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Abstract.—Next-generation-sequencing genotype callers are commonly used in studies to call variants from newly sequenced
species. However, due to the current availability of genomic resources, it is still common practice to use only one reference
genome for a given genus, or even one reference for an entire clade of a higher taxon. The problem with traditional genotype
callers, such as the one from GATK, is that they are optimized for variant calling at the population level. However, when these
callers are used at the phylogenetic level, the consequences for downstream analyses can be substantial. Here, we performed
simulations to compare the performance between the genotype callers of GATK and ATLAS, and present their differences at
various phylogenetic scales. We show that the genotype caller of GATK substantially underestimates the number of variants
at the phylogenetic level, but not at the population level. We also found that the accuracy of heterozygote calls declines with
increasing distance to the reference genome. We quantified this decline and found that it is very sharp in GATK, while ATLAS
maintains high accuracy even at moderately divergent species from the reference. We further suggest that efforts should be
taken towards acquiring more reference genomes per species, before pursuing high-scale phylogenomic studies. [ATLAS;
efficiency of SNP calling; GATK; heterozygote calling; next-generation sequencing; reference genome; variant calling.]

Next-generation sequencing (NGS) grants access to
a wealth of genomic data such as full genomes,
transcriptomes, enriched target loci, or RADseq. The
increased availability of such data has revolutionized
the way we study evolutionary processes at the
population and species levels. Consequently, the growth
in technologies to improve the sequencing of vast
amounts of genomic regions was accompanied by the
development of a diverse range of bioinformatic tools to
analyze these new data (McCormack et al. 2013).

One of the main constraints of current NGS
approaches is the reliance on a reference genome to
call genetic variants. Many model organisms (such as
humans or the fruit fly Drosophila melanogaster) have well-
annotated reference genomes (dos Santos et al. 2015). For
nonmodel organisms, however, access to species-specific
reference genomes is still very often limited. Nielsen
et al. (2011) stated that for an appropriate variant-calling
accuracy, the amount of sequence identity between the
reads and the reference (or the amount of tolerable
mismatches between reads and reference) has to be
optimized for every species individually. For example, if
the reference genome used for variant calling in humans
is used for other organisms with different levels of
genetic diversity, then there will be a significant loss
of sequencing depth, and thus, variability in many
regions will be underestimated (Nielsen et al. 2011). The
effect of the reference genome used for the analysis of
newly sequenced individuals will therefore be different
depending on the evolutionary scale being studied.
Consequently, variant calling at a population level (with
reference genomes close to the target populations) might
be more accurate than variant calling at a phylogenetic
level (with reference genomes that are distant to the

species analyzed). So far, there are no studies that have
looked at this specific question.

What is also clear is that, currently, we are still far from
having well-annotated reference genomes for all species.
For instance, countless studies over the past few years
had access to only one single reference genome, if any,
despite analyzing multiple species within entire genera.
Such is the case for fish (e.g., Chakrabarty et al. 2017;
Burress et al. 2018; Hulsey et al. 2017, 2018; Marcionetti
et al. 2019), mammals (e.g., Kumar et al. 2017; Lima et al.
2018; Moura et al. 2020), birds (e.g., Ottenburghs et al.
2016), reptiles (e.g., Bragg et al. 2016), amphibians (e.g.,
Portik et al. 2016), insects (e.g., Yan et al. 2020), and plants
(e.g., Nobre et al. 2018; Kreuzer et al. 2019; Helmstetter
et al. 2020; Olvera-Mendoza et al. 2020; Brandrud et al.
2020; Wang et al. 2020). The situation can sometimes
be even more dramatic with a single reference genome
available for entire tribes or subfamilies, encompassing
multiple genera (e.g., Hulsey et al. 2017; Wang et al. 2017;
Hulsey et al. 2018; Heckenhauer et al. 2019; Loiseau et al.
2019).

The current situation raises the question of how read
mapping and variant calling are affected by the distance
between the target species (or populations) and the
reference genome. As stated by Nielsen et al. (2011), using
optimized pipelines developed for one specific species
often results in suboptimal variant calling in another
species. For instance, Schubert et al. (2014) acknowledge
the fact that the widely used Genome Analysis Toolkit
GATK (DePristo et al. 2011) is not well suited for
nonhuman organisms, since, among other things, it
depends on external information such as known sets
of variant sites that are often unavailable for nonmodel
organisms.
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Some studies have already addressed the impact of
single references on multispecies NGS analyses. For
instance, mapping to a single reference genome within
one genus versus using de novo assembly can result
in fewer variants being called by the reference-based
method (Fitz-Gibbon et al. 2017). Second, using few
references for multiple species can confound paralogy
with orthology, which in turn, affects phylogenetic
reconstruction (Chakrabarty et al. 2017). Third, the
further the phylogenetic distance from a reference
genome the less efficient the NGS pipelines become
(because of mapping issues), as it is the case for target
enrichment (Bragg et al. 2016) or transcriptome-based
loci (Portik et al. 2016).

The efficiency in calling sites that are heterozygous
may also be undermined when the reference genome
is too distant. Consequently, heterozygote positions are
often discarded due to the uncertainty in heterozygote
calls, which in turn affects downstream analyses, such
as the inference of divergence times (Lischer et al. 2014).
Such problems also pertain to ploidy levels above two,
for which the development of newer methods for variant
calling is necessary (Blischak et al. 2018). Finally, another
important obstacle when calling variants in a newly
sequenced species is the lack of knowledge on species-
specific variable sites, which are used to recalibrate base
quality scores (Schubert et al. 2014). Such knowledge is
very helpful for judging the accuracy of variant calls, and
for obtaining more accurate SNPs.

Overall, the degree of information loss when using
one reference genome for multispecies NGS studies
is currently unknown. Therefore, we conducted a
simulation study to assess the efficiency of variant
calling across various phylogenetic scales. We
hypothesize a sharp drop in this efficiency as the
evolutionary distance to the reference genome increases.
The advantage of using simulations is that we know the
exact position of variable sites, so that variant calling
using traditional pipelines can be tested and the loss of
information quantified. More specifically, we simulated
diploid reads along with different tree topologies
and different evolutionary scales. For every tree and
every scaling, we selected one reference genome and
performed variant calling with the genotype callers
of GATK 4.1 and ATLAS v. 0.9 (Link et al. 2017). We
focused on two aspects that affect downstream analyses
substantially, namely: the number of called variants,
and the accuracy of heterozygote calling.

METHODS

Our pipeline followed these general steps: simulations
of species trees, rescaling of the trees to match various
levels of divergence, simulation of genomic sequences
along the trees, and simulation of diploid reads from
each genomic sequence. From each tree, we selected one
sequence as a reference and performed standard genome
assembly and variant calling with GATK and ATLAS.
Each of these steps is detailed below.

Simulation of Trees and Scaling
We performed two separate sets of tree simulations

and scalings. As a first set, we simulated two contrasting
topologies with arbitrary rescalings of each topology
(Base cases step). The motivation for the base-cases
analysis was to explore the performance of genotype
callers at varying phylogenetic scales while keeping the
topology constant. For the second set of simulations
(Generalization step), we simulated 10 random topologies
and drew random rescaling values from a uniform
distribution. The motivation for this latter analysis was
to check the robustness of our results with several
randomly generated topologies.

Base cases.— As stated above, we used two types of
trees (each with 20 tips) representing two contrasting
topologies (Fig. 1). The purpose of using these two
topologies was to make an initial assessment of the
potential effect that the topology and the position of the
reference genome can have on genotype calling. The first
tree, referred to as “Tree A”, was a standard birth–death
tree simulated with the R package TreeSim by Stadler
(2011) (Fig. 1, left panel). The second tree represents
a scenario with a very recent burst of speciation (as
opposite to Tree A). This tree was simulated with ms
(Hudson 2002) and is referred to as “Tree B” (Fig. 1, right
panel). Although ms is traditionally used for coalescent
simulations, we used it here only to simulate this
particular topology (the command line is shown in the
Supplementary Material, Section A.1 available on Dryad
at https://doi.org/10.5061/dryad.fn2z34ts3). We scaled
the trees to three arbitrary total depths of 0.13, 0.065,
and 0.013 measured in units of substitutions per site.
Although these values were arbitrarily chosen, they do
correspond to realistic values observed in phylogenetic
trees at the genus level. For instance, the first scaling
corresponds to the actual divergence observed in the
phylogenetic tree of clownfishes (Litsios et al. 2014).
The second and third scaling values correspond to half
and one-tenth of the original value of the first scaling,
representing smaller clades within a phylogenetic tree.
We called these rescaled values Large, Medium, and
Small, respectively. Thus, the simulations in the base cases
step included six types of trees: tree A Large, tree A
Medium, tree A Small, tree B Large, tree B Medium, and
tree B Small (Table 1, first column). Finally, to check the
performance of genotype callers on a level of divergence
that can be considered as including several distinct
populations represented by single individuals, we added
a fourth scaling of trees A and B to reach a much smaller
divergence with a total tree depth of 0.0013.

Generalization.— The second series of simulations was
performed by generating (using again the R package
TreeSim) 10 random topologies of 20 species each, with a
lineage birth rate drawn from the uniform distribution
U(0.5,1) and an extinction rate drawn from U(0.05,0.5).
The trees were then rescaled by drawing a scaling
factor from a uniform distribution U(0.01,0.3). Such
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FIGURE 1. Base-cases example trees: a birth–death tree A (left), and a recent-burst tree B (right). For each tree we generated three arbitrary
rescalings: Large, Medium, and Small, each representing various types of divergence found in phylogenetic studies. The chosen reference genome
is shown with an arrow. The colors of the tip labels are chosen to represent the increasing distance to the reference (these colors will be used
again in Figs. 4 and 5). The command lines and parameters used to generate these trees are described in the Supplementary Material, Section A.1
available on Dryad.

TABLE 1. Some stats from the sequence simulations, mapping of reads, and genotype calling subroutines: Total number of SNPs for each
alignment of each tree, mean (and standard deviation, sd) read-mapping quality (PHRED scores) for each tree (a per-species distribution of
read-mapping qualities is shown in SI-Fig. B.1, and SI-B.2), and total variant-calling computation time for all 20 species of each tree.

Tree Number of SNPs Mean and (sd) PHRED Computation time (GATK) Computation time (ATLAS)

A-large 193,884 57.04 (6.84) ∼6h ∼5min
A-medium 97,087 59.85 (1.47) ∼5h ∼4min
A-small 19,287 60.00 (0.00) ∼30min ∼4min
B-large 143,715 57.27 (6.83) ∼4h ∼3min
B-medium 72,113 59.74 (1.99) ∼3.5h ∼3min
B-small 14,256 60.00 (0.00) ∼30min ∼2min
A-population 1978 60.00 (0.00) ∼10min ∼2min
B-population 1429 60.00 (0.00) ∼10min ∼2min

distribution spans divergence values both lower and
higher than the values used in the base cases section.

Simulation of DNA Sequences
For each of the trees generated in the previous section,

we simulated 1 million base-pair (bp) long sequences
with the software seq-gen (Rambaut and Grass 1997)
under the HKY model (Hasegawa et al. 1985). Each tree
(with 20 tips) will thus contain 20 simulated sequences at
the tips to account for the stochasticity that is inherent to
models of sequence evolution. Concerning the expected

percentage of invariant sites, we started with an arbitrary
value of 80% for the large divergence scaling of trees
A and B, which resulted in about 20% of variant sites
in the final alignment. This percentage is in line with
what can be observed in phylogenetic trees at the genus
level (e.g., Duchen and Renner 2010; Litsios et al. 2014).
For the Medium and Small trees (with half and one-
tenth of the divergence, respectively) the expected value
of the percentage of variant sites in the simulations of
DNA sequences is 10% for the Medium tree and 2%
for the Small tree, assuming that mutation rates and
all other simulation parameters are set to the same
values (see the Supplementary Material available on
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FIGURE 2. Summary of the main steps taken in this study. The order of steps is given by the numbers in each box. Initial sequence simulation
and indexing of the reference genome involve haploid sequences (steps 1, 2, 4, and 6). Simulation of reads, mapping, recalibration, and genotype
calling involve diploid sequences (steps 3, 5, 7, 8, and 9). Arrows indicate that some output of a previous step will be used as input for a next
step. Programs used, and a summary of the command lines are indicated in italics. A complete description of all command lines is given in the
Supplementary Material, Section A available on Dryad.

Dryad for a complete transcript of the pipeline and
code). For the fourth rescaling representing population-
level divergence, we expected to have around 0.2% of
variant sites (provided that the original tree was 100
times more divergent and had 20% of variant sites). A
similar approach was used to set up the proportion of
invariable sites for the Generalization step. The proportion
was taken between 2% and 20%, with the latter value
assigned to the topology with the highest divergence.
The sequences generated by seq-gen are all haploid. The
generation of diploid reads necessary to simulate data
used by genotype callers is described below (Fig. 2).

Simulation of Diploid Reads
For each simulated sequence at the tips of every

topology, we simulated 100,000 diploid reads (each
read 100 bp long) with the software wgsim (Li 2013).
Briefly, wgsim selects regions (from the input sequence)
of a user-specified length (100 bp in our case). With
these regions, wgsim will substitute, delete, or insert
nucleotides with probabilities provided by the user
as well. For the case of diploid reads, wgsim will
substitute a nucleotide with another nucleotide or
any other ambiguity IUPAC letter, which codes for
ambiguous “heterozygous” nucleotides. All positions
where heterozygote calls have been introduced in the

simulated reads are recorded in the output of wgsim.
We used the default parameters, which resulted in
a total sequencing depth of 10×, a mutation rate of
0.001, and about 15% of indels introduced. These default
parameters generated a total heterozygosity of around
0.06% per simulated species. To account for species-
specific heterozygosity and mutation rates, we have also
varied the mutation rate from half up to twice the
default value, drawing it from U(0.0005,0.002) for each
species. We used wgsim because it allows us to know
the exact position and state (heterozygote/homozygote)
of all variants simulated, which is a key aspect that we
want to test to understand the performance of genotype
callers.

Mapping of Reads and Generation of BAM Files
For every tree and scaling factor, we selected one

sequence that was used as the reference for variant
calling (Fig. 2). In each simulated data set, the
reference sequence was indexed with bwa index (Li
and Durbin 2010), samtools faidx (Li et al. 2009), and
gatk CreateSequenceDictionary (DePristo et al. 2011). The
mapping of the simulated reads was done with bwa using
the option mem. All SAM files generated during this step
were converted to BAM format with samtools view and
we discarded reads with mapping qualities below 30.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa081#supplementary-data
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We then sorted all BAM files with the option samtools sort,
added read groups with gatk AddOrReplaceReadGroups,
and finally reindexed the files with samtools index. For
tree A and its scalings, we repeated this analysis with two
other reference sequences in order to assess the effect of
the position of the reference in the phylogenetic tree on
genotype calling.

Base Recalibration and Genotype Calling
Base recalibration makes use of known variable

positions. As recommended by the GATK Best Practices
protocol (Van der Auwera et al. 2013), if these positions
are unknown, one possible approach is to run the
genotype caller of GATK once (or a few times) and
use the output to recalibrate the quality scores. In our
simulations, we know the positions of the variable sites
but we did not use them for the recalibration, since our
goal was precisely to assess the performance of genotype
callers when there is no previous information on the
positions of variable sites, which is the case in most
newly sequenced nonmodel organisms. We therefore
ran the genotype caller of GATK once to generate a
table of inferred variable sites and the base recalibration
was then accomplished with the BaseRecalibrator and
ApplyBQSR subroutines from GATK.

We used the HaplotypeCaller subroutine from GATK
(DePristo et al. 2011), and the MLE subroutine of the
software ATLAS (Link et al. 2017) to call genotypes, using
the exact same recalibrated BAM files described above
as input in both cases. The main difference between
ATLAS and GATK is that the former computes the
genotype likelihoods of all 10 possible genotypes at
every given SNP, while the latter estimates the most
likely minor allele before computing the three possible
genotype likelihoods (see DePristo et al. (2011) and
Link et al. (2017) for the description of both methods).
Both genotype callers generate VCF files (Danecek et al.
2011) as output. For each simulated SNP, we recorded
whether the genotype returned by both callers matched
the reference genome (i.e., “0/0” in the genotype field
of the VCF file) or not (i.e., “1/1”), and whether the site
was a heterozygote (i.e., “0/1”).

Performance of Genotype Callers
Total number of called variants.— We measured the
performance of the two genotype callers GATK and
ATLAS by first extracting the total number of called
variants in every sequence of the simulated trees. This
was done by counting in each VCF file the number of
times a non “0/0” variant was called. We then compared
this number to the true number of variants that is known
from the simulations. This true number of variants can
be estimated by counting the number of differences
between each sequence and the corresponding reference,
plus the number of simulated heterozygote positions,
which is part of the output of the diploid-read simulator
wgsim (see section Simulation of Diploid Reads).

We focused on the number of variants for several
reasons. First, the number of variants is an important
measure of diversity, which is why it is expected for
genotype callers to correctly retrieve it, surpassing the
potential effect of sequencing errors. Additionally, at the
phylogenetic level, an accurate calling of homozygotes
(that are different from the reference) can be an indicator
of fixed substitutions that are, in turn, important to
define the divergence between species and to measure
the evolution of molecular markers.

Accuracy in Heterozygote Variant Calling
We extracted from the VCF files generated by GATK

and ATLAS the positions of all heterozygote calls with
the functions extract.gt and is.het from the R package
vcfR (Knaus and Grünwald 2017). We first tested if
the total number of called heterozygotes corresponded
to the true number of simulated heterozygotes. More
precisely, we calculated the ratio between the number
of called heterozygotes (by both GATK and ATLAS)
and the true number of heterozygote positions obtained
during the simulations. We called this ratio the Number of
Called/True heterozygotes. We expected this ratio to be 1 for
a perfect accuracy. A ratio above 1 would mean that there
are more heterozygotes being called than the number
simulated (representing false positives), and a ratio
below 1 would mean that the number of heterozygote
positions is underestimated by the genotype caller. We
also recorded if the positions of the called heterozygotes
were correctly inferred by comparing them with the
true positions simulated. This measure was estimated
by counting the number of times a heterozygote position
was correctly called by GATK and ATLAS and divided
it by the total number of true heterozygote positions
known from the simulated reads. We called this the
Accuracy of heterozygote variant calling. We expected an
accuracy of 1 for a perfect position match between called
and true heterozygote positions.

Calculating Phylogenies from Genotype-Calling Output
We converted the VCF output (Tree A, Large scale,

and population-level scale) from both GATK and
ATLAS to FASTA sequences and kept all called variants
to build alignments. During conversion, ambiguous
heterozygote calls were coded with their respective
IUPAC codes, and indels were excluded to avoid
alignment issues. The phylogenetic trees were then
calculated with RAxML-ng (Kozlov et al. 2019) using the
GTJC model, which allows for 10 states (4 nucleotides
plus 6 ambiguity codes). We used the sequence “t9”
to root the tree. For both contrasting scalings (Large
and population level) the following trees were inferred:
1) a tree with the original sequences simulated by seq-
gen, 2) a tree with the converted output of ATLAS,
and 3) a tree with the converted output of GATK.
Topological distances between the inferred trees and the
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true tree were calculated using the method of Kuhner
and Felsenstein (1994).

RESULTS

Simulation of Sequences and Reads
We initially simulated two topologies to illustrate the

effect of the divergence between a reference genome and
some newly produced genomic data. These topologies
were produced with a birth–death process (tree A)
or a coalescent-based process (tree B), representing
two contrasting tree shapes. We then rescaled each
topology to three different depths: Large (tree depth
0.13), Medium (tree depth 0.065), and Small (tree depth
0.013). We also added one more scaling of trees A and
B to represent population-level divergences (tree depth
0.0013). We then simulated 10 additional topologies with
birth and death rates taken from a uniform distribution
and rescaled each topology to depths between 0.01 and
0.3 (Supplementary Fig. SI-B.4 available on Dryad, refer
to section Generalization for details). From the output of
wgsim, between 50% and 60% of all mutations resulted
in heterozygous sites, meaning that the total default
heterozygosity introduced by wgsim per simulated
species is around 0.06% when the mutation rate is
set to the program’s default value. When introducing
species-specific mutation rates the heterozygosity varied
between half and twice this default value (i.e., between
300 and 1200 heterozygote positions per simulated
sequence). The total number of segregating sites per
alignment varied depending on the scale of the tree
(Table 1).

Mapping of Reads
The reads were mapped with different qualities

depending on the distance to the corresponding
reference (recall that we chose one reference per tree).
For instance, reads belonging to the reference sequence
or to tips adjacent to the reference had PHRED scores of
60. Mapping qualities then decreased with increasing
distance to the reference (Supplementary Fig. SI-B.1
available on Dryad, scale Large). Topologies of Medium
and Small scales maintained an overall high read-
mapping quality (Supplementary Fig. SI-B.1 available on
Dryad, scales Medium and Small). The same tendency
was observed in tree B, with the only difference that
we see a sharper difference in mapping quality when
changing clades (Supplementary Fig. SI-B.2 available on
Dryad).

Genotype Calling
Number of called variants.— We counted the number
of called variants, that is, all calls that are different
from the reference (calls not of the form “0/0” in the
genotype field of the output VCF file of each species).

For tree A with the Small scale, we found that both
GATK and ATLAS accurately recovered the number of
variants (Fig. 3; third column). However, for the Medium
and Large scales GATK substantially underestimated the
number of variants (Fig. 3; first and second columns).
The caller ATLAS, on the other hand, did a perfect
job for the Medium scales, but still underestimated the
number of variants for the Large scale (particularly
the tips that are far from the reference, Fig. 3, red
lines), although this underestimation was not as sharp
as the one seen for GATK. We observed a similar
tendency for tree B (Fig. 3, second row). A similar
pattern was also observed when we simulated random
topologies with random scalings: when the divergence
from the reference is low then both GATK and ATLAS
recover the true number of variants, while GATK
underestimated the number of variants with increasing
divergence. In contrast, ATLAS was able to outperform
GATK (Supplementary Fig. SI-B.5 available on Dryad).
We found similar results when using species-specific
mutation rates (Supplementary Fig. SI-B.11 available on
Dryad), and when using references that branched out
deeper in tree A (Supplementary Fig. SI-B.8 available on
Dryad).

Calling of Heterozygotes
After running the HaplotypeCaller and MLE

subroutines of GATK and ATLAS, respectively, we
found little difference in their performance for the
simulations at the population level. In this case, they
both called the true heterozygote variants accurately,
although there was a 20% overestimation of the
heterozygote calls by GATK (Supplementary Fig. SI-B.3
available on Dryad). However, we found the opposite
result when dealing with the simulations at the
phylogenetic level. The accuracy in heterozygote calling
declined with increasing distance to the corresponding
reference genome, and this reduction was particularly
strong for GATK when compared to ATLAS. This
pattern was observed in both types of topologies (Figs. 4
and 5, second column), in all 10 additional simulated
phylogenies under various scalings (Supplementary
Fig. SI-B.6 available on Dryad), in the simulations
with the different reference sequences (Supplementary
Figs. SI-B.9 and SI-B.10 available on Dryad, second
column), and in the simulations with species-specific
mutation rates (Supplementary Fig. SI-B.12 available on
Dryad).

We also found that GATK tended to overestimate
the number of heterozygotes when the genomes were
close to the reference, but this tendency decreased
dramatically with increasing phylogenetic distance to
the reference (Figs. 4 and 5, second row). In other
words, at a phylogenetic scale, GATK will substantially
underestimate the true number of heterozygous
positions along the genome. The genotype caller of
ATLAS, on the other hand, maintained the ratio of
called vs. true heterozygote variants close to 1 most
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FIGURE 3. Number of called variants for the tips of tree A (first row), and tree B (second row). The tips on the x-axis are ordered according
to their distance to the reference (the reference being always at the extreme left).

of the time, except for the most distant species to the
reference, and only for the large scale trees (Figs. 4 and 5,
third column). A similar pattern was observed with
the 10 additional simulated phylogenies under various
scalings (Supplementary Fig. SI-B.7 available on Dryad),
and in the simulations with the different references
(Supplementary Figs. SI-B.9 and SI-B.10 available on
Dryad, third column).

Inferring Phylogenetic Trees
As an example of the impact of using only one

reference in genotype calling at a phylogenetic scale,
we inferred phylogenetic trees using the output of
GATK and ATLAS on the simulated data sets produced
with tree A. First, we picked the large scale version
of tree A because it represents the largest differences
between the tips and because it is the case where we
see the most differences in terms of genotype-calling
accuracy. As a contrast, we also picked the version of
tree A with the smallest scale (population level). In
both cases, we found that the inferred trees differ from
the true tree and from the inferred tree based on the
original simulated seq-gen sequences (Supplementary
Table SI-C.1, Fig. SI-B.13 available on Dryad). The tree
inferred from the genotype calls of ATLAS (as opposite

to GATK) is closer to the tree inferred from the seq-
gen alignment (Supplementary Table SI-C.1 available on
Dryad). To make these comparisons valid, all alignments
used include the heterozygous sites introduced by
wgsim. Adding heterozygous sites makes a measurable
impact in tree inference, as evidenced by the large
topological distance with the original tree simulated
by TreeSim (Supplementary Table SI-C.1 available on
Dryad).

DISCUSSION

In this study, we tested the performance of state-of-
the-art genotype callers on simulated data sets aimed
at representing evolutionary divergences, either within
or above the species level. Genotype calling applied
on reads simulated at a population level reached an
overall good accuracy, although GATK overestimated
the number of heterozygotes by as much as 20%
(Supplementary Fig. SI-B.3 available on Dryad, last
panel). Such overestimation of heterozygotes by GATK
has also been reported in previous studies (Hwang
et al. 2015; Link et al. 2017). In contrast, ATLAS was
able to call heterozygotes with a 100% accuracy in all
cases at the population level (Supplementary Fig. SI-B.3
available on Dryad, last panel). When the divergence
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FIGURE 4. Accuracy of heterozygote calling for tree A at three different phylogenetic scales: Large (first column), Medium (middle column),
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colors shown in Fig. 1.
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between the simulated sequences increased to a level
representative of shallow phylogenomic studies, we
found the performance of the GATK suboptimal. For
instance, we observed a large underestimation in the
total number of called variants (Fig. 3), and low accuracy
when calling heterozygote positions (Figs. 4 and 5).
While this issue is particularly prevalent in GATK,
the caller ATLAS is less affected. The main difference
between the two callers lies in their assumptions when
estimating the possible genotype likelihoods necessary
to call variants. ATLAS considers all ten possible
genotype likelihoods, which might be better suited
when divergent sequences are considered. GATK, on
the other hand, infers one minor allele to be used in
the genotype likelihood calculations. As expected, the
underperformance of genotype calling is stronger when
the phylogenetic distance between the species-specific
reads and the reference genome (against which these
reads were mapped) becomes larger (see also Bragg
et al. 2016; Portik et al. 2016; Fitz-Gibbon et al. 2017).
Additionally, GATK has an inherent filter such that many
low-quality calls are not emitted. In contrast, ATLAS
emits all calls and lets the user decide on the filtering,
which might also explain the better performance of
ATLAS (in our case we left the default parameters,
see Supplementary Material Section A.5 available on
Dryad). We assume this might also explain the lower
number of variants output by GATK as opposed to
ATLAS.

Depending on the research question, underestimating
the number of variants can have different consequences,
but failing to accurately call heterozygote positions can
have more detrimental effects (Lischer et al. 2014), which
is why we focused on this particular parameter in the
present study. This problem can also be exacerbated
for higher ploidy levels, for which newer methods
for variant calling under such circumstances have
been suggested (Blischak et al. 2018). Additionally,
many studies have acknowledged the problems of
lacking species-specific references, and they opted for
the solution to build pseudoreferences or synthetic
references for every species instead (e.g., Bateman et al.
2018; Grummer et al. 2018; Skipwith et al. 2019). However,
such studies focused more on target/sequence capture
that are usually designed for interspecific studies and
where the call of heterozygotes is of less interest. We
focused instead on studies that make use of entire
genomes for phylogenomic or population genomic
analyses across multiple species, with well-annotated
reference genomes.

The tree topology also seems to play a role in
determining the accuracy of genotype calling. Here,
we started with two contrasting topologies: a “typical”
birth–death topology and a topology representing high
speciation rates in the recent past (Fig. 1). In both cases,
and at all scalings tested, the decrease of accuracy with
increasing distance to the reference is not linear but
jumps as it goes through the different clades of the tree
(Fig. 5, second and third columns). In other words, the
further the most recent common ancestor between the

reference and a given species is, the sharper the decrease
in genotype-calling accuracy that we found.

There are several reasons that might explain the low
performance of genotype calling when the divergence
to the reference genome increases. First, the read-
mapping quality reduces with increasing distance to
the reference because of the lower similarity between
the reads and the reference sequences (Supplementary
Figs. SI-B.1 and SI-B.2 available on Dryad). Second,
the algorithm of GATK requires a priori information
about known variable sites to recalibrate base quality
scores (DePristo et al. 2011). However, this information
is often unavailable for studies involving several species
(Schubert et al. 2014). If this is the case, we can then expect
that the species close to the reference might benefit
from a better recalibration than the species far from the
reference. Contrary to GATK, ATLAS has the alternative
of base quality score recalibration based on invariant
sites. Unless phylogenetically known invariant sites are
provided, ATLAS will assume that all provided sites
are invariant. The benefit of this type of recalibration
model is that no assumption needs to be made about
the underlying allele, just about the status as invariant.
This fact might also explain the shorter computation time
needed for ATLAS (Table 1).

In this study, we based our first scaling on the
divergence that can be observed at the genus level for
the clownfish phylogeny (Litsios et al. 2014). We are
aware that, for other organisms, divergence at the genus
level will be different, which is why we tested several
additional scalings (Supplementary Figs. 1 and SI-B.4
available on Dryad). We did not need to test larger
divergence values because the performance of GATK
on the trees simulated here already showed a rapid
decrease with increasing distance to the reference. Given
this trend, we expect this underperformance to be
even greater for larger phylogenetic trees with greater
divergence values among its species.

Nevertheless, we would like to make clear that current
NGS software (such as GATK) does provide very good
tools for NGS processing. It is only the genotype-
calling subroutine of GATK that needs to be used
carefully, and applied only to population-level studies
with a priori knowledge of variable sites, or use the
ATLAS genotype caller instead. We conclude that, for
multispecies NGS studies, primary efforts should be
taken towards building more reference genomes, rather
than sequencing more species without a reference.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.fn2z34ts3.
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