Appendix illustrates the decision screen.

Between these two projects, one is optimal and yields a return per token greater than one, 2.

For each token invested in that project, the participant receives 2 points. The other project is

suboptimal, and the return per token invested is less than one, 0.5. For each token invested,

the participant receives 0.5 points. The optimal project is randomly selected from a uniform

distribution at the beginning of each round. Participants might have some information about

which project is optimal, but they do not know it with certainty. The information provided is

part of our treatments.

The total number of points for one round and one participant is the sum of the points yielded

by the investment in the optimal project and the sum of points yielded by the investment in the

suboptimal project. Therefore, the result for a round depends on the allocation decision and

the fate of the two projects, whether the optimal project is Project 1 or Project A. Participants

can earn each round between 50 (100 ∗ 0.5) and 200 points (100 ∗ 2). The points are translated

into CHF at the end of the experiment. Because the decision-making domain involves risk, and

because we want risk to matter, we randomly select 2 rounds to pay. Thus, participants cannot

spread risk over all 90 rounds and essentially eliminate risk from consideration.

2.4.3 Groups and roles

Before the session starts, participants are assigned a role, individual learner or social learner, and

a group, triangle or circle. Thus, participants can be of four types: triangle individual learners,

circle individual learners, triangle social learners, and circle social learners. Participants are

randomly assigned to the four types according to the following rule.

• 3 participants are circle individual learners.

• 3 participants are triangle individual learners.

• half of the remaining participants are circle social learners.
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• half of the remaining participants are triangle social learners.

The roles and groups remain constant throughout the session.

Both individual and social learners are divided into two groups, triangles and circles. The

optimal project for circle individual learners is randomly selected at the beginning of each round

according to a uniform distribution. The optimal project for circle individual learners is the

opposite of the optimal project for triangle individual learners. To illustrate, if the optimal

project for triangle individual learners in round t is Project A, then the optimal project for circle

individual learners in the same round is Project 1.

Roles, individual learner or social learner, differ according to the timing of the decision and

the information they receive. Each round is divided into two parts. The individual learners play

during the first part. The social learners play during the second part. Individual learners, playing

first, do not receive any information about the optimal project. They make choices and receive

immediate private feedback about their choices’ payoff consequences. The decision screen for

individual learners is in Appendix, Figure 2.9. In our experiment, individual learners only serve

as successful examples to social learners. Although we are very grateful for individual learners to

join for the experiment, we are only interested in the decisions of the social learners.

Social learners and social information

Social learners play in the second part of the round. Before making their choices, they receive

three pieces of social information. The decision screen for social learners, including the social

information display, can be found in the Appendix, Figure 2.10. First, social learners observe

the allocation of a successful demonstrator. At the beginning of the experiment, the computer

randomly draw one of the group, triangle or circle. Imagine, for example, that the computer

chooses triangle. In each of the first 45 rounds, we will take the most successful individual

learner (i.e., highest payoff) from the triangle group. We call this successful individual learner

the "demonstrator". All social learners, whether triangle or circle social learners, observe the

demonstrator’s allocation choice. By extension, some social learners observe the allocation choice

of the most successful ingroup individual learner. In contrast, other social learners observe the

allocation choice of the most successful outgroup individual learner. We refer to the allocation

choice itself as "first-order" social information. After 45 rounds, midway through the session, we

switch groups and select for the remaining 45 rounds the most successful individual learner from

the other group. From a social learner perspective, the demonstrator is an ingroup (outgroup)
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member for the first 45 rounds and an outgroup (ingroup) member for the last 45 rounds.

Second, social learners know the group affiliation (i.e., triangle or circle) of the demonstrator

whose choice they observe. As mentioned above, the demonstrator is an ingroup member for

some social learners and an outgroup member for others. We refer to the group affiliation of the

reported demonstrator as "second-order" social information.

Third, social learners know the ex-ante probability with which their optimal project is the

same as the optimal project of ingroup individual learners. This probability can be conceived as

the similarly with ingroup members. Let this probability be φ. φ can take values from the set

{0.1, 0.5, 0.9}. φ = 0.9 is the most "natural" scenario and indicates a high probability of sharing

the optimal project with ingroup demonstrators. Because triangle and circle individual learners

always have opposite optimal projects, a high probability of sharing the optimal project with

ingroup demonstrators indicates a low probability of sharing the optimal project with outgroup

demonstrators (1− φ). φ = 0.1 indicates a low probability of sharing the optimal project with

ingroup members demonstrators and, conversely, a high probability of sharing the optimal project

with outgroup demonstrators. Finally, φ = 0.5 provides no information. Social learners are

randomly assigned to the φ values at the beginning of the experiment. Once assigned a value of

φ, they retain this value for the session. We refer to φ as “third-"der” socia"information.

After receiving social information, social learners make a decision; however, they do not receive

private feedback about their choices’ consequences. Instead, they only see their total payoffs

at the very end of the session. Thus, social learners can only learn socially. This distinction is

crucial as it is impossible to disentangle individual learning from social learning if both occur

simultaneously (Manski 2000, Efferson et al. 2016).

2.4.4 Two-by-three design based on social information

Table 2.2: Treatments based on social information

φ = 0.9 φ = 0.5 φ = 0.1

Ingroup demonstrator Ingroup,
0.9

Ingroup,
0.5

Ingroup,
0.1

Outgroup demonstrator Outgroup,
0.9

Outgroup,
0.5

Outgroup,
0.1

Treatments are based on social information and vary regarding second-order information,
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observing an ingroup or outgroup demonstrator, and third-order social information, φ, the

probability of having the same (opposite) optimal project as ingroup (outgroup) demonstrator.

The first treatment dimension is observing an ingroup or outgroup demonstrator. A social learner

observes either the most successful ingroup individual learner or the most successful outgroup

individual learner. Specifically, each social learner completes one block of 45 rounds in which she

observes an ingroup demonstrator each round, and each completes another block of 45 rounds

in which she observes an outgroup demonstrator each round. We counterbalance the order of

these two within-subject treatments across social learners. The second treatment dimension is

φ. φ can takes values from the set {0.1, 0.5, 0.9}. At the beginning of the session, each social

learner is randomly assigned one of the 3 φ values and retains this value for the entire session.

Therefore, a social learner with φ = 0.9 will always have 90% chance to share the same optimal

project as ingroup demonstrators, independent of the round. This dimension is between subjects

but within sessions. In each session, all φ values are represented.

Optimal strategies

Table 2.3: Optimal strategies across treatments

φ = 0.9 φ = 0.5 φ = 0.1

Ingroup demonstrator Imitate - Do the
opposite

Outgroup demonstrator Do the
opposite - Imitate

Social learners’ optimal strategies vary depending on the second-order and third-order social

information they receive, whether they observe an ingroup or outgroup demonstrator and the

probability φ of having the same optimal project as the ingroup demonstrator. Table 2.3

summarizes these strategies. Two treatment groups should imitate the demonstrator. Note

we use "imitate" her in the sense "allocate the majority of the tokens to the same project as

the demonstrator," rather that in a stricter sense "deciding on the exact same allocation as the

demonstrator." Two groups maximize expected payoffs by imitating demonstrators and allocating

the majority of their tokens to the same project as the observed demonstrator. First, social

learners observing an ingroup demonstrator with a high probability (φ = 0.9) of sharing the same

optimal project as their ingroup demonstrators. They should imitate the ingroup demonstrator
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they are observing. Second, social learners observing an outgroup demonstrator with a low

probability (φ = 0.1) of sharing the same optimal project as their ingroup demonstrators. They

should imitate the outgroup demonstrator they are observing.

On the contrary, two other groups maximize expected payoffs by "doing the opposite" of

the demonstrator. Again, by "doing the opposite", we mean "allocating the majority of their

tokens to the opposite project as the demonstrator." First, social learners observing an outgroup

demonstrator with a high probability (φ = 0.9) of sharing the same optimal project as their

ingroup demonstrators. They should do the opposite of the outgroup demonstrator they are

observing. Second, social learners observing an ingroup demonstrator with a low probability

(φ = 0.1) of sharing the same optimal project as their ingroup demonstrators. They should do

the opposite of the ingroup demonstrator they are observing.

Identifying social learning complexity Notice that our treatments do not vary in terms of

complexity, defined as the number of variables that feed into social learning strategies. In all

treatments, social learners have access to three pieces of information: information about the

observed allocation, the demonstrator’s group membership, and the relevance of this information.

The question is whether they actually process that information. By having treatments system-

atically varying in terms of optimal strategies, we can identify how many and which pieces of

information are integrated into their social learning strategies.

To illustrate, imagine that participants use simple, first-order, social learning strategies in

the sense that they process a single variable. For example, social learners only respond to the

observed allocation. Then, we would observe different allocations across observed allocations,

but similar allocations across ingroup and outgroup treatments, and across φ levels. In the 6

treatments, the allocation pattern would look the same. Probably a small amount when the

observed allocation is low and a bigger amount when the observed allocation is higher. Now

imagine social laerners use second-order strategies, in the sense that they process two pieces

of information. For example, they pay attention to the observed allocation and the group

membership. We would observe different allocation patterns across allocation levels and ingroup/

outgroup treatments but similar allocations across φ levels. We would observe one allocation

pattern across the ingroup treatments (Ingroup 0.9, Ingroup 0.5, Ingroup 0.1). And another

allocation pattern across the outgroup treatments (Outgroup 0.9, Outgroup 0.5, Outgroup 0.1).

Observing different allocation patterns across ingroup and outgroup treatments would indicate
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that social learners are processing at least two pieces of social information. Finally, imagine that

social learners use social learning strategies of the third-order, that is, the maximum level of

complexity allowed by our setting. We would observe different allocation patterns across the

6 treatments. Social learners would express different strategies depending on the allocation,

the group membership and the relevance of the information. Observing different allocation

patterns across the different φ levels in addition to adjustment to group membership and observed

allocation would show that social learners respond to the three variables.

By systematically varing optimal strategies, we can identify how many and which pieces

of information are integrated into social learning strategies. The allocation patterns across

treatments tell us whether learners are employing first-order, second-order, or third-order

strategies and allow us to identify the complexity of social learning processes.

Identifying cognitive biases These four treatments, (i) observing an ingroup individual

learner under φ = 0.9, (ii) observing an ingroup individual learner under φ = 0.1, (iii) observing

an outgroup individual learner under φ = 0.9, and (iv) observing an outgroup individual learner

under φ = 0.1 are informationally equivalent. They are similar in terms of the value of the

information available to subjects. By extension, social learners can earn equivalent amounts of

money on average in these four treatments. However, these treatments are different in terms

of the framing of the information. Comparing informationally equivalent treatments allows us

to identify cognitive biases,if any. If social learners systematically perform better or worse in

one treatment over another, despite having access to the same value of information, this would

suggest the presence of cognitive biases.

In all four cases, the amount participants choose to allocate to the expected optimal project

depends on their individual risk preferences. Risk-averse participants would potentially spread

their tokens more evenly. Risk-seeking participants would make more pronounced allocations. A

risk-neutral participant would maximize their expected payoff by allocating all of her endowment

to the expected optimal project. We expect this heterogeneity to create variability in the

decisions.

Finally, treatments with φ = 0.5 are different as information has no value. All social learning

strategies are equivalent in expected payoffs. Social learners cannot use social information to

improve their payoffs. That said, if social learners have any intrinsic preference for one social

learning strategy over another, for example, follow success, this preference should be most likely
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to manifest itself in treatments with φ = 0.5 precisely because the treatment removes material

incentives from consideration.

The experiment was pre-registered (Faessler & Efferson 2019). We collected data by running

four 2-hour sessions on November 28th and 29th, 2019, in the behavioral laboratory at HEC

Lausanne on a computer network using oTree (Chen et al. 2016). We used the online recruiting

software ORSEE (Greiner 2004). A total of 133 participants were recruited (mean age = 21.20,

SD = 2.78, males = 50.38%). Participants were mainly students from the University of Lausanne

and the Swiss Federal Institute of Technology in Lausanne (EPFL). The most represented

countries of birth were Switzerland (60 participants) and France (32 participants). A total of 27

countries were represented. The instructions were given in French. Before the experiment, we

collected explicit consent from the participants. Participants were free to leave the experiment

at any point, although none did it. Participants had to pass a comprehension check to start

the experiment. We collected sociodemographic data at the beginning of the experiment and

asked for impressions at the end of the experiment. Each participant received CHF 10.- for her

participation plus a bonus varying between CHF 12.- and CHF 48.- depending on her success for

the two randomly selected rounds to pay out.

2.5 Experimental Results

Our objective is to explore the complexity and heterogeneity of participants’ social learning

strategies. First, we examine the complexity of social learning strategies (see section 2.5.1). Using

descriptive statistics and regression models, we analyze how participants allocate tokens and

whether they adjust their behaviors based on the demonstrator’s actions, group membership, and

the relevance of this information. The results suggest that participants use third-order strategies,

which is the maximum complexity allowed by our setting.

Second, we test for cognitive biases by analyzing performance across informationally equivalent

treatments (see section 2.5.2). By identifying systematic differences, we learn that participants

are more comfortable learning in some scenarios than others.

Finally, we explore the heterogeneity in social learning strategies (see section 2.5.3). We

assess the variability of these strategies among individuals in the same situation and within the

same individual across different contexts. This analysis reveals that participants do not rely on a

single strategy but adapt their approach based on the context.
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2.5.1 Social learning strategies are multi-dimensional.

Social learners expressed complex social learning strategies. Participants behaved differently in the

four informationally equivalent treatments and did not mindlessly follow first-order information.

On the contrary, they adapted their strategies according to second and third-order information.

Figure 2.4: Social learners’ average allocations in the six treatment conditions
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The average allocation to project 1 given the demonstrator’s allocation to project 1. The panels show the average
allocation over social learners for levels of demonstrator’s allocation in the six treatments’ combinations. The
red lines represent an allocation of 50. The areas shaded in grey depict where an average would fall if they were
consistent with an optimal strategy. Panels B and E are not shaded as social learners have no valuable information;
there is no optimal strategy for these treatments’ combinations.

Figure 2.4 visually describes the participants’ average allocation across treatment, that is,

the average number of tokens allocated to project 1. The average allocation varies in each

treatment condition. For now, we leave aside the special cases when social learners have no

valuable information, when the demonstrator allocates 50 tokens to project 1, or when φ =

0.5, that is when social learners do not know if their information is reliable. We focus on

scenarios where social learners have valuable social information. In figure 2.4 panel A, ingroup

0.9, participants likely imitate the demonstrator when observing a successful ingroup member

likely to share the same optimal project. The more tokens the demonstrator allocates to Project

1, the more they allocate to Project 1. In figure 2.4 panel D, outgroup 0.9, when participants

observe an outgroup member in an environment where they are likely to share the optimal

79



CHAPTER 2. SUCCESS-BIASED SOCIAL LEARNING

project with ingroup members, participants adopt the opposite strategy: the more tokens the

successful outgroup demonstrator allocates to project 1, the more they allocate tokens to project

0. They use a demonstrator as a negative example. Similarly, in figure 2.4 panel C, ingroup

0.1, when participants observe an ingroup member unlikely to share the same optimal project,

participants do the opposite as the demonstrator. They use a successful ingroup demonstrator

as a negative example. Finally, in figure 2.4 panel F, outgroup 0.1, when participants observe

an outgroup member likely to share the same optimal project, participants are likely to imitate

the demonstrator. The more tokens the demonstrator allocates to Project 1, the more they

allocate to Project 1. They adopt a similar strategy to in panel figure 2.4 A. Figure 2.4 provides

some first descriptive evidence that participants behave differently in the four informationally

equivalent treatments and adapt their strategies according to the demonstrator’s allocation,

group membership information, and the meaning of the group membership information.

Table 2.4 presents the regression results with y the social learners’ allocation to project 1

as the response variable. Results show that social learners use strategies that include the three

pieces of information. Social learners adjust their allocation to the demonstrator’s allocation

(estimate = 0.906, p < 0.001), to group membership (estimate = 83.709, p < 0.001), and the

relevance of the group membership information φ (φ = 0.5 estimate = 35.725, p < 0.001; φ = 0.1

estimate = 75.031, p < 0.001). Further, they adjust to any combination of the information

pieces (p < 0.001 for all interaction terms). The regression results confirm the visual description

provided in figure 2.4; social learners adjust their strategies according to the three pieces of

information available.

We computed linear combinations for a subset of treatment combinations to investigate how

social learners switch strategies from one scenario to another. Tables 2.5 and 2.6 present the

linear combinations estimates when social learners observe the demonstrator allocating either 0

or 100 tokens to project 1. Table 2.5 shows the impact on social learners’ allocation of a switch

from observing an ingroup to an outgroup demonstrator. The table 2.5 first part presents the

estimates of when social learners are likely to share the same optimal project as the demonstrator,

φ = 0.9. When demonstrators allocate 0 tokens to project 1, a switch from observing an ingroup

to an outgroup member leads to a change of 84 tokens (estimate = 83.73, p < 0.001). Similarly,

when demonstrators allocate 100 tokens to Project 1, a switch to an outgroup demonstrator

reduces the allocation to Project 1 by 85 tokens (estimate = -84.98, p < 0.001). Social learners

adjust their strategy to the demonstrator’s allocation and group membership. The table 2.5
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Table 2.4: The regressions modeling how many tokens social learners invested in project 1

Parameters (1) (2)
Baseline

Demonstrator’s allocation x 0.906∗∗∗ 0.906∗∗∗
(0.052) (0.053)

Outgroup 83.797∗∗∗ 83.709∗∗∗
(5.530) (5.552)

φ = 0.5 35.748∗∗∗ 35.725∗∗∗
(4.360) (4.344)

φ = 0.1 74.886∗∗∗ 75.031∗∗∗
(5.479) (5.509)

x · Outgroup −1.688∗∗∗ −1.687∗∗∗
(0.115) (0.116)

x · φ=0.5 −0.702∗∗∗ −0.700∗∗∗
(0.079) (0.079)

x · φ=0.1 −1.539∗∗∗ −1.539∗∗∗
(0.106) (0.106)

Outgroup · φ=0.5 −73.359∗∗∗ −73.004∗∗∗
(7.032) (7.006)

Outgroup · φ=0.1 −134.759∗∗∗ −134.557∗∗∗
(10.593) (10.602)

x · Outgroup · φ=0.5 1.510∗∗∗ 1.503∗∗∗
(0.143) (0.142)

x · Outgroup · φ=0.1 2.750∗∗∗ 2.746∗∗∗
(0.215) (0.215)

Gender 0.921
(1.103)

Faculty −0.270
(0.263)

Country of birth −0.072
(0.099)

Observations 9,810 9,810
Adjusted R2 0.351 0.352
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

The regression models how many tokens social learners invested in project 1. Independent variables
include (a) x the demonstrator’s allocation to project 1, (b) whether the social learner observes an
outgroup member, (c) φ the meaning of the group affiliation information, and (d) the interactions between
the demonstrator’s allocation and each of these dummies. The omitted category of the regression is a
demonstrator’s allocation of 0, an ingroup demonstrator, and φ = 0.9, that is, having a 90% chance
for the social learner to share optimal projects with ingroup demonstrators. Robust standard errors in
parentheses are clustered at the social learner level to reflect the multiple observations per social learner.
Both models include fixed effects for the session. Model (2) also includes controls for the social learner’s
gender, faculty, and country of birth.
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second part shows similar results for φ = 0.1 when social learners are likely to have a different

optimal project than ingroup demonstrators. A change from observing an ingroup to observing an

outgroup modifies the social learners’ allocation significantly by about 53 tokens (x = 0 estimate

= -50.89, p < 0.001; (x = 100 estimate = 55.13). These estimates are smaller than the ones for

φ = 0.9 when social learners are likely to share their optimal project with the demonstrator.

Table 2.5: The linear combinations switching from ingroup to outgroup

Switching from ingroup to outgroup

φ = 0.9
Demonstrator’s allocation x = 0 83.737∗∗∗

(5.547)
Demonstrator’s allocation x = 100 -84.983∗∗∗

(6.197)

φ = 0.1
Demonstrator’s allocation x = 0 -50.891∗∗∗

(9.028)
Demonstrator’s allocation x = 100 55.131∗∗∗

(9.378)
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 2.6 shows the impact on social learners’ allocation of a switch from an ingroup

demonstrator likely to have the same optimal project, φ = 0.9, to an ingroup demonstrator likely

to have a different optimal project, φ = 0.1. Results are similar to a switch between observing

an ingroup and an outgroup member. A change in φ leads to an average difference of 80 tokens

allocated to project 1 when observing an ingroup member (x = 0 estimate = -75.19, p < 0.001;

(x = 100 estimate = -78.73), and 60 tokens when observing an outgroup member (x = 0 estimate

= -59.43, p < 0.001; x = 100 estimate = 61.38). Similarly, the average token differences are

different across treatment combinations: the difference is bigger when observing an ingroup

member than when observing an outgroup member. We investigate this difference further when

looking at potential biases and social learners’ performance. The linear combination results

confirm that social learners respond to success and group membership and the relevance of the

group membership information. Social learners’ strategies can and do account for higher-order

forms of information. The three available variables feed into social learning strategies, creating

strategy functions with three dimensions: the maximum complexity allowed by the setting.

We now investigate special cases when social learners have no valuable information. When
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Table 2.6: The linear combinations switching from φ = 0.9 to φ = 0.1

Switching from φ = 0.9 to φ = 0.1

Ingroup
Demonstrator’s allocation x = 0 75.191∗∗∗

(5.530)
Demonstrator’s allocation x = 100 -78.734∗∗∗

(5.317)

Outgroup
Demonstrator’s allocation x = 0 -59.437∗∗∗

(6.275)
Demonstrator’s allocation x = 100 61.380∗∗∗

(7.330)
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

social information is meaningless, social learners do not express an intrinsic preference for

a particular strategy. They do not adjust either to success or to group affiliation. Linear

combinations results in table 2.7 show that when social learners observe a demonstrator’s

allocation of 50 tokens to project 1, that is, when they have no valuable information about which

project is the optimal one, participants did not vary their strategy across group membership

or φ levels. Switching from observing an ingroup member to an outgroup member leads to an

average difference of 1 token allocated to project 1, and this difference is non-significant ( φ = 0.9

estimate = -0.62, p = 0.55; φ = 0.1 estimate = 2.12, p = 0.151). Social learners adopt similar

strategies whether they observe an ingroup or an outgroup member. For example, they do not

prefer following an ingroup member. Similarly, switching from φ = 0.9 to φ = 0.1 leads to no

significant difference in the number of tokens allocated to project 1 (ingroup estimate = -1.77,

p = 0.158; outgroup estimate = 0.97, p = 0.599). These results show that social learners did

not jump on a generic strategy, for example, follow success or an ingroup member, when they

had no information about its validity. These observations challenge the common assumption

in social learning literature that individuals inherently follow successful individuals or ingroup

members. Without meaningful information, social learners did not demonstrate a bias towards

such generic strategies. This deviation from expected success or ingroup bias not only underscores

the absence of inherent preferences but also helps us to rule out demand effects. These null

results likely indicate that participants’ choices were informed by the available information rather

than assumptions about the experiment’s expectations.
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Table 2.7: The linear combinations when social learners have no valuable information

Demonstrator’s allocation x = 50

Switching from ingroup to outgroup
φ = 0.9 -0.623

(1.053)
φ = 0.1 2.120

(1.466)

Switching from φ = 0.9 to φ = 0.1
Ingroup -1.771

(1.245)
Outgroup 0.971

(1.840)
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

2.5.2 Asymmetric adjustments: social learning is biased.

While social learners adjust their strategies to second and third-order information, they do not

adjust perfectly. They performed better in some treatment combinations than others. Namely,

they failed to adjust perfectly to third-order information and performed better when φ = 0.9

compared to φ = 0.1. We analyzed performance across the four informationally equivalent

treatments to test for asymmetric adjustments across treatments. Social learners can, in principle,

earn equal amounts of money on average in these four treatments, observing an ingroup or

outgroup member under φ = {0.1, 0.9}.

Figure 2.5 visually describes the average performance in each treatment condition. The social

learner’s performance is the number of points a social learner obtains. Each social learner receives

2 points per token invested in their optimal project and 0.5 points per token invested in their

suboptimal project. Thus, the performance of each social learner can range from 50 points to

200 points. We focus on treatments where social learners have valuable social information, when

φ = {0.1, 0.9}. Table 2.8 provides the linear combination coefficients. First, performance did not

vary across group membership treatments; social learners obtained similar payoffs in the ingroup

and outgroup treatments (φ = 0.9 estimate = -5.54, p = 0.52; φ = 0.1 estimate = -6.17, p =

0.599). Participants perfectly adjusted their strategy to second-order information; they did not

perform better when presented with an ingroup demonstrator than an outgroup demonstrator.

These results suggest that participants were just as capable of learning from an ingroup member

as an outgroup member.
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Figure 2.5: Average performance across treatments
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Average performance over social learners across treatments. The social learner’s performance is the number
of points a social learner obtains. Each social learner receives 2 points per token invested in their optimal
project and 0.5 points per token invested in their suboptimal project; social learners’ performance can
range from 50 to 200 points. The blue bars represent treatments where the social learner observes an
ingroup demonstrator, while the red bars represent outgroup treatment. φ indicates the likelihood of
being similar to an ingroup demonstrator. Social learners in phi = 0.9 treatment have a 90% chance of
sharing the optimal project with ingroup demonstrators. Results show significant difference between φ =
0.9 treatments and φ = 0.1 treatments. Performance in ingroup and outgroup treatments are similar.

Second, participants obtained a significantly better average payoff under φ = 0.9 than under

φ = 0.1, keeping second-order information constant. Switching from φ = 0.9 to φ = 0.1 decreases

performance by 35 points on average (ingroup estimate = -34.94, p < 0.001; outgroup estimate =

-35.56, p < 0.05). Participants did not adjust their strategy perfectly to third-order information;

they performed better when ingroup members were likely to share the same optimal project (i.e.,

φ = 0.9) rather than when ingroup members were unlikely to share the same optimal project (i.e.,

φ = 0.1). These findings imply that participants did not similarly process information across

these two learning settings. They were more comfortable learning in a setting where ingroup

members share their environment compared to a setting where outgroup members share their

environment.
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Table 2.8: Social learners’ performance across treatments

Switching from ingroup to outgroup
φ = 0.9 -5.542

(8.628)
φ = 0.1 -6.168

(11.696)

Switching from φ = 0.9 to φ = 0.1
Ingroup -34.938∗∗∗

(12.133)
Outgroup -35.565∗

(13.935)
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

2.5.3 Social learning strategies are heterogeneous.

Heterogenity across social learners in the same situation

In the same situation, social learners did not rely on the same strategy but expressed various

strategies. To describe social learning heterogeneity across participants in the same situation, we

constructed a first-order regression model for each social learner in each treatment condition.

yij = β0 + β1xi + εi (2.2)

We then extracted and compared β0 and β1 across social learners.

Figure 2.6 shows the distribution of β0 and β1 in each treatment. Based on equation 2.2, β0

is the estimated allocation when xi = 0. β1 measures how many tokens the social learner invests

in project 1 for each token invested in project 1 by the demonstrator. When β1 is positive, the

social learner favors the same project as the demonstrator; when β1 is negative, she favors the

opposite project. β0 and β1 are diverse, suggesting various social learning strategies.

β0 and β1 are diverse but not random; they follow a negatively sloped pattern in the four

informative treatments. β0 and β1 compensate for each other. The higher the β0, the lower the

β1, and vice-versa. These results suggest that individuals employ diverse strategies leading to

similar behaviors. For instance, a high β0 coupled with a low β1 indicates a high basic allocation

with less reliance on social cues. In contrast, a low β0 alongside a high β1 suggests greater

emphasis on social information and less on basic allocation. Different combinations can achieve

comparable decision-making outcomes. This negative relationship between b1 and b0 highlights
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Figure 2.6: Social learning heterogeneity across individuals

the flexibility and adaptability in social learning. There is no dominant strategy but a spectrum

of approaches tailored to individual differences and contexts.

Most, but not all, of the strategies expressed are consistent with the optimal strategy in

each treatment. In the Ingroup 0.9 and Outgroup 0.1 treatments, the optimal strategy was to

follow the demonstrator’s example and allocate the majority of the tokens to the project to

which the demonstrator allocated most of her tokens. Namely, any strategy in the upper left

corner of the square, β0 < 50 and β1 is positive, is consistent with the optimal strategy. In the

Ingroup 0.1 and Outgroup 0.9 treatments, the optimal strategy was the opposite: not following

the example of the demonstrator and allocating the majority of the tokens to the project to

which the demonstrator allocated the least of her tokens. Strategies consistent with the optimal

strategy fall in the bottom right corner, β0 > 50, and β1 is negative. Further, some treatments

count more inconsistent strategies than others. The Ingroup 0.9 treatment counts the least

inconsistent strategies, followed by the Ingroup 0.1 treatment, the Outgroup 0.9 treatment, and

finally, the Outgroup 0.1 treatment. These results suggest that finding the optimal strategy in

the Outgroup 0.1 treatment was more challenging for social learners than finding the optimal

strategy in other treatments.
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Heterogenity across situations for the same social learner

Social learning strategies also vary across situations for the same participant. The same social

learner changes her strategy when she moves from one decision setting to another. Most social

learners expressed a different strategy when observing an ingroup member than an outgroup

member. We built a regression model for each social learner according to equation 2.3. φ is a

between-subjects dimension and thus does not enter the regression.

yij = β0 + β1xi + β2dij,out + β3xi ∗ dij,out + εi (2.3)

For each social learner, we compared the allocation across group membership treatments

through linear combination 2.4.

−β2dij,out − β3xi ∗ dij,out = 0 (2.4)

We computed the linear combination for three levels of x, x = {0, 50, 100}. The linear

combinations produce a β and its associated p-value. β indicates how the allocation varies across

group membership treatments for a single individual learner.

Figure 2.7: Social learning heterogeneity across situations for the same individual

Social learning heterogeneity across situations for the same individual. β can be interpreted as a measure
of allocation variation across group membership treatments for a single individual learner. β significant at
the 0.05 level are displayed in red.

Figure 2.7 summarizes β for x = 0 and x = 100. When x = 0, 69.81% of the β are significant;

these results suggest that 69.81% of the social learners use a different strategy when observing

an ingroup member compared to an outgroup member. When x = 100, 72.64% of the β are

significant; 72.64% of the social learners varied their strategy across group membership treatments.
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These data include social learners with all φ levels, including under treatment φ = 0.5. Social

learners demonstrated facultative adjustment. Namely, they demonstrate strategies rich enough

to accommodate all three information orders. Our results suggest tremendous heterogeneity

across individuals and situations for the same individual.

We observe an extensive heterogeneity in social learning strategies among participants in the

same situation and within the same participant across different situations. This heterogeneity

suggests that social learners do not rely on a single, uniform strategy but instead employ various

strategies tailored to specific contexts. Social learning strategies are adaptable and flexible.

The observed heterogeneity also implies that multiple strategies can achieve similar outcomes,

indicating a compensatory mechanism across different dimensions of social learning. For instance,

a high basic allocation with less reliance on social cues (high β0, low β1) can be behaviorally

equivalent to a strategy that places greater emphasis on social information and less on basic

allocation (low β0, high β1). This flexibility highlights the complexity of social learning and the

capacity of individuals to adjust their strategies based on contextual cues.

Both the heterogeneity observed in our experimental results and the gene-culture coevolution-

ary simulation suggest an essential role for genetic drift in maintaining diversity in social learning

strategies. Drift, through random fluctuations, can lead to the persistence of multiple strategies

within a population in the absence of strong selection pressures. Simulation results suggest that

several genotype variables are subject to drift while others were selected to be in a particular range

without stabilizing on a single value. The experiment’s social learning strategies that allow for

compensating effects across dimensions further support this idea. Different strategies can produce

similar behaviors through compensating effects, allowing drift to maintain polymorphisms in

social learning strategies within a gene-culture system in equilibrium.

2.6 Discussion

2.6.1 Third-order social learning strategies

These findings indicate that social learning strategies’ current assumed complexity level is far too

simple. We should consider integrating multidimensional social learning functions, considering

cognitive biases in belief updating, and allowing for heterogeneity in social learning. Assuming

simple social learning strategies implies that a social learner observes a successful demonstrator’s

behavior and chooses based on this observation. The learner can respond to variations in
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demonstrator choices, but she cannot do more. Although many theories on social learning

evolution assume this complexity level, our results join other recent studies indicating that social

learning strategies are more complex than this (Efferson et al. 2016). Suppose a social learner can

only respond to variation in the distribution of choices. In that case, she cannot change how she

responds to any specific distribution given some other variable’s value. Social learners, however,

can actually do this. We added this kind of complexity to our simulation and our experiment

by allowing learners to process information about the demonstrator’s group membership and

relevance. Social learners can and did respond to the three variables: the observed behavior, the

group membership, and the demonstrator’s relevance. Both the simulation and experiment show

social learning strategies of the third-order, that is, the maximum level of complexity allowed by

our setting. People adjust to success-dependent social information in complex ways, including

using successful people as negative examples.

Social learning strategies functions can have at least three dimensions and could be even

more complex (Efferson et al. 2020). The question is to what extent. Could an infinite number

of variables feed into social learning strategies? For example, social learners may also observe the

distribution of demonstrators’ choices in addition to responding to successful behavior, group

membership, and membership relevance. Strategies of this kind would be “fourth-order” and

would include both payoff-dependent and frequency-dependent social learning. However, social

learners’ ability to adjust may not be unlimited. Contrary to our simulation prediction, the

participants in our experiments did not fully adjust to “third-order” information. These results

could suggest that three information pieces are the limit to adjustment and that social learning

strategies would not integrate more than three variables.

2.6.2 Cognitive biases

Second, we should consider cognitive biases in belief updating. Participants appear to process

information differently across informationally equivalent treatments. We compared four situations

that were equivalent in terms of the value of the information available to subjects. Two situations

were consistent with the hypothesized past environment: observing an ingroup member and

having a high probability of sharing the environment with ingroup members (i.e., φ = 0.9). The

experimental results show that social learners performed similarly when observing an ingroup or

compared to an outgroup member. However, they did not fully adjust to third-order information;

they performed better under φ = 0.9 than φ = 0.1 even though the two settings carry the same
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information. The key idea is that persistent asymmetric exposure to specific decision-making

settings in the past shaped the evolution of human cognition (Barrett 2014, Haselton et al. 2015).

Evolution has retained a higher level of learning complexity only for frequent environments in

our ancestral past. If the contemporary settings are similar to ancestral ones, the learner will

demonstrate a higher level of complexity in her social learning strategy; she will better integrate

information and perform better. Moreover, she will do so in a way that is distinct from the effects

of explicit contemporary incentives (Cosmides & Tooby 2013). The asymmetric adjustment

across φ values is coherent with this interpretation. By asymmetric exposure to certain learning

settings compared to others, we evolved a cognition better equipped to deal with these frequent

settings.

One significant limitation of our current model is its inability to replicate these experimentally

observed cognitive biases. Our model assumes no extra cognitive costs and equal exposure

to learning scenarios, failing to account for the evolutionary influences of various exposure to

learning scenarios. Incorporating these biases into social learning models would enhance models’

realism and predictive power. Ideally, future models should integrate asymmetric exposure to

learning situations or cognitive costs. Concretely, this could involve creating models where

participants encounter some learning scenarios more frequently than others, thereby simulating

asymmetric exposure. For instance, based on our experiment results, agents could be exposed to

contexts where ingroup members share optimal projects more often than contexts where ingroup

members do not share optimal projects. The asymmetric exposure would reflect the frequency

of these scenarios in ancestral environments. A second approach would be adding cognitive

costs related to processing certain types of information or information framing to simulate the

increased effort required for less familiar or more complex scenarios. These approaches would

help capture the evolved cognitive biases, providing a more realistic picture of human social

learning strategies.

2.6.3 Social learning heterogeneity

Finally, social learning strategies appeared to be much more heterogeneous than we thought.

Participants expressed a tremendous variety of social learning strategies in the same situations,

and the vast majority switched strategies across situations. Our gene-culture coevolutionary

simulation sheds light on this diversity. Genotypic variance over time illustrates different patterns.

Some parameters show decreasing but stable variance, indicating selection pressures that keep
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these values within a specific range while allowing for some variability. As multiple strategies

yield similar outcomes, heterogeneity remains in the population. Other parameters had increasing

variance due to genetic drift, which contributes to maintaining diverse strategies. These findings

show how both selection and drift preserve strategy diversity. Solutions already exist to integrate

part of this heterogeneity in simulations and allow more realistic cultural evolution predictions.

Our simulation allows strategies of the third order; other simulations may even enable any

strategy coherent with statistical inferences rules (Perreault et al. 2012). The advantage of such

simulations is that we do not have to define arbitrary social learning strategies, as we know that

we often underestimate their complexity. Such simulations allow for social learning strategies of

any complexity level and heterogeneity.

However, our experimental design does not consider correlates such as cognitive abilities

or risk preferences, which could influence social learning strategies and help us understand the

heterogeneity structure. This omission is a limitation, as these factors could provide insights into

the underlying mechanisms driving the observed heterogeneity. Future research should explore

how these proximate factors interact with social learning strategies to offer a more comprehensive

understanding of social learning variability. Experimental designs could manipulate factors

such as cognitive load or risk preferences to observe their impact on social learning behaviors.

Exploring these interactions will help build a more accurate understanding of the complexity

and heterogeneity of social learning strategies.

Implications for leadership Our research challenges prevailing assumptions in the social

learning and leadership literature, which often propose generic strategies like following success,

leaders, or ingroup members. We demonstrate that social learning strategies are far more nuanced.

Our results show the absence of inherent biases in decision-making when information is lacking

and the possibility of adopting strategies that run counter to following the leader. This implies

that leadership should not be seen as a one-directional influence. Leaders sometimes serve as

negative examples, guiding what not to do. Our research underscores the complexity of social

learning in organizational settings and calls for a shift away from ’follow-the-leader’ models

towards a more dynamic understanding of social learning, where individual and contextual factors

play significant roles.

The above findings about social learning complexity have significant implications for man-

agement and organizational practices. Understanding that followers may not always imitate
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successful leaders if they perceive those leaders as irrelevant to their context can help managers

design more effective leadership strategies. For example, when introducing new tools or practices,

leaders should consider the relevance of their demonstrations to their followers’ specific situa-

tions. Additionally, the heterogeneity in social learning strategies suggests that a one-size-fits-all

approach to leadership may be ineffective. Leaders should tailor their strategies to accommodate

the diverse ways followers learn and adapt. This study highlights the importance of considering

multiple variables in social learning, such as success, group membership, and relevance, to enhance

organizational performance.

2.6.4 Limitations and avenues for future research

While our findings emphasize social learning strategies’ complexity and diversity, our study has

several limitations. First, our study relies on a sample of European university students, that

is, people from Western, Educated, Industrialized, Rich, and Democratic countries (WEIRD;

Henrich et al. (2010)). Concerns exist about how these results would translate to non-WEIRD

populations. Research indicates that organizational theory findings from WEIRD samples may

not accurately reflect behaviors in more diverse populations (Banks 2023, Pitesa & Gelfand

2023). Additionally, large-scale studies have shown that while some psychological phenomena

are consistent across different settings, others exhibit variability influenced by cultural contexts

(Schimmelpfennig et al. 2024). While we primarily explored evolved biases that are theoretically

expected to be consistent across diverse cultures, Schimmelpfennig et al. (2024) demonstrates

that without a robust theoretical framework, predicting which aspects of social learning are

universally consistent and which are culturally specific remains challenging. To address these

concerns, future research should aim to replicate this study in varied cultural settings. Such

cross-cultural studies would provide a deeper understanding of the universality or specificity of

these strategies, refining our theoretical frameworks and enhancing the generalizability of our

findings.

Second, we focus on success bias in isolation and do not consider interaction with other biases,

such as conformity. These biases often intersect in real-world scenarios and could influence each

other in complex ways. For instance, how success bias interacts with the tendency to conform to

majority behavior could significantly alter the observed learning strategies. Success bias might

drive individuals to imitate the most successful members, while conformity bias could lead them

to adopt more frequent behaviors within their group. The interplay between these biases could
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result in nuanced strategies where individuals weigh the relative success of behaviors against

their prevalence within the group. For example, in environments where successful behaviors are

also the majority behaviors, the biases might reinforce each other, leading to strong cultural

norms. Conversely, when successful behaviors are not widely adopted, individuals might face a

trade-off between imitating success and conforming to the majority, potentially leading to diverse

and context-dependent learning strategies. Future studies integrating multiple biases could offer

more comprehensive insights into social learning flexibility and complexity. Methodologically,

this could involve developing agent-based models that simulate environments with both payoff-

dependent and frequency-dependent strategies available. Additionally, experimental studies

could be designed to test hypotheses about how different biases interact, such as creating

conditions where the success of behaviors and their frequency within the group are manipulated

independently.

Conclusion Altogether, given the limitations of our approach, our contribution is threefold.

First, our study advocates multidimensional social learning strategies, moving beyond traditional

assumptions of simple, success-based imitation. Social learners do not simply imitate successful

behavior. They also consider additional information like group membership and relevance.

Second, our research highlights the importance of cognitive biases in belief updating. In our

study, participants performed differently across information-equivalent situations. Despite similar

information value, social learners responded differently based on whether they were similar to

ingroup members. These systematic differences suggest that asymmetric exposure to specific

decision-making settings has shaped our cognitive evolution. This finding challenges traditional

views on decision-making and underscores the need to consider evolutionary influences and

cognitive biases when developing theories and simulations in social learning. Finally, our findings

underscore the remarkable heterogeneity in social learning strategies. We observed various

strategies used by participants in identical situations and by different participants in the same

context. This heterogeneity challenges simulations that rely on simple, generic social learning

strategies. Our research supports the use of more sophisticated social learning simulations and

leadership success-based techniques.
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2.7 Appendix

2.7.1 Gene-culture coevolutionary simulation

How private information modifies strategies. In the experiment, we distinguish social

learning from individual learning. This separation is essential if we want to distinguish the effect

of social learning from the effect of individual learning. However, outside this controlled setting,

both happen at the same time. To understand the combined effects, we include individual

learning in the simulation. We examine here how private information influences social learning

strategies, which we now call strategies as social learning mixes with individual learning.

Figure 2.8 illustrates the average strategies across the different parameters’ combinations.

Each red line in the graph represents the average strategy observed in the last generation of

a simulation. The black dotted line shows the overall average strategy across all simulations.

The reliability of the private signal can take the following values {0.5, 0.6, and0.9}. A reliability

of 0.5 means that the signal carries no information. Agents can only learn socially. We focus

here on scenarios where the private signal is valuable (σ ∈ {0.6, and0.9}) and how the allocation

strategies differ when the private signal is valuable compared to the situations where the signal

is meaningless. Focusing first on the first row, when the environment is stable, and the private

signal indicates that the optimal project is Project 0 (φ = 0.1, s = 0), we observe that allocations

decrease as the reliability of the private signal increases. Conversely, in the second row, when the

private signal indicates that the optimal project is Project 1 (φ = 0.1, 1 = 0), allocations increase

as the reliability of the private signal increases. However, even in the presence of meaningful

private information, allocations still vary according to the social information pieces, the observed

allocations, and whether the demonstrator is an ingroup or outgroup member. Even when

the private signal is highly reliable (σ = 0.9), allocations differ across Ingroup and Outgroup

treatments and the observed allocation levels. These results suggest that agents combine social

and private information in a stable environment. Even when reliable, private information modifies

the social learning strategy rather than replacing it.

Moving to the third and fourth rows, when the environment is unpredictable and social

information has no value (φ = 0.5), we observe that allocations are shifted in the direction

indicated by the private signal as the reliability of the private signal increases. When the private

signal indicates that the optimal project is Project 0 (s = 0), allocations decrease. When the

private signal indicates that the optimal project is Project 1 (s = 1), allocations increase. Notice
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Figure 2.8: Average strategies across treatments and simulations
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Notes: The graph shows the average strategies when the system stabilizes. The observed allocation from the
successful agent to Project 1 is on the x-axis. The allocation of the focal agent to Project 1 is on the y-axis. Each
red line represents the average strategy in the last generation of a simulation. The black dotted line represents the
overall average strategy across all simulations. φ indicates the stability of the environment. φ = 0.95 is a highly
changing environment. φ = 0.05 is a stable environment. φ = 0.5 indicates a moderately changing environment.
The reliability of the private signal can take the following values: 0.5, 0.6, and 0.9. When private signal reliability
= 0, private information has no value. s is the private signal and indicates whether the winning project is 1 (s = 1)
or project 0 (s = 0). Ingroup (outgroup) indicates whether the agent observed a successful demonstrator from
ingroup (outgroup).
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that even in that scenario, where social information has no value and private information is

the only information available, we do not observe an immediate shift in the strategies. Instead,

allocations increase (decrease) in a degree that seems related to the reliability of the private

signal, a small increase (decrease) when σ = 0.6 and a bigger increase (decrease) when σ = 0.9.

Last, we observe similar patterns when the environment is highly changing (φ = 0.95).

Allocations are shifted in the direction indicated by the private signal as the reliability of

the private signal increases. As in the stable environment (φ = 0.05), allocations also vary

according to observed allocations and whether the demonstrator is an ingroup or outgroup

member. Although we could have imagined that private information would be more valuable

in a changing environment, the observed strategies in stable and unstable environments do not

suggest that agents balanced social information and private information differently across these

environments.

The results suggest that even when reliable, private signals do not replace social learning but

adjust it. In all environments, social learning strategies are modified in the direction indicated

by the private signal. Further, the weight given to private information increases as its reliability

increases. This smooth shift suggests that agents blend individual and social learning. They

adapt their strategies based on the reliability of private information and the observed social

context rather than switching from one form of learning to another as the information becomes

reliable. Again, the evolution selected the most complex version of learning strategies, where

agents can adjust to social and private information.

2.7.2 Experiment

Screenshots
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Figure 2.9: Decision screen for individual learners

Notes: This figure illustrates what the decision screen looks like for an individual learner. The slider and a
numerical summary of the decision are displayed in the middle of the screen. Using the slider, participants have to
decide how many tokens they would like to allocate to Project A. Below, they can click "Soumettre votre choix" to
submit their decision. At the bottom of the screen, participants find a reminder of their group membership and
type (individual learner). These information pieces are the same throughout the session.

Figure 2.10: Decision screen for social learners

Notes: This figure illustrates the decision screen for a social learner. On top of the screen, social information is
displayed: the demonstrator’s group and allocation decision. In this case, the participant observes a demonstrator
from the circle group who decided to invest all of their endowment in Project 1. Participants know the demonstrator
is the most successful person in the group. The slider and a numerical summary of the decision are displayed in
the middle of the screen. Below, participants should click on "Soumettre voter choix" to submit their decision. At
the bottom of the screen, participants find a reminder of additional information: their group membership, their
type (social learner), and the probability that they share the same winning project as ingroup members. These
information pieces are the same throughout the session.
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Abstract

Teams in various organizational settings often rapidly transition from exploration to the ex-

ploitation of known solutions, potentially at the cost of more innovative or optimal outcomes.

Further, fully connected teams perform worse than moderately connected teams. This experiment

aims to determine whether turnover and the arrival of new members can offset these tendencies

and facilitate the creation of more diverse solutions. In a lab experiment, participants solved

a complex combinatorial task. Two forms of disruption were introduced. First, some teams

experienced changes in team composition, while others remained stable. Second, among teams

that had not reached the highest-performing solution, some were selectively informed about the

existence of superior solutions, while others were not. The results indicate an increase in search

distance following the disruptions in all treatment conditions. However, the increase was modest

and temporary. Interestingly, changes in team composition did not create a more significant

disruption compared to changes in reference points. Contrary to expectations, the increased

exploration was insufficient to create alternative solutions and improve performance. Instead,

payoffs decrease significantly after the treatment in all conditions before returning to their initial

improving trend. These findings suggest that disruptions can trigger short-term exploration but

do not reliably enhance overall performance.

Keywords: social learning, team decision-making, problem-solving, exploration versus

exploitation, turnover, changing teams
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3.1 Introduction

Teams in various organizational settings often rapidly transition from exploration to the ex-

ploitation of known solutions, potentially at the cost of more innovative or optimal outcomes.

To solve complex problems, firms, teams, and individuals engage in search behaviors (Simon

1957). They alternate between exploitation, which means applying known and tested solutions

to achieve stability and efficiency, and exploration, which involves experimenting with novel

solutions to enhance innovation and adaptability (March 1991). Exploitation and exploration

often compete for the same limited resources, thus implying a tradeoff. Exploitation uses these

resources to improve what is already known for immediate returns, while exploration invests

them in new, untested ideas for potential long-term gains. While the optimal balance between

the two behaviors depends on the context, a pervasive finding is that firms and teams tend to

over-emphasize exploitation (Denrell & March 2001). Further, fully connected teams perform

worse than moderately connected teams (Derex & Boyd 2016).

At first, an increased connectivity leading to worse performance may seem counterintuitive.

Yet, this paradox resolves when we recognize that innovation arises from balancing three

critical levers: group size and connectivity, transmission fidelity, and cultural trait diversity

(Muthukrishna & Henrich 2016, Schimmelpfennig et al. 2022). Each lever can enhance or hinder

innovation. First, group size must surpass a certain threshold to ensure a variety of learning

models and sufficient diversity (Kline & Boyd 2010, Muthukrishna et al. 2014). However, if the

team is too connected, people tend to over-rely on social information and homogeneity (Derex &

Boyd 2016). This loss of diversity stifles creativity and innovation. The over-reliance on social

cues leads the highly connected teams to underperform.

The second lever, transmission fidelity, refers to the accuracy and quality of information flow

within a team. High transmission fidelity enhances teaching and information dissemination, lead-

ing to better learning outcomes. However, accurate transmission also means fewer opportunities

for novel variations and an increase in homogeneity. Some distortion in transmission is beneficial

for serendipity and innovation.

The third lever, cultural trait diversity, involves the variety of ideas, values, and perspectives

within a team (Schimmelpfennig et al. 2022). More variety leads to more opportunities for

recombination and novel ideas. However, cultural trait diversity also brings coordination problems

and inequality of outcomes (Muthukrishna 2020). Despite these challenges, diversity provides
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the raw material for creative solutions and remains the best potential fuel for innovation.

In this study, I asked whether introducing diversity in teams could help mitigate the downsides

of highly connected teams. By increasing diversity, newcomers could reduce conformity and

overreliance on social cues. In that sense, turnover, while generally negative due to its disruptive

nature, may have potential virtues. For example, a specific turnover rate increases efficiency in

bird population (Chimento et al. 2021). Turnover might also be helpful in human populations.

Turnover is often, quite rightly, viewed negatively. Turnover disrupts operations, destabilizes

organizational routines, and slows organizational learning. Further, it depletes human and social

capital, typically leading to loss of knowledge, lower productivity, and reduced profits. Effective

communication and coordination can become more complex as new team members integrate

and adjust to the team’s existing processes and culture. However, turnover might introduce new

perspectives and knowledge into a team. Both disruption and fresh knowledge could potentially

lead to increased exploration. For instance, research in the biotech industry has demonstrated

that turnover among top scientists correlates with increased exploration (Tzabbar & Kehoe 2014).

However, the underlying mechanism remains unknown. The increase in exploration related to

turnover could be due to many factors.

First, turnover disrupts operations and destabilizes organizational routines, creating opportu-

nities for the team to rethink and innovate. Further, this period of disruption can sometimes

increase risk-taking behavior. Second, losing a team member or a leader can alter team dy-

namics by increasing uncertainty. The perceived uncertainty can then increase risk-taking and

exploration. Third, the introduction of new team members adds diversity to the group. These

new members bring novel experiences and viewpoints. They can challenge existing norms and

inspire alternative solutions. This diversity in the learning models fosters an environment where

exploration is more likely to occur.

In this study, I test whether turnover can increase exploration in connected teams and help

them break off from this over-exploitation equilibrium. Further, additional treatments allow

me to disentangle the mechanical effect of turnover from (1) changes in reference points and

(2) psychological effects related to the departure of the top-performer. A “reference point” is

a standard or baseline individuals use to compare their current situation. Shifts in this point

can influence decision-making behaviors significantly (Tversky & Kahneman 1992, Bromiley

2010). Previous studies confirm this pattern of success-induced exploitation and failure-induced

exploration in solving complex tasks (Billinger et al. 2014, Giannoccaro et al. 2020). By shifting
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the reference point to the highest achievable performance, I aim to create a perceived failure

situation for the participants, similar to the perceived uncertainty at the departure from the

leader, thereby increasing their willingness to explore (Koop & Johnson 2012). The second

treatment involves the departure of a top-performer to investigate whether knowing that a

high-performing member is leaving prompts the team to explore more.

The results suggest that turnover and the other treatments lead to a small and brief increase

in exploration. Surprisingly, the effect of turnover does not significantly differ from the effect of

the more straightforward disruption, the change in reference point. However, in all treatments,

teams quickly revert to the exploitation equilibrium. Further, the treatments do not influence

performance in the long run. The comparison of the human participant’s performance with

benchmarks simulated via Monte Carlo simulation suggests that human participants achieved

performance similar to connected teams doing a local search. The simulation results suggest that

increased exploration could have led to a higher performance. The exploration period induced by

the experiment’s treatments was too short to lead the teams to discover better alternative solutions.

Moving away briefly from over-exploitation is relatively easy, but maintaining exploration for a

sufficient duration to enhance performance is challenging.

3.2 Solving complex problems in teams

3.2.1 Search behaviors: an alternate of exploitation and exploration

Complex problems involve multiple interdependent decisions, and the best solution is often

unknown. To tackle these problems, individuals must engage in search behaviors and alternate

between exploitation and exploration (Simon 1957, March 1991). The search distance measures

how different a new solution is from the previous one and distinguishes exploitation from

exploration. In exploitation, the distance is short. Individuals reuse or modify slightly the

previous solution. Since this solution is similar to the previous one, its payoff is known, making

it a safer choice. On the other hand, exploration involves deviating further from the last solution

by changing more components. The new solution is markedly different from the original, and

its payoff is unknown. The solution could be a breakthrough or a setback, depending on the

complexity of the problem, the landscape of possible solutions, and luck. Exploration, due to its

uncertain payoff, typically entails greater risk. Exploitation and exploration are generally seen

as mutually exclusive. At each decision point, individuals choose whether to exploit or explore.
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For instance, in software development, the decision at each stage is whether to keep the current

version of the software or modify it and to what extent.

3.2.2 Success-induced exploitation and failure-induced exploration

When individuals tackle problems alone instead of in a team, success induces exploitation, while

failure induces exploration (Billinger et al. 2014). If the current solution outperforms the previous

one, individuals tend to exploit it. Conversely, they tend to explore if the current solution is

less effective. Considering the previous solution as the reference point, a current, less effective

solution places the individual in the loss domain, making them more likely to take risks and

explore. Conversely, if the current solution is more effective, the individual is prone to less

risk-taking and more likely to exploit this success. Exploration is perceived as riskier because

the payoff is unknown, whereas exploitation promises a known reward. However, suppose the

individual currently has the worst possible combination. In that case, exploration becomes the

only way to improve their payoff and, thus, less risky than sticking with and exploiting the

current combination. Apart from this specific scenario, exploration consistently involves more

risk than exploitation. Facing complex tasks alone, individuals typically exploit during success

and explore during failure, regardless of the task’s complexity level.

3.2.3 Connected teams over-exploit.

Complex tasks are often assigned to teams, not just individuals. Understanding how teams

tackle complex tasks and their search behaviors is crucial (Wagner III et al. 2012, Yoon & Kayes

2016). Similar search behavior patterns emerge in teams as with individuals: success induces

exploitation, and failure induces exploration (Kostopoulos & Bozionelos 2011, Goldstone et al.

2013, Døjbak Håkonsson et al. 2016, Giannoccaro et al. 2020). However, team dynamics also

influence these behaviors. Highly connected teams, where information exchange among members

is frequent, tend to explore less (Derex & Boyd 2016). These connected teams quickly reach an

over-exploitation equilibrium and miss on better solutions. This raises a significant challenge

for innovation. Working in teams might hinder the generation of more creative and effective

solutions. How can connected teams avoid getting stuck in this over-exploitation equilibrium

and instead explore alternative solutions?
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3.2.4 Introducing diversity through turnover

Team composition changes, or turnover, offer a potential tool to counteract over-exploitation.

Turnover, especially turnover of top-performing individuals, entails significant costs for businesses,

including recruitment expenses, knowledge loss, and the time required for newcomers to achieve

full productivity (Abelson & Baysinger 1984, Aime et al. 2010, Kwon & Rupp 2013). However,

turnover could also present an opportunity. Newcomers might introduce diversity, innovative

ideas, and varied expertise that can counteract the conformity induced by team connectivity

(Schimmelpfennig et al. 2022). In the context of search behaviors, newcomers could help foster the

exploration of alternative solutions and facilitate the shift away from over-exploitation. Tzabbar

& Kehoe (2014) analyze longitudinal data about star scientist turnover in the biotechnology

industry. They show that star scientist turnover creates opportunities for the firm to search

beyond existing knowledge boundaries and increases exploration.

In this laboratory-based study, I test if team turnover leads to increased exploration and can

offset the expected detrimental tendency of highly connected teams to over-exploit. Additionally,

I disentangle which turnover component leads to increased exploration. I thus differentiate

between two conditions: one where team members are informed about the departure of the

top-performer and another where they are not. The constant across both conditions is the

departure of the top-performer, but the critical variable is the team’s awareness of this change.

The objective is to understand whether the knowledge of the top-performer’s exit psychologically

impacts the team’s search behaviors. Given the controlled setting of a laboratory task, where

the departure of a top-performer might seemingly have a lower impact compared to real-world

teams, detecting any behavioral differences under these conditions would provide compelling

evidence of the psychological effect related to the departure of a top-performer.

Hypothesis 1a. Turnover increases search distance compared to conditions where groups are

stable.

Hypothesis 1b. By extension, turnover increases performance compared to conditions where

groups are stable. The assumption is that teams operate at suboptimal over-exploitation levels,

and any shift towards more exploration is expected to increase their overall performance.

Hypothesis 2. Information about the departure of the top-performer increases search distance

compared to similar scenarios where the information is not provided.
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3.2.5 Artificially alter reference point to increase exploration.

To further distinguish the turnover components involved in increased exploration, I consider

whether changing the reference point could lead individuals to explore other solutions. The idea

is to artificially alter the reference point, creating a perceived situation of failure similar to the

one that turnover could induce and encourage risk-taking behaviors and exploration (Koop &

Johnson 2012). In previous studies, researchers assume that the reference point is the payoff of

the last solution or the best payoff obtained in the sequence (Billinger et al. 2014, Giannoccaro

et al. 2020). In this study, I introduce a new, higher reference point to motivate participants to

explore. I use the highest achievable performance as the new reference point. Participants are

informed that they can attain solutions yielding higher payoffs. This shift in reference points

could lead participants to see their current performance as a failure and induce exploration.

They could break away from the sub-optimal exploitation equilibrium and find more efficient

solutions. I expect individuals and teams to adjust search behaviors following the new reference

point disclosure.

Hypothesis 3a. Information about the existence of better solutions increases search distance

compared to conditions where no such information is provided.

Hypothesis 3b. By extension, information about the existence of better solutions increases

performance compared to conditions where no such information is provided.

3.2.6 Studying complex-problem solving in the lab

This study explores whether team turnover can help connected teams break the expected

over-exploitation equilibrium typically seen in complex problem-solving. For this purpose, I

employ the NK landscape task framework (Csaszar 2018). The NK landscape task is a widely

used method for studying complex problem-solving in a laboratory setting (for review, see, for

example, Baumann et al. (2019)). Participants are challenged to discover the optimal combination

of components, like cracking a secret code. An NK algorithm determines the value of each

combination. Participants engage in trials to identify the most effective combination possible,

navigating through various configurations to uncover the optimal solution. Optimal strategies in

such tasks are complex and often ex-ante unknown. Therefore, I built a Monte Carlo simulation

to benchmark teams’ performance in the experiment.
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3.3 Predictive benchmarks using Monte Carlo simulations

This study explores how turnover influences search behaviors in a controlled lab setting. To

set performance benchmarks, I conducted a Monte Carlo simulation. This simulation models

individual search behaviors under different conditions by varying (1) the likelihood of exploration

(φ) and (2) the possibility of learning from others (γ). Participants face different probabilities

of exploring new strategies versus sticking with known ones (φ ∈ {0, 0.1, 0.5, 1}). Additionally,

agents experience two scenarios: they can be isolated, without access to social learning (γ=0), or

they can be connected to team members and learn from their solutions (γ=1). By manipulating

exploration likelihood and connectedness, I produce three primary performance benchmarks for

the experimental results. The primary benchmarks of interest include:

• The low benchmark represents a random walk, where agents only search locally and are

not connected (φ = 0, γ = 0).

• The medium benchmark involves random walks within connected teams, where agents

only search locally but can learn from each other (φ = 0, γ = 1).

• The high benchmark represents the optimal scenario, where connected teams balance

local search and exploration (φ = 0.5, γ = 1).

These benchmarks provide a comprehensive range of expected outcomes, offering a clear basis

for comparison with our experimental results.

3.3.1 Simulation setup

Initial conditions An NK landscape is generated and assigns a specific payoff to each possible

combination of components. A new NK landscape is created at the beginning of each simulation

to introduce variability and ensure robustness in the results. Each landscape is characterized by

10 elements (N = 10) and 5 interactions (K = 5), matching the complexity of the experimental

setup. As in the experimental setup, each team in the simulation consists of 3 individuals (n = 3),

and the simulation runs over 20 decision-making periods, referred to as rounds (tmax = 20).

At t = 1, each agent is assigned a random combination of components. The payoffs for these

combinations are calculated based on the generated NK landscape. This setup establishes the

initial conditions.
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Table 3.1: Simulation parameters and role

Parameters Role Data condition

φ

Exploration probability. Controls the proba-
bility that agents engage in exploration, defined
as changing two or more combination compo-
nents. φ = 0 implies local search each round and
φ = 1 exploration each round.

φ ∈ {0, 0.1, 0.5, 1}

γ

Team connectedness. Controls whether
agents have access to the combinations and payoff
of others. γ = 0 means teams are disconnected.
Social learning is not available. γ = 1, teams are
connected. Social learning is available.

γ ∈ {0, 1}

n Number of individuals in the team n = 3

t_max Maximum number of rounds or trials t_max = 20

r_max Maximum number of simulation runs r_max = 100

N Number of elements in NK landscape N = 10

K Number of interactions in NK landscape K = 5

Decision-making rule For subsequent rounds, agents update their strategies based on two

key factors: the exploration probability (φ) and the level of team connectedness (γ). Each agent

starts a new round with the combination they had in the previous round. The decision-making

process begins with applying the Lazer and Friedman rule (Lazer & Friedman 2007). Decisions

proceed in two stages: first, social learning, and second, individual learning. If the agents are

connected (γ = 1), agents start by learning socially. In this phase, agents observe the strategy

combination that yielded the highest payoff in their group in t−1. If this observed payoff exceeds

their current payoff, they adopt this more successful combination.

If social learning is unsuccessful, or the agents are not connected (γ = 0), the process shifts to

individual learning. During individual learning, the agents balance exploration and exploitation

depending on the exploration probability (φ ∈ {0, 0.1, 0.5, 1}). When φ = 0, agents can only

exploit and change one random component of their combination. When φ = 1, agents fully

explore. They can change between 2 and 10 components of their combination. The specific

components and the number of changes are selected randomly. When φ > 0and < 1, agents

probabilistically decide between exploration and exploitation based on the value of φ. For

example, when φ = 0.1, agents have a 90% chance to change one component of their combination

and a 10% chance to change between 2 and 10 components. This probabilistic approach allows
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agents to balance the advantages of refining known successful strategies (exploitation) with the

potential benefits of discovering new strategies (exploration).

After making changes, agents observe the new combinations and their corresponding payoffs.

If the new payoff is higher than the previous one, agents adopt the new combination. This process

ensures that agents continuously refine their strategies. After each round, the combinations and

payoffs are updated accordingly, and each round’s mean and maximum payoffs are recorded.

Stoping criteria The simulation runs for a fixed number of trials, set at 20 rounds (tmax = 20).

This duration was chosen to align with the experimental design and to provide a performance

benchmark for participant behavior in the final round. I conducted 100 replications for each of

the 8 parameter combinations to ensure statistical reliability. These combinations result from

varying the exploration probability (φ ∈ {0, 0.1, 0.5, 1}) and the level of team connectedness

(γ ∈ {0, 1}).

3.3.2 Assumptions

The parameters and setup chosen for the simulation are designed to mirror the experimental

conditions closely. These constraints lead to several assumptions and related limitations. First, I

operationalize exploitation as changing one random component of the combination, a local search

or random walk strategy. Although I do not allow for changing zero components, this occurs

in practice. If the new combination produces a lower payoff than the previous one, agents will

retain their old combination. Exploration, on the other hand, is defined as changing 2 or more

components. The distinction between exploitation and exploration in this simulation is arbitrary.

Second, the selection of which variables to change and the number of changes made during

exploration are determined randomly. This randomness introduces variability and reflects the

unpredictability of the experiment and some real-world decision-making processes. However, we

can imagine other settings where people do not randomly decide which components to change

for various reasons. These reasons could include previous knowledge, biases, or heuristics. This

information could orient the search and thus change strategies and payoff distribution. Our

simulation does not reflect these scenarios. Instead, it focuses on situations where such insights

are unavailable.

Third, the simulation assumes that social learning and individual learning occur in a two-step

process, with social learning always preceding individual learning (Lazer & Friedman 2007).
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This sequential approach simplifies the decision-making process but may not fully capture the

complexity of real-world behavior, where individuals often integrate social cues and personal

insights simultaneously. In reality, people may combine both types of learning and adjust their

strategies accordingly.

Despite these constraints, the Monte Carlo simulation benchmarks participant performance

by modeling search behaviors under different exploration and social learning conditions. These

benchmarks provide a valuable basis for comparing experimental results and understanding the

impact of turnover and team connectedness on strategy and performance.

3.3.3 Simulation results

Descriptive results The Monte Carlo simulation results reveal three key insights. First,

connected teams with access to social learning consistently outperform disconnected teams that

rely solely on individual learning. Second, incorporating some exploration into the decision-

making process is beneficial for performance. The results suggest that any level of exploration

is better than none. Teams with φ > 0 perform systematically better than those with φ = 0.

A moderate level (φ = 0.5) proved the most effective among the different levels of exploration

probability tested. Third, exploration can compensate partially for the absence of social learning.

Isolated individuals exploring moderately (φ = 0.5, γ = 0) achieve a mean payoff close to the

payoff of connected teams doing random walks (φ = 0, γ = 1).

Figure 3.1 illustrates the mean payoff over 20 decision-making rounds for all combinations of

exploration probability (φ) and team connectedness (γ). The lines represent different parameter

combinations based on the values of φ and γ. Connected teams (γ = 1) perform better over the

rounds than disconnected teams (γ = 0). However, some exceptions appear as teams approach

round 20. For connected teams only exploiting (φ = 0), the payoff does not increase as much

as it does for other levels of exploration. Similarly, disconnected teams with (φ = 0.5) show

relatively higher payoffs than others. Table 3.2 provides the mean payoff across parameters’

combinations in round 20. The mean payoff for connected teams only exploiting (φ = 0, γ = 1)

is 685.451, close to 681.603, and the mean payoff for isolated individuals moderately exploring

(φ = 0.5, γ = 1). These results suggest that a random walk, doing only local search in teams,

can produce results similar to individual exploring in some rounds. In a sense, exploration could

compensate for the lack of social learning.

Figure 3.2 shows the mean payoff for different exploration probabilities (φ) for connected
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Figure 3.1: Mean agent’s payoff over rounds by team connectedness
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Notes: This graph illustrates the mean payoff over 20 decision-making rounds for all combinations of exploration
probability (φ) and team connectedness (γ). The lines represent different parameters’ combinations based on the
values of φ and γ. Connected teams (γ = 1, in blue colors) have access to social learning and can learn from
the combinations and payoffs of team members. Disconnected teams (γ = 0, in yellow-red colors) cannot access
social learning and rely only on individual learning. (φ) is the probability of exploring and changing two or more
components in the combination. Payoffs are derived from the NK landscapes. The results demonstrate the impact
of exploration probability and team connectedness on the mean payoff, with connected teams generally achieving
higher payoffs over time than non-connected teams.

Table 3.2: Mean payoff across parameters combination and comparison with human participants

Computational agents
(φ = probability of random search)

Connected Human
participants φ = 0 φ = 0.1 φ = 0.5 φ = 1

γ = 0 - 671.623 670.04 681.60 664.31
γ = 1 676.63 685.45 698.87 705.08 700.57

Note: Payoffs are averaged over 1,200 computational agents. Connected teams (γ = 1) have access to social learning
and combinations and payoff of team members. Disconnected teams (γ = 0) cannot access social learning and rely
only on individual learning. Human participants mean payoff is provided for comparison. Human participants
did not experiment with the asocial condition (gamma = 0); only the payoff for the social learning condition is
provided (gamma = 1).
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Figure 3.2: Mean agent’s payoff in round 20 and connected teams, by exploration probability

550

600

650

700

750

800

850

0 0.1 0.5 1
Phi

M
ea

n 
P

ay
of

f

Prop. to explore
(phi)

0

0.1

0.5

1

Legend
Human Participants
Mean Payoff

Mean Payoff in round 20, gamma = 1

Notes: This boxplot illustrates the mean payoff in the 20th round for different exploration probabilities (φ)
when teams are connected (γ = 1). The boxes display the distribution of agent payoffs across the four levels of
(φ ∈ {0, 0.1, 0.5, 1}). (φ) is the probability of exploring and changing two or more components in the combination.
The black dotted line indicates the mean payoff in the same round, the 20th, for human participants in the
experiment. Payoffs are derived from the NK landscapes. The results suggest some levels of exploration are
beneficial for performance. Agents with φ > 0 perform on average better than agents only exploiting φ = 0.

teams in round 20. The boxplot illustrates the distribution of payoffs across four levels of φ

(0, 0.1, 0.5, 1). In line with figure 3.1 and table 3.2, plots suggest that any level of exploration

is beneficial compared to no exploration (φ = 0) in connected teams. Teams with some level

of exploration (φ > 0) achieve higher mean payoffs. Among these, φ = 0.5 which produces the

highest mean payoff. A moderate amount of exploration could be the best balance between

exploiting known strategies and exploring new ones in that specific setting.

These results highlight two key findings. First, connected teams consistently achieve higher

payoffs compared to disconnected teams. Second, some level of exploration is beneficial for

performance, with a moderate level (φ = 0.5) performing best. Third, exploration can compensate

partially for the absence of social learning.

The higher performance of connected teams might appear straightforward, as being in a

connected team provides more information through social learning. The additional information

could turn into enhanced performance. However, previous studies suggest that being in connected

teams reduces the propensity to explore, which could lead to decreased performance. Fully

connected teams would then perform worse than moderately connected teams. Our results

support this idea. When teams rely only on exploitation, their performance is close to those of
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individuals who explore independently. If being connected reduces the propensity to explore, then

the performance of connected teams would decrease. Individuals who explore independently can

achieve similar results to those in connected teams performing local searches (φ = 0). The ideal

scenario would involve both connected teams and some exploration. Fostering an environment

encouraging moderate exploration can lead to better outcomes, even within connected teams.

Performance benchmarks I now focus on establishing performance benchmarks for the

experiment. These benchmarks serve as different reference points for comparing experimental

outcomes. The Monte Carlo simulations produce three primary benchmarks. First, the low

benchmark represents a random walk, where agents only search locally and are not connected

(φ = 0, γ = 0). This benchmark provides a baseline for performance and represents the simplest

scenario. Agents rely solely on individual learning and the exploitation of local solutions. This

benchmark highlights the minimum expected performance and serves as a worst-case scenario.

Second, the medium benchmark involves random walks within connected teams, where agents

only search locally but can learn from each other (φ = 0, γ = 1). This benchmark serves as an

intermediate point between the low and high benchmarks. Similarly to the low benchmark, agents

rely only on exploitation. However, contrary to the low benchmark, agents now have access

to the combinations of others and can learn socially. As human participants are in connected

teams, this benchmark represents the minimum expected performance, assuming participants

use available social information.

Third, the high benchmark represents the optimal scenario, where connected teams balance

local search and exploration (φ = 0.5, γ = 1). In this scenario, agents not only exploit local

solutions but also explore new possibilities. This benchmark highlights the maximum expected

performance. By comparing human participants’ performance to this high benchmark, I assess

their ability to balance exploitation and exploration within a connected team setting.

Figure 3.3 presents the mean payoff for the three benchmark scenarios in round 20. The

boxplot illustrates the distribution of payoffs the low (γ = 0, φ = 0), medium (γ = 1, φ = 0), and

high (γ = 1, φ = 0.5) benchmarks. The results show a clear performance progression from the

low to the high benchmarks. Disconnected teams with no exploration (γ = 0, φ = 0) achieve the

lowest payoffs. Connected teams with no exploration medium (γ = 1, φ = 0) perform better than

those not connected. Connected teams with moderate exploration achieve the highest payoffs.

In this scenario, teams exploit both social information and the value of balancing exploitation

117



CHAPTER 3. COLLECTIVE PROBLEM SOLVING

Figure 3.3: Mean agent’s payoff in round 20 for different benchmark scenarios
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Notes: This boxplot illustrates the mean payoff in the 20th round for the three benchmark scenarios: (1) the
low benchmark with disconnected teams and no exploration (γ = 0, φ = 0), (2) the medium benchmark, with
connected teams but no exploration (γ = 1, φ = 0), and (3) the high benchmark with connected teams and
moderate exploration (γ = 1, φ = 0.5). The boxes display the distribution of agent payoffs in round 20 for
each scenario. The black dotted line indicates the mean payoff in the same round for human participants in the
experiment. Payoffs are derived from the NK landscapes.

with exploration. The mean payoff of human participants is provided for information purposes.

Together, these three benchmarks provide a comprehensive range of expected outcomes and

allow me to assess the performance of human participants in the experiment accurately. In the

experimental results section, I discuss in detail the comparison between these computational

agents’ benchmarks and the human participant’s performance.

3.4 Experimental methods

3.4.1 Experiment overview

This experiment investigates whether team disruptions can foster exploration and improve

performance in complex tasks. The study involved 258 participants from the University of

Lausanne, working in teams of 3. The teams engage in a combinatorial task involving 10 binary

decisions based on an NK landscape framework. The experiment tests the effects of two types of

disruptions: changes in team composition (turnover) and shifts in reference points. Turnover is

implemented by replacing the top-performing member of a team with a newcomer. Reference

points were shifted by informing participants of better possible solutions. The goal is to determine
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if these disruptions can counteract the tendency of teams to quickly transition from exploration

to exploitation and potentially improve overall performance.

3.4.2 Framed NK landscape task

From a participant’s point of view, the task is to design a painting for aliens. To do so, each

participant has to select or deselect 10 different geometric shapes that compose the painting.

As participants engage in the task, they do not know what combinations would yield higher

payoffs. To create a painting, participants select or deselect 10 different geometric shapes. The

combination of these shapes creates the artistic creation. After making their selections, they

submit their design and receive immediate feedback through a payoff, representing the aliens’

willingness to pay for that particular combination. The payoff related to each combination is

derived from the NK algorithm (Csaszar 2018). The framing matches the alien task framing

from Billinger et al. (2014), which aims to ensure that participants do not rely on their previous

experiences to guide their decisions. The payoffs for each combination of shapes were determined

by the NK algorithm and were not based on real-life experience. Payoffs are given in alien

currency to preserve the belief that participants cannot rely on previous knowledge.

The task is based on an NK landscape, a model that simulates complex problem-solving. N

represents the number of binary choice variables, and K indicates the interdependencies among

these variables. In the experiment, N equals 10, matching previous experiments. Each participant

has to make 10 binary decisions in each round. K = 5 indicates a moderate level of complexity.

To generate the NK landscape, I first create a matrix of random numbers between 0 and 1.

Second, I combine this first matrix with an interaction matrix to capture the interdependencies

(5) between the variables. Finally, combining these two matrices leads to the payoff matrix,

which captures the randomly generated fitness contributions for each possible combination of the

10 variables, considering the interaction between the 5 variables and reflecting the landscape’s

complexity. The payoff structure is directly derived from this NK payoff matrix, where each

combination of the 10 binary decision variables resulted in a specific payoff.

From the NK task, I obtain two outcome measures: payoffs and search distance. Payoffs

are directly derived from the payoff landscape. Search distance is the number of attributes

that are different in the focal combination than in the last round. Because the task includes 10

components, the search distance can range from 0 to 10. 0 means the combination is the same as

in the last round. 10 means that all attributes are different. All the attributes selected in the focal
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Figure 3.4: Decision screen in t = 1. The participant has to decide for each of the 10 components
if she would like to add it (On/1) or not (Off/0).

combination were not selected in the previous combination, and all the deselected attributes were

selected. Search distance is used to pinpoint exploitation from exploration behaviors. A small

search distance is related to exploitation, while a high search distance is related to exploration.

Both payoffs and search distance are analyzed to assess the impact of the treatments.

3.4.3 Procedure and design

Participants are randomly divided into teams of 3 players, and the teams remain the same

throughout the experiment. Participants in the same team share the same payoff landscapes

throughout the game. In other words, they explore the same environment. In the first round, no

combination is displayed to avoid any anchoring effect on this initial combination. Participants

start with a blank page where attributes are neither selected nor deselected. They select or

deselect the 10 different geometric shapes. Once they submit their combination, they receive

immediate private feedback. They observe their combination and the payoff related to that
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combination given by the NK landscape. Additionally, information is shared within teams.

Participants observe team members’ combinations and related payoffs. Because team members

share the same landscape, social information is valuable. Imagine that a participant observes a

team member’s combination and related payoff in the last round; she can be sure to obtain the

same payoff if she tries the same combination. The next round starts once all team members have

submitted their combination and received feedback. In the following rounds, each participant

starts with the combination they chose in the previous round.

Midway through the sequence, after 10 rounds, treatments are introduced.

Participants go through 20 decision-making rounds. They decide whether to keep or change

each of the 10 binary variables in each round. 20 rounds form a sequence. In a sequence,

participants can try sequentially 20 different combinations. Given that participants are divided

into teams of 3, the maximum number of different combinations a team can explore during a

sequence is 60, which is a small fraction of the total number of possible combinations, 1024 (210,

each of the 10 attributes having 2 possible states). After 20 rounds, the sequence stops. Each

participant goes through 4 sequences in a session. Before each new sequence, initial conditions

are reset, and a new NK landscape is generated. Participants are informed that the sequence is

finished, and they start a new one. They are told that knowledge about successful combinations

acquired during the previous sequence is no longer helpful. To make that information salient to

the participants, they are informed that they are now facing a new alien population unrelated to

the previous population. To prevent participants from inferring their current level of performance

based on the payoffs they received in the previous sequence, the payoff multiplier changes after

each sequence, as well as the name of the alien currency. For example, in sequence 1, payoffs

range around 34 galax. In sequence 2, around 865 fluxi.

At the very end of the session, participants see their total payoff translated into CHF.

3.4.4 Two-by-three design based on turnover and reference point

Table 3.3: Treatment Conditions

No turnover Turnover Turnover + “Best
performer is leaving”

No information about
better solutions

Control Turnover Turnover + Know

“Better Solutions
Exist”

Reference Reference +
Turnover

Reference +
Turnover + Know
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The experiment is a two-by-three design, and both dimensions are between subjects within

sessions. Specifically, each session will involve the six treatments. Treatments are based on

disruptions and vary regarding changes in reference points, turnover, and turnover information.

All treatments appear midway through the sequence, after round 10 and before round 11 in each

sequence. All participants get to observe a screen announcing they are midway through the

sequence. Treated groups receive additional information.

First, participants can receive the information that better solutions exist and that they can

do better. Treated groups are randomly selected at the beginning of the experiment, but the

program only shows the message to those groups that have not yet reached the global optimum.

Because the number of possible solutions is significantly higher than the number of trials, reaching

the global optimum is unlikely. Indeed, in our experiment, no group reached the global optimum.

Telling participants they can improve aims to shift their reference point and place them in the

loss domain, encouraging more risk-taking and exploration.

Second, groups can experience turnover. Specifically, in the treated groups, the top-performer

leaves the group while a newcomer enters the group. Newcomers for each sequence and each

group are randomly selected at the beginning of the experiment. During the first 10 rounds

of a sequence, newcomers wait and do not observe other team members’ combinations and

related payoffs. The participants waiting have the same expected payoff as the participants

playing. During waiting rounds, participants who wait to join a group are compensated. The

goal is to equalize the experimental conditions for all participants, whether actively engaged in

decision-making or waiting. By doing so, I prevent any disadvantage in expected earnings due to

the timing of joining the teams. When entering the team, newcomers observe the combinations

and associated payoffs of the two remaining team members in the last round and make their first

decision. Mirroring the initial conditions of the other participants, newcomers start with a blank

combination with all attributes neither selected nor deselected.

In the turnover conditions, turnover always involves the highest-performing member. However,

some teams know this detail, while others do not. Specifically, participants in the aware condition

see on their screen that the top-performer is leaving the team. In the unaware condition, the

message only indicates that a participant is leaving the team. The goal is to study the influence

of turnover on search behaviors. Further, the two different treatments allow us to disentangle

the mechanical effect of turnover from psychological effects related to the departure of the

top-performer.
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The experiment was pre-registered (Faessler 2023). I collected data by running 9 sessions

from November 23 to 30, 2023, in the behavioral laboratory at HEC Lausanne on a computer

network using oTree (Chen et al. 2016). Participants were recruited using the online recruiting

software ORSEE (Greiner 2004). A total of 258 participants were recruited (males = 52.96%).

Participants were mainly students from the University of Lausanne and the Swiss Federal

Institute of Technology in Lausanne (EPFL). Most of the students were born in Switzerland (97

participants), followed by France (84 participants) and Tunisia (19 participants). The sample

includes a total of 31 different nationalities. The sessions lasted 1 hour and a half. Before

the experiment, I collected explicit consent from the participants. Participants were free to

leave the experiment at any point, although none took that decision. Participants had to

pass a comprehension check to start the experiment. I collected sociodemographic data and

risk preferences at the beginning of the experiment. Participants received CHF 20.- for their

participation plus a bonus varying between CHF 10.- and CHF 50.- depending on their average

performance.

3.5 Results

The analysis is divided into four main parts. First, descriptive statistics present the evolution of

search distance and performance over time across treatments. In the second part, I contrast these

descriptive observations with treatment comparison. I compare in a regression analysis search

distance and performance across treatments in the 3 rounds following treatments. In addition, I

conducted a diff-and-diff analysis to compare each treatment search distance and performance

before and after the treatment. The third part contrasts participants’ performance with simulated

benchmarks. Finally, I focus on the newcomers and explore the differences between newcomers

and oldtimers.

3.5.1 Descriptive Results

I provide first descriptive data about the evolution of (1) search distance and (2) payoff. Figure 3.5

shows the treatment groups’ average search distance over time. At first, participants explore

widely and show a larger average search distance, deviating from a pure local search strategy

(search distance = 1). The search distance quickly decreases, mirroring patterns observed

in previous studies about search behaviors when alone and in teams (Billinger et al. 2014,
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Figure 3.5: Search behavior over rounds across treatments
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Notes: The search distance is measured as the number of attributes changed in a round relative to the combination
in the previous round for a participant. Search distance ranges from 0 to 10. Treatments happen after round 10
and before round 11.

Giannoccaro et al. 2020, Billinger et al. 2021).

The treatments are introduced between rounds 10 and 11. Post-treatment, a brief increase

in search distance occurs across all treatments, including the control group. The control group

does not experiment with turnover or receive information about their performance. However,

the participants are still exposed to a screen, indicating they are midway through a sequence.

The sudden increase in all treatments suggests that the treatments work and motivate the

participants to increase search distance. The participants temporarily explore more. This sudden

increase in search distance deviates from the steady decrease seen in other studies without

midway treatments (Billinger et al. 2014, Giannoccaro et al. 2020, Billinger et al. 2021). These

observations suggest that inducing a brief change in search behaviors when the team exploits is

surprisingly easy.

After a few rounds, however, the trend reverts to its initial trajectory, and the means search

distance continues to decline. In the last rounds, the average search distance is lower than 1

across all treatments. The participants either submit the same attribute combination or change

only one of the attributes. The decrease in search distance indicates a shift towards exploitation,

as participants focus more on refining and capitalizing on their current solutions over rounds.

Even though generating a brief moment of exploration is easy, maintaining this change in time

seems challenging.

Turning to the evolution of payoff, Figure 3.6 shows the evolution of the mean payoff for
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Figure 3.6: Performance over rounds across treatments
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Notes: The payoff is derived from NK algorithms. Maximum payoff ranges from 725 to 874 and depends on each
NK landscape.

different treatment groups over rounds. In the first round, all groups start with a payoff that

reflects the expected outcome of making selections randomly, given that participants begin

without prior knowledge and face a blank state as their initial condition. As the experiment

advances, the mean payoff increases. Participants discover which combinations result in better

payoffs and start refining them.

Interestingly, in round 11, which directly follows the treatment, all groups but the control

group experience a decrease in payoff. This decrease deviates from the findings from previous

studies, which did not include a midway treatment (Billinger et al. 2014, Giannoccaro et al. 2020,

Billinger et al. 2021). These previous studies all report a steady increase in payoff over rounds.

The decrease is moderate for some treatment groups, Turnover + Know and Reference. For the

other groups, Turnover, Reference + Turnover, and Reference + Turnover + Know, the decrease

is substantial. These groups are also the groups that show the bigger increase in search distance

following the treatment. These results suggest that while the increase in search distance led to

exploring more distant solutions, these alternative solutions yielded lower payoffs than previous

ones. Deviations from local search strategies did not benefit participants. We know, however,

that deviations from local search could have produced higher payoffs if only these deviations had

been the correct ones.

Following this brief decrease in payoff, the trend reverts to its initial trajectory. Participants

are back to exploiting their previous combination. Payoffs continue to increase for all groups.

Notably, by the end of the sequence, all groups, including the groups that experience a drop in
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payoff in round 11, achieve a similar payoff between 650 and 700.

Overall, the analysis of the descriptive statistics points to two observations. First, the

treatment works and generates a change in search behaviors. Search distance increases post-

treatment for all groups. However, turnover does not seem to induce a bigger change than

inducing a change in the reference point or simply telling participants they are midway through

a sequence. In all groups, the increase in search distance is slight and brief. Second, this increase

in search distance leads to a decrease in payoff. Although better solutions are available for most

groups, the increase in search distance is too brief to lead to the discovery of the optimum.

3.5.2 Treatments comparison

Descriptive statistics suggest that all treatments increase the search distance, and some treatments

decrease the payoff. I now turn to pre-registered regression analysis and examine how the

treatments impact search distance and payoff (Faessler 2023). I distinguish between group and

individual responses and immediate post-treatment effects and effects in all subsequent rounds.

Changes in reference point but not turnover influences search distance.

Figure 3.7: Comparison of group average search distance in rounds 11 to 13 across treatments
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Notes: Search distance is averaged across individuals within each group for rounds 11 to 13. Search distance is
measured as the number of attributes changed in a round relative to the combination in the previous round for a
participant and ranges from 0 to 10. Error bars indicate 95% confidence intervals.

In this first part, I compare the average group search distance in the three rounds following

the treatment across turnover and reference treatments. For this analysis, I do not differentiate

126



CHAPTER 3. COLLECTIVE PROBLEM SOLVING

between turnover treatments. I aggregate the Turnover and the Turnover + Know treatments,

informing participants that the member who just left was the top-performer. I analyze the

difference between the two treatments and the potential psychological effects in a dedicated

analysis. I compare the search distance across treatments. Figure 3.7 suggests that the change

in the reference point, but not turnover, significantly increases the search distance. The average

search distance is higher in Reference and Reference * Turnover treatments compared to the

control. On the other hand, the average search distance does not significantly differ in the

turnover treatment compared to the control.

Table 3.4: Average group search distance in rounds 11 to 13: regression analysis

Dependent variable:
Group average search distance

(1) (2)
Reference 0.540∗ 0.541∗

(0.219) (0.219)

Turnover 0.145 0.145
(0.187) (0.187)

Reference + Turnover 0.512∗∗ 0.512∗∗
(0.187) (0.187)

Sequence −0.192∗∗∗
(0.036)

Constant 0.919∗∗∗ 1.392∗∗∗
(0.155) (0.178)

Observations 274 274
Log Likelihood −319.066 −307.926

Notes: The four treatments are coded as a single variable: control (committed category), Reference, Turnover,
Reference + Turnover. Model (2) includes a control variable for the sequence. Participants go through four
sequences in a session, which can produce a learning or fatigue effect. Robust standard errors are clustered at the
group level and are in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.

The companion regression confirms these results. Table 3.4 shows positive and significant

Reference and Reference * Turnover coefficients. However, the Turnover coefficient is not

significant. Changes in the reference point increase search distance, but Turnover alone has

no significant effect. The sequence coefficient is negative and highly significant across models.

Search distance decreases with sequences. As the session progresses, participants are less likely

to explore. This effect can be due to a learning effect. Participants understand they have little

chance to find a better solution and converge quicker to exploitation. An alternative explanation

is a fatigue or “willingness to go home” effect. Participants understand that the quicker they
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play, the quicker they will be done. Although the sequence effect is significant and its origin

unknown, I have no reason to believe that the effect was different across treatments.

Knowing that the top-performer is leaving makes no difference. So far, I have not

differentiated turnover treatments, one in which team members are informed about the departure

of the top-performer and another in which they are not. In both conditions, the top-performer

is leaving the team. The difference lies in whether the teams are aware of this condition.

The objective was to understand whether the knowledge of the top-performer’s departure

psychologically impacts the team’s search behaviors. So far, field evidence suggests that top-

performer turnover increases exploration (Tzabbar & Kehoe 2014). However, we do not know if

the effect is linked to the characteristics of the person leaving the team or to turnover itself. In the

following regression, I focus on turnover treatments and distinguish between Know treatments,

where participants are made aware that the top-performer is leaving the team. Figure 3.8 shows

that the difference in average search distance across the two groups is not significant. Regression

analysis displayed in table 3.5 confirms these results. In this controlled lab setting, being aware

of the identity of the person leaving the team makes no difference in search behaviors.

Figure 3.8: Comparison of group average search distance in rounds 11 to 13 across turnover
treatments
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Notes: Search distance is averaged within groups experimenting turnover for rounds 11 to 13. Data include only
groups encountering turnover. Search distance is measured as the number of attributes changed in a round relative
to the combination in the previous round for a participant and ranges from 0 to 10. Error bars indicate 95%
confidence intervals.
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Table 3.5: Average group search distance in rounds 11 to 13 in turnover treatments: regression
analysis

Dependent variable:
Group search distance

(1) (2) (3) (4)
Know −0.295∗ −0.295∗ −0.253 −0.253

(0.134) (0.135) (0.191) (0.193)

Reference 0.368∗∗ 0.368∗∗ 0.410∗ 0.410∗
(0.134) (0.135) (0.191) (0.193)

Reference * Know −0.084 −0.084
(0.270) (0.272)

Sequence −0.176∗∗∗ −0.176∗∗∗
(0.046) (0.046)

Constant 1.212∗∗∗ 1.645∗∗∗ 1.191∗∗∗ 1.624∗∗∗
(0.116) (0.162) (0.135) (0.177)

Observations 188 188 188 188
Log Likelihood −220.839 −215.976 −221.184 −216.315

Notes: Analyses include only groups encountering turnover. Treatments are coded as 2 binary variables: Reference
and Know. Model (2) includes a control variable for the sequence. Participants go through four sequences in a
session, which can produce a learning or fatigue effect. Model (3) includes interaction terms, and model (4) includes
controls and interaction terms. Robust standard errors are clustered at the group level and are in parenthesis.
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
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Changes in reference point and turnover do not influence performance.

Figure 3.9: Comparison of group average performance in rounds 12 to 20 across treatments
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Notes: Performance is calculated as the average payoff across individuals within each group for rounds 11 to 13.
Payoffs are derived from NK algorithms. Maximum payoff ranges from 725 to 874 and depends on each NK
landscape. Error bars indicate 95% confidence intervals.

Table 3.6: Average group payoff in rounds 11 to 13: regression analysis

Dependent variable:
Group average payoff
(1) (2)

Reference 5.796 5.792
(13.752) (13.739)

Turnover 7.584 7.568
(11.741) (11.729)

Reference + Turnover −17.987 −17.993
(11.741) (11.729)

Sequence 7.824∗∗
(2.900)

Constant 618.274∗∗∗ 598.998∗∗∗
(9.724) (12.058)

Observations 274 274
Log Likelihood −1,478.971 −1,473.395

Notes: The four treatments are coded as a single variable: control (committed category), Reference, Turnover,
Reference + Turnover. Model (2) includes a control variable for the sequence. Participants go through four
sequences in a session, which can produce a learning or fatigue effect. Robust standard errors are clustered at the
group level and are in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.

In this second part, I switch to performance and compare the average payoff in the 3 rounds
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following the treatment across treatments. Figure 3.6 suggests that none of the treatments

significantly influenced payoff. Even though the descriptive graphs suggest a drop in payoff

in some treatments, the difference appears to be not significant. The average payoff does not

differ across treatments. The companion regression 3.6 shows similar results. Both Reference

and Turnover coefficients are not significant. The sequence coefficient is positive and significant.

Payoffs increase with sequences. As sequences progress, search distance decreases, and payoffs

increase.

Altogether, the analysis of the groups’ average search distance right after the treatment

suggests that Reference but not Turnover treatments have an effect. Search distance increases

following the information that better solutions exist but does not significantly differ following a

change in the team composition. The increase in search distance after the reference treatment

does not translate into a significant difference in performance. None of the treatments significantly

affect the groups’ average payoffs. Interestingly, progressing through the sequences has a significant

effect. As the participants progress in the experiment, their search distance decreases, and their

performance increases.

On the one hand, the descriptive results suggest that search distance responds to all treatments.

On the other hand, the regression analysis results show that only Reference treatments lead to a

different increase in search distance than the control. The reason behind this inconsistency might

be that even the control condition leads to an increase in search distance. Even though search

distance increases following team turnover, the distance does not increase significantly compared

to the control group. Like the other groups, the control group encounters a screen midway

that provides information. In the control case, the information is that participants are midway

through the sequence. It is possible that even this minor intervention, making participants aware

that they are midway through a sequence, affects search distance. In the following analysis, I

explore if there is a treatment effect for each treatment, comparing the trends before and after

the treatment.

Comparing before and after for each treatment

In the following regressions, I compare the state before and after the treatment for each treatment

condition. Search distance and payoff are measured at the individual level. Regressions include

rounds 6 to 15, 5 rounds before, and 5 rounds after the treatment. Again, I focus on Reference

and Turnover treatment and do not distinguish between the two different conditions within the
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Turnover treatment. The regressions include only individuals in the group before and after the

treatment. Newcomers and members who left after the treatment are excluded from the analysis

as they do not have pre-treatment or post-treatment observations.

Table 3.7: Individual search distance in rounds 6 to 15: regression analysis

Dependent variable:
Individual search distance

(1) (2)
Post-treatment −0.508∗∗∗ 0.035

(0.065) (0.095)

Reference 0.106 0.139
(0.189) (0.189)

Turnover −0.416∗ −0.403∗
(0.166) (0.165)

Reference + Turnover −0.117 −0.096
(0.166) (0.165)

Post * Reference 0.296∗∗ 0.301∗∗∗
(0.092) (0.090)

Post * Turnover 0.245∗∗ 0.246∗∗
(0.082) (0.080)

Post * Reference + Turnover 0.349∗∗∗ 0.353∗∗∗
(0.082) (0.080)

Round −0.475
(0.327)

Round2 0.029
(0.033)

Round3 −0.001
(0.001)

Sequence −0.152∗∗∗
(0.013)

Constant 1.414∗∗∗ 4.041∗∗∗
(0.138) (1.026)

Observations 7,280 7,280
Log Likelihood −11,711.940 −11,573.000

Notes: Search distance is measured as the number of decisions that differ from the decisions in the previous
combination for each individual. Post-treatment is a dummy variable that indicates whether the observation
is before (rounds 6 to 10) or after the treatment (rounds 11 to 15). The four treatments are coded as a single
variable: control (committed category), Reference, Turnover, Reference + Turnover. Time effect is included via
the round variable, up to the power 3. Model (2) includes a sequence and time effect control variable. Robust
standard errors are clustered at the group and individual levels in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
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Search Distance Table 3.7 shows the results for search distance. All treatment coefficients,

when interacting with the Post-treatment variable, are positive and significant. Participants are

likely to break off from exploiting and briefly increase search distance following information about

the existence of better solutions or changes in team composition. Search distance significantly

increases following Reference and Turnover treatments. The sequence effect remains. As sequences

progress, search distance decreases in all treatment conditions.

Surprisingly, the Turnover coefficient not interacting with the Post-treatment dummy is

negative and significant. This result suggests that the Turnover participants have a lower search

distance even before the treatment happens. Because participants are randomly assigned to

treatments, I did not expect any significant difference across groups before treatment. Ex-post

analyses of treatment groups’ characteristics show no significant difference in the distribution

of risk preferences, gender, age, or origin. Even though some individuals perform well in this

treatment and can be considered outliers, excluding outliers from the analysis does not change

the results.

Payoff Switching to the performance analysis, Table 3.8 shows the results for individual payoffs.

The Post-treatment coefficient is negative and significant. Participant’s payoff significantly

decreases following the treatment. However, this decrease is not significantly different across

treatments, but the Reference * Turnover interactions. The coefficient related to the interaction of

the Post-treatment variable and Reference * Turnover is negative and significant. Participants in

the Reference * Turnover group experience a significant drop in performance after the treatment.

Like in the search distance analysis, the Turnover alone coefficient, not interacting with the

Post-treatment variable, is significant, which indicates a significant difference across treatment

groups even before the treatment. This time, the coefficient is positive. Participants in the

Turnover treatment are more likely to exploit and have a smaller search distance before and

after the treatment. Conversely, they perform better than the other groups. Because there is no

significant difference across groups and potential outliers do not influence the results, the reason

behind this finding remains unclear.

Altogether, these regression analysis results confirm the previous findings from the descriptive

analysis. Treatments, whether altering the reference point by informing participants that better

solutions exist or inducing group composition changes, increase the search distance. Participants

increase their search distance and explore more following the treatment. In that sense, the goal
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Table 3.8: Individual payoff in rounds 6 to 15: regression analysis

Dependent variable:
Individual payoff
(1) (2)

Post-treatment 29.638∗∗∗ −18.809∗∗
(4.668) (6.870)

Reference −0.253 −2.617
(12.286) (12.300)

Turnover 24.150∗ 23.414∗
(10.680) (10.704)

Reference + Turnover 1.715 0.049
(10.680) (10.705)

Post * Reference 0.169 −0.164
(6.616) (6.515)

Post * Turnover −4.432 −4.466
(5.896) (5.807)

Post * Reference + Turnover −14.174∗ −14.429∗
(5.911) (5.822)

Round −12.397
(23.723)

Round2 2.542
(2.412)

Round3 −0.091
(0.077)

Sequence 5.768∗∗∗
(0.909)

Constant 599.290∗∗∗ 568.756∗∗∗
(8.907) (74.360)

Observations 7,280 7,280
Log Likelihood −42,776.560 −42,669.100

Notes: Post-treatment is a dummy variable that indicates whether the observation is before (rounds 6 to 10) or
after the treatment (rounds 11 to 15). The four treatments are coded as a single variable: control (committed
category), Reference, Turnover, Reference + Turnover. Time effect is included via the round variable, up to
the power 3. Model (2) includes a control variable for the sequence and time effect. Robust standard errors are
clustered at the group and individual levels and are in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
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is reached. The teams do not stick to the exploitation equilibrium and can break off to search for

alternative solutions. However, the induced exploration does not lead to higher payoffs. On the

contrary, across all treatment groups, performance significantly decreases following treatments.

Further, the Turnover group obtains a significantly lower search distance throughout the game

and performs significantly higher.

3.5.3 Performance comparison with simulated benchmarks

I now compare human participants’ performance in the experiment’s final round (round 20)

with performance benchmarks generated using the Monte Carlo simulation. I generated three

primary benchmarks. First, the low benchmark represents agents searching locally and not

connected (φ = 0, γ = 0, mean payoff in round 20 = 671.63). This benchmark represents a

baseline performance. Second, the medium benchmark involves agents searching locally but

connected and having access to social learning (φ = 0, γ = 01, mean payoff in round 20 = 685.45).

Reaching this benchmark suggests that participants leverage social learning but exploit known

solutions. Finally, the high benchmark represents agents balancing local search and exploration

in connected teams (φ = 0.5, γ = 01, mean payoff in round 20 = 705.08). This benchmark would

indicate that human participants effectively balance exploitation and exploration while leveraging

social information.

Table 3.9: Mean payoff across treatment groups in round 20

Control Turnover Turnover +
Know

Reference Reference +
Turnover

Reference +
Turnover +

Know
Mean Payoff 676.30 687.28 675.59 693.20 665.82 662.95

Note: Mean payoff for human participants in each treatment group in round 20. For comparisons with computational
agents, benchmarks derived from the Monte Carlos simulations are low 671.63, medium 685.45, and high 705.08.

Table 3.9 and Figure 3.10 present the mean payoffs for human participants across the different

treatment groups in round 20, compared to the simulated benchmarks. The performance of

human participants varies across treatment groups. The mean payoffs of the two groups are

below the low benchmark, the Reference + Turnover group (mean payoff = 665.82) and the

Reference + Turnover + Know group (mean payoff = 662.95). The mean payoff of two other

groups is slightly above the low benchmark and approaching the medium benchmark, the Control

group (mean payoff = 676.30) and the Turnover + Know group (mean payoff = 675.59). The
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Figure 3.10: Mean payoff in round 20 across treatments and comparison with simulated bench-
marks
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Notes: This graph illustrates the mean payoff in the last round, round 20. Payoffs are derived from the NK
landscapes. Maximum payoff ranges from 725 to 874 and depends on each NK landscape. Error bars indicate
95% confidence intervals. Lines indicate simulated benchmarks. The low benchmark (dotted line) represents a
random walk in isolation. The medium benchmark (dash-dotted line) represents a random walk with access to
social learning. The high benchmark (dashed line) represents a balance between exploration and exploitation with
access to social learning.

Turnover group’s mean payoff exceeds the medium benchmark (mean payoff = 687.28). Finally,

the Reference group’s mean payoff is the highest among all groups and approaches the high

benchmark (mean payoff = 687.28).

The performance comparison reveals that most treatment groups reach the medium benchmark,

representing the performance of agents performing a random walk in connected teams with

access to social learning. This finding aligns with the theory suggesting that being in connected

teams increases performance compared to isolated individuals but can reduce exploration. The

participants in these groups achieved the payoff expected from connected teams that mostly

exploit known solutions. However, two treatment groups, Reference + Turnover and Reference

+ Turnover + Know, did not reach the medium benchmark. This result is somewhat puzzling.

Their performance is similar to that of isolated individuals engaging in random walks. Two

hypotheses are in order. First, this could suggest that these groups failed to leverage the benefits

of being connected. Second, these groups could have used search strategies different from those

modeled in the simulation, which appeared less effective.

On the other hand, one treatment group, the Reference group, performed exceptionally well,
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nearly reaching the high benchmark. This group also exhibited the highest search distance before

the treatments were applied. This is pure speculation, but this group might have benefitted from

enhanced exploration before the treatment, as the simulations suggest that any level of increased

exploration can lead to higher performance. This group’s ability to balance exploration and

exploitation more effectively than others might have contributed to their superior performance,

independent of the treatments.

Overall, the groups achieved medium performance compared to the benchmarks generated

with the Monte Carlo simulation. These results indicate that participants performed at the level

of connected teams, primarily exploiting known solutions. The simulation results suggest that

exploration could have improved participants’ payoffs, which was the goal of the treatments.

However, none of the treatments led to a sustainable increased exploration, as the teams quickly

reverted to exploitation. These results highlight the importance of finding solutions that can

maintain higher levels of exploration in connected teams to enhance team performance.

3.5.4 Newcomers versus oldtimers

Search distance Do newcomers and oldtimers exhibit different search behaviors post-treatment?

At the core of the study lies the idea that newcomers could bring novel ideas into the teams

and lead to more exploration. I test this idea in the following analysis. Figure 3.11a plots the

average search distance for oldtimers and newcomers over rounds. The average search distance

for newcomers in round 12 is around 2, almost 1 point higher than the average search distance

for oldtimers. However, the newcomers’ average search distance quickly decreases to match

the level of oldtimers. Even though newcomers might exhibit a higher search distance in the

first rounds following their entry, they quickly conform to the group and adopt an exploiting

strategy. Figure 3.11b plots the average search distance in the three rounds following newcomers’

entry. The average search distance for newcomers is significantly higher. The regression results

in table 3.10 confirm the higher search distance for newcomers in rounds 12 to 14. The newcomer

coefficient is positive and significant. Nonetheless, the difference quickly vanishes. The negative

and significant round coefficient confirms the trend observed in graph 3.11a. When they enter the

game, newcomers start by exploring more than the oldtimers, but this difference diminishes as

the newcomers explore less over rounds. By round 14, newcomers and oldtimers exhibit similar

average search distances.
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Figure 3.11: Search distance across newcomers and oldtimers. Notes: Search distance is measured as
the number of decisions that differ from the decisions in the previous combination for each individual. Search
distance is available only from round 12 on for newcomers. The analysis focuses on the three first search distance
measures available: rounds 12 to 14. The analysis includes only Turnover treatments. Error bars indicate 95%
confidence intervals.

(a) Newcomers and oldtimers payoff evolution
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Figure 3.12: Payoff across newcomers and oldtimers Notes: The analysis focuses on the three first rounds
where both search distance and payoff measures are available, that is, rounds 12 to 14. The analysis includes only
Turnover treatments. Payoffs are derived from NK algorithms. Maximum payoff ranges from 725 to 874 and
depends on each NK landscape. Error bars indicate 95% confidence intervals.
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Table 3.10: Individual search distance in rounds 12 to 14: regression analysis

Dependent variable:
Individual search distance

(1) (2) (3) (4)
Newcomer 0.455∗∗∗ 0.457∗∗∗ 0.620∗∗∗ 0.616∗∗∗

(0.068) (0.067) (0.136) (0.132)

Reference 0.318∗ 0.313∗ 0.499∗ 0.482∗
(0.134) (0.135) (0.204) (0.205)

Know −0.316∗ −0.313∗ −0.280 −0.286
(0.134) (0.135) (0.204) (0.205)

Newcomer ∗ Reference −0.473∗ −0.456∗
(0.193) (0.188)

Newcomer ∗ Know −0.080 −0.074
(0.193) (0.188)

Reference ∗ Know −0.178 −0.157
(0.288) (0.290)

Newcomer * Reference * Know 0.439 0.419
(0.273) (0.266)

Round −0.246∗∗∗ −0.246∗∗∗
(0.037) (0.037)

Sequence −0.206∗∗∗ −0.205∗∗∗
(0.029) (0.029)

Constant 1.009∗∗∗ 4.718∗∗∗ 0.946∗∗∗ 4.659∗∗∗
(0.118) (0.507) (0.144) (0.512)

Observations 1,692 1,692 1,692 1,692
Log Likelihood −2,953.629 −2,912.725 −2,953.036 −2,912.260

Notes: Search distance is measured as the number of decisions that differ from the decisions in the previous
combination for each individual. Search distance is available only from round 12 on for newcomers. The analysis
focuses on the three first search distance measures available: rounds 12 to 14. The analysis includes only Turnover
treatments. Treatments are coded as 2 binary variables: Reference and Know. Model (2) includes a control
variable for round and sequence effects. Model (3) includes interaction terms, and model (4) includes controls and
interaction terms. Robust standard errors are clustered at the group and individual levels and are in parenthesis.
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
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Payoff Figure 3.12 indicate similar results regarding performance. The graph 3.12a shows that,

even though the average oldtimers’ payoff drops in round 11, the average payoff of newcomers

is even lower. Similarly to search distance, the newcomers’ average payoff quickly matches the

oldimers’. Even if restraining the analysis to these first rounds, the difference in performance is

not significant. In table 3.11, the Newcomers coefficient is negative and not significant. Being a

newcomer compared to an oldtimer leads to no significant difference in performance in rounds 12

to 14.

Table 3.11: Individual payoff in rounds 12 to 14: regression analysis

Dependent variable:
Individual payoff

(1) (2) (3) (4)
Newcomer −19.357∗∗∗ −19.454∗∗∗ −16.523 −16.353

(4.392) (4.334) (8.738) (8.621)

Reference −26.887∗∗ −26.727∗∗ −21.623 −20.900
(9.138) (9.216) (13.803) (13.891)

Know 15.218 15.105 17.431 17.723
(9.138) (9.216) (13.786) (13.874)

Newcomer ∗ Reference −10.841 −11.543
(12.429) (12.264)

Newcomer ∗ Know −2.442 −2.709
(12.409) (12.244)

Reference ∗ Know −8.128 −9.052
(19.516) (19.641)

Newcomer * Reference * Know 15.089 15.939
(17.580) (17.347)

Round 9.707∗∗∗ 9.707∗∗∗
(2.452) (2.453)

Sequence 10.108∗∗∗ 10.138∗∗∗
(1.875) (1.876)

Constant 635.609∗∗∗ 484.615∗∗∗ 633.937∗∗∗ 482.623∗∗∗
(8.060) (33.212) (9.727) (33.679)

Observations 1,692 1,692 1,692 1,692
Log Likelihood −9,972.220 −9,946.774 −9,957.805 −9,932.302

Notes: The analysis focuses on the three first rounds where search distance and payoff measures are available:
rounds 12 to 14. The analysis includes only Turnover treatments. Treatments are coded as 2 binary variables:
Reference and Know. Model (2) includes a control variable for round and sequence effects. Model (3) includes
interaction terms, and model (4) includes controls and interaction terms. Robust standard errors are clustered at
the group and individual levels and are in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.

When entering the game, newcomers adopt different search behaviors compared to oldtimers.
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In the first rounds, they display a significantly higher search distance than oldtimers. However,

this difference quickly disappears, and newcomers adopt similar search behaviors to oldtimers.

This difference in search behaviors does not translate into a payoff difference. The bad news is

that newcomers’ entry does not lead to discovering alternative, better solutions. Newcomers

quickly adopt their group’s solution and search attitude and conform to group norms, but their

entry does not lead to further exploration. However, the good news is that Turnover does

not result in a performance difference either. T-tests report no significant payoff differences in

round 20 across Reference (t = 0.632, df = 592.34, p− value = 0.527) and Turnover treatments

(t = 1.658, df = 551.59, p− value = 0.0977). In this laboratory setting, turnover is not a double

burden. Even though turnover does not increase exploration, it at least does not penalize the

group in the long run.

3.6 Discussion

This study’s goal was to explore whether two treatments, altering reference points and inducing

team turnover, could help connected teams avoid over-exploration equilibrium and discover

alternative solutions. Both treatments lead to a minor and short-lived increase in the search

distance. Despite this change in search behavior, the increase in search distance is not substantial

enough to lead to the discovery of better solutions. Moreover, the increase in search distance does

not translate into improved payoff. Instead, payoffs decrease significantly after the treatment

in all conditions before returning to their initial improving trend. Overall, the groups achieved

medium performance compared to the benchmarks generated with the Monte Carlo simulation,

indicating that participants performed at the level of connected teams primarily exploiting known

solutions. This suggests that while the treatments temporarily increased exploration, they were

insufficient to sustain higher exploration levels, which could have led to a performance matching

the high benchmark.

In turnover treatments, newcomers initially exhibited a higher search distance than oldtimers,

suggesting a potential for increased exploration. However, this difference is short-lived as

newcomers quickly conform to their groups’ existing search behaviors. Although newcomers’

performance is lower than oldtimers’ in the rounds following newcomers’ entry, the payoff difference

is not significant. In the long run, neither of the treatments hurts the teams’ performance. At

around 20, all groups express similar average payoff. This finding indicates that turnover does
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not substantially enhance exploration and leads to better solutions as hypothesized, but it does

not detrimentally affect the groups’ performance over time.

Alternative incentive schemes The experiment incentivizes participants based on their

average performance across all rounds. I chose this approach for two main reasons. First, to

simulate a realistic scenario where consistent performance is typically rewarded. Employees are

regularly evaluated based on sustained performance rather than isolated successes. Second, I

intentionally chose an incentive scheme that does not inherently encourage exploration. The study

aims to examine if turnover could increase exploration. Using an incentive scheme that naturally

hinders exploration, I set a high bar for the treatment. Any observed deviation towards increased

exploration would be more convincing evidence of the treatment’s effectiveness compared to a

setting where the incentive scheme promotes exploration.

However, alternative incentive schemes could have been employed and would have probably

significantly impacted participants’ exploration behaviors. The first alternative is rewarding only

the last round. Rewarding only final performance lowers the opportunity cost of exploring and

experimenting with new strategies. Rewarding long-term success and tolerating early failures

can better support innovative efforts (Ederer & Manso 2013). On the contrary, traditional

pay-for-performance schemes hinder innovation by discouraging risk-taking. Applying this to our

study, rewarding only the final round could maintain the initial exploration or the exploration

triggered by treatments, as participants would have less to lose by exploring.

A second alternative is the use of collective incentives. This might be especially important in

teams as the exploration efforts of one team member can benefit the entire team. In our current

setting, individual incentives might have encouraged participants to avoid exploration and instead

wait for others to take risks with the caveat that, in the end, nobody explores. In contrast,

collective incentives could foster coordination and exploration. When groups are incentivized at

the group rather than the individual level, they are less likely to over-exploit social information

and engage in maladaptive scrounging behaviors (Deffner et al. 2024). Collective incentives

encourage participants to be more selective in using social information, promoting a healthier

balance between exploration and exploitation. Using collective incentives in the experiment

could have mitigated the over-exploitation of known solutions and promoted broader exploration

within the team.

A third alternative would be to compare groups against each other to introduce competitive
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pressure. In the experiment, groups operated in isolation, with some receiving information

that better solutions exist but without the direct competitive pressure that could drive further

exploration. Increased competition can foster cooperation and trust, which suggests that

competitive pressure might similarly encourage exploration and innovation (Francois et al. 2018).

In competitive environments, participants might feel more compelled to explore novel strategies

to outperform their peers, potentially leading to the discovery of better solutions. In our setting,

introducing incentives based on relative performance compared to other groups could have

fostered increased exploration.

More broadly, I could have used alternative incentive schemes that align more closely with

the behaviors I wanted to observe. In particular, I could have used incentive schemes promoting

exploration by rewarding risk-taking and learning from failures. Participants might have been

more inclined to explore if they knew their risk-taking efforts would be rewarded, even if immediate

payoffs were not always positive. Future research should explore these alternative incentive

schemes. For instance, comparing schemes such as rewarding the final round, using collective

incentives, and introducing inter-group competition. These alternative incentive schemes could be

combined with disruptions such as turnover to understand whether incentives promote exploration

from the beginning or can sustain the exploration triggered by the treatments.

3.6.1 Turnover in the field and the lab

In management, turnover is correctly associated with significant costs, disruptions in operations,

knowledge and skill losses, and performance decline. In this study, I aimed to explore whether

the disruptive nature of turnover could have beneficial effects in the specific context of solving

complex problems. Specifically, whether turnover could encourage exploration when it was

necessary to find more effective solutions. The results show that while turnover can cause a

brief increase in exploration, this effect is only temporary and insufficient to lead to discovering

alternative solutions. Newcomers quickly adjust their behaviors to conform to the group.

The comparison between participants’ performance and the simulated performance bench-

marks suggests that the teams were underperforming. In that regard, the study reproduces

known but counter-intuitive findings (Derex & Boyd 2016). Chances are that other highly

connected teams are not performing at their full potential due to the over-reliance on social

cues and conformity. Unfortunately, introducing diversity through turnover did not produce the

expected increase in exploration and performance. A brief increase was relatively easy to trigger,
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disruptions could be strategically used to increase briefly exploration when needed. Alternative

incentive schemes offer a promising avenue to obtain a stable and optimal level of exploration.

Nonetheless, turnover in the lab differs in several aspects from turnover that happens outside

the lab. Contrary to many real-life scenarios, the chosen task does not require memorization.

When a team member leaves, there is no loss of knowledge. One detrimental aspect of Turnover

is the loss of knowledge, as reported in studies on Transactive Memory Systems (TMS). In this

study, we avoid this complexity by using a task that does not require memorization. When a

team member leaves, the loss of knowledge is negligible. In my study, turnover did not lead

to a decrease in performance in the long run. This could be different in situations where the

performance in the task depends on the knowledge acquired by the members.

Second, the turnover in this study involved the departure of the top-performer, not the team

leader. In my experiment, every team member played an equal role, with uniform access to

information and no designated leadership responsibilities. The observed effects of turnover are

linked to the top-performer’s departure but do not reflect the effects of the departure of a leader.

The departure of a leader might lead to more detrimental effects than those observed in this

study. Future studies could explore the consequences of leadership turnover and compare them

with those of top-performer turnover.

The advantage is that performance is not significantly impacted. Newcomers do not help find

more effective solutions but do not penalize the group’s performance. With teams increasingly

subject to change, this can be an encouraging result. In this laboratory situation of complex

problem-solving, turnover did not lead to a performance decline. The question is how we can

minimize its impact in other complex problem-solving situations outside the lab. Future studies

could add layers of complexity to the task to approach a real-life setting while trying to preserve

the non-significant influence of turnover on performance.

3.6.2 Limitations and avenues for future research

While these findings emphasize interesting avenues for reference points and team composition

changes to encourage exploration, this study has several limitations. First, I worked with groups

of size three, primarily due to budget constraints. While practical, this size has limitations.

Small groups may not fully capture the effects of connectivity on problem-solving (Muthukrishna

& Henrich 2016). In very small groups, like in the present setting, limited connections can

restrict information flow and innovation. Larger groups can foster more innovation. They benefit
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from a wider pool of knowledge and skills, leading to better exploration and refinement of ideas.

Larger groups might sustain exploration longer and achieve more breakthroughs. They balance

cooperation and competition better, enhancing problem-solving. Future studies should use larger

groups to understand whether our results would extend to larger teams.

Second, the studies rely exclusively on WEIRD (Western, Educated, Industrialized, Rich, and

Democratic) subjects. WEIRD samples often exhibit cognitive, social, and behavioral patterns

not representative of the global population (Henrich et al. 2010). Cultural differences significantly

impact organizational behavior and decision-making processes (Banks 2023, Pitesa & Gelfand

2023). Consequently, our results might not apply to non-WEIRD populations. Moreover, students

tend to be more homogeneous regarding age, socioeconomic status, and life experience compared

to the general population (Peterson 2001). The over-reliance on student samples in organizational

behavior research has been questioned for this reason (Hanel & Vione 2016). To address these

limitations, I welcome future research that includes more diverse and representative samples,

ensuring the broader applicability of the findings.

Third, I assumed that exploration did not generate costs beyond opportunity costs. However,

the assumption could be relaxed. One can imagine that drastically changing a product, for

example, generates additional costs. Including these costs in the experiment would probably

further reduce the exploration. Generating an increase in exploration, even temporarily, might be

even more challenging than in this setting, where exploration only generates opportunity costs.

In conclusion, this study explored whether altering reference points and inducing team turnover

could help connected teams break from an over-exploitation equilibrium. Both interventions

led to a brief increase in search distance. However, the increase in search distance did not

increase performance. Despite initially displaying more exploratory behavior than oldtimers,

newcomers quickly conformed to existing team norms. These results suggest that while new

reference points and team turnover might introduce temporary variability in search behavior, the

induced exploration does not necessarily translate into lasting changes or improved outcomes.

Importantly, neither intervention had a long-term detrimental impact on team performance.

Turnover did not lead to the hoped-for increase in exploration behaviors, but neither penalized

the group performance.
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