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III. Abstract 

Cardiovascular diseases are associated with high mortality rate due to a massive loss of cardiac cells 

in injured hearts. Therefore, cardiac research focuses on the discovery of new treatments able to 

replace dysfunctional cardiac cells, and more precisely the contractile cardiomyocytes (CMs). Adult 

mammalian CMs have the ability to proliferate. However, this capacity is not sufficient to restore the 

heart after injury. That is why the aims of my thesis were to determine whether modulation of oxygen 

and brain natriuretic peptide (BNP) concentrations could improve the adult heart regeneration 

capacity. 

Oxygen is a key regulator of CM cell fate. Low oxygen level during development stimulates CM 

proliferation, whereas high oxygen level after birth inhibits CM proliferation. After myocardial 

infarction (MI), reduction of oxygen level increases CM proliferations. Thus, the first aim of my 

study was to determine the effect of different oxygen concentration on neonatal CM cell fate in vitro. 

Oxygen level inside the adult heart in physiological conditions is estimated close to 3% O2 

(physiological/normoxic environment). However, all CM cell cultures are performed in vitro at 20% 

O2, which is thus an hyperoxic environment. Therefore, we compared CM cell fate in neonatal CM cell 

cultures performed at 20% O2 to those performed at 3% O2. We demonstrated that 3% O2 favors CM 

dedifferentiation and proliferation in vitro (see results, section 4.1). Thus, the cultures of neonatal 

CMs in 3% oxygen highlight cellular physiological mechanisms occurring in CMs which can be blind 

in the cultures performed in an hyperoxic environment (i.e. at 20% O2). 

BNP is a cardiac hormone. BNP supplementation after MI in adult hearts improves the cardiac function 

and decreases heart remodeling. CMs express BNP receptors and are thus susceptible to respond to 

BNP stimulation. The second aim of my PhD thesis was therefore to investigate if a part of the 

cardioprotective effect of BNP is triggered by a modulation of CM cell fate. For this purpose, injections 

of BNP were performed in: 1) injured adult mice (i.e. after MI), 2) unmanipulated adult mice, which 

exhibit a low potential of CM proliferation and 3) unmanipulated neonatal mice, which exhibit a high 

potential of CM proliferation. We demonstrated that BNP treatment in all these mice resulted in an 

increased number of CMs. After MI, BNP increased CM number by protecting them against cell death 

and likely also by stimulating their proliferation. Indeed, it is clear that BNP stimulates the re-entry 

of CMs into the cell cycle. In healthy neonatal and adult mice we established that BNP stimulates CM 

proliferation. Interestingly, BNP treatment led also to activation of the MAP/ERK signaling pathway 

in CMs isolated from these three animal models, suggesting that BNP could trigger CM proliferation 

via the activation of MAP/ERK signaling (see results, section 4.2). 

An alternative treatment able to increase BNP level after MI in a clinical setting is the use of LCZ696 

(Entresto®) Novartis), which associates an angiotensin receptor blocker (valsartan) with an inhibitor 

of neprylisin (sacubitril), an enzyme responsible for the natriuretic peptide degradations. LCZ696 

treatment improved heart functions and attenuated cardiac remodeling 10 days after MI in adult 

mice. Preliminary results demonstrated that LCZ696 increased the number of CMs and stimulated 

CM re-entry into the cell cycle (see supplementary data, chapter 8). 

Altogether, our results demonstrate that BNP treatment is a valuable therapeutic strategy aimed to 

improve CM survival and renewal. 
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IV. Résumé 

Les maladies cardiovasculaires sont associées à un taux de mortalité élevé en raison d’une mort 

massive des cellules cardiaques. C'est pourquoi la recherche en cardiologie se concentre sur la 

découverte de nouveaux traitements capables de remplacer les cellules cardiaques dysfonctionnelles, 

et plus précisément les cardiomyocytes (CMs). Les CMs des mammifères adultes ont la capacité de 

proliférer. Cependant, cette capacité n'est pas suffisante pour restaurer le cœur après un infarctus. 

Mon travail de thèse avait pour but de déterminer si la concentration d’oxygène et du peptide 

natriurétique de type B (BNP ; une hormone cardiaque) pouvaient stimuler dans le cœur adulte les 

mécanismes de régénération cardiaque. 

La concentration d'oxygène (O2) est un facteur modulant le devenir des CMs. Un faible taux 

d'oxygène pendant le développement stimule la prolifération des CMs, alors qu’une augmentation de 

ce taux après la naissance inhibe la prolifération des CMs. Après un infarctus du myocarde (IDM), la 

diminution de la concentration en oxygène augmente la prolifération des CMs. Le premier objectif 

de ma thèse était de définir l’effet de différentes concentrations d'oxygène sur les CMs en culture. 

La concentration d'oxygène à l'intérieur du cœur adulte, dans des conditions physiologiques, est 

estimée à 3% O2 (normoxique). Cependant, toutes les cultures de CMs sont réalisées à 20% O2, ce 

qui représente un environnement hyperoxique pour les CMs. Nous avons donc comparé des cultures 

de CMs isolées de cœurs nouveau-nés faites à 3% O2 et à 20% O2. 3% O2 favorise la dédifférenciation 

et la prolifération des CMs (résultats, section 4.1). Ainsi, les cultures de CMs nouveau-nés à 3% O2 

mettent en évidence des mécanismes physiologiques des CMs pouvant être masqués dans des 

cultures en milieu hyperoxique (20% O2). 

En ce qui concerne le BNP, celui-ci est sécrété par toutes les cellules cardiaques, dont les CMs. 

L’injection de BNP après un IDM chez les souris adultes améliore la fonction cardiaque et diminue le 

remodelage du cœur. Les CMs expriment les récepteurs du BNP et sont donc susceptibles de répondre 

à une stimulation du BNP. Le deuxième objectif de ma thèse avait pour but d'étudier si l'effet 

cardioprotecteur du BNP est dû en partie à un effet sur les CMs. Des injections de BNP ont été 

effectuées chez : 1) des souris adultes après IDM, 2) des souris adultes non-manipulées, présentant 

un faible potentiel de prolifération des CMs et 3) des souris nouveau-nées non-manipulées, dotées 

d’un fort potentiel de prolifération des CMs. L’ajout de BNP a entraîné chez toutes ces souris une 

augmentation du nombre de CMs. Après un IDM, le BNP a augmenté le nombre de CMs en diminuant 

leur mort et probablement aussi en stimulant leur prolifération. En effet, au sein des cœurs infarcis, 

nous avons clairement démontré que le BNP stimule la réentrée des CMs dans le cycle cellulaire. 

Chez des souris nouveau-nées et adultes, le BNP stimule la prolifération des CMs. Nous avons aussi 

démontré que le BNP activait la voie de signalisation MAPK/ERK chez des CMs isolés des trois modèles 

de souris, suggérant que le BNP pouvait stimuler la prolifération des CMs par cette voie de 

signalisation (résultats, section 4.2). Un autre traitement pouvant augmenter le taux de BNP est le 

LCZ696 (Entresto®), qui associe un antagoniste des récepteurs de l'angiotensine à un inhibiteur de 

la néprilysine (enzyme responsable de la dégradation des peptides natriurétiques). Nous avons 

montré que le LCZ696 améliorait les fonctions cardiaques et atténuait le remodelage cardiaque après 

un IDM chez des souris adultes. Les résultats préliminaires ont démontré que le LCZ696 augmentait 

le nombre de CMs et stimulait la réentrée des CMs dans le cycle cellulaire (suppléments, section 8). 

Nos résultats démontrent que l’injection de BNP pouvait être considérée comme est une stratégie 

thérapeutique visant à améliorer la survie et le renouvellement des CMs après un IDM. 
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 Introduction 
Cardiovascular diseases (CVDs) are defined by the world health organization 

(WHO) as “a group of disorders of the heart and blood vessels”. CVDs are the 

major cause of mortality worldwide involving myocardial infarction (MI) and 

strokes (www.who.int). 

Each year, 17.9 million people die from CVDs which corresponds to 31% of all 

deaths worldwide. Due to the sedentary lifestyle of the population, the prevalence 

of CVDs will increase dramatically. In fact, 23.3 million people will suffer from CVDs 

in 2030. It thus becomes urgent to find an effective treatment to reduce the 

mortality rate due to CVDs. 

Ischemia affects the functional activity of the heart because of a massive death of 

cardiac cells (i.e cardiomyocytes, endothelial cells, fibroblasts, cardiac precursor 

cells, smooth muscle cells and immune cells), via necrosis and/or apoptosis. This 

initiates a multicellular process, involving the rapid infiltration of inflammatory cells 

into the area of injury to remove the necrotic cells and to initiate reparation and 

the development of a fibrotic scar. The surviving cardiomyocytes (CMs) become 

hypertrophic in order to compensate the CM cell loss and the decrease of cardiac 

contractile activity. Afterwards, in 25% of the cases, MI leads to heart failure (HF) 

and death in the first five years following MI (1). 

Over the past 30 years, many therapies have emerged to treat CVDs. They focus 

on three approaches: 1) decrease the blood volume, such as aldosterone 

antagonist or diuretics; 2) decrease pressure overload by using β-adrenergic 

blockers, ACE inhibitors; 3) increase cardiac input/contractility, such as digoxin 

(2). Although these therapies decrease mortality rate, they are not able to restore 

heart contractility. Indeed, the damaged cardiac cells, especially the necrotic 

and/or apoptotic CMs, are not replaced by new ones. Thus, curative treatment for 

patients with end stage heart failure remains cardiac transplantation. 

Nevertheless, the lack of available donors and the long waiting time for patients 

do not allow to avoid death. For this reason, the key challenge for cardiac research 

is to rapidly find alternative treatment(s) in order either 1) to protect cardiac cells 

from cell death and/or 2) to stimulate cardiac regeneration. 
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 Cardiomyocyte death after ischemia 
Ischemia induces, within the first 24 hours, the extensive loss of cardiac cells, 

mainly CMs. Several cell death mechanisms are stimulated in the ischemic hearts, 

such as necrosis, apoptosis, autophagy and necroptosis (Fig. 1) (3). Few hours 

after MI, the activation of necrosis leads to an extensive loss of CMs.  

Necrosis is characterized by cell swelling, cell membrane disruption and cell lysis 

associated with an acute inflammatory response (Fig. 1) (4). Ischemic conditions 

induce necrosis through an excessive influx of water into the cells, resulting in the 

opening of the mitochondrial permeability transition pore (MPTP) and the rupture 

of the membrane of mitochondria (5). This rupture leads to the release of cellular 

components able to induce also apoptosis that peaks around 4.5 hours post-MI 

(Fig. 1) (6). 

 

 
Figure 1: Signaling pathways involved in CM cell death after MI. 

The mechanism of necroptosis is a hybrid mechanism between apoptosis and 

necrosis. This mechanism combines the morphological features of necrosis and the 

characteristics of the programmed cell death apoptosis (5). Necroptosis is 

characterized by the loss of membrane integrity and the release of damage-

associated molecular pattern molecules (DAMPs), which results in an inflammatory 

response (7). Necroptosis is triggered via the stimulation of the death receptors 

(i.e. TNFR1, FasR), which are linked to key mediators of necroptosis, the receptor-

interacting protein kinase 1 and 3 (RIPK1 and RIPK3). The presence of the caspase 

8 is crucial in the decision between apoptosis and necroptosis. Indeed, the absence 

of the active form of caspase-8 prevents RIPK1 cleavage and then promotes its 

association with RIPK3 at the mitochondria membrane. This association leads to 

Necrosis
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• Cell and organelle swelling
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• No energy required

Apoptosis
• Programmed mechanism
• Cell shrinkage
• Nuclear condensation and fragmentation
• No inflammatory response

30 min                    4.5 h                      24 h
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• Inflammatory response
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MPTP opening and ROS production (3, 5). By contrast, the presence of the active 

form of caspase 8 cleaves RIPK1 kinase leading to inhibition of the necroptosis 

signaling and activation of apoptosis (5). 

Autophagy is a programmed cell death, which occurs 30 min after ischemia (Fig. 

1) (8). During this process, a double-membrane vesicle (autophagosome) 

envelops cytoplasmic components, including organelles (i.e. mitochondria) and 

protein aggregates. The formation of autophagosome is divided in 3 steps: 

nucleation, elongation and maturation. Finally, autophagosome fuses with 

lysosomes for degradation and recycling of their contents (3, 9, 10). Autophagy is 

considered to be a physiological mechanism essential to cell survival, where 

damaged organelles and misfolded proteins are degraded and recycled for ATP 

production during cellular stress (6, 11, 12). Indeed, starvation, growth factor 

depletion and hypoxia are well known factors that activate autophagy in order to 

increase cell survival (13). In physiological conditions, autophagy appears to play 

a protective role on CMs by preventing activation of apoptosis (14). However, in 

pathological conditions, the level of autophagic activity determines whether 

autophagy is protective or detrimental. This level of activity depends on the 

activated upstream signaling mechanism, which differs depending on the heart 

diseases (i.e. ischemia or I/R injury). Indeed, it was shown that autophagy could 

be protective during permanent ischemia, whereas it could be detrimental during 

I/R injury (14, 15). Currently, it is difficult to know if inhibiting or activating key 

factors related to autophagy at a specific time and for a specific cardiac disease 

will protect cardiac cells or trigger cardiac cell death (9). 

During my PhD thesis, I focused on apoptosis after MI because it plays an 

important role in the process of cell death, in the process of LV remodeling and 

development of heart failure (3, 16). Apoptosis is a programmed cell death, 

resulting in cell shrinkage, membrane blebbing, DNA fragmentation and 

degradation of the structural proteins of CMs, such as the cardiac Troponin and α-

actin. However, contrary to necrosis, apoptosis does not initiate inflammatory 

response (17). Two distinct signaling pathways are involved in apoptosis: The 

intrinsic pathway and the extrinsic pathway (Fig. 2). The intrinsic pathway is 

triggered by oxidative stress, hypoxia and Ca2+ overload and induces the 

permeabilization of the outer membrane of mitochondria through the 

oligomerization of Bax/Bak. The cytochrome C is released from the mitochondria 

into the cytosol and the procaspase 9 is recruited. The procaspase 9 is the mediator 
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of the intrinsic pathway responsible for the activation of the caspase 3. Bax and 

Bak proteins belong to the Bcl-2 family and are related to pro-apoptotic molecules. 

By contrast, Bcl-2 is related to anti-apoptotic members that inhibit cell death 

pathway in heart injury by preventing pore formation and the release of 

cytochrome C (17). 

 

 
Figure 2: Apoptotic signaling pathways. Two distinct signaling pathways drive apoptosis: The intrinsic pathway 

driven by mitochondria and the extrinsic pathway driven by specific receptors (5). 

The extrinsic pathway is triggered by death receptors (i.e. DR5) and their ligand 

(i.e. TRAIL). This process recruits FADD and procaspase 8 or 10. The auto-

proteolytic cleavage of the procaspase 8 or 10 results in the release of caspase 8 

or 10, which are responsible for the cleavage of other downstream effector 

caspases. Both pathways activate the effective caspase 3, which induces cell 

death. 

 Cardiac regeneration 
The regeneration is the natural ability of living organisms to repair and restore 

structural and functional integrity of the lost or damaged organ. This process 

involves the replacement of one damaged cell type by cells of the same nature. 

Regeneration implies the recovery of the original cell number and organ function 

after a damage. 

Heart regeneration occurs naturally during the life of organisms such as urodeles, 

newts and zebrafish. Indeed, zebrafish hearts regenerate completely after 20% of 

ventricular amputation, through the proliferation of pre-existing CMs (18). In 
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contrast to the heart of lower vertebrates, the heart of mammals was for a long 

time considered as a post-mitotic organ with no capacity to regenerate. However, 

in the past decade, some results highlight the fascinating possibility that 

mammalian heart has an endogenous regenerative capacity. Indeed, study based 

on the interpretation of carbon-14 birth dating demonstrated in humans, that the 

mammalian heart has a low physiological regenerative capacity (19). However, 

this process occurs at low rate (0.5-1% of the CMs are renewed per year) (19, 

20). On this basis, two distinct mechanisms, able to replace CMs after ischemia, 

have been described: 1) the differentiation of endogenous (i.e. cardiac cells) or 

exogenous (i.e. bone marrow cells) precursor cells 2) the proliferation of pre-

existing CMs. 

 

The two last decades, numerous researches were aimed to determine whether the 

use of precursor cells is beneficial in order to regenerate hearts after injury. Thus, 

many clinical trials have been performed on patients suffering from CVDs. 

The first-generation of cell-based therapy consisted to inject non-cardiac precursor 

cells such as unselected bone marrow derived mononuclear cells, purified 

mesenchymal stem cells, endothelial progenitor cells or skeletal myoblasts (21). 

These cells are available from autologous sources, they can be expanded in high 

number ex vivo and then injected at an adequate quantity into the heart. 

Numerous clinical trials have been performed, but controversial results were 

obtained with regard to cardiac recovery on patients suffering from acute 

myocardial infarction and chronic heart failure (23). Indeed, the in vitro cell 

selection and expansion as well as the delay in cell injection after hypoxia limit the 

cell potential to regenerate hearts. Therefore, low survival and low engraftment of 

these cells were reported (21, 24, 25). 

Due to the disappointing results obtained with the first-generation strategy, 

cardiac research shifted toward the second-generation of cell-based therapy, which 

includes the use of multipotent cardiac precursor cells (CPCs), pluripotent stem 

cells (i.e. embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). 

CPCs are derived from the heart, they are multipotent, self-renewal and they can 

differentiate into three different lineages: CMs, endothelial cells and vascular 

smooth muscle cells. They can be isolated from the Hoechst-extruding side 

population, from the epicardium, the atria or the ventricles (26, 27). Different CPC 

populations are described in humans and/or mice such as c-kit positive cells (c-
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kit+), Sca-1 positive cells (Sca-1+) (not in humans), Isl-1 positive cells (Isl-1+) and 

cardiosphere-derived cells (CDCs) (28-30). 

Two main clinical studies were performed on human injured hearts (SCIPIO with 

c-kit+ cells and CADUCEUS with CDCs). These therapies consisted to isolate CPCs 

and CDCs from the donor hearts, to expand the cells ex vivo and then to re-inject 

the cells into the donor heart (31, 32). These clinical trials reported controversial 

results regarding improvement of the cardiac function, but it was shown in 

CADUCEUS study that the scar mass was significantly reduced and that the viable 

heart mass and the regional contractility increased on one-year follow-up (32). In 

animal models, CPCs (c-kit+, Sca-1+, Isl-1+ cells) have been shown to participate 

in heart regeneration by differentiating into CMs during physiological growth, but 

also in pathological conditions (26, 33-35). However, after several years of 

controversy, several groups have used new mouse models allowing to trace the 

lineage of CPCs and they demonstrated that precursor cells are able to differentiate 

into CMs during embryogenesis, but not in adult hearts during physiological ageing 

or in pathological conditions (36-40). 

ESC and iPSC were also studied for their high potential of differentiation and 

proliferation (41). One clinical trial on patients with ischemia-induced heart failure 

demonstrated that transplanted ESCs improve cardiac function (42). Several 

studies in animal models confirm the beneficial use of ESCs (43-46). However, 

these studies also demonstrated the crucial limitations of these cells. Indeed, ESC 

injections induce teratomas and cause serious safety and ethical issues (i.e. 

immunogenic properties, proarrhythmic effects), complicating the potential use of 

these cells in clinics (47). 

iPSCs were also developed by reprogramming dermal fibroblasts using retroviral 

expression of the fourth transcription factors Oct-3/4, Sox2, Klf4 and c-Myc. This 

strategy, aimed to obtain cells with the same characteristics as ES cells, gives rise 

to functional CMs in vitro after differentiation obtained by culture in presence of 

different factors (26). Few pre-clinical trials were achieved on large animal models 

(i.e. porcine and non-human primates), which showed encouraging results by 

increasing the cardiac function (48, 49). However, these cells have a low 

engraftment rate and their use could increase the risk of tumorigenesis and 

arrhythmias. To overcome some of these limitations, another approach proposes 

to target directly resident cardiac fibroblasts without isolating them. By direct 

reprogramming strategy, Ieda and his group demonstrated the ability to 
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transdifferentiate mouse dermal fibroblasts into functional beating CMs (iCMs) by 

using three transcription factors, Gata4, Mef2c and Tbx5 (50). In injured murine 

hearts, the direct reprogramming of cardiac fibroblasts by using retroviral delivery 

of reprogramming cocktails improves cardiac function and reduces fibrosis (51-

53). 

Although promising progress has been made in the field of cardiac stem-cell based 

therapy, the low engraftment and low survival rate of the injected cells suggest, 

that the improvement of cardiac function observed is rather the consequence of a 

paracrine stimulation of endogenous repair mechanism. 

 

Numerous researches demonstrated that the renewal of CMs during ageing and in 

pathological conditions occurs mainly by the proliferation of “pre-existing” CMs 

(54-56). This capacity is clearly dependent on signals coming from the 

environment. 

During embryogenesis, depletion of 60% of the heart has no consequence on 

cardiac function into adulthood thanks to complete replacement of the CM pool by 

intensive proliferation of the surviving CMs (57). However, numerous studies 

demonstrated that the CM proliferation capacity declines during the first week of 

postnatal life. In the mouse hearts, 5% to 10% of the CMs proliferate up to day 4 

after birth, while only 1% of CMs proliferate 5 days after birth (58, 59). 

Consequently, surgical resection of the hearts performed few days after birth in 

mice leads to a complete heart regeneration thanks to intensive CM proliferation 

and no fibrosis development (60). In neonatal pig hearts, acute MI until 2 days 

after birth leads to a complete cardiac regeneration by CM proliferation, which 

leads to restoration of cardiac function. However, 2 days after birth, CMs exit from 

the cell cycle and systolic function is impaired (61). In humans, several clinical 

reports suggest that similarly to neonatal mice, neonatal human hearts have the 

capacity to regenerate and to completely restore the cardiac function after MI (62-

64). They suggest that this process is triggered by CM proliferation since an 

increased number of CMs expressing the proliferative marker Ki67 was detected 

(62). 

In adult mouse hearts, in physiological conditions, CM proliferation rate declines 

drastically. The formation of new CMs occurs at a frequency of 0.015% in the 
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hearts of young adult mice over a period of 8 weeks (65). In injured adult hearts, 

first evidences of CM proliferation came from the group of Senyo who 

demonstrated, thanks to multi isotope mass spectrometry analysis, that pre-

existing CMs are the main source of newly formed CMs during ageing, but also 

after MI. The rate of CM proliferation increases 5-fold after MI (54). 

Even if CM proliferation exists in adult mammalian hearts, this process is so limited 

that it is not sufficient to restore the impaired cardiac function after heart injury. 

Therefore, cardiac research concentrates its efforts to better understand why the 

proliferation capacity of CM declines during physiological ageing in mammals. The 

aim is thus to determine, how factors, regulating the transition from neonatal to 

adult stage (i.e. the oxygen concentration, CM metabolism, CM nucleation and CM 

structural organization), can modulate CM proliferation arrest (Fig. 3). 

 

 
Figure 3: CM proliferation capacity in mammals declines with age. The proliferation capacity of CMs is high during 

gestation and during the first few days after birth, but decreases rapidly. Different factors are involved in this 

decrease such as environmental factors, metabolism, CM nucleation and CM structural organization. 

1.2.2.1. Oxygen concentration  

Both zebrafish and mammals, during intra-uterine life, are living in low oxygen 

environment (can reach up to 15-30mm Hg). While zebrafish remains in the same 

environment for its entire life, mammals at birth increase rapidly their level of 

oxygen (as the atmospheric environment corresponds to 160mm Hg) (66, 67). 

This rapid increase of oxygen concentration leads to the expansion of the 

pulmonary alveoli, which in turn induces an increased blood volume into the two 

ventricles. Thus, CMs have to resist to the increased workload. In order to respond 

to this new environment, several structural modifications are taking place in CMs 
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which refer, for example, to mitochondria. Indeed, mitochondria adapt their 

metabolism to high oxygen level. However, this adaptation induces also the release 

of reactive oxygen species (ROS). High levels of ROS can induce cellular toxicity 

by promoting protein and nucleic acid damages, which could result in cell cycle 

arrest and apoptosis (68-71). Thus, the switch of oxygen concentration is 

considered as the main cause of CM cell cycle arrest between neonatal and adult 

mammalian hearts. Therefore, several recent studies examined the effect of the 

oxygen concentration on CM cell fate. 

During ischemia, decreased oxygen supply in adult hearts induces 1) a switch from 

a fatty acid to a “fetal–like” metabolism based on glycolysis, 2) cell death, 3) CM 

hypertrophy, 4) fibrosis, and 5) a decrease of heart contractility (72). Thus, 

hypoxia modulates gene expression coding for proteins involved in metabolism, 

cell death, proliferation and/or differentiation. These transcriptional responses are 

in part mediated by the transcription factor HIF-1 (hypoxia inducible factor 1). 

HIF-1 is a heterodimer protein composed of an α- and a b-subunit. The α-subunit 

is regulated in an oxygen-sensitive manner, and is localized in normoxic conditions 

(i.e. 20% of oxygen supply) in the CM cytoplasm, while the constitutive b-subunit 

is localized in the nucleus. In normoxic conditions, HIF-1α is rapidly degraded. By 

contrast, in presence of low oxygen concentrations, HIF-1α escapes from 

proteasomal degradation, accumulates in the cytoplasm and translocates into the 

nucleus, where it dimerizes with HIF-1b. The heterodimer modulates the 

transcription of several genes, such as the gene coding for the glucose transporter 

GLUT1, involved in the metabolism switch after hypoxia, or the gene coding for 

the vascular endothelial growth factor (VEGF) involved in angiogenesis (73). 

Interestingly, HIF-1 seems to modulate gene and protein expressions involved in 

CM proliferation, including cyclin D1, VEGF, p38 MAPK and YAP (74-76). Kimura 

and his group demonstrated that the pool of CM, proliferating in ischemic adult 

hearts, expresses HIF-1α (77). Thus, 2 weeks after MI induction, mice were 

submitted to a reduction in inspired oxygen concentration (7% O2 instead of 20%). 

These mice displayed increased cardiac function and reduced cardiac fibrosis when 

compared to mice living at 20% oxygen. Furthermore, an increased proliferation 

of CMs expressing HIF-1α was detected in the infarcted mice surviving at 7% 

oxygen (78). In addition, Vujic and his group demonstrated that exercise 

stimulates CM proliferation in mice, which may be attributed to a hypoxic 

environment due to the upregulation of HIF-1α (79). However, the expression of 
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HIF-1α can not only stimulate CM proliferation. Indeed, 1% oxygen induces HIF-

1α expression on neonatal CMs in vitro, but inhibits their proliferation and induces 

cell apoptosis (80). Furthermore, a chronic maternal hypoxia (10.5% O2) reveals 

a fetal CMs exit from the cell cycle (81). 

Altogether, these results suggest that the level of hypoxia as well as the maturity 

of the CMs undergoing hypoxia are critical factors to modulate CM proliferation. 

1.2.2.2. CM metabolism 

During embryonic development and its low oxygen environment, anaerobic 

glycolysis and lactate oxidation are the main sources of cardiac energy (82). 

Immediately after birth, although under high oxygen supply, the heart relies 

predominantly on glycolysis and lactate oxidation. During the first week of life, 

metabolism switches from glycolysis to fatty acid oxidation as a main source of 

ATP production (83). With this new substrate, adult heart increases its metabolism 

efficiency and the contractility essential for the body growth. This switch of 

metabolism is followed by CM growth. In addition, CM mitochondria mass increases 

and its internal structure is reorganized such as the shape of the cristae. All 

mitochondria modifications induce ROS production (84). Interestingly, low 

concentration of ROS is non-toxic for the cells. Indeed, antioxidants such as N-

acetylcysteine, α-tocopherol (vitamin E), ascorbate (vitamin C) or the activation 

of endogenous antioxidant signaling pathways have the capacity of scavenging 

ROS (85). However, when the antioxidant capacity of the cells is not sufficient to 

neutralize ROS, they accumulate and generate oxidative stress, which contributes 

to cardiac dysfunction, cardiac remodeling and cell death after I/R injury (86, 87). 

After ischemia, the decreased oxygen supply induces a switch from a fatty acid to 

a “fetal–like” metabolism based on glycolysis (88). This metabolism switch should 

be favorable to regeneration (i.e. fetal life). Indeed, in some reports, it was shown 

that a “fetal-like” metabolism based on glycolysis and/or fatty acid inhibition after 

MI stimulates CM proliferation (89-91). By contrast, other works demonstrated the 

beneficial role of fatty acid oxidation to stimulate CM proliferation within the first 

5 days after birth (92, 93). Indeed, between 2-4 days after birth, fatty acid β-

oxidation activation increases CM proliferation and CM maturation (hypertrophy 

and binucleation). Thus, fatty acid β-oxidation activation could stimulate both CM 

proliferation and CM maturation few days after birth and induces 7 days after birth 

cell cycle activity arrest. 
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1.2.2.3. CM nucleation 

Another important characteristic of CMs is their state of nucleation and ploidy. In 

zebrafish and in mammals, during heart development and shortly after birth, CMs 

are mononucleated (one nuclei) and diploid (2n). In mammals during the first week 

after birth, CMs become multinucleated and/or polyploid (more than two sets of 

chromosomes) as a consequence of the adaptation of CMs to their new 

environment. Interestingly, this is correlated with the arrest of CM proliferation 

(71, 94). Thus, mononucleated and diploid CMs are associated to a normal 

productive cell cycle progression, whereas polyploidy and binucleation are related 

to an arrest of cell cycle progression (95-97). Mononucleated and diploid CMs 

undergo G1 phase, S phase, G2 phase and finally mitosis, including karyokinesis 

(nuclear division) and cytokinesis (cell division) (Fig. 4). Thus, a real CM 

proliferation will produce two mononucleated and diploid daughter cells (Fig. 4 on 

the right). 

Polyploidy occurs when cell cycle is abrogated after the S phase (process of 

endocycling) (Fig. 4 on the left). Multinucleation occurs when cell cycle is 

abrogated during cytokinesis (Fig. 4 on the left). Several cytokinesis failures lead 

to multinucleation (i.e. tri- or quadri-nucleated), whereas several karyokinesis 

failures lead to polyploidy (i.e. 4, 8, 16n) (98). 

 

 
Figure 4: Schematic representation of mitosis failure. On the left: Different phases of the cell cycle, including 

mitotic failures, are represented. Between S phase and M phase, nuclear polyploidization occurs, whereas 

binucleation or multinucleation occurs only during M phase. On the right: Consequences of mitotic failures (99). 

The state of nucleation and/or polyploidy in CMs is highly dependent on the 

organisms, the development stage, the genetic background and the regulation of 

the body temperature (endotherm or ectotherm). For example, ectotherm species, 

such as zebrafish and newts display mononucleated/diploid CMs, which are able to 

proliferate (100). By contrast, CMs from endotherm species, such as birds, mice 
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and humans are mainly multinucleated and polyploid (101). Among these 

endotherm species, the ratio of multinucleated/polyploid CMs is highly dependent 

on the species (98, 102). Indeed, human adult CMs are mainly mononucleated and 

polyploid whereas mice, rabbits and rats are predominantly binucleated and pigs 

multinucleated (>8 nuclei) (103). The genetic background in adult mammalian 

CMs is also a factor modulating the frequency of adult mononuclear CMs (104). 

It is well admitted that CM proliferation is linked to mononucleated and diploid 

CMs. However, new findings highlight the benefit of multinucleation and polyploidy. 

In fact, it seems that binucleated and/or polyploid CMs could also proliferate in 

neonatal mouse hearts 7 days after birth (65, 105, 106). Furthermore, in 

zebrafish, polyploid CMs support heart regeneration (107). Indeed, the 

regeneration of the epicardium in zebrafish is performed due to the collaboration 

of two distinct CM cell types: the leader cells and the follower cells. The leader 

cells are localized at the front of the regenerating tissue and arise during heart 

injury and high mechanical tension. This environment induces a process of 

endoreplication as a result of failed cytokinesis, leading to “leader 

polyploid/multinucleated cells”. The follower CM cells are localized behind the 

leader cells, they are small, mononucleated and proliferate rapidly (108). 

Interestingly, leader cells display greater migration velocities, mechanical tension 

and have a greater surface coverage compared to the follower cells (107). Thus, 

leader cells were shown to support the process of regeneration in zebrafish due to 

their properties (polyploid/binucleated) (107). 

Another advantage of polyploid/multinucleated CMs is the ability to increase their 

size and their metabolic activity. Thus, these cells are more resistant to stress and 

have the ability to maintain heart contractility after injury compared to 

mononucleated diploid CMs. Furthermore, it was shown that hypoxia on mice 

triggers an increased number of polyploid and multinucleated CMs. Interestingly, 

these cells display a better adaptation to stress by decreasing apoptosis and ROS 

production compared to mononucleated/diploid CMs (76). 

To conclude, the level of DNA content present in CMs is a key factor determining 

cell cycle progression, cell death and metabolic activity. While, mononucleated 

diploid CMs are related to cell cycle activity, binucleated polyploid CMs are 

beneficial for heart function and for CM survival after cardiac damage. Thus, 

currently it is not clear, if binucleated polyploid CMs can also be useful for the heart 

after injury (99).  
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1.2.2.4. CM structure  

Quickly after birth, CMs undergo a first phase of proliferation (until 5 days) and 

then a second phase of hypertrophy. This process transforms CM architecture 

(109). The architecture becomes more complex with an increase of intracellular 

structures, such as sarcoplasmic reticulum, myofilaments and mitochondria (110, 

111). The CMs switch from a polygonal to an elongated form. The complexity of 

the adult CM cell structure could also limit their proliferation. That is why several 

studies, performed on zebrafish, on mice (in vitro and in vivo after MI) and on 

humans suggested that CMs have to go through a step of dedifferentiation before 

proliferation (18, 106, 112, 113). This process was described in vitro, with a partial 

or total loss of the highly organized sarcomere structures (106, 114). The cells 

become smaller and re-express some fetal genes such as Nkx2.5, Gata-4, Runx1, 

Dab2, α-SKA, Fosl1, Sox4 and Tmsb10 (Fig. 5) (18, 115-117). Simultaneously, 

CMs down-regulate the expression of mature CM proteins such as alpha myosin 

heavy chain (α-MHC) and cardiac Troponin, and re-express the fetal isoform of the 

MHC (β-MHC) (Fig. 5). This new structure should facilitate their re-entry into the 

cell cycle in order to undergo karyokinesis and cytokinesis. 

 
Figure 5: Process of CM dedifferentiation. 

This process was described in human hearts and in hearts of animal models 

suffering from heart diseases (113, 116, 118). CM treatment with Oncostatin M or 

components of the extracellular matrix (ECM) (i.e. agrin) are able to induce CM 

dedifferentiation (115, 119) . In adult infarcted mouse hearts, CM dedifferentiation 

occurs mainly in the infarct border zone and leads to a partial loss of Troponin I 

expression in CMs (cTnI+/− cells). In this zone, dedifferentiated CMs proliferate and 
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build new connections with the remaining tissue via the connexin 43 (106). The 

advantage of CM dedifferentiation in hearts depends on the nature of the cardiac 

diseases: CM dedifferentiation induces CM remodeling and improvement of cardiac 

function after MI, whereas in dilated cardiomyopathy this process deteriorates 

cardiac performances (115, 120). 

Although dedifferentiation was highlighted in hearts of animal models and in 

humans, the direct link between dedifferentiation and proliferation has not yet 

been established. Indeed, it remains difficult to demonstrate in vivo that dividing 

cells go through a dedifferentiation step prior to divide. Recently, a new tri-

transgenic cardiac nucleus-specific reporter mouse based on Cre/LoxP system was 

used to characterize CM cell cycle activity associated with CM dedifferentiation in 

vivo (117). This mouse model combines the reporter green fluorescent protein 

(GFP) with a blue fluorescent protein (BFP), fused with the histone H2B reporter 

gene. Both are under the control of a specific promoter for mature CMs (α-myosin 

heavy chain). Thanks to this mouse, the origin of new CMs could be determined 

by evaluating GFP protein expression into the cytoplasm and also CM 

dedifferentiation via BFP protein expression in nuclei. GFP protein is expressed only 

in CMs after Tamoxifen injection and Cre recombinase expression, whereas BFP is 

constitutively expressed in CMs and linked to nuclei. Thus, to study 

dedifferentiated CMs, they focused on GFP+ BFP+/- CMs. Dedifferentiated CMs from 

post-infarct hearts were separated by fluorescence-activated cell sorting and a 

transcriptome analysis was performed to determine the expression of the cell cycle 

markers (117). GFP+ BFP+/- CMs are associated with an upregulation of genes, 

related to adult CM dedifferentiation (i.e. Runx1 and Dab2) and cell cycle activity 

(i.e. cyclin D3 and Cdk14). Thus, they concluded that the majority of CMs 

undergoing cell cycle progression after MI are dedifferentiated, which in turn is a 

prerequisite for CM proliferation. However, the direct link between dedifferentiation 

and a real proliferation leading to increased number of CMs after heart injury 

remains elusive and based only on transcriptomic analysis. To conclude, the direct 

link between CM dedifferentiation and CM proliferation is not yet elucidated.  
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1.2.2.5. Signaling pathways in neonatal and adult cardiomyocytes during 

proliferation 

CM proliferation occurs during embryonic, fetal and post-natal life and is driven by 

several factors and signaling pathways. CM proliferation arrest early after birth is 

conducted either by the silencing or by the activation of endogenous signaling 

pathways. The key question of adult cardiac regenerative medicine is to determine 

whether these endogenous signaling pathways could be re-activated or inactivated 

in adult hearts during physiological ageing and/or after injuries, in order to induce 

CM cell cycle re-entry. Also, the presence of adult specific signaling pathway(s) 

(i.e. not present during fetal or post-natal life) able to control CM proliferation 

cannot be excluded, but will be more difficult to identify, as most research focuses 

on the “already known” signaling pathways involved in heart development (109). 

In this section, four of these signaling pathway will be described: 

 

a) phosphoinositide 3-kinase (PI3K)/AKT 

PI3K/AKT regulates as well CM proliferation as CM apoptosis and plays a 

cardioprotective role after heart injury (121). PI3K/AKT is activated by different 

stimuli, such as YAP/TEAD1, FGF-1 and neuregulin-1 (NRG-1). NRG-1 and both 

co-receptors ErbB2 and ErbB4 are highly expressed in fetal CMs and regulate 

cardiac development (122). Through the heterodimerization of ErbB2 and ErbB4, 

NRG-1 triggers the activation of signaling pathways such as PI3K/AKT and the 

MAPK/ERK in order to stimulate CM proliferation (Fig. 6A) (123, 124). However, at 

birth and at juvenile stage, ErbB2 expression diminished and then CM proliferation 

decreases. Growth factors, such as FGF-1 and FGF-10, have also been shown to 

stimulate CM proliferation trough the activation of PI3K/AKT pathway (125, 126). 

In fetal and adult mice, FGF-10 stimulates CM proliferation through 

FOXO3/p27(kip1) pathway (125). The FOXO family transcriptional factors are 

regulated by AKT phosphorylation. 

Activation of PI3K/AKT pathway leads to the progression of G1 to S phase, which 

is determined by the cyclin dependent kinase (CDK). Therefore, constitutive 

expression of AKT prolongs the half-life of cyclin D and stimulates cell cycle activity 

(Fig. 6A) (127). Furthermore, PI3K/AKT also regulates the G2/M phase progression 

that leads to increased proliferation in neonatal CMs (Fig. 6A) (128). 
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b) Ras-Raf-MEK-ERK (MAPK/ERK) 

The activation of MAPK/ERK pathway stimulates CM proliferation, CM hypertrophy 

and protects CMs against cell death (129). In CMs, ERK signaling cascade is 

initiated by activation of the small G protein Ras, leading to the recruitment and 

activation of MAP3K and c-RAF. Then, they activate MEK1/2 and ERK1/2 leading 

to the translocation of ERK1/2 into the nucleus and the modulation of the 

transcription of several genes, such as GATA-4, cyclin D1 and D2 (Fig. 6A) (130-

132). NRG-1 and its heterodimers receptors ErbB2 as well as the extracellular 

matrix protein agrin are factors stimulating CM proliferation via MAPK/ERK 

signaling pathway activation (95, 133). In neonatal and adult CMs, NRG-1 

activates MAPK/ERK signaling to stimulate CM proliferation and also activates 

PI3K/AKT signaling to induce CM dedifferentiation and hypertrophy (95). 

 

c) p38 MAPK 

The p38 MAPK pathway activation during the development blocks CM proliferation 

and induces CM hypertrophy (134). Furthermore, in neonatal and adult mice, 

inhibition of the p38 phosphorylation triggers CM proliferation by stimulating genes 

related to G2/M phase, such as cyclin A2 and cyclin B (Fig. 6A) (135, 136). In adult 

infarcted hearts, p38 inhibition associated with FGF-1 stimulation increases cardiac 

regeneration through the stimulation of CM proliferation and inhibition of apoptosis 

(137). 

 

d) Hippo Pathway 

Hippo signaling pathway plays an evolutionarily conserved role during 

development in the control of the organ size. Two key components of this pathway 

are the transcriptional co-activators YAP and TAZ (138). Activation of the Hippo 

pathway induces the phosphorylation of the complex YAP/TAZ and its proteolytic 

degradation into the cytoplasm. By contrast, Hippo pathway inhibition induces the 

translocation into the nucleus of the non-phosphorylated YAP/TAZ complex and 

thus activates the transcription of many genes related to cell proliferation, 

differentiation, survival and migration (138). Inactivation of this pathway leads to 

an increase of the heart size during the development due to the stimulation of CM 

proliferation. After MI, Hippo pathway inhibition stimulates heart regeneration by 

increasing CM proliferation, CM dedifferentiation, survival and reduction of scar 

size (139-141). 
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Hippo signaling is linked to PI3K/AKT pathway (Fig. 6A). In the nucleus, YAP 

interacts with the transcription factor TEAD1 to upregulate the transcription of 

several genes such as Pi3kcb, which activates downstream mitogenic pathways, 

including the PI3K/AKT pathway (Fig. 6A) (142). Furthermore, Hippo signaling is 

associated with glycolytic metabolism to induce CM proliferation. Indeed, in 

neonatal infarcted heart, the activation of Toll-like receptors-3 stimulates 

glycolysis, which in turn inhibits Lats1 (large tumor suppressor 1 phosphorylating 

YAP) and then activates CM proliferation (143). 

 

 
Figure 6: Cellular signaling pathways in CM proliferation. A: Four main signaling pathways are involved in CM 

proliferation, such as p38 MAPK, MAPK/ERK, Hippo and PI3K/AKT. All of them converge into the nucleus to 

regulate key regulators of the cell cycle progression, including cyclin D1, D2, E, A2 and B. Purple: Signaling 

pathways; green: Cell cycle regulators. B: Cyclin expressions across cell cycle (144). 

All these signaling pathways act on the transcriptional regulation of cell cycle 

regulators, including cyclins, cyclin-dependent kinases (CDKs) and CDKs inhibitors 

(i.e. p21, p27, p57) (Fig. 6B). Depending on the regulation of signaling pathways, 

the expression of cyclins, CDKs and CDKs inhibitors will be modulated in order to 

trigger CM re-entry into cell cycle and cell division. 

Overexpression of cyclin D2 was shown to promote CM proliferation and improve 

cardiac function after MI in mammals (145). Repression of cyclin D1 was related 

to cell cycle arrest at the G2 checkpoint in adult CMs (146). However, the 

upregulation of cyclin D1 only pushes the cell to re-enter the cell cycle, but without 

proliferation, leading to the formation of binucleated CMs (127). Thus, both cyclins 

D1 and D2 push CMs to re-enter the cell cycle; however, only the cyclin D2 triggers 
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CM proliferation. In addition, overexpression of cyclin A2, a key regulator 

mediating G1/S and G2/M transition, leads to CM proliferation and increased 

cardiac function after MI in mice and pigs (147-149). Furthermore, it was found 

that overexpression of cyclins and CDKs (i.e. CDK1, CDK4, cyclin B1 and cyclin 

D1) induces CM proliferation and improves cardiac function after heart injury (97). 

Finally, transcription factors can also regulate the expression of these cell cycle 

regulators. Some of them were already described as main factors which stimulate 

CM proliferation via the cell cycle regulators such as E2F, GATA-4, TBx20, Meis-1 

and HIF-1α (150-153). 

 

The determination of CM proliferation is one major indicator of heart regeneration 

after injury. This last decade, several technics have been used to estimate the 

level of CM proliferation. These technics include labeling assays such as stainings 

against 5’-bromo-2’-deoxyuridine (BrdU), Ki67 and pH3. These methods detect CM 

proliferation by measuring the DNA replication (karyokinesis). BrdU is integrated 

during the synthesis of cDNA and thus indicates cell cycle progression through the 

S phase. Ki67 is expressed in all phases of the cell cycle (except G0) and pH3 is a 

histone phosphorylation expressed during the G2/M phase. 

One main characteristic of CMs is their capacity to replicate DNA without cell 

division, leading to the formation of binucleated and/or polyploid CMs (see section 

1.2.2.3). The already described technics (labeling assay) do not allow to 

discriminate between binucleation and cell division, a process that occurs at the 

end of the mitosis. 

To overcome this limitation, staining against Aurora B (Aurkb) is widely used. 

Aurkb is localized in the nucleus during the G2/M phase and on the midbody during 

cytokinesis (Fig. 7). This marker helps to discriminate between a real cell division 

from a binucleation by highlighting the localization of the midbody. During cell 

division, Aurkb is expressed symmetrically between the two nuclei of the dividing 

cell, whereas during binucleation Aurkb is localized at the extremity of the two 

daughter cells (Fig. 7) (154). However, a report suggested that Aurkb staining 

alone is not sufficient to discriminate between binucleation and cell division, (155). 

Therefore, new technics have emerged recently in order to visualize real CM cell 

division. Some of these technics will be described in the next part.  
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Figure 7: Aurora B (Aurkb) localization during CM proliferation. A: Schema adapted from Engel and his group 

(154). B: Personal pictures representative of Aurora B (green) Troponin I (red) staining on neonatal CMs after 14 

days of culture. 

The first method to discriminate CM cell division from binucleation is reported by 

Hesse and his group and is based on the distance and position between two nuclei 

of dividing CMs. Cells were stained with the two mitotic markers, Aurkb and Ki67, 

and a marker allowing to identify CMs. With this method, dividing cells show 

positive labelling for Ki67 and AurkB, localized symmetrically between the two 

nuclei of the dividing cell with a distance of ≤5µm between both nuclei (see section 

4.2 Fig 28). By contrast, binucleated cells show a distance ≥5µm between both 

nuclei (155). 

Other methods combine the use of key markers of the mitotic spindle, such as 

IQGAP3, RhoA and anillin (156). The late mitotic phase is characterized by the 

assembly of the contractile ring (localized with actomyosin) and the midbody (Fig. 

8). Leone and his group focused on the mitotic spindle orientation and expression 

of several proteins involved in the central spindle microtubules alignment. Three 

proteins, IQGAP3, RhoA and anillin have been shown to be disturbed during 

binucleation, since these proteins are delocalized during an inefficient anchorage 

of the actomyosin ring to the plasma cell membrane. (Fig. 8) (156). As shown in 

Figure 8, the use of IQAP3 and/or RhoA helps to discriminate cell division from 

multinucleation. 
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Figure 8: Localization of mitotic spindle markers in cell division and binucleation (156). A: CM cell division with 

the localization of specific mitotic spindle markers, such as IQGAP3, anillin and RhoA. B: CM binucleation 

associated with a failure in the localization of mitotic spindle markers due to an improper furrow ingression. 

 

Genetic fate mapping in mice was also developed to discriminate between 

binucleation and cytokinesis. 

MADM (mosaic analysis with double markers) mice are used for lineage tracing 

and are based on the Cre-loxP-dependent interchromosomal mitotic recombination 

(157). Two chimeric genes code either for a part of the coding sequence of Green 

Fluorescent Protein (GFP) or for the Red Fluorescent Protein (Dsred2). During the 

G2 phase, Cre-loxP-mediated homologous recombination. Thanks to this 

recombination, the dividing cells will be labeled with a single color, either in green 

(GFP) or in red (Dsred2). By contrast, the non-dividing cells (binucleation) remain 

colorless (as mother cells) or appear yellow due to the double-labeled (red and 

green) (97, 158). 

Furthermore, Raulf and his group generated Myh6 MerCreMer mice combined with 

the human histone 2B-mCherry (H2B) and eGFP-anillin. With the localization of 

the H2B and anillin, the visualization of cell cycle progression and division could 

be performed (Fig. 8) (155, 159). 

One major advantage of both lineage tracing systems (MADM and Myh6 MerCreMer 

transgenic mice) is the use of a specific cardiac promoter (i.e. α-MHC), which 

makes it possible to distinguish CMs from others cardiac cells. Thus, CM fate can 

be easily analyzed by immunohistochemistry or also by using time lapse imaging. 

The Fluorescence Ubiquitination-based Cell Cycle Indicator (FUCCI) transgenic 

mice is also a valuable tool to follow cell cycle progression and proliferation of CMs 

(160, 161). Two main proteins (Geminin and DNA replication factor 1 (Cdt1)) 

Midbody

Midbody



  21 

regulate the cell replication by ensuring one round of replication per cell cycle. 

These proteins oscillate inversely during the cell cycle: Cdt1 level is high during 

G1, whereas Geminin level is high during the S, G2 and M phases (162). Two 

transgenic mice were generated, one with the protein Cdt1, fused with red emitting 

fluorescent protein, and the other with Geminin, fused with green emitting 

fluorescent protein. Both of these mouse strains were crossed in order to generate 

heterozygous mice, and as a result the following fluorescence labelling could be 

observed depending on the phases of the cell cycle: cells in G1 phase are labelled 

in red, cells in the transition from G1/S are labelled in yellow and cells in the S/G2 

and M phases are labelled in green. These mice can be used to determine the 

phase of the cell cycle for each CM in the heart. 

 The Brain Natriuretic Peptide is involved in the regulation of 
cardiac cell fate 

Over the past decade, cardiac research has focused on the discovery of new factors 

able to stimulate CM proliferation. During my thesis, I focused on the oxygen (see 

section 1.2.2.1) and the Brain Natriuretic Peptide (BNP). 

Brain natriuretic peptide (BNP), which belongs to the natriuretic peptide family 

(NP), is a hormone mainly secreted in the ventricle. Two other members of NPs 

exist, the atrial natriuretic peptide (ANP), secreted in the cardiac atria, and the C-

type natriuretic peptide (CNP), secreted in the brain, bone and vascular endothelial 

cells. BNP was first discovered in the bovine brain, but it is now well established 

that the main source of BNP in the body is the heart and especially the ventricle 

(163). BNP displays an endocrine effect (by acting on remote organs) and/or acts 

directly on the heart itself (164). In fact, it has several functions on organs, such 

as on kidneys by increasing the natriuresis and diuresis, on vessels by increasing 

vasodilatation, on the autonomic nervous system by reducing blood volume and 

on the adipose tissue by promoting mitochondrial biogenesis (165). In the heart, 

BNP has a cardioprotective effect after MI by increasing the cardiac function and 

decreasing heart remodeling (166). 

 

BNP is a polypeptide of 32 amino acids (aa) in humans and pigs and 45 aa in mice 

and rats (167). The transcript of the gene encoding BNP is first translated to a 

134-aa preprohormone named preproBNP (Fig. 9). Then, preproBNP is processed 

by cleavage of the N-terminal fragment (via corin and/or furin) to produce the 
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proBNP (108-aa). Finally, proBNP is enzymatically cleaved by corin and/or furin, 

resulting in an inactive secreted 76-residue amino-terminal fragment (NT-proBNP) 

and in an active 32-aa C-terminal fragment (BNP) (Fig. 9). ProBNP, NT-proBNP 

and BNP are present in the circulation (168). However, only the biological active 

form of BNP (1-32aa) is able to trigger biological responses by binding on 

natriuretic peptide (NP) receptors. This process is rapid due to the short half-life 

of BNP, which is 9-20min (169). 

 

 
Figure 9: BNP synthesis pathway. After NPPB transcription, preproBNP and proBNP are cleaved by corin or furin 

to produce the inactive form, NT-proBNP and the active form BNP. Schema adapted from Ichiki T et al (170). 

 

Three types of NP receptors exist, namely natriuretic peptide receptors A (NPR-A), 

NPR-B and NPR-C. ANP, BNP and CNP have different affinities to NP receptors. 

Indeed, ANP binds preferentially to NPR-A, BNP binds preferentially to NPR-A and 

NPR-B and CNP binds preferentially to NPR-B (165). All three natriuretic peptides 

bind to NPR-C receptor, which was shown to be involved in their clearance. Thus, 

binding of the biological active form of BNP (32-aa) to NPR-A or NPR-B generates 

increased intracellular cGMP. This is not the case when BNP binds to NPR-C, which 

lacks guanylyl cyclase (GC) activity (Fig. 10A) (171). 

cGMP regulates a broad array of physiologic processes in the cardiovascular 

system, including vascular tone, excitation-contraction coupling, cardiac and 

vascular remodeling (172). cGMP is produced from the conversion of GTP to cGMP 

after NPR-A and NPR-B activation. The accumulation of cGMP into the cytoplasm 

activates the phosphodiesterases (PDEs) and protein kinase G (PKG), which in turn 
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phosphorylates phospholamban (PPL) on the Serine 16 (Fig. 10A) (173). This 

signaling mediates a variety of downstream signaling cascades associated with the 

cardioprotective effect of NPs (171, 174, 175). Furthermore, cGMP can be export 

into the extracellular space via multidrug resistance proteins (i.e. MRP4 or MRP5) 

(Fig. 10A) (176, 177). 

 

 
Figure 10: Schematic representation of natriuretic peptide receptors: NPR-A, NPR-B and NPR-C coupled with 

cellular signaling of BNP. A: BNP can bind on NPR-A, NPR-B or NPR-C. NPR-A and NPR-B increase intracellular 

cGMP, whereas NPR-C lacks of guanylyl cyclase activity. cGMP triggers the activation of PKG and/or 

phosphodiesterases (PDEs) leading to biological responses. cGMP can be exported into the extracellular domain 

via MRP4 and MRP5. NPR-C activation decreases cAMP concentration and induces cellular responses. B: Once NP 

receptors are activated, they may be internalized (1) and either recycled into the plasma membrane (2) or 

degraded in lysosomes (3). The complex ANP-NPRA (1) can be also internalized and continues to produce cGMP 

during intracellular trafficking. 

NPR-C is coupled to an inhibitory G protein (Gi). Activation of Gi subunit leads to 

the inhibition of the adenylyl cyclase activity. Afterwards, the intracellular cAMP 

level decreases and biological responses are triggered (Fig. 10A) (178). 

NPR-C was considered for a long time as the clearance receptor of cardiac NPs by 

mediating their internalization and degradation by lysosomal hydrolysis (179). 
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However, it was shown that NPR-C can also trigger cellular responses but at lower 

extend compared to NPR-A and NPR-B (165). Indeed, NPR-C decreases CM 

hypertrophy, collagen synthesis and fibrosis, but it can also increase coronary 

vasodilation (180, 181). 

A particularity of NP receptors is that once activated, they can move from the cell 

surface to the intracellular space by endocytosis (internalization) in order to be 

either degraded or recycled into the plasma membrane (for NPR-A and NPR-C) 

(Fig. 10B) (182-185). Furthermore, the complex ligand-receptor ANP-NPRA can be 

also delivered into the intracellular compartments. In this case, cGMP continues to 

be produced during cell trafficking (Fig. 10B). Thus, the production of intracellular 

cGMP can be delayed over time thanks to the internalization of NP-NP receptor 

(i.e. ANP-NPR-A) (186). 

 

The cGMP compartmentation is the segregation of the cGMP signaling pathways by 

spatial and temporal regulation. Two forms of guanylyl cyclase are produced after 

NP or β-adrenergic receptors activation: a particulate guanylyl cyclase form (pGC), 

produced by NPs, and a soluble guanylyl cyclase form (sGC), produced by the nitric 

oxide (NO) linked to β-adrenergic receptor (Fig. 11) (187). Both forms of cGMP 

activate PKG protein and phosphodiesterases (PDEs) (187). In some cases, cGMP 

also inhibits PDEs, such as cGMP derived from pGC pool, which suppress PDE3 

activation (Fig. 11). 

 

  
Figure 11: cGMP compartmentation in CMs. Two different cGMP pools exist: NP/pGC/cGMP generated by NPs 

(i.e. BNP) and NO/sGC/cGMP generated by the ß-adrenergic receptor and NO. Both cGMP pools are regulated by 

PDEs, which are restricted to different subcellular locations.  
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PDEs are hydrolyzing enzymes which degrade cGMP into its inactive form (5’-GMP). 

The PDE family includes 11 members, and 7 of them are expressed in CMs (PDE1-

5, 8, 9) (165, 187). Thus, PDEs regulate the cGMP intracellular level, and their 

activity depends on their association with CM cellular components. 

For example, PDE2 is associated with the sarcomere and T-Tubular membrane 

(188). PDE3 is associated with T-Tubule microdomains and forms a scaffold with 

SERCA and PLB at the sarcoplasmic reticulum. PDE4 is localized within the 

sarcolemma, while PDE5 is associated to the cytosol and also is anchored to the 

Z-lines (189). Therefore, as a result of the intracellular localization of the PDEs, 

cGMP level will be regulated differently from one area to another inside CMs. 

Additionally, PDEs activity are also dependent on the localization of NP receptors 

(190). Indeed, NPR-A is linked with T-Tubular membrane and then with PDE2, 

whereas NPR-B is linked with sarcolemma membrane in CMs and then not under 

the control of PDE2 (190). Finally, pGC and sGC pools synthesize cGMP in different 

cell compartments and are controlled by different PDEs. Indeed, pGC pool is under 

the exclusive control of PDE 2,3 and 9, whereas sGC pool is under the control of 

PDE 3, 5 (Fig. 11) (187). Thus, cGMP level is also compartmentalized depending 

on the GC pool. 

To conclude, the activity of BNP on CMs will depend on the cGMP 

compartmentation, which modulates the intracellular level of cGMP.  

 

The systemic effects of BNP (i.e. natriuresis, diuresis and vasodilatation) have been 

well documented. However, the role of BNP in the heart itself is not fully elucidated, 

although all cardiac cells express the NP receptors and thus are susceptible to 

respond to BNP stimulation (191). 

During embryogenesis, ANP and BNP are highly secreted and their level strongly 

decreased at adult stage (192, 193). ANP and BNP are crucial during 

embryogenesis and postnatal cardiac growth. Indeed, majority of NPR-A KO mice 

die during embryonic development due to cardiac defect, while NPR-B KO mice 

start to die 3 days after birth (191). Furthermore, Abdelalim and his group 

demonstrated that NPR-A participates in the maintenance and self-renewal of 

pluripotency of embryonic stem cells, whereas NPR-B is involved in their 

proliferation, suggesting that BNP effects could be dependent on the receptor on 

which it binds (194). ANP is also able to stimulate neonatal and embryonic CM 
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proliferation in vitro (195, 196). Becker and al showed that CM proliferation can 

be modulated during development in zebrafish by ANP or BNP and also on neonatal 

CMs in vitro by ANP (195). In neonatal CMs in culture, CM proliferation is regulated 

by the ANP-NPRC complex and is dependent on ANP concentration. Indeed, low 

dose of ANP triggers neonatal CM proliferation, whereas high dose of ANP inhibits 

CM proliferation. Thus, CM proliferation depends on the NP concentration and on 

the NP target receptors.  

All these findings suggest that NPs during the development and postnatal life do 

not only contribute to the homeostasis of salt, water and blood pressure, but also 

control the proliferation of embryonic cells, including fetal and neonatal CMs. 

The role of NPs in adult hearts is less known. In adult physiological mouse hearts, 

our group demonstrated that BNP treatment stimulates CPC differentiation 

(Nkx2.5+ cells) into CMs but also stimulates CPC proliferation (i.e. Nkx2.5+ and 

Sca-1+ cells) (166, 197). Furthermore, BNP KO mice in physiological conditions 

develop fibrotic lesions in the ventricle and NPR-A KO mice develop hypertrophy 

and chamber dilatation (191, 198, 199). Thus, BNP can modulate fibroblast cell 

fate and CM hypertrophy. 

In adult infarcted hearts in animal models, BNP treatment promotes the recovery 

of cardiac function and the preservation of cardiac tissue, demonstrating a 

cardioprotective role (166, 200, 201). In addition, BNP treatment inhibits fibrosis, 

reduces CM apoptosis, CM hypertrophy and modulates the immune response after 

MI (174). Indeed, it acts on immune cell mobility (by increasing neutrophil 

infiltration and by reducing monocyte, B and NK cell infiltration) and on the 

secretion of some inflammatory mediators (i.e. leukotriene B4, Prostaglandin E(2), 

the cardiac matrix metalloproteinase-9 and the IL-10 cytokine) (202, 203). 

Finally, our group demonstrated that BNP after MI stimulates the proliferation of 

Nkx2.5+ cells, but also stimulates the proliferation of endogenous pre-existing 

endothelial cells leading to accelerated and increased revascularization (166); Li 

Na et al., 2020; article under submission). Thus, all these findings participate to 

the cardioprotective effect of BNP after MI. 
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Under mechanical stretch induced by volume or pressure overload, cardiac cells 

secrete high levels of BNP. However, the secretion of BNP is to a large extent 

biologically inactive, suggesting that heart failure progression could be the 

consequence of a deficit of the biological active form of BNP (204). Several reasons 

could explain why BNP is biologically inactive after CVDs, such as an impairment 

during BNP bioprocessing or a direct degradation of the active form of BNP. 

In chronic HF patients, the balance between BNP active form and proBNP form is 

impaired. Indeed, more proBNP than BNP active form is detected in the plasma of 

patients (205). This observation is the result of: 1) proBNP O-glycosylation, 2) 

decreased levels of enzymes (corin and furin) or 3) increased activity of neprilysin 

(NEP) (Fig. 12). In the injured hearts, proBNP is highly glycosylated, a process 

which will avoid the cleavage of proBNP into BNP active form (Fig. 12A). Indeed, 

in chronic HF patients, O-glycosylation at the Thr17 occurs where the cleavage of 

corin and furin takes place (206). Furthermore, the reduction of the biological form 

of BNP could also be a consequence of the degradation of corin and furin (Fig. 

12B). In HF patients, it was shown that the concentration of corin decreases due 

to its degradation by the metalloprotease 10 (207). In this case, the concentration 

of proBNP increases rather than the biological form of BNP. Finally, biological BNP 

activity can also be blocked either by downregulation of NP receptors or by a direct 

degradation by proteases. Indeed, neprilysin (NEP), dipeptidyl peptidase-4 (DPP-

4) and insulin-degraded enzyme (IDE) cleave NPs, leading to the formation of 

small NPs, 5-32aa and 3-32aa (Fig. 12C) (208, 209). 

All these processes are involved in the regulation of the biological form of BNP. 

Thus, as the active form of BNP is decreased after CVDs, we are interested to 

compensate this decrease by exogenous BNP. Therefore, our lab focuses on the 

determination of the role of BNP in cardiac cells by increasing its level in 

physiological and pathological conditions. 
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Figure 12: Three mechanisms decreasing the level of BNP active form in injured heart. A: proBNP O-glycosylation 

on the Thr17. B: the degradation of corin and furin. C: the direct degradation of the biological form of BNP by 

NEP (neprilysin), DPP-4 (dipeptidyl peptidase-4) and (IDE insulin-degraded enzyme). Schema adapted from Ichiki 

T et al (170). 

 

Patients suffering from heart diseases present a deficit of functional active BNP 

(204). Thus, the development of therapeutic strategies aimed to increase the 

concentration of “bioactive” BNP in the hearts of these patients are relevant. There 

are two ways to increase the level of the biological active BNP after MI: either by 

an exogenous administration or by inhibiting its degradation. 

The first clinical trials were conducted with Nesiritide (recombinant human BNP). 

Treatment based on Nesiritide led to positive hemodynamic and clinical effects in 

patients with acute heart failure, but induced also severe adverse effects, such as 

hypotension, renal failure and a higher mortality rate in the group of treated 

patients (210). Later, other clinical studies, based on lower doses of Nesiritide 

administered subcutaneously to patients with acute heart failure, reported 

increased cardiac function without hypotension, nephrotoxicity or increased rate 

of death or rehospitalization. These results reopen the debate about the usefulness 

of BNP therapy for patients with heart failure (210-214). Furthermore, meta-

analysis suggests a protective role of ANP/BNP infusion in patients with acute 

myocardial infarction (215). Taken together, these results prompted a new 

randomized, double-blind, placebo-controlled clinical trial (BELIEVE II, in progress) 

to evaluate the cardioprotective effect of BNP at low doses in patients with acute 

myocardial infarction (216). 

Interestingly, a new product, LCZ696 or Entresto (Novartis), was developed during 

the last 6 years, associating an angiotensin receptor blocker (valsartan) with an 
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inhibitor of neprilysin (NEP, sacubitril). Sacubitril inhibits the endopeptidase 

neprilysin (NEP), an enzyme able to degrade natriuretic peptides, angiotensin II, 

bradykinin and endothelin-1 (217). Thus, the use of sacubitril increases 

angiotensin II level (218). That is why NEP inhibitors are associated with inhibitors 

of the angiotensin II receptor, such as the valsartan. In the large, randomized, 

double-blind PARADIGM-HF trial, LCZ696 treatment promoted significant benefits 

in patients with chronic heart failure, when compared to angiotensin-converting 

enzyme inhibition (enalapril). In fact, LCZ696 reduced mortality and 

rehospitalization by 20% and limited the progression of heart failure (219). In 

patients, the cardioprotective mechanism of LCZ696 leading to reduced death and 

rehospitalization is not fully elucidated. 

Therefore, studies were performed in animal models in order to explain the 

beneficial effect of LCZ696. Interestingly, it was shown that LCZ696 treatment 

decreases the levels of pro-inflammatory cytokine interleukins (i.e. IL-1β and IL-

6), the extracellular matrix degradation due to the reduction of the 

metalloprotease 9 activity and also apoptosis by preserving mitochondrial function 

(198, 220). In infarcted rats, LCZ696 treatment decreases myocardial fibrosis, CM 

hypertrophy, increases the survival and the ejection fraction of treated rats 

compared to untreated ones (221, 222). Thus, one consequence of these beneficial 

effects observed in mice could be partially explained by the increased level of NPs 

(i.e. BNP), which was already shown to be increased after LCZ696 treatment in 

patient with heart failure and also in infarcted heart of rats (223-225). 
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 Aims and Approaches 
Cardiomyocyte (CM) proliferation is a well-known mechanism depending on its 

environment. Indeed, CM proliferation capacity is high during development and 

decreases drastically in mammals during the first week after birth. Therefore, 

cardiac research focuses on identifying new factors able to stimulate CM 

proliferation after heart injury. Thanks to a robust CM proliferation after heart 

injury, cardiac function could be increased and the mortality of patients suffering 

from heart disease decreased. That is why the aims of my thesis are to determine 

the role of the oxygen and the brain natriuretic peptide (BNP) concentrations on 

CM cell fate. 

The first aim focuses on oxygen. Oxygen was shown to be a key regulator of CM 

cell fate. Indeed, several results suggest that low oxygen environment during 

development stimulates CM proliferation, whereas high oxygen level inhibits CM 

proliferation (59, 71). In pathological conditions (i.e. after myocardial infarction 

(MI)) in adult mice, reduction of oxygen concentration could provide a good 

environment to stimulate mechanisms of cardiac regeneration such as CM 

proliferation (78). Thus, one aim of my thesis was to determine the effect of 

different oxygen concentrations, 3% O2 (physiological) and 20% O2 (hyperoxic) on 

CM cell fate in vitro. Regarding oxygen concentration inside the adult heart, in 

physiological conditions, it is estimated close to 3% O2 (226). However, all CM cell 

cultures are performed in vitro at 20% oxygen concentration, which is thus an 

hyperoxic environment. Therefore, we compared CM cell fate in neonatal CM cell 

cultures performed at 20% O2 and 3% O2 up to 14 days (section 4.1). 

The second aim focused on the role of BNP on CM cell fate in pathological and 

physiological conditions. BNP is a cardiac hormone secreted by all cardiac cells 

(174). In humans, after MI, it was shown that the biological active form of BNP is 

present at a reduced concentration when compared to “healthy” hearts (227). This 

suggests that the resulting deficit of the biological form of BNP could be one reason 

of heart failure progression. On mice, supplementation of BNP after MI increased 

the cardiac function and decreased heart remodelling, highlighting BNP 

cardioprotective role (166). Interestingly, all cardiac cells express the BNP 

receptors: NPR-A, NPR-B and NPR-C, suggesting that they can directly respond to 

BNP stimulation. Thus, the second aim of my thesis was to determine, whether 

CMs respond to BNP stimulation in infarcted and unmanipulated hearts. For this 
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purpose, MI was induced in mice by permanent ligation of the left anterior 

descending coronary artery. Intraventricular as well as intraperitoneal injections 

of BNP were performed and mice were sacrificed 1, 3 or 10 days after MI. CM cell 

death (apoptosis) and CM proliferation were studied in BNP-treated mice and 

compared to saline-treated mice. Furthermore, we were interested to define the 

direct role of BNP on CM proliferation (in vivo and in neonatal CM cell culture) by 

studying newborn mice, which exhibit a full potential of regeneration and high 

capacity of CM proliferation. Finally, BNP effect on CM proliferation was also 

examined in adult hearts in physiological conditions. Adult CMs have a very low 

proliferative capacity when compared to neonatal CMs. (section 4.2) 
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 Materials and Methods 

 Mice strains 
All animal procedures were approved in accordance with the recommendation of 

the U.S. National Institutes of Health Guide for the Care and Use of Laboratory 

Animals (National Institutes of Health publication 86-23, 2011). All experiments 

were approved by the Swiss animal welfare authorities (authorisations VD3096 

and VD3211) and were conform to the guidelines from Directive 2010/63/EU of 

the European Parliament on the protection of animals used for research. C57BL/6 

mice (Wild Type mice, WT) were purchased from Janvier (Le Genest-Saint-Isle, 

France). Myh6-MerCreMer mice (JAK-5657) and Tomato-EGFP mice (JAK-7576) 

were purchased from the Jackson Laboratory (Bar Harbor, Main, US). 

Heterozygous Myh6-MerCreMer/Tomato-EGFP adult mice were bred in our animal 

facility. 

 In vivo experimental procedures 
Neonatal C57BL/6 mice (3 days after birth) were injected intraperitoneally (i.p.) 

with NaCl or BNP every two days (1µg/2g; Bachem; synthetic mouse BNP (1-45) 

peptide (catalog number H-7558)) (166). BrdU was also injected by i.p. 

(40µl/mice, 10mg/ml; Sigma B5002) on days 5 and 9 after birth. Mice were 

sacrificed 11 days after birth (Fig. 13A). 

 

 
Figure 13: Experimental procedures in neonatal (A) and adult unmanipulated (B) mice with BNP or NaCl 

treatment.  
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Adult Myh6-MerCreMer mice (6-weeks-old) were injected with Tamoxifen (Sigma, 

T5648) at 40mg/kg to activate the Cre recombinase (Fig. 13B). Tamoxifen was 

dissolved in ethanol to a concentration of 50mg/ml and emulsified in peanut oil to 

a final concentration of 10mg/ml. 1mg Tamoxifen/25g body weight was injected 

one time by i.p. to adult mice. Two weeks after Tamoxifen injection, 80-90% of 

pre-existing CMs expressed the GFP protein, whereas non-myocyte cells expressed 

the Tomato protein (Fig. 14) (166). Then, 8-weeks-old mice were injected with 

BNP (2µg/20g mice) or NaCl by i.p. injection every two days (Fig. 13B) (166). 

BrdU was added into the drinking water (1mg/ml) and changed every 2 days 

during all experiment. Two weeks after the first injection, mice were sacrificed. 

 

 
Figure 14: Myh6-MerCreMer mouse model used for lineage tracing of mature CMs. Picture represents heart 

section 2 weeks after Tamoxifen injection. GFP+ cells correspond to CMs, and Tomato+ cells correspond to non-

myocyte cells. Two weeks after Tamoxifen injection, 80-90% of the mature CMs expressed the GFP protein (166). 

Adult C57BL/6 and Myh6-MerCreMer mice (8-weeks-old) were submitted to 

myocardial infarction (MI) (Fig. 15). Myh6-MerCreMer mice 6-weeks-old were 

injected with Tamoxifen (Sigma, T5648) at 40mg/kg to activate the Cre 

recombinase as previously described. To generate a permanent infarction, a 

ligation of the left anterior descending coronary artery (LAD) was performed in 

C57BL/6 and Myh6-MerCreMer mice. Sham-operated animals were used as 

surgical controls and were subjected to the same procedures as experimental 
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animals, but in this case, the LAD was not ligated. Mice were anesthetized with 

ketamine/xylazine and acepromazine (65mg/kg, 15mg/kg, 2mg/kg respectively). 

Then, mice were intubated and ventilated during all the period of surgery. At the 

third intercostal space, the chest cavity was opened and, at the left upper sternal 

border, the LAD was ligated with a 7-0 nylon suture at about 1-2mm from the 

atria. All the surgeries were performed by the Cardiovascular Assessment Facility 

(CAF) of the University of Lausanne. 

Directly after surgery, NaCl or BNP (1µg/20g in 20µl) was injected into the left 

ventricle cavity. Then, mice were injected by i.p. injection with BNP (2µg/20g mice) 

or NaCl, 24 hours after MI and every 2 days (166). BrdU (1mg/ml) was added into 

the drinking water during all the period of experiment (Fig. 15). The concentration 

of BNP used in this study was already shown to have no impact on blood pressure 

(166). C57BL/6 mice were sacrificed 1, 3 and 10 days post-MI and Myh6-

MerCreMer mice were sacrificed 10 days post-MI. One day post-MI, CM cell death 

was assessed, while 3 and 10 days post-MI, CM number and proliferation were 

assessed. 

 

 
Figure 15: Experimental procedures in adult infarcted mice with BNP or NaCl treatment. 
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and LCZ696 (60mg/kg) has already been used on animal models and was shown 

to increase plasmatic ANP and BNP levels (228). LCZ696 drug was mixed, 

formulated in water and sonicated for 1 hour before administration. Drug was 

administered 24 hours after MI and once daily for 10 days by oral gavage. BrdU 

(1mg/ml) was added into the drinking water during all the period of experiment. 

 

 
Figure 16: Experimental procedure in adult infarcted mice with LCZ696 or H2O treatment. 

In all experiments, for immunostainings, the apex was embedded into OCT and 

slowly frozen. For RT-qPCR and/or western blot analysis, the rest of the heart was 

frozen. Hearts from MI animals were separated into 3 zones for molecular analysis 

and cellular analysis: 1) the infarction zone (ZI), 2) the border zone (BZ) and 3) 

the remote zone (RZ). 

For adult CM isolation, CMs are dissociated by enzymatic digestion according to 

the Langendorff-Free method (see section 3.4.1) (229). For neonatal CM isolation, 

CMs are dissociated by enzymatic digestion according to the method described in 

section 3.4.2 (166). After CM isolation, mRNA expression (RT-qPCR), protein 

expression (western blot), quantification of CM number, determination of CM 

nucleation, and FACS analysis (for unmanipulated adult mice) were performed. 
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 Echocardiography and measurements 
Echocardiographies were performed by the Cardiovascular Assessment Facility 

(CAF) of the University of Lausanne. Transthoracic echocardiographies were 

performed on adult mice using a 30 M-Hz probe and the Vevo 770 Ultrasound 

machine (VisualSonics, Toronto, Ontario, Canada). Mice were lightly anesthetized 

with 1-1.5% isoflurane, maintaining heart rate at 400-500 beats/min, and placed 

on a 37°C heated platform. Hair was removed with a depilatory agent. The heart 

was imaged in the 2D mode in the parasternal long-axis view. From this view, a 

cursor was positioned perpendicularly to the interventricular septum and the 

posterior wall of the left ventricle (LV). LV diameter in diastole (LVDD) and in 

systole (LVDS) as well as LV wall thickness in diastole (LVWTD) and in systole 

(LVWTS) were measured. Ejection fraction (EF) was calculated using the formula 

%EF = [(LVVD − LVVS)/LVVD] × 100, where LVVD and LVVS are LV volume in 

diastole and systole, respectively. Considering that changes in left ventricle volume 

can be considered as an index of remodeling, we calculated the percentage of 

increase of the left ventricle volume 10 days weeks after surgery, which is the ratio 

between (LVVol;d 10 days - LVVol;d before surgery) and LVVol;d before surgery 

x 100. 

 Cell culture 

 

Isolations of adult CMs were performed with the Langendorff-Free method (229). 

This method consists to perfuse the heart directly into the ventricle (Fig. 17). 

Rapidly after the sacrifice, the chest was opened, descending aorta and inferior 

vena cava were cut, the aorta was clamped and EDTA buffer was perfused into the 

right ventricle. Aortic clamping forces the passage of buffers through the coronary 

circulation (Fig. 17B in blue). Then, the heart was removed from the chest and the 

left ventricle was perfused with enzymatic solution containing collagenase II 

(Worthington USA, LS004176 (0.5mg/ml), collagenase IV (Worthington USA, 

LS004188 (0.5mg/ml) and protease (Sigma-Aldrich Singapore, P5147 

(0.05mg/ml)). After digestion, clamp was removed and the heart was weighed. 

Afterwards, by using forceps, the heart was separated gently and was dissociated 

by gentle pipetting. Stop buffer solution containing 2% fetal calf serum (FCS) was 

added to cell suspension in order to arrest the digestion and cells were passed 

through 100 µm-filter. For each experiment, a full digestion of the heart was 
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obtained. Then, CMs were collected after 30 min of sedimentation process. During 

sedimentation the heavier cells (CMs) move down into the tube, while non-

myocyte cells (NMCs) stay at the surface. Thanks to this sedimentation, NMCs 

contamination in the CM fraction corresponds to ≤5% of the total cells (personal 

communication) and 90% of rod-shaped CMs were collected at the end of 

experiment (Fig. 17C). For CMs isolated from injured heart, after digestion, the 

heart was divided into three zones (ZI, BZ and RZ) prior the separation with 

forceps and the filtration step. Each zones were weighted separately. 

 

 
Figure 17: Adult CM isolation method based on the Langendorff free method (229). A-B: Schematic diagrams 

illustrating the method based on a direct perfusion into the left ventricle. Aorta is clamped. B: Aorta clamping 

forces the passage of buffer (blue) across the coronary circulation (red) assuring a good perfusion into the heart. 

C: Rod-shaped CMs obtained after cell isolation and performed by the laboratory. 

 

Neonatal (1-2 days) C57BL/6 pups were decapitated by sterile scissors. The chest 

was opened and the heart was removed. After separation of the atria from the rest 

of the heart, the ventricles were minced and digested with 0.45mg/ml collagenase 

(Worthington, Biochemical Corporation, USA) and 1mg/ml pancreatin (Sigma). 

After 3 rounds of digestion, cells were plated 2 times for 45 min in order to separate 

CMs (no adherent cells) from the NMCs. Thereafter, CMs were plated on gelatine 

(0.1%) or laminin (10µg/ml) coated plates and cultured in 3:1 mixture of DMEM 

and Medium 199 (Invitrogen Corp, San Diego, CA, USA), supplemented with 10% 

horse serum (Oxoid), 5% fetal bovine serum (Invitrogen), 10mM Hepes and, 

100U/ml penicillin G. To homogenize the experiment, ≙70000 cells were plated 

per well.  

BNP treatments were performed on neonatal CM cultures for 14 days. Cells were 

exposed 7 days to cytosine-b-D-arabinofuranoside (AraC, C1768, Sigma) to inhibit 

the proliferation of NMCs and thus to achieve a pure CM cell culture. After 7 days 

A B C

100 µm



  38 

of culture, AraC was removed until 14 days of culture. CMs were cultured at 3% 

O2 in a hypoxia chamber (Stem Cell Technologies, ref: 29829), flushed with 3% 

O2/5% CO2/92% N2 (Carbagas, Lausanne, Switzerland). The oxygen concentration 

was controlled with an oxymeter (Stem Cell Technologies, Basel, Switzerland). 

Medium was replaced 3 times with fresh medium during all the period of 

experiment. 

CMs were treated during 14 days of culture with 3 different BNP concentrations: 

10nM, 100nM and 1000nM and compared to untreated CMs. Quantitative RT-qPCR 

as well as immunohistochemistry studies were performed after 14 days of culture 

to compare the gene expression and structure of CMs, cultured in BNP and 

untreated CMs. 

 Cellular analysis 

 

After isolation, neonatal CMs were stained during 20 min at room temperature (RT) 

with antibodies, listed in supplementary Table 1, chapter 8 (i.e. NPR-A and NPR-

B). CMs were washed with PBS, supplemented with FCS (3%) and EDTA (2nM) 

(FACS buffer), were collected in FACS buffer and analyzed with Gallios Flow 

Cytometer (Beckman Coulter). Data analysis were generated by using FLowJo 10 

software. 

Adult CMs isolated from Myh6-MerCreMer hearts (Fig. 13B) were fixed with 5.5% 

formaldehyde and permeabilized with 0.5% saponin. CMs were stained during 20 

min at RT with antibodies listed in supplementary Table 1, chapter 8 (i.e cTnI). 

CMs were washed one time and collected in FACS buffer. CMs were analyzed with 

CytoFLEX (Beckmann Coulter) cytometer and data were generated by using 

FLowJo 10 software. 

 

The area of CMs in vitro was assessed by cTnI stainings and image J software for 

processing. The area of CMs in vivo was assessed by laminin stainings and Image 

J software processing using CIF outliner cell Plugin. Only CMs with circularity >0.5 

were considered for in vivo analysis.  
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Cells or OCT heart sections (5µm-thick cryosections) were washed in PBS 1X and 

fixed in paraformaldehyde (2%) or formol (4%) for 10 min at RT. After 10 min of 

permeabilization (0.3% Triton x-100 in PBS) and one hour of blocking with normal 

serum, sections were probed with primary antibodies overnight at 4°C (see 

supplementary Table 1, chapter 8). The second day, after washing, secondary 

antibody was added on cells or heart sections (see supplementary Table 1, chapter 

8). Slides were mounted with Dabco (Sigma) and pictures were captured with 

Nikon Eclipse TS100 or 90i microscope. Images were processed with Adobe 

Photoshop CC2015. 

For detecting BrdU incorporation, heart slides were fixed 10 min in 2% PFA, DNA 

was denatured 1h at RT in HCl 2N before neutralisation in Na Borate 0.1M pH=8.5 

during 2x5 min. Then, sections were probed with primary antibodies overnight at 

4°C (see supplementary Table 1, chapter 8). 

 

Isolated CMs from neonatal and adult unmanipulated hearts were fixed with 2.5% 

paraformaldehyde (PFA) during 15 min at RT. DAPI was added directly on cells and 

pictures were taken with Nikon Eclipse TS100 in order to quantify the mono and 

binucleated CMs. 

 

BNP or NaCl was injected in unmanipulated or infarcted mice. Blood was collected 

1 hour after injection. Plasma (EDTA) was centrifugated for 20 min at 1000 x g. 

cGMP level was quantified, using a competitive cGMP enzyme Immunoassay Kit 

(CG200, Sigma). cGMP was determined following the recommendation of the kit. 

 

BNP or NaCl was injected directly after LAD surgery into the ventricles of infarcted 

hearts. Mice were sacrificed 1 days after MI and blood was collected to measure 

Troponin plasma levels. Plasma (heparin) was centrifugated for 20 min at 1000 x 

g. Troponin plasma levels were quantified, using an electrochemiluminescence 

immunoassay analyzer “ECLIA” (cobas e 801 immunoanalysis system, Roche) in 

the hematology laboratory of the Centre Hospitalier Universitaire Vaudois (CHUV). 
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 Molecular analysis 

 

Total proteins were extracted from CMs which were isolated from unmanipulated 

neonatal and adult hearts and also from infarcted hearts. Proteins were transferred 

to nitrocellulose membranes (Biorad) before incubation with primary antibodies 

overnight at 4°C. Secondary antibodies were added 1h at RT in the dark (see 

supplemental Table 1, chapter 8). The signal was detected and quantified with the 

Odyssey infrared imaging system (LI-COR. Biosciences, Bad Homburg, Germany). 

All results were related for their Tubulin expression. 

 

Total RNA was isolated from heart tissue, CM cell cultures and isolated CMs, using 

the Trizol reagent (Invitrogen Corp, San Diego, CA, USA). cDNA was synthesized 

from RNA, using PrimeScript RT reagent kit (Takara Bio Inc). Polymerase chain 

reactions (PCR) were performed using the SYBR Premix Ex Taq polymerase 

(Takara Bio Inc) with the ViiATM7 Instrument (Applied Biosystems). Results were 

obtained after 40 cycles of a thermal step protocol consisting in an initial 

denaturation 95°C (1s) and followed by 60°C (20s) of elongation (α-skeletal actin 

has an elongation time of 30s at 60°C). The sequences of primers were reported 

in supplementary Table 2, chapter 8. All results were normalized with the 18S 

housekeeping gene (Δ CT values). Means of ΔΔ CT (Δ CTBNP - Δ CTcontrol) values 

(versus untreated cells or NaCl-treated mice) were calculated and results were 

represented as 2−ΔΔCT. Statistics were performed on ΔΔ CT individual values. SEM 

fold increase was calculated using 2- ΔΔ CT (SEM-mean)- 2- means of ΔΔ CT (230). 

 Statistical analysis  
All results were presented as means ± SEM. Statistical analyses were performed 

using the unpaired Student T test or Wilcoxon-Mann-Whitney. The alpha level of 

all tests was 0.05. 
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 Results 

 Oxygen 
This work has been published in 2019 in Biochimica et Biophysica Acta (BBA) - 

Molecular Cell Research 

 

Summary 

It is well-established that low oxygen concentration could stimulate CM 

proliferation in adult infarcted hearts of mice (78). In this study, we demonstrated 

that oxygen concentration modulates also CM cell fate in in vitro experiments. 

Previously, physiological study estimated that the pO2 in adult heart in situ is less 

than <21mmHg, corresponding approximatively to 3% O2 (226). Thus, a 

physiological oxygen environment for CMs is close to 3% O2. However, all in vitro 

experiments with CMs are performed at 20% O2, which is clearly a hyperoxic 

environment for CMs. Therefore, in this study, neonatal CMs were cultivated up to 

14 days at 3% O2 (physiologic/normoxic conditions) and 20% O2 (hyperoxic 

conditions) in order to determine the effect of both oxygen concentrations on their 

fate. 

We determined that cultivated neonatal CMs in low oxygen concentration 

stimulated physiological mechanisms such as CM dedifferentiation and 

proliferation. Furthermore, several studies demonstrated that CM proliferation is 

preceded by a step of dedifferentiation (see section 1.2.2.4). Here, we showed 

that differentiated CMs can proliferate like dedifferentiated CMs, suggesting that 

CM dedifferentiation is not always required for CM proliferation. 

Altogether, these results are crucial because they demonstrate that the oxygen 

concentration is a primordial factor modulating also CM cell fate in vitro. Because 

CM cell cultures are a powerful tool to study the morphological, biochemical, 

molecular and electrophysiological characteristics of CMs, it is important to use in 

the future the more appropriate oxygen concentration in order to extrapolate the 

in vitro results to the in vivo situation. 
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A B S T R A C T

The goal of the new therapeutically strategies aimed to treat cardiovascular diseases (CVDs) is to enhance the
natural ability of the heart to regenerate. This represents a great challenge for the coming years as all the
mechanisms underlying the replacement of dying cells by functional cells of the same type are not completely
elucidated. Among these, stimulating cardiomyocyte proliferation seems to be crucial for the restoration of
normal cardiac function after CVDs.
In this review, we summarized the recent advances about the modulation of cardiomyocyte proliferation in

physiological (during ageing) and pathological conditions. We highlighted the role of oxygen and we presented
new results demonstrating that performing neonatal cardiomyocyte cell cultures in “normoxic” oxygen condi-
tions (i.e. 3% oxygen) increases their proliferation rate, when compared to “hyperoxic” conventional conditions
(i.e. 20% oxygen). Thus, oxygen concentration seems to be a key factor in the control of cardiomyocyte pro-
liferation.

Cardiac vascular diseases (CVDs) are defined by the world health
organization as “a group of disorders of the heart and blood vessels”
accounting for 30% of deaths worldwide. Ischaemic heart diseases and
stroke are the “world's biggest killers“, by killing 15.2 million people in
2016 (www.who.int). The number of patients dying from CVDs will in-
crease to reach 23.3 million by 2030 and CVDs will remain the first
cause of mortality in the world. It thus becomes urgent to find an ef-
fective treatment to stem this epidemic. Why are heart diseases not
efficiently treated yet?

The major reason is that CVDs affect to a certain extent the func-
tional activity of the heart and then of course the viability of the other
organs. The current therapies based on the role of hemodynamics and
neurohormones allow transforming heart failure into a chronic disease.
Furthermore, they delay the onset of heart failure. None of the treat-
ments developed until now could truly “heal” the heart, i.e. replace the
BILLION myocytes lost after myocardial infarction (MI) by functional
cells of the same nature in order to preserve the cardiac contractility
[1]. That is why, these last 10 years new strategies were developed
based on heart plasticity and on the fact that injured cardiac cells, in-
cluding cardiomyocytes (CMs), can be replaced by functional cells of

the same nature during physiological growth or ageing as well as after
heart injury [2,3]. This was first done by injecting “cardiac precursor
cells” (CPCs; undifferentiated cells which have the capacity to differ-
entiate in vitro into mature cardiomyocytes, endothelial or smooth
muscle cells) into the injured hearts [4]. CPCs were isolated from the
heart itself or from different organs (blood, bone marrow, fat, skeletal
muscles) [5]. This approach has resulted in only modest improvement
of cardiac function, due to the low survival rate of the injected cells
(<1%, 1 day after injection).

The second alternative consists to stimulate the “endogenous” car-
diac regenerative capacities of the heart by injecting molecules or
factors able to improve the proliferation of the mature cells or the
differentiation of the “endogenous” CPCs.

In this review, we focus on the replacement of the cardiac con-
tractile units (i.e. the cardiomyocytes) in the mammal hearts. The dif-
ferent factors limiting or stimulating their renewal are reviewed.
Among these, the role of oxygen is highlighted and new results con-
cerning oxygen concentration during neonatal cardiomyocyte cell cul-
tures are added.
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1. Cardiac regeneration is a physiological mechanism triggered
mainly by cardiomyocyte proliferation

Plasticity of the heart is a relatively novel concept. In contrast to
lower vertebrates (zebrafish, urodeles) which have a high cardiac re-
generation rate, the heart of mammals was for a long time considered as
a post-mitotic organ with no capacity to regenerate and/or healing.
This point of view was challenged, when studies based on the in-
tegration of carbon-14 birth dating demonstrated in humans, that
mammalian heart has a low physiological regenerative capacity [3].
The estimation of CM turnover rate is around 0.5–1% per year; however
this number is continuously subject to debate [3,6]. The newly formed
cardiomyocytes originate either from the differentiation of “en-
dogenous” precursor cells or from the proliferation of pre-existing
mature cardiomyocytes [7].

The contribution of precursor cells to the cardiomyocyte renewal
was first evaluated. Indeed, cells with the capacity to differentiate into
mature functional cardiomyocytes exist in the heart itself and can be
isolated from the Hoechst-extruding side population, or from the epi-
cardium cells [8]. Furthermore, cells isolated from percutaneous en-
domyocardial biopsy from adult hearts, expressing CD90, CD105, c-kit
and not CD45, are able to form cardiospheres in culture and to differ-
entiate into cardiomyocytes [9]. The characterization of these cells
remains however confusing as they share no cardiac specific marker.
The c-kit protein [10] and/or the stem cell antigen-1 (Sca-1) protein
[11] and/or the nuclear transcription factor islet-1 (Isl-1) [12–14] have
been proposed to be CPC markers. However, cells expressing Sca-1 and
c-kit, Sca-1 and Isl-1 or c-kit and Isl-1 have been isolated [14,15], de-
monstrating that all these markers identify the same subset of cells
which are at different stages of maturation. Thus, endogenous CPCs
might originate from a common precursor expressing Flk-1, Isl-1 and c-
kit in an immature stage, and one step further in the cell differentiation,
Sca-1 [13].

In the past, all these endogenous CPCs have been shown to parti-
cipate in heart regeneration by differentiating into mature cardiomyo-
cytes in vitro but also in vivo during physiological growth and in pa-
thological conditions [8,16–18]. Furthermore, injections of c-kit+ cells,
Sca-1+ cells or Isl-1+ cells into infarcted hearts were considered as
being beneficial for heart recovery [5,10,19,20]. Recently, the devel-
opment of new mouse models allowing to trace the lineage of the cells
expressing c-kit, or Sca-1 or more interestingly the cells derived from c-
kit+ or Sca-1+ cells, clarified the role of these cells in cardiac re-
generation.

Van Berlo was the first demonstrating that c-kit expressing pre-
cursor cells do not massively participate to heart formation during
embryogenesis and that adult c-kit+ cells differentiate only rarely into
cardiomyocytes in infarcted hearts [21]. In contrast, c-kit+ cells dif-
ferentiate clearly into endothelial cells. These results were confirmed by
other groups [22,23], and it is now well admitted that c-kit expressing
precursor cells are able to differentiate into smooth muscle and en-
dothelial cells but to lower extend into CMs in the hearts after injury
[24].

Another strategy was adopted by Li and his group. They developed a
genetic lineage tracing system in order to label all non-myocyte cells,
which could contain precursor cells. The strategy here is to avoid spe-
cific stem cell markers. They demonstrated that precursor cells into
non-myocyte cells are able to differentiate into cardiomyocytes during
embryogenesis but not in adult hearts during physiological ageing or in
pathological conditions [25].

Finally, very recently in the 2018 vol 138 issue of Circulation, five
different groups using different genetically modified mouse strains, all
aimed to follow the Sca-1+ cell fate, reached the same conclusion: very
few cardiomyocytes in neonatal and adult “unmanipulated” or “in-
jured” hearts originate from Sca-1+ cells. In other words, Sca-1+ cells
differentiate very rarely into cardiomyocytes in vivo during embry-
ogenesis, physiological ageing and pathological conditions. However,

like c-kit+ cells, Sca-1+ cells differentiate massively into endothelial
cells in vivo, which could explain the benefice of cell therapies based on
Sca-1+ cell injections [11,19,26–32].

Isl-1+ cells are involved in differentiation during embryogenesis but
their role in adult hearts is reduced [33,34].

Altogether, these new results obtained thanks to new technology,
demonstrate that the renewal of cardiomyocytes during ageing and in
pathological conditions is mainly performed by the proliferation of
“pre-existing” cardiomyocytes.

1.1. Cardiomyocyte proliferation capacity declines with age

The cardiomyocyte capacity to proliferate is clearly dependent on
their maturity, on their environment and on subtle unknown mechan-
isms. In adult non-mammalian animals (zebrafish, axolotl, newt), nu-
merous cycling cardiomyocytes can completely regenerate the heart
during adult life, even after the resection of 20% of the ventricle [7,35].

During fetal development of mammalian hearts, cardiomyocytes
display a high capacity to proliferate, essential for the expansion of the
ventricular chambers [36]. Depletion of 60% of the cardiomyocytes
during embryogenesis has no effect on cardiac function into adulthood,
thanks to complete replacement of the cardiomyocyte pool by intensive
proliferation of the surviving CMs [37]. Numerous studies demon-
strated that the cardiomyocyte proliferation capacity declines during
the first week of postnatal life. 5% to 10% of the cardiomyocytes pro-
liferate up to day 3 and 4 after birth. 5 days after birth, only 1% of the
cardiomyocytes proliferate and few proliferation is detected 7 days after
birth [7]. Consequently, complete heart regeneration was observed in
mice after surgical resection of the hearts at birth [38] thanks to in-
tensive cardiomyocyte proliferation leading to replacement of the re-
sected tissue without fibrosis development. The cardiac function is thus
completely restored. However, this is not the case when apical resection
was performed 7 days after birth. Very few cardiomyocytes proliferate
and no regeneration occurs anymore. Recently, acute myocardial in-
farction was induced in neonatal pigs at different days after birth. Until
2 days after birth, heart is able to regenerate thanks to cardiomyocyte
proliferation which leads to restoration of cardiac function. However,
2 days after birth, cardiomyocytes exit from the cell cycle and systolic
function is impaired [39]. In humans, several clinical reports suggest
that similarly to neonatal mice, neonatal human hearts have the ca-
pacity to regenerate and to completely restore the cardiac function after
MI [40]. Furthermore, cardiomyocyte proliferation is highlighted in
human neonatal hearts suffering from CVDs [41,42].

In adult “healthy” mouse hearts, the rate of cardiomyocyte pro-
liferation declines drastically. The consensus is that myocyte pro-
liferation exists in adult mammalian hearts but is so limited that it
cannot restore the impaired cardiac function after CVDs. First evidences
of cardiomyocyte proliferation came from the group of Senyo who
demonstrated that pre-existing cardiomyocytes are the main source of
newly formed cardiomyocytes during ageing but also after MI [43].
They estimated the formation of new cardiomyocytes at a frequency of
0.015% in the hearts of young adult mice over a period of 8 weeks.
After MI, the CM proliferation rate increases by 5 fold. CM proliferation
occurs mainly in the border zone of the infarct [43]. By using a mouse
model, which allows discriminating myocytes originating from com-
plete cytokinesis versus binucleation, the adult myocyte renewal rate is
estimated at about 0.01–0.02% [44]. In adult human hearts, evidences
for myocyte cell renewal came from the study of Bergman, in which 14C
incorporation in post-mortem heart samples was measured [3]. How-
ever, by this method it is not possible to determine the origin of the
newly formed cardiomyocytes (i.e. from the proliferation of pre-existing
cardiomyocytes or from CPC differentiation).

1.2. Adult cardiomyocyte cell structure limits their proliferation

The mechanism(s) reducing CM ability to proliferate several days
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after birth was (were) not identified yet. Numerous cardiac research
focus on this point and compare the factors secreted and the signaling
pathways activated or inhibited between neonatal (with full potential
of CM proliferation) and adult hearts (with reduced capacity of pro-
liferation). Thus, several differences were highlighted and could parti-
cipate to the reduced capacity of adult CMs to proliferate.

1.2.1. Cardiomyocyte cell structure
At birth, cardiomyocytes adapt to the new environment in order to

increase heart contractility during the rapid growth of the body and to
resist to increased workload. The expansion of the pulmonary alveoli at
birth leads to changes in oxygen concentration, pressure charge and
blood volume inside the two ventricles. Heart adapts by a first phase of
hyperplasia (intensive cell proliferation) and then by a second phase
where cardiomyocytes undergo hypertrophy. Rapidly, the cardiomyo-
cyte cell structure changes [36]. Cardiomyocyte architecture becomes
more complex with an increase of intracellular structures, such as
myofilaments, sarcoplasmic reticulum and mitochondria [45,46]. The
cardiomyocytes passes from a polygonal to an elongated form.

The complexity of the adult CM cell structure could be a brake for
their proliferation. That is why several studies performed in zebrafish,
in mice (in vitro and in vivo after MI) and in humans, suggested that
CMs have to go through a step of de-differentiation before be able to
proliferate [47–50]. In vitro, this process was described with a partial or
total loss of the highly organized sarcomere structure. The cells become
smaller and round and re-express some proteins such as the alpha
skeletal actin (α-SKA), Nkx2.5, Gata-4, c-kit, runt-related transcription
factor 1 (Runx1) and Dab2 [50–52]. They down-regulate the expression
of mature cardiomyocyte proteins, Troponin I and alpha myosin heavy
chain (α-MHC) and re-express the fetal isoform of the myosin heavy
chain (β-MHC). Their new structure facilitates their re-entry into the
cell cycle in order to undergo karyokinesis and cytokinesis.

This process was described in pathological conditions in humans
and animal models of heart diseases [49,52,53] and can be mediated by
Oncostatin M [51,54]. In adult infarcted mouse hearts, de-differentia-
tion is localized mainly at the border zone with a partial loss of Tro-
ponin I expression (Troponin I+/− cells). In this area, de-differentiated
CMs have the potential to proliferate and to build new connections with
the remaining tissue via the connexin 43 [48]. The advantage of car-
diomyocyte de-differentiation in the hearts depends on the nature of the
cardiac disease: Cardiomyocyte de-differentiation induces cardiomyo-
cyte remodeling and improvement of cardiac performance after MI,
whereas in dilated cardiomyopathy this process deteriorates cardiac
performances [51,55].

Despite the identification of this process in the hearts of several
animal models and in humans, the direct link between de-differentia-
tion and CM proliferation has not yet been established.

1.2.2. Ploidy
During the first week after birth, cardiomyocytes undergo a final

round of karyokinesis without cytokinesis. That is why 80–90% of adult
cardiac myocytes in rodent hearts are binucleated or polypoid. In
contrast, the hearts of neonatal mice and zebrafishes, which display
high capacity to regenerate, contain mainly mononucleated diploid
CMs. This change of ploidy corresponds to the arrest of the cell cycle
progression quickly after birth. Thus, mononucleated cardiomyocytes,
which are also smaller in size, are considered as being the only CMs
able to proliferate [56–60]. Interestingly, the proportion of mono-
nucleated CMs in adult hearts is dependent on the genetic background.
Furthermore, the mouse strains with the highest proportion of mono-
nuclear diploid CMs display also the highest capacity to heart recovery
after coronary artery ligation, correlating the fact that mononucleated
CMs are able to proliferate and to regenerate diseased hearts [60]. This
assumption is, however, subject to contreversy, since others demon-
strated that mono-or binucleated adult CMs can equally proliferate
[48].

1.3. Signaling pathways involved in neonatal and adult cardiomyocyte
proliferation

CM proliferation exists during embryonic, fetal and post-natal life
and is driven by several signaling pathways. CM proliferation arrest is
controlled by the silencing or the activation of endogenous signaling
pathways. The key question of adult cardiac regenerative medicine is to
determine whether these endogenous signaling pathways could be re-
activated or inactivated in adult hearts, during physiological ageing
and/or after injuries. The presence also of adult specific signaling
pathway(s) (i.e. not present during fetal or post-natal life) able to
control CM proliferation cannot be excluded but will be more difficult
to highlight as most research focuses on the “already known” signaling
pathways involved in heart development [36].

The Hippo/Yap pathway plays an evolutionarily conserved role in
the size control of the organs during development. The core of this
pathway includes mammalian STE20-like protein kinase 1 and 2
(MST1/2), the scaffold protein Salvador homologue 1 (SAV1), the large
tumour suppressor homologues 1 and 2 (LATS1/2) and the transcrip-
tional co-activators Yap and TAZ [61]. Hippo pathway activation in-
duces the phosphorylation of the complex Yap/TAZ and its proteolytic
degradation. By contrast, Hippo pathway inhibition (via i.e. miRNAs,
deleting Lats, Mst1 or sav1) induces the translocation into the nucleus of
the non-phosphorylated Yap/TAZ complex and thus the transcription of
many genes related to cell proliferation, differentiation, survival and
migration [61]. Thus, inactivation of this pathway leads to an increase
of the heart size during the development due to the stimulation of CM
proliferation. After MI, Hippo pathway inhibition stimulates heart re-
generation by increasing CM proliferation. CM proliferation can also be
increased by overexpressing Yap during embryonic, neonatal and adult
stages in “healthy” or “injured” hearts. In the nucleus, YAP interacts
with the transcription factor TEAD1, which activates downstream mi-
togenic pathways, such as the PI3K-Akt pathway [62].

The PI3K-Akt pathway regulates CM proliferation after activation
by different protein complex, such as YAP/TEAD1 and neuregulin-1 and
its receptor ErbB2 (NRG-1/ErbB2). This pathway is also activated in
neonatal and adult CMs by the T-box family transcription factor
(Tbx20) via the bone morphogenetic protein receptor (BMP2) and
phosphorylation of Smad1/5/8 [63]. Activation of this pathway in the
cells is linked to the progression in the cell cycle: Akt activation induces
CDK2 phosphorylation in the nucleus, phosphorylated CDK2 translo-
cates to the cytoplasm, where it stabilizes the CDK2-cyclin A-complex.
This cytoplasmic localisation is essential for cell progression from S to
G2-M phase [64].

The p38 MAPK pathway activation during the development
blocks CM proliferation and induces CM hypertrophy [65]. By contrast,
inhibition of the phosphorylation of p38 stimulates CM proliferation by
stimulating the cyclin A2 and cyclin B in neonatal mouse hearts and
adult CMs [66,67]. Furthermore, p38 inhibition associated with FGF-1
stimulation increases cardiac regeneration in infarcted rat hearts
through the stimulation of CM proliferation and inhibition of apoptosis
[68].

All these signaling pathways act on the transcriptional regulation of
cell cycle regulators, such as cyclins, cyclin-dependent kinases (CDKs),
CDK inhibitors (p21, p27, p57) or Gata-4. Depending on the activation
or the repression of the different signaling pathways, the expressions of
these factors are modulated. For example, overexpression of cyclin D1
and A2, positive regulators of the G1/S and G2/M transitions, promotes
CM proliferation in mammals and improves cardiac function after MI in
mice [69]. The overexpression of the four cell cycle regulators (i.e.
CDK1, CDK4, cyclin B1 and cyclin D1) induces CM proliferation and
improves cardiac function after heart injury [70].
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1.4. Factors able to modulate the signaling pathways involved in
cardiomyocyte proliferation

Several factors, molecules, particles can increase the CM prolifera-
tion rate in adult mouse or human hearts in pathological conditions.
Some were identified and are currently tested in clinic.

1.4.1. Proteins
Neuregulin 1 [57,71], Periostin [72], growth factors (FGF-1 and

FGF-10) [66,73] or carbacyclin [74] were shown to stimulate cardio-
myocyte proliferation.

Neuregulin-1 (NRG-1) and its tyrosine kinase receptors (ErbB2-
ErbB4) are highly expressed in fetal CMs and promote CM proliferation
during development (i.e. during trabeculation) [75]. ErbB2 expression
diminishes in the heart after birth and at juvenile stage. Activation of
ErbB2, in mouse juvenile and adult hearts in physiological and patho-
logical conditions (after MI), promotes CM proliferation through a de-
differentiation process and improves cardiac performance [76]. In
vitro, NRG-1 stimulates the proliferation of neonatal or adult murine
cardiomyocytes as well as the proliferation of human cardiomyocytes
(isolated from the hearts of pediatric patients) [57,77]. Through the
heterodimerization of ErbB2 and ErbB4, NRG-1 triggers the activation
of signaling pathways such as PI3K/AKT and the Ras/Extracellular
signal-regulated kinases ERK [78].

Interestingly, NRG-1 stimulates CM proliferation and increases in
clinical phase II the cardiac function of patients suffering from chronic
heart failure [79].

1.4.2. Exosomes
Exosomes are the smallest vesicles released from the cells

(30–100 nm of diameter). They contain proteins (structural, receptors,
heat shock proteins), miRNAs (i.e. miR-146a), peptides and also cyto-
kines (i.e. TGF-β) [80]. Cardiac cells, such as cardiomyocytes, fibro-
blasts, endothelial as well as cardiac progenitor cells, secrete exosomes
via exocytose. Once secreted, exosomes can transfer their content from
one cell to another and thus are key actors in intercellular commu-
nications.

In clinical trials, such as CADUCEUS, cardiosphere derived stem
cells (CDCs) are isolated and re-injected into the injured human artery.
They decrease heart scar size and increase viable myocardium by sti-
mulating cardiac regeneration [81]. Interestingly, the benefit of these
CDCs seems to be due to their secretome and more specifically to their
secreted exosomes. Indeed, exosomes isolated from CDCs and injected
in rodent or pig ischemic hearts, protect cardiomyocytes from apop-
tosis, decrease the fibrotic scar tissue and increase cardiomyocyte
proliferation [82]. This is also confirmed in vitro, where exosomes se-
creted from CDCs decrease cardiomyocyte apoptosis and stimulate their
proliferation [83]. Interestingly, these exosome protective effects are
mainly explained by miRNA transfers into the host cells [84].

1.4.3. miRNAs
miRNAs are small non coding RNAs involved in the post-transcrip-

tional gene regulations. In summary, modulations of miRNA expression
promote (i.e. miR-499, miR590-3p and miR-199a) or repress (i.e. miR-
15 family, miR-128) neonatal and adult cardiomyocyte proliferation in
physiological stages [85] [86]. In pathological conditions, inhibition of
miR-34a, or miR-128, for example, increases the cardiac function [85].
Interestingly, injection of the two miRNAs, miR-590-3p and miR-199a,
into the peri-infarcted area of mouse hearts, was shown to increase
cardiac regeneration, function and stimulate the proliferation of car-
diomyocytes. In the case of exercise (i.e ramp swimming and/or vo-
luntary wheel), the upregulation of some miRNAs stimulates cardio-
myocyte proliferation in mouse hearts in physiological (miR-222) and
pathological conditions after MI (miR-222 and miR-17-3p) [87].

1.4.4. Non long coding RNAs (LncRNAs)
LncRNAs are important factors involved in cardiac recovery after

injuries [88]. By comparison with miRNAs, these RNA molecules are
longer than 200 nucleotides and are highly tissue-specific, despite low
level of expression. LncRNAs can act at a transcriptional and/or post-
transcriptional level to regulate gene expression either by cis or trans-
acting pathway.

Some LncRNAs (i.e. Braveheart or Fendrr) control the genes in-
volved in cell differentiation during heart formation [89]. However,
only few lncRNAs modulate directly cardiomyocyte proliferation. In-
deed, after birth, in physiological and pathological conditions, lncRNAs
were described to regulate rather the expression of miRNAs and thus
indirectly cardiomyocyte proliferation. For example, CRRL (cardio-
myocyte regeneration-related lncRNA) increases cardiac function in
neonatal mice after MI by regulating the activity of miR-199a-3p and
miR-150-5 [90]. Recently, the inhibition of AZIN2, another LncRNA,
was shown to increase cardiomyocyte proliferation after MI in adult rat
hearts by inhibiting miR-214 [30]. The inhibition of the LncRNA CAREL
stimulates also adult cardiomyocyte proliferation via miR-296 regula-
tion in mouse infarcted hearts [91].

2. Modulation of oxygen concentration influences cardiomyocyte
proliferation

One of the factors differing between fetal, neonatal and adult life is
the oxygen supply.

2.1. Increased oxygen supply at birth leads to metabolic cell adaptation and
cardiomyocyte proliferation arrest

During heart formation, the main source of energy comes from
anaerobic glycolysis and lactate oxidation because of low oxygen en-
vironment (between 2 and 5% oxygen in utero) [92]. Immediately after
birth, despite higher oxygen supply (20% oxygen in air), glycolysis and
lactate oxidation remain the major metabolic pathways to provide en-
ergy. During the first week after birth, glucose oxidation remains low,
whereas fatty acid oxidation increases progressively. Therefore, during
this period, cardiomyocyte metabolism switches from anaerobic gly-
colysis (which produces <10% of total ATP in post-natal hearts) to
fatty acid oxidation as a main source of ATP production [93]. Thus,
60–80% of ATP consumed in human adult healthy heart comes from the
fatty acid oxidation. This change of substrat allows the heart to increase
its metabolism efficiency and its contractility, which is essential to re-
spond to body growth. For comparison, 1mol of palmitate oxidation
produces 105 ATP moles, whereas aerobic glycolysis produces only
31mol of ATP [94].

To respond to the increase of energy requirement, the switch of an
anaerobic to an aerobic metabolism has the consequences for the car-
diomyocytes to reorganize the mitochondria and to increase the pro-
duction of reactive oxygen species.

Compared to the fetal life where the cells contain rare fragmented
mitochondria (poorly defined with unorganized cristae), the number of
mitochondria in the cells after birth increases. In addition, mitochon-
dria undergo maturation to become elongated and branched with
highly organized cristae. Thus, their DNA content as well as their size
(representing 30–50% of the cell) increases [95].

At physiological conditions (i.e. 20% oxygen), oxidative metabolism
produces reactive oxygen species (ROS) via the mitochondria re-
spiratory chain. ROS are generated by electron leakage leading to the
secretion of the superoxide anion (O2%−) which can easily be converted
to hydrogen peroxide and then to hydroxyl radical. In physiological
conditions, a low concentration of ROS is non-toxic for the cells. Indeed,
antioxidants such as N-acetylcysteine, α-tocopherol (vitamin E), as-
corbate (vitamin C) or the activation of endogenous antioxidant sig-
naling pathways have the capacity of scavenging ROS [96]. However,
when the antioxidant capacity of the cells is not sufficient to neutralize
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ROS, they accumulate and generate oxidative stress, which contributes
to cardiac dysfunction [97]. In this case, ROS production induces pro-
tein and nucleic acid damages, leading to the modulation of the tran-
scription of some genes, encoding proteins involved in cell death,
proliferation or differentiation pathways [56].

Interestingly, the progressive heart adaptation to higher oxygen
supply after birth, matches with cardiomyocyte proliferation arrest.
That is why, the increase of oxygen concentration at birth leading to the
increase of ROS production between neonatal and adult life, is con-
sidered by some researchers as the cause of CM cell cycle arrest [56].
Accordingly, the full heart regenerative organisms, such as zebrafishes,
live in an “oxygen poor” environment.

Thus, some antioxidants, such as N-acetylcysteine, Pitx2 or TT-10
(multifaceted fluorinated compound) were shown to increase neonatal
cardiomyocyte proliferation in vitro and in vivo, by activating the YAP
pathway (for Pitx2 and TT-10) [56,98,99]. Others demonstrated that
neonatal cardiomyocyte proliferation requires high oxidative metabo-
lism. In this case, the inhibition of the respiratory chain by rotenone,
leads to decreased neonatal cardiomyocyte proliferation [100].

2.2. Hypoxia stimulates HIF-1 activity

Decreased oxygen supply in adult hearts induces 1) increased cell
death, 2) the switch from a fatty acid to a “fetal–like” metabolism based
on glycolysis, 3) cardiomyocyte hypertrophy, 4) fibrosis, 5) decreased
heart contractility. Thus, hypoxia modulates the expression of genes
coding for proteins involved in cell death, metabolic, proliferation and/
or differentiation pathways. These transcriptional responses are in part
mediated by the transcription factor HIF-1 (hypoxia inducible factor 1).

HIF-1 is an heterodimer protein composed of a α-subunit regulated
in an oxygen-sensitive manner, and localized, in normoxic conditions
(i.e. 20% of oxygen supply) in the cardiomyocyte cytoplasm, and of the
constitutive β-subunit, localized in the nucleus. In normoxic conditions,
HIF-1α is rapidly degraded. By contrast, in presence of low oxygen
concentrations, HIF-1α escapes from proteasomal degradation, accu-
mulates in the cytoplasm and translocates into the nucleus, where it
dimerizes with HIF-1β. The heterodimer modulates the transcription of
several genes such as the gene coding for the glucose transporter
GLUT1, involved in the metabolism switch after hypoxia, or the gene
coding for the vascular endothelial growth factor (VEGF) involved in
angiogenesis [101].

Interestingly, HIF-1 seems also to modulate genes involved in car-
diomyocyte proliferation. Kimura and his group demonstrated that the
pool of adult cardiomyocytes proliferating in ischemic adult hearts
expresses HIF-1α [102]. Thus, 2 weeks after MI induction, mice were
submitted to a reduction in inspired oxygen concentration (7% O2 in-
stead of 20%). These mice displayed increased cardiac function and
reduced cardiac fibrosis when compared to mice living at 20% oxygen.
Furthermore, an increased proliferation of CMs expressing HIF-1α was
detected in the infarcted mice surviving at 7% oxygen [103]. The ex-
pression of HIF-1α cannot alone stimulate CM proliferation. Indeed, 1%
oxygen induces HIF-1α expression on neonatal cardiomyocytes in vitro,
but inhibits their proliferation and induces cell apoptosis [104]. Fur-
thermore, a chronic maternal hypoxia (10.5% O2) leads the fetal car-
diomyocytes to exit from the cell cycle [105].

Altogether these results suggest that the level of hypoxia as well as
the stage of the cardiomyocytes undergoing hypoxia are critical factors
for modulating cardiomyocyte proliferation.

2.3. Epidemiologic studies of populations living at moderate or high altitude

The first articles studying the occurrence of CVDs and their survival
rates in populations living at different altitudes (very high: >3500m,
high: 2500-3500m and moderate 1500-2500m altitude) were pub-
lished in the middle of the 20th century [106]. Living in altitude has
physiological consequences on healthy organisms as the partial

pressure of oxygen (hypobaric hypoxia) is decreased, which leads to a
decrease of oxygen availability, hyperventilation, pulmonary vasocon-
striction, increased cardiac contractility and metabolic modifications.
Furthermore, increased UV radiations (which stimulates Vitamin D
synthesis) and less pollution can also have physiological effects on the
organisms [107].

The first epidemiological studies concerning the occurrence of CVDs
and their dependent-mortality rate in populations living in altitude
were performed in Peru, in Mexico, in the United States or in Yemen
and reported controversial results when compared to people living at
sea level [106]. For example, the rates of coronary thrombus and MI
were decreased in people living at 4540m in Peru, whereas the people
living at 2260m in Yemen displayed an increase rate of acute coronary
syndrome. The mortality rates due to heart diseases including coronary
heart failure decreased in the population living over 2135m in Mexico
and in the United States. These discrepancies can be explained by the
reduced number of people involved in the study (in Yemen's study only
768 people) and also by other cardiac risk factors such as smoking,
alcohol consumption, nutrition, obesity which were not taken account
in these first reports.

Recent surveys from Europe provided more consistent results based
on a more homogenous population concerning healthcare. One of them,
in Switzerland is based on 1.4 million subjects mainly living between
260 and 1500m [108]. In this study, a marked progressive decrease in
CHD-induced mortality in people living in altitude (max 1960m) was
reported when compared to people living at 260m. Thus, the authors
calculated that the mortality rate induced by CHD decreased by 22%
per 1000m increased altitude. However, the incidence of altitude on
the mortality rate is different between male and female.

It should however be noted that all these epidemiological studies
were performed on population involving healthy and sick people and
living “permanently” in altitude since birth (chronic hypoxia). For pa-
tients suffering from heart diseases, the results obtained from several
clinical studies led to clinical recommendations [109]. Indeed, the ef-
fect of altitude could have a different impact on patients suffering from
CVDs, depending on the nature and severity of the pre-existing diseases,
the type of “hypoxia” exposure (acute, intermittent or chronic ex-
posure) and the level of altitude. For example, high altitude (>2500m)
could represent a risk for patients with coronary artery diseases or
systemic hypertension, whereas no detrimental effect was detected for
patients suffering from heart failure [110]. Other clinical studies on
Peruvian patients with coronary heart failure revealed that “inter-
mittent hypoxia” (14 weeks at 4200m) improves cardiac perfusion
[106].

Altogether, epidemiological and clinical studies suggest that living
at moderate or high altitude is rather beneficial than detrimental for
patients suffering from CVDs [111]. Therefore, strategies based on re-
ducing oxygen supply after CVDs in order to stimulate heart re-
generation and CM proliferation emerge. For example, “intermittent
hypoxia training (IHT)” was developed to treat patients with CVDs and
demonstrated improved cardiac metabolism, enhanced tolerance of
myocardium to ischemia/reperfusion injury by reducing free radical
damages [110]. IHT hypobaric or normobaric chambers can be adapted
to treat patients suffering from CVDs. However, the effectiveness of this
new approach depends on the individual reactivity to hypoxia (time of
exposure, severity and frequency) and on the type and stage of the
disease. More research is need before using “intermittent hypoxia” as a
non-pharmacological therapy for CVDs in the future.

2.4. Our own research

The fact that oxygen concentration could modulate cardiomyocyte
proliferation has to be taken account in the in vitro experiments.
Indeed, cardiomyocyte cell cultures which represent a powerful tool to
study the morphological, biochemical, molecular, and electro-
physiological characteristics of the isolated cells, are mainly performed
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Fig. 1. 3% oxygen promotes cardiomyocyte proliferation.
A: Representative immunostainings against cardiac Troponin I (red) and Ki67 (in green) in neonatal cardiomyocyte cell cultures performed at 20 or 3% O2 after
14 days of culture. White arrows correspond to proliferating cardiomyocytes (i.e. Ki67+ Troponin I+ cardiomyocytes). The graph depicts the percentage of Ki67+
CMs, calculated as the number of Ki67+ CMs related to the total number of CMs per pictures (0.9 mm2) at 3 and 20% O2. Results are from 3 independent cell cultures,
and at least 3895 CMs and 338 Ki67+ CMs were counted per group. B: Representative immunostainings against cTroponin I (red) and Aurora B (green) in neonatal
cardiomyocyte cultures at 3 and 20% O2 after 14 days of culture. Cells in the three phases of the cell cycle are represented: cytokinesis, binucleation and G2-Anaphase
[114]. C: The percentage of the cardiomyocytes in the different phases of the cell cycle is obtained by relating the numbers of Aurora B+ CMs in different phases of
the cell cycle to the total number of Aurora B+ CMs. Results are from 4 independent experiments, and at least 217 Aurora B+ CMs were counted per group. For all
results, data are mean± SEM, *p<0.05 **, p<0.01 ***p<0.001 related to 20% O2. D: mRNA fold increase of genes coding for Cyclin D1, E1, A2 or B2 in 14 days
old cardiomyocyte cell cultures at 3 and 20% O2, n=5. For all results, data are mean±SEM, *p<0.05, **p=0.01 related to 20% O2.
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in “hyperoxic” conditions (in 20% oxygen). Previously, physiological
studies estimated that the pO2 in adult heart in situ is <21mmHg,
corresponding approximatively to 3% O2 [112]. Thus, the oxygen
conditions of the cardiomyocyte cell culture could blunt some of phy-
siological processes occurring in vivo and invalidate the extrapolation
of the results obtained “in vitro” to the “in vivo” conditions. That is why
the aim of our study was to evaluate whether the rate of proliferation of
neonatal cardiomyocytes in culture differs depending on oxygen con-
centration. Cardiomyocytes isolated from neonatal mouse hearts
(1–2 days old) were cultured up to 2 weeks either in 20% oxygen
(which is “supra-physiological” but which is the normal condition for
cell cultures) or in 3% oxygen (which is the normoxic condition).

For the material and methods, please refer to the supplementary
data.

Neonatal cardiomyocytes were cultured the first week with cyto-
sine-β-D arabinofuranoside (AraC, 20 μM) to block non-myocyte cell
proliferation. Then AraC was removed and cardiomyocyte cell pro-
liferation was assessed 7 days after. As depicted in Fig. 1A, the number
of cardiomyocytes expressing the proliferating marker Ki67 was in-
creased (+94%) in the cultures performed at 3% oxygen compared to
those performed at 20% oxygen. Furthermore, among cardiomyocytes
expressing Aurora B, higher percentages of CMs undergoing cytokinesis
(+124%) and binucleation (+134%) were detected in 3% versus 20%
oxygen cell cultures (Fig. 1B–C). Our results demonstrate that more
cardiomyocytes proliferate in 3% oxygen than in 20%, which is con-
firmed by the increase expression of mRNAs coding for cyclin A2
(+183%) and B2 (+177%) (Fig. 1D).

We thus investigated by which mechanism oxygen triggers cardio-
myocyte cell proliferation in vitro. As explained above, some published
results claimed that cardiomyocytes have to “de-differentiate” before to
be able to proliferate [47–50]. Interestingly, in our cell cultures per-
formed in 3 or 20% of oxygen, the Ki67 and Aurora B proteins are
expressed by differentiated cardiomyocytes (i.e. with a Troponin I
structurally well organized, see Fig. 1A and B) but also by de-differ-
entiated cells (i.e. with disorganized Troponin I protein) (Fig. 2A). In
3% oxygen after 7 and 14 days of culture, the number of Troponin I +
cells (i.e. structurally well organized) was decreased (−22%; −54%,
respectively) compared to the cell cultures performed in 20% oxygen
(Fig. 2B). Accordingly, the number of disorganized Troponin I expres-
sing cardiomyocytes (Troponin I +/− cells) and of Troponin I negative
cells were increased in 3% oxygen (+584%; +359% respectively
14 days after the onset of cell culture) (Fig. 2B).

Troponin I negative cells are either completely disorganized cardi-
omyocytes or non-myocyte cells. To determine the origin of the
Troponin negative cells, neonatal cardiomyocytes were isolated from
heterozygous Myh6 MerCreMer/Tomato-EGFP mice. These neonatal
mice were injected with Tamoxifen 1 day before sacrifice to induce
EGFP protein expression in the cardiomyocytes. Thus, after 1 week in
culture, staining against Troponin I was performed and demonstrated
that some Troponin I negative cells expressed the EGFP protein (Fig. 3A
and B). The number of GFP + Troponin I +/− and GFP + Troponin I −
cells was quantified in both oxygen conditions and related to the total
number of GFP + cardiomyocytes (Fig. 3B). Thus, 35% of the cardio-
myocytes are de-differentiated in 3% oxygen compared to 24% in cell
cultures performed in 20% oxygen.

The CM de-differentiation process in 3% oxygen was confirmed by
the upregulation of genes coding for α-SKA (x 6.1 fold), Runx1 (x 4.7
fold) and β-MHC (x 13 fold) between 7 and 14 days (Fig. 4A). None of
these genes was upregulated at 20% oxygen, demonstrating that more
de-differentiation occurred in 3% oxygen after 14 days of culture
(Fig. 4B). Furthermore, cardiomyocyte specific genes were increased
only in 3% oxygen cell culture between 7 and 14 days (Fig. 4C): Nkx2.5
(x 2.4 fold), Gata-4 (x 2.7 fold), Mlc-2v (x 1.7 fold), cTroponin T (x 3.5
fold), α-MHC (x 2.7 fold). The CM area were smaller as well as the
expression of the mRNA coding for the atrial natriuretic peptide which
was lower, in 3% oxygen compared to 20% oxygen (Fig. 4D and E).

Altogether, these results suggest higher cardiomyocyte proliferation
and higher CM de-differentiation in cultures performed in 3% oxygen
compared to those performed in 20% oxygen. These results are very
important in the context of cell cultures as they demonstrate that the
“more physiological” conditions for the culture of neonatal cardio-
myocytes is 3% oxygen and that some cellular mechanisms can be
highlighted only in specific oxygen concentration. This is the case for
neonatal cardiomyocyte proliferation.

Furthermore, these results demonstrated also that proliferation of
neonatal cardiomyocytes is not necessary preceded by a step of de-
differentiation, as suggested by others [38,47–51]. Indeed, as shown in
the different figures, structurally well-organized cardiomyocytes ex-
press proliferation markers, suggesting that they are able to undergo
cytokinesis. Our assumption is based mainly on the expression of
Aurora B and could be completed with live imaging experiments. In the
works published by other groups [38,47–51], no experiment was per-
formed in vitro with neonatal mouse cardiomyocytes: some of the
works were performed using adult rodent cardiomyocytes [47,48] and
other using zebrafish cells [50]. Thus, the proliferation of mature car-
diomyocytes without de-differentiation in vitro could be a character-
istic of neonatal cardiomyocytes. Porrello and his group showed in
neonatal mouse hearts, proliferation of neonatal cardiomyocytes using
phosphohistone H3 and Troponin stainings and increased cardiomyo-
cyte dedifferentiation. However, no direct link between these both
mechanisms was established by this group in vivo [38].

This is also a limitation of our study. Indeed, we cannot prove with
the results presented here that de-differentiated cardiomyocytes un-
dergo cytokinesis. Further experiments using cardiomyocytes isolated
from heterozygous Myh6 MerCreMer/Tomato-EGFP mice and expres-
sing the EGFP protein have to be performed for 2 weeks. The cytokin-
esis (thanks to AuroraB stainings) will be evaluated in GFP+ Troponin
I+/− and Troponin I− cells.

3. Conclusions

Increasing cardiomyocyte proliferation in injured hearts is the
endpoint of new therapeutic strategies aimed to replace the dying cells
and to restore heart function after CVDs. These experimental treatments
are based on interesting but controversial results concerning the role of
oxygen, which is currently considered as “a friend” or “a foe” for heart
regeneration. Indeed, high oxygen concentration could not be such
beneficial for the hearts as expected.

Increased oxygen supply at birth leads to increased heart con-
tractility thanks to metabolism adaptation but also to ROS generation.
Furthermore, this situation coincides with the cardiomyocyte pro-
liferation arrest, without any direct correlation has been until now
proved. Interestingly, we present in this review, results demonstrating
that the proliferation of neonatal cardiomyocytes in vitro can be in-
creased by reducing the oxygen concentration from a “conventional”
(i.e. 20%) to a “physiological” (i.e. 3%) level. Our data highlighted
thus, the “inhibitory” role of high oxygen concentration on cardio-
myocyte proliferation at least in vitro. The same conclusion can be
drawn from the experiments of the group of Sadek who showed in mice
after MI, that reducing the oxygen supply after MI can increase CM
proliferation [113].

Finally, before to generating new hope for patients suffering from
CVDs, the term of “hypoxia” has also to be better defined. The need of
oxygen varies according to the cell nature, age, function or environ-
ment. Thus, it is very important to define for each clinical situation, the
optimal oxygen concentration inducing maximal heart regeneration
and minimal apoptosis.

Transparency document

The Transparency document associated with this article can be
found, in online version.
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Fig. 3. 3% oxygen stimulates neonatal cardiomyocyte de-differentiation.
A-B: Representative pictures of neonatal cardiomyocytes isolated from Myh6 MerCreMer/Tomato-EGFP hearts and cultured during 7 days in 3 or 20% oxygen and
stained with cardiac Troponin I antibody. As neonatal mice were treated with one dose of tamoxifen (1mg/pup) 1 day before sacrifice, cardiomyocytes express the
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relating the number of Troponin I+/− and Troponin I− GFP+ cells to the total number of GFP+ cells. Results are obtained from 3 independent experiments and at
least 257 GFP+ CMs were counted per group. Data are mean± SEM; **p<0.01 related to 20% O2.
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ONLINE SUPPLEMENTARY DATA 

Mice 

All animal procedures were performed conform the guidelines from Directive 2010/63/EU of the European 

Parliament on the protection of animals used for research and are also in accordance with the 

recommendations of the U.S. National Institutes of Health Guide for the Care and Use of Laboratory 

Animals (National Institutes of Health publication 86-23, 2011). All our experiments were approved by the 

Swiss animal welfare authorities (authorizations VD3096 and VD3211). C57BL/6 mice (Wild Type mice, 

WT) were bred in our animal facility. Myh6 MerCreMer mice (JAK-5657) and Tomato-EGFP mice (JAK-

7576) were purchased from the Jackson Laboratory (Bar Harbor, Main, US). Heterozygous Myh6 

MerCreMer/Tomato-EGFP adult mice are bred in our animal facility. Prior cell isolation, Myh6 

MerCreMer/Tomato-EGFP pups were injected intraperitoneally with tamoxifen (1mg / 2g) 1 day after birth. 

Neonatal mice (0-2 days after birth) were used. 

 

Primary culture of neonatal mouse cardiomyocytes 
Cardiomyocytes were isolated from neonatal C57BL/6 and heterozygous Myh6 MerCreMer/Tomato-EGFP 

mice as previously described (227). 

Cardiomyocyte cultures were performed in two different oxygen conditions: at 20% O2 in a standard 

incubator or in a hypoxia chamber (ref: 29829, Billups-Rothenberg hypoxic chamber, Stem Cell 

Technologies, Basel, Switzerland) flushed with 3% O2/ 5% CO2/ 92% N2 (Carbagas, Lausanne, 

Switzerland). The oxygen concentration was controlled with an oxymeter (Stem Cell Technologies, Basel, 

Switzerland). The chamber was placed in a standard incubator at 37°C. Medium was replaced 2 times/week. 

Cytosine-b-D-arabinofuranoside (AraC, C1768 Sigma) was added during the first 7 days of culture (20 µM) 

to inhibit cell proliferation. After 7 days of culture, AraC was removed. Cardiomyocytes were cultivated in 
a 3:1 mixture of DMEM and Medium 199 (Invitrogen Corp, San Diego, CA, USA) supplemented with 10% 

horse serum (Oxoid), 5% fetal bovine serum (FBS) (Invitrogen), 10 mM Hepes, 100 U/ml penicillin G, and 

100 microg/ml streptomycin. For each experiment, 5 x 105 cardiomyocytes were plated per well (1.9 cm2). 

Immunohistochemistry as well as quantitative RT-qPCR were performed after 7 and 14 days of culture to 

compare the CM gene expression and structure in both oxygen conditions. 

 

Immunohistochemistry 

Cells were washed in PBS 1X and fixed in paraformaldehyde (2%) for 10 min at room temperature (RT). 

After permeabilization (0.3% Triton x-100 in PBS for 10min at RT) and blocking with 15% donkey serum 

(Vector Laboratories, Burlingame, CA) cells were stained with primary antibodies overnight at 4°C 

(Supplemental Table 1). The second day, cells were washed and coupled with secondary antibodies 
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were captured with fluorescent microscope (Nikon Eclipse TS100 and 90i). Images were processed with 

Adobe Photoshop CC2015. 

 

Supplementary Table 1: Antibodies used for Immunohistochemistry. 
Primary antibodies     

rabbit anti-Aurora B 1/1000 Abcam 

rat anti-Ki67 1/1000 eBioscience  

goat anti-Troponin I 1/100 Santa Cruz Biotechnology 

Secondary antibodies     

donkey anti-rabbit Alexa 488 1/1000 Molecular Probes 

donkey anti-rat Alexa 488 1/1000 Molecular Probes 

donkey anti-goat Alexa 594 1/1000 Molecular Probes 

 

Assessment of Cardiomyocyte size 

CM cell area were measured after cardiac Troponin I stainings with the imageJ software. 

 

Quantitative RT-PCR 

Total RNA was isolated from CM cell cultures using the Trizol reagent (Invitrogen Corp, San Diego, CA, 

USA). cDNA was synthesized from RNA using PrimeScript RT with gDNA eraser reagent kit (Takara Bio 

Inc). Polymerase chain reactions (PCR) were performed using the SYBR Premix Ex Taq polymerase 

(Takara Bio Inc) with the ViiATM7 Instrument (Applied Biosystems). The primers used are listed in 

Supplementary Table 2. Results were obtained after 40 cycles of a thermal step protocol consisting of an 

initial denaturation 95°C (1s), followed by 60°C (20s) of elongation (α-skeletal actin has an elongation time 

of 30s at 60°C). All results were normalized with the 18S housekeeping gene (ΔCT values). Means of ΔΔCT 

(ΔCT 3%O2 - ΔCT 20%O2) values were calculated and results were represented as 2−ΔΔCT. Statistics were 

performed on ΔΔCT individual values. SEM fold increase was calculated using 2- ΔΔ CT  high values- 2- ΔΔ CT 

(226). 
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Supplementary Table 2: List of primers. 

Gene Forward primer Reverse primer Product 

size (bp) 

ANF ACAGGATTGGAGCCCAGAGC GTCCATGGTGCTGAAGTTTATTC 337 

c-kit ATCTGCTCTGCGTCCTGTTG CTGATTGTGCTGGATGGATG 108 

Cyclin A2 ATGTCAACCCCGAAAAACTG GCAGTGACATGCTCATCGTT 157 

Cyclin B2 AGCTCCCAAGGATCGTCCTC TGTCCTCGTTATCTATGTCCTCG 116 

Cyclin E1 GAAAGAAGAAGGTGGCTCCGAC GTTAGGGGTGGGGATGAAAGAG 190 

Cyclin D1 TGAGAACAAGCAGACCATCC TGAACTTCACATCTGTGGCA 71 

Dab2 TGCTCGTGATGTGACAGACA AGGGTCATTAGGGCCTCACT 225 

Gata-4 CTGTCATCTCACTATGGGCA CCAAGTCCGAGCAGGAATTT 259 

α-MHC AACCAGAGTTTGAGTGACAGAATG ACTCCGTGCGGATGTCAA 130 

β-MHC ATGAGACGGTGGTGGGTTT CTTTCTTTGCCTTGCCTTTG 117 

Mlc-2v GACCCAGATCCAGGAGTTCA AATTGGACCTGGAGCCTCTT 163 

Nkx2.5 CAAGTGCTCTCCTGCTTTCC GTCCAGCTCCACTGCCTTCT 130 

Runx1 GATGGCACTCTGGTCACCG GCCGCTCGGAAAAGGACA 298 

α -SKA TGGACTTCGAGAATGAGATGG TCGTCCTGAGGAGAGAGAGC 509 

Troponin T GCGGAAGAGTGGGAAGAGACA CCACAGCTCCTTGGCCTTCT 127 

18S ACTTTTGGGGCCTTCGTGTC GCCCAGAGACTCATTTCTTCTTG 96 

 

Statistical analysis  

All results were presented as means ± SEM. Statistical analyses were performed using the unpaired Student 

T test. The alpha level was 0.05. 
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 Brain Natriuretic Peptide (BNP) treatment on cardiomyocyte 
fate 

 

Myocardial infarction (MI) was induced in 8 weeks-old adult mice by left anterior 

descending coronary artery (LAD) ligation. Intraventricular as well as 

intraperitoneal (i.p.) injections of BNP or NaCl were performed. Mice were 

sacrificed 1, 3 or 10 days after MI. The biological active form of BNP can bind on 

three receptors: NPR-A, NPR-B and NPR-C (171). The fixation on NPR-A and NPR-

B leads to increased cGMP level and the activation of cGMP-dependent protein 

kinase (PKG) (171). Intracellular cGMP level could be decreased either by cGMP 

hydrolysis via phosphodiesterases (PDEs) or by the export of cGMP into the 

extracellular space via multidrug resistance proteins (i.e. MRP4 or MRP5) (176, 

177). Thus, cGMP concentration was measured in the plasma of treated mice and 

the activation of the PKG was assessed by the determination of the 

phosphorylation of the phospholamban (PLB) protein. 

In unmanipulated adult mice, cGMP concentration markedly increased one hour 

after BNP injection compared to saline mice (+725%, p=0.05) (Fig. 18A). One day 

after MI, BNP treatment led to an increased plasmatic concentration of cGMP 

(+636%, p=0.05) (Fig. 18A). Thus, the increased plasmatic cGMP level observed 

after BNP treatment can induce a response from many organs including the heart. 

To confirm that BNP acts directly on heart and cardiac cells, the pPLB/PLB ratio 

was evaluated on proteins isolated from heart tissue. The pPLB/PLB ratio was 

increased in adult unmanipulated BNP-treated hearts compared to NaCl-treated 

hearts (+112%, p=0.04) (Fig. 18B). Furthermore, increased expression of the 

pPLB/PLB ratio was detected after BNP stimulation in infarcted hearts 10 days after 

surgery in ZI+BZ (+400%, p=0.008), but not in the RZ (Fig. 18B), demonstrating 

that i.p. BNP injection stimulates cardiac cells. In order to determine if BNP directly 

stimulates CMs, the ratio pPLB/PLB was assessed on CMs isolated from different 

areas of the injured hearts, 10 days after LAD ligation. After BNP injections, the 

pPLB/PLB ratio was increased in CMs isolated from the ZI+BZ (+230%, p=0.003) 

and decreased in CMs from the RZ (-66%, p=0.001) (Fig. 18C). These data 

suggest that BNP binds on NPR-A and/or NPR-B receptors and increases cGMP 

level, which stimulates PKG activity in CMs.  
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Figure 18: BNP signaling is activated after BNP treatment in CMs after MI. A: cGMP levels were measured in the 

plasma of adult mice treated with BNP or NaCl in unmanipulated and in injured hearts (1, 3 and 10 days after 

MI). n=4 mice per group. B: Representative western blots of unmanipulated and injured hearts 3 and 10 days 

after MI. Hearts were stimulated with BNP or NaCl. Graph on the right represents the quantification of the data 

issue from western blot analysis. Protein expression in BNP-treated hearts are related to the average of saline-

treated hearts. n=5-8 mice per group. C: Representative western blots of isolated CMs 10 days after MI, 

stimulated with BNP or NaCl. Graph on the right represents the quantification of the data issue from western blot 

analysis. Protein expression in BNP-treated hearts are related to the NaCl-treated hearts of the same experiment. 

n=5 mice per group. B-C: Blots on the left were stained with antibodies against phospho phospholamban (pPLB), 

phospholamban (PLB) and Tubulin (used as loading control). Only the bands at the adequate molecular weight 

were represented here: pPLB between 21 and 26 kDa and PLB 25 kDa, Tubulin 55 kDa. For all results, data are 

mean ±SEM, *p≤0.05, ***p≤0.005.  
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To confirm the expression of the BNP receptors on CMs, immunohistofluorescence 

stainings (IHF) were performed on heart sections. Both receptors were expressed 

in adult CMs (Fig. 19A). Furthermore, FACS analysis on neonatal isolated CMs 

revealed that 28% of neonatal CMs expressed NPR-A and 21% expressed NPR-B 

(Fig. 19B-C). 

 

 
Figure 19: Cardiomyocytes express the two natriuretic peptide receptors, NPR-A and NPR-B. A: Representative 

pictures of the adult hearts stained with NPR-A or NPR-B (green) and α-actinin (red). White arrows represent 

NPR-A+ or NPR-B+ CMs. Each picture covered an area of 0.035mm2. B: Representative flow cytometry dot plot 

graphs of isolated CMs from C57BL/6 neonatal hearts. C: Graph indicates the percentage of NPR-A+ and NPR-B+ 

CMs in neonatal CMs obtained from 6 different cell isolations. 
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To determine the role of BNP on CMs in pathological conditions, C57BL/6 mice were 

submitted to permanent LAD ligation and were sacrificed 1, 3, or 10 days after MI. 

One day after MI, the heart to body weight-ratio (i.e. cardiac mass) remained 

unchanged between BNP-treated mice and saline-injected mice (Fig. 20A). 

However, 3 and 10 days after MI, this ratio was significantly decreased in BNP-

treated mice (-21% p=0.02; -20% p=0.007 respectively), demonstrating that BNP 

prevents the increase of the cardiac mass induced by MI (Fig. 20A). 

As MI induced CM hypertrophy, we evaluated the BNP effect on CM hypertrophy. 

CM area as well as ANF mRNA level were evaluated 10 days after MI. After BNP 

treatment, cross-sectional CM area and the level of mRNA coding for ANF remained 

unchanged in all zones of the heart compared to saline-injected mice (Fig. 20B). 

Thus, BNP treatment has no effect on CM hypertrophy 10 days after MI. 

In addition, mRNA levels coding for other cardiac genes were measured. In 

presence of BNP, the levels of mRNAs coding for GATA4 and cTnT increased 

significantly 10 days after MI in ZI (+70%, p=0.03 for both) (Fig. 20C). In BZ and 

RZ, no change was observed in hearts from BNP- and saline-treated mice 10 days 

after MI (data not shown). These results suggest that either BNP increased CM 

number or increased CM hypertrophy. Nevertheless, as no change in hypertrophy 

was detected, the next experiment aimed to quantify the number of CMs. 
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Figure 20: BNP treatment prevents the increase of the cardiac mass induced by MI. A: Graph represents the 

cardiac mass (heart/body weight ratio) 1, 3 and 10 days after MI of BNP-treated mice and saline-injected mice. 

B: Representative picture of RZ from injured heart stained with laminin (red) 10 days after MI. Picture covered a 

range of 0.016mm2. Graph represents cross sectional area of CMs evaluated on heart sections in the three zones 

of injured heart (ZI, BZ, RZ) in BNP-treated mice and saline mice. Only CMs with circularity >0.5 are considered. 

At least 212 CMs in RZ, 219 CMs in BZ and 131 in ZI are counted. Graph on the right represents mRNA level 

coding for ANF 10 days after MI in BNP- and NaCl-treated mice. C: Graph represents mRNA levels coding for 

cardiac genes, 10 days after MI in the infarction zone of BNP- and NaCl-treated hearts. Results expressed as fold 

increase above the levels of saline-injected mice. For all results, data are mean ±SEM, *p≤0.05, p**≤0.01. 
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Therefore, CMs were isolated 10 days after MI from RZ, BZ and ZI by enzymatic 

digestion using a Langendorff-Free method (229) (Fig. 21A). The number of CMs 

and the expression of genes coding for the different cyclins and for cardiac genes 

were evaluated. Interestingly, ZI displayed an increase of the total number of 

CMs/heart in BNP-treated hearts related to saline-treated hearts (+156%, 

p=0.01), whereas in BZ and RZ, no change was observed regarding the number 

of CMs (Fig. 21B). The levels of mRNA coding for Myh7 and Myh6 were modulated 

in CMs isolated from the ZI+BZ (+90% p=0.05; -37% p=0.05 respectively) after 

BNP treatment (Fig. 21C). Furthermore, cyclin D2 mRNA expression slightly 

increased in BNP-treated CMs isolated from the same zone (+20%, p=0.06) (Fig. 

21C). mRNA expression coding for cardiac and cell cycle genes remained 

unchanged in RZ after BNP treatment (Fig. 21D). As we provide evidence that BNP 

treatment increased CM number in ZI, the next step aimed to determine which 

mechanism triggers this effect: CM cell death protection (4.2.2.1) or 

stimulation of CM regeneration (4.2.2.2). 
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Figure 21: The number of CMs increases in response to BNP stimulation after MI in the infarction zone. A: 

Representative picture of the RZ, BZ and ZI zones of BNP-treated heart during CM isolation, 10 days after MI. 

Scale bar 5mm. B: The graph represents the total number of isolated CMs/area (ZI, BZ, RZ) 10 days after MI in 

BNP-treated mice related to saline mice. C: (Left) quantitative relative expression of mRNAs coding for cardiac 

genes and (right) cell cycle genes in CMs isolated from the ZI+BZ of infarcted hearts, 10 days after MI. D: (Left) 

quantitative relative expression of mRNAs coding for cardiac genes and (right) cell cycle genes in CMs isolated 

from RZ of infarcted hearts, 10 days after MI. C-D: Results expressed as fold increase above the levels in saline-

injected mice. n=10 for saline-injected mice and n=7 for BNP-treated mice. For all results, data are mean ±SEM, 

*p≤0.05, **p≤0.01. 
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4.2.2.1. BNP promotes CM survival after MI 

After myocardial infarction, cardiac cells, including CMs, undergo rapidly cell death 

(in the first 24 hours after MI) (3). CM cell death leads to the release of Troponin 

protein into the plasma. 

BNP effect on CM cell death was studied 1 and 3 days after MI. Therefore, 

quantification of the cardiac Troponin concentration in the plasma of mice was 

performed to evaluate the level of CM cell death after MI. One day after MI, 

Troponin plasma level was reduced in the plasma of BNP-treated mice compared 

to the level measured in saline-injected mice (-67%, p=0.04) (Fig. 22A). The 

reduction of plasmatic Troponin level was preserved until 3 days after MI (-58%, 

p=0.1), suggesting that BNP protects CMs from cell death. The next experiment 

aimed to define whether the protection of BNP on CM cell death is mediated by an 

inhibition of apoptosis. 

Western blots analysis were performed 1 day after MI on proteins isolated from 

the ZI, to measure the protein levels of cleaved-caspase 8 and caspase 3 as well 

as the ratio Bax/Bcl-2 (Fig. 22B). Interestingly, the protein level of cleaved-

caspase 3 is decreased in BNP-treated hearts compared to saline-treated hearts in 

ZI (-33%, p=0.07), whereas the cleaved-caspase 8 and the ratio Bax/Bcl-2 

remained unchanged (Fig. 22B). By contrast, the number of cleaved-caspase 3+ 

CMs (determined by IHF) remained unchanged in hearts of BNP- and NaCl-treated 

mice in ZI (Fig. 22C). Considering all these results together, BNP protects CMs 

against cell death, likely by decreasing apoptosis. Nevertheless, we could not 

exclude that BNP protects also CMs from necrosis, necroptosis and/or autophagy. 
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Figure 22: BNP treatment protects CM from cell death 1 day after MI. A: Graph represents the concentration of 

cardiac Troponin I in the plasma of BNP- and saline-treated hearts, 1 and 3 days after MI. B: Representative 

western blot of the infarction zone of BNP- and saline-treated hearts, 1 day after MI. Blot was stained with 

antibody against the cleaved-caspase 3. Only the bands at the adequate molecular weight were represented here: 

cleaved-caspase 3 12 kDa and Tubulin 55 kDa (used as loading control). Graph on the bottom represents the 

quantification of western blot analysis for the cleaved-caspase 8, the ratio Bax/Bcl-2 and the cleaved-caspase 3, 

in BNP-treated hearts related to saline hearts. C: Representative pictures of the heart stained with cleaved-

caspase 3 (green) and α-actinin (red). White arrows represent cleaved-caspase 3+ CMs. Graph on the right 

represents the total number of cardiac cells expressing cleaved-caspase 3 as well as the number of CMs 

expressing cleaved-caspase 3 in the infarction zone, one day after MI in BNP and saline mice. Picture covered a 

range of 0.016mm2. Positive cells are counted from at least 57 different pictures/group. Scale bars are 50µm. 

For all results, data are mean ±SEM, *p≤0.05. 
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4.2.2.2. BNP promotes CM re-entry into the cell cycle after MI 

There are two main strategies to replace dying CMs: 1) the stimulation of CPC 

differentiation into CMs and 2) the stimulation of CM proliferation. In our study, 

both mechanisms were investigated in BNP-treated hearts. Mice were sacrificed 10 

days after MI and we focused only on the infarction zone where the number of CMs 

increased after BNP treatment (Fig. 21B). 

BNP stimulation on CPC differentiation was analyzed by using heterozygous Myh6-

MerCreMer/Tomato-EGFP transgenic mouse model. 2 weeks after injection of one 

single dose of Tamoxifen, mice were submitted to LAD ligation and treated or not 

with BNP. BrdU was added to drinking water. Mice were sacrificed 10 days after 

surgery. IHFs against GFP and α-actinin on heart sections revealed three different 

CM cell populations: 1) GFP+ α-act+ CMs represent pre-existing well-organized CMs 

2) GFP+ α-act+/- CMs represent pre-existing dedifferentiated CMs and 3) GFP- α-

act+ CMs represent CMs originating from CPC differentiation and/or from a lack of 

recombination after Tamoxifen injection (Fig. 23A). 

The number of GFP+ α-act+/- CMs and GFP+ α-act+ CMs remained unchanged after 

BNP treatment compared to the number detected in saline-injected mice (Fig. 

23B). By contrast, the number of GFP- α-act+ CMs decreased significantly in BNP-

treated hearts compared to saline mice (-57%, p=0.02) (Fig. 23B). This result 

suggests that either BNP decreases the capacity of CPCs to differentiate into CMs 

or that the recombination after Tamoxifen injection is lower in BNP-treated mice 

compared to saline mice. Furthermore, no increased number of CMs was observed 

after CM quantification on heart sections. This technic is clearly different from CM 

quantification after CM isolation. Indeed, by quantifying CMs after isolation, it was 

possible to determine the total number of CMs per heart, which is not the case 

with IHFs on heart sections. 

To evaluate cell cycle activity, stainings against BrdU were performed on heart 

sections isolated from mice treated or not with BNP. The percentage of pre-existing 

GFP+ CMs expressing BrdU (including GFP+ α-act+/- CMs and GFP+ α-act+ CMs) 

increased significantly between BNP- and NaCl-treated mice (+17%, p=0.03) (Fig. 

23C). Finally, BNP did not change the percentage of GFP- α-act+ CMs expressing 

BrdU (Fig. 23D). 
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Figure 23: BNP treatment increases the percentage of pre-existing BrdU+ CMs 10 days after MI, in the infarction 

zone. A: Representative pictures of Myh6-MerCreMer transgenic heart sections of the infarction zone, 10 days 

after MI. Hearts were stained with α-actinin (red), GFP (green) and BrdU (dark red). Three different CM 

populations were observed: 1) GFP+ α-act+ CMs (representing pre-existing well-organized CMs), 2) GFP+ α-act+/- 

CMs (representing pre-existing dedifferentiated CMs) and 3) GFP- α-act+ CMs (representing CMs issue from CPC 

differentiation and/or from a lack of recombination). Pictures at the bottom represent the three CM populations 

expressing BrdU. White arrows depict CMs from each group. Scale bars represent 100 µm and for magnification 

50 µm. B: Graph represents the number of GFP+ α-act+/- CMs, GFP+ α-act+ CMs and GFP- α-act+ CMs counted per 

heart sections, in BNP-treated mice and saline mice. C: Graph represents the percentage of CMs expressing BrdU 

in the three different CM groups related to the total number of GFP+ CMs in BNP- and saline-treated mice. BrdU+ 

GFP+ CMs include well-organized CMs (α-act+ CMs) and dedifferentiated CMs (α-act+/- CMs). D: Graph represents 

the percentage of CMs expressing BrdU originated from CPC differentiation (GFP- α-act+ CMs) and/or from a lack 

of recombination. The number of cells is related to the total number of α-act+ CMs. At least 2730 GFP+ CMs and 

2160 α-actinin+ CMs are counted. For all results, data are mean ±SEM, *p≤0.05.  
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Thus, we demonstrated that BNP treatment did not increase the number of CMs 

originating from CPC differentiation 10 days after MI in ZI. However, BNP increased 

the percentage of pre-existing CMs expressing BrdU, suggesting that BNP 

stimulates pre-existing CM re-entry into the cell cycle after MI. Therefore, the next 

step is to determine whether BNP stimulates CM proliferation. 

To study the role of BNP on CM proliferation, LAD ligations were performed on 

C57BL/6 hearts. Mice were sacrificed 3 and 10 days after MI. To investigate CM 

cell cycle activity, double immunostainings on heart sections against BrdU, Aurkb 

and α-actinin were conducted 3 and 10 days after MI. In the infarction zone, the 

number of CMs expressing BrdU and Aurkb increased significantly 3 and 10 days 

after MI in BNP-treated mice compared to the saline mice: 3 days after MI: BrdU 

+163% p≤0.001, Aurkb +66% p=0.01; 10 days after MI: BrdU +101% p=0.001, 

Aurkb +127% p=0.008 (Fig. 24). 
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Figure 24: BNP treatment increases the number of CMs expressing proliferative markers 3 and 10 days after MI 

in the infarction zone. A: Representative pictures of C57BL/6 of heart sections 3 days after MI. B: Representative 

pictures of C57BL/6 of heart sections 10 days after MI. A-B: Heart sections are stained with BrdU (upper panel) 

or Aurkb (lower panel) in green and combined with α-actinin in red. White arrows show CMs expressing BrdU (at 

the top) or Aurkb (at the bottom). Graphs on the right represent the number of CMs expressing either BrdU or 

Aurkb, counted per heart sections at 3 and 10 days in BNP- and saline-treated mice. Scale bars for BrdU and α-

actinin stainings are 100 µm and 50 µm for magnification. Scale bars for Aurkb and α-actinin stainings are 50 µm. 

Positive cells are counted 3 days after MI on at least 54 pictures for ZI, 20 pictures for BZ and 19 pictures for RZ. 

10 days after MI, positive cells are counted on at least 50 pictures for ZI, 28 pictures for BZ and 27 for RZ. For 

all results, data are mean ±SEM, *p≤0.05 and, **p≤0.01, ***p≤0.005. 
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The increased number of CMs expressing proliferative markers in BNP-treated 

heart might be the consequence of cell death inhibition (increasing number of CMs) 

rather than CM proliferation. Thus, the numbers of CMs expressing proliferative 

markers were related to the total number of CMs, 10 days after MI. BNP treatment 

increased the percentage of CMs expressing BrdU, pH3 and Aurkb compared to 

saline mice in ZI (+90% p=0.01; +62% p=0.04; +400% p=0.03 respectively) 

(Fig. 25A-C). These results strongly suggest that BNP triggers CM proliferation 

after MI.  

In order to distinguish between a real cell division from a binucleation, we focused 

in the next step on cytokinesis by using stainings against Aurkb. Only CMs 

expressing Aurkb were targeted in BNP- and NaCl-treated hearts. Interestingly, 

BNP treatment increased the percentage of CMs undergoing cytokinesis (+29%, 

p=0.05), whereas it tended to decrease the percentage of CMs undergoing 

binucleation (-50%, p>0.05) (Fig. 25D). Finally, the percentage of CMs undergoing 

the G2 phase (Aurkb localization into the nucleus) remained unchanged (Fig. 25D). 
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Figure 25: BNP treatment increases the percentage of CMs expressing proliferative markers 10 days after MI in 

the infarction zone. A-D: (Left) representative pictures of C57BL/6 of heart sections, 10 days after MI. Heart 

sections are stained with BrdU, pH3 and Aurkb (in green) and combined with α-actinin (in red). White arrows 

show CMs expressing BrdU, pH3 and Aurkb in G2 phase (C) or in cytokinesis (D). A-C: Graphs on the right 

represent the percentage of CMs expressing BrdU, pH3 or Aurkb (including G2 phase and cytokinesis) in BNP- 

and saline-treated mice. D: Graph on the right represents the percentage of CMs in the different phases of the 

cell cycle calculated by relating the number of CMs in cytokinesis, binucleation and G2 phase to the total number 

of CMs expressing Aurkb in BNP- and NaCl-treated hearts. At least 3650 CMs for BrdU, 3525 CMs for pH3 and 

1072 CMs for Aurkb are counted for each group. MI and MI BNP n=5-6 mice per group. Scale bars are 100 µm, 

50 µm or 25 µm. For all results, data are mean ±SEM, *p≤0.05. 
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These results confirm that in the infarction zone, BNP stimulates CM re-entry after 

MI. In addition, the cyclin D2 mRNA level increased (Fig. 21C), suggesting that 

BNP drives CMs to re-enter the cell cycle in the G1/S phase. 

Finally, the process of CM cell cycle re-entry was not linked with CM 

dedifferentiation. In fact, the number of dedifferentiated CMs observed in BNP- 

and NaCl-treated Myh6-MerCreMer transgenic mice (Fig. 23B) remained 

unchanged. In addition, the levels of mRNAs coding for dedifferentiated genes 

(Nkx2.5, cTnT, Myh6, Myh7, Runx1, Dab2 and α-SKA) were stable between BNP-

treated mice and saline-injected mice (data not shown). 

In the next section, in order to investigate whether BNP stimulates the proliferation 

of CMs, we tested BNP on neonatal hearts which exhibit full potential of 

regeneration until 7 days after birth thanks to the natural capacity of neonatal CMs 

to proliferate (60). 

 

Neonatal mice, 3 days after birth, were i.p. injected every 2 days with BNP or NaCl. 

BrdU was also i.p. injected on days 5 and 9 after birth. Mice were sacrificed 11 

days after birth and CMs were isolated by enzymatic digestion using the 

Langendorff-Free method (229). 

No variation of the cardiac mass was detected between BNP- and saline-treated 

mice (Fig. 26A). However, the total number of CMs/heart increased by 25% in 

BNP-treated mice (p=0.005) (Fig. 26B). Interestingly, the expressions of mRNA 

coding for cyclin E1 (+100%, p=0.01), A2 (+126% p=0.002) and B2 (+70%, 

p=0.04) were increased in CMs isolated from BNP-treated mice (Fig. 26C). Finally, 

the percentage of mononucleated CMs increased (+11%, p=0.01), whereas the 

percentage of binucleated CMs decreased (-8%, p=0.01) in BNP-treated hearts 

compared to NaCl-treated hearts (Fig. 26D). 
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Figure 26: BNP treatment leads to increased CM number in neonatal mice. A: Cardiac mass (heart/body weight 

ratio) of BNP- and saline-injected mice. B: Total number of CMs/heart isolated from BNP- and NaCl-treated mice. 

C: mRNA expression coding for cyclins D1, D2, E1, A2 and B2 genes in isolated CMs. Results expressed as fold 

increase above the levels in CMs isolated from saline mice. D: Representative pictures of isolated CMs stained 

with DAPI. White arrows highlight mononucleated CMs and yellow arrows binucleated CMs. Graph on the right 

demonstrates the percentage of mono- and binucleated CMs in BNP- and saline-treated mice. At least, 1407 CMs 

are counted for both groups. For all results, data are mean ±SEM, *p≤0.05 and, **p≤0.01, ***p≤0.005. 

4.2.3.1. BNP stimulates CM proliferation in neonatal hearts  

To investigate whether BNP stimulates neonatal CM proliferation, IHF stainings 

against proliferative markers were performed on neonatal mouse heart sections. 

BNP treatment increased the number of CMs expressing BrdU (+21%, p=0.04), 

pH3 (+30%, p=0.04) and Aurkb (+47%, p=0.001) compared to saline-treated 

mice (Fig. 27A and C; Fig. 28B respectively). By contrast, the number of CMs 

expressing Ki67 remained unchanged (Fig. 27B).  
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Figure 27: BNP treatment increases the number of CMs expressing proliferative markers in neonatal hearts. 

A-C: Representative pictures of neonatal hearts isolated from mice injected with BNP or saline and stained with 

BrdU, Ki67 or pH3 (green) combined with laminin for BrdU and cTnI for Ki67 or pH3 (red). White arrows and 

magnification on the left represent BrdU+, Ki67+ and pH3+ CMs. Graphs on the right represent the number of 

BrdU+, Ki67+ and pH3+ CMs counted per heart sections in BNP-treated mice and NaCl-injected mice. Each picture 

covers a range of 0.16mm2 
and the scale bar corresponds to 50µm. Positive cells are counted on at least 44 

different pictures/group. For all results, data are mean ±SEM, *p≤0.05. 
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To distinguish between cytokinesis and binucleation, Aurkb and cTnI stainings 

were performed and only CMs expressing Aurkb were targeted in BNP- and NaCl-

treated hearts. BNP-treated mice increased the percentage of CMs undergoing 

cytokinesis (+23%, p>0.05), while the percentage of CMs undergoing binucleation 

tended to decrease (-31%, p>0.05) (Fig. 28C). The percentage of CMs undergoing 

G2/M phase remained unchanged between BNP- and saline-treated mice (Fig. 

28C). We also observed CMs where both nuclei (mother and daughter nuclei) are 

less than 5µm from each other and which express Ki67, signal of a real CM 

proliferation (Fig. 28A) (155). 

Thus, all these results suggest that BNP stimulates CM proliferation in neonatal 

mice. Next, we analyzed whether dedifferentiation is required for CM proliferation. 

RT-qPCR analysis revealed no variation of the levels of mRNAs coding for 

dedifferentiated genes in CMs isolated from BNP and saline-injected mice (Fig. 

28D). However, some CMs expressing proliferative markers might be 

dedifferentiated as shown in Figure 28D, suggesting that CMs during the cell cycle 

could naturally dedifferentiate in neonatal hearts. 
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Figure 28: BNP treatment stimulates CM proliferation in neonatal hearts. A: Representative pictures of neonatal 

hearts stained with Aurkb (green) and cTnI (red). (Upper panel)-pictures and white arrows correspond to Aurkb+ 

CMs in G2 phase. (Bottom panel)-pictures and white arrows represent CMs expressing Aurkb and Ki67 in 

cytokinesis in BNP-treated heart. The distance between both nuclei is less than 5µm, corresponding to a real CM 

cell division. Scale bar at the top indicates 50µm for magnification and on the bottom indicates 25µm. B: Number 

of Aurkb+ CMs (including G2 phase, cytokinesis and binucleation) in BNP- and NaCl-treated mice. C: The 

percentage of CMs in the different phases of the cell cycle is obtained by relating the number of CMs in cytokinesis, 

binucleation and G2 phase to the total number of CMs expressing Aurkb in BNP- and NaCl-treated hearts. Each 

picture covered a range of 0.035mm2. For all results, positive cells were counted from at least 123 different 

pictures/group. At least 300 Aurkb+ CMs are evaluated to determine the expression pattern in each group. D: 

Representative pictures of double staining against Aurkb (in green) and cTnI (in red). White arrow represents 

dedifferentiated CM expressing Aurkb. Graph on the right represents the level of mRNA expression coding for 

genes involved in dedifferentiation in isolated CMs. Results expressed as fold increase above the levels in CMs 

isolated from saline mice. Data are mean ±SEM ***p≤0.005. 
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4.2.3.2. BNP stimulates also neonatal CM proliferation in vitro 

To validate the direct effect of BNP on CM proliferation, CMs were isolated from 

neonatal mouse hearts (1-2 days old), cultured for 14 days (7 days with AraC and 

7 days without AraC) and treated with BNP or NaCl. 

We have previously demonstrated that 3% O2 environment stimulates CM 

proliferation, CM dedifferentiation as well as an increase of the number of 

dedifferentiated CMs (see section 4.1). To determine whether BNP treatment can 

be studied at 3% O2, we evaluated the expression of BNP receptors on CMs. 

Therefore, the expressions of mRNAs coding for NPR-A or NPR-B were compared 

in CMs cultured at 3% or 20% O2. After 7 days of culture, no variation of NPR-A 

and NPR-B mRNA expression was observed between both oxygen conditions, 

whereas after 14 days, the level of NPR-B mRNA was significantly increased at 3% 

O2 (+127%, p=0.03) (Fig. 29). Since 3% O2 did not decrease the expression of 

NPR-A and NPR-B, all experiments aimed to establish BNP effect on CMs in vitro, 

were performed at 3% O2. 
 

 
Figure 29: NPR-A and NPR-B mRNA expression at 3 and 20% O2. Graph represents mRNA level coding for NPR-

A and NPR-B receptors in cultured neonatal CMs after 7 and 14 days of culture in 20 % and 3% oxygen. Results 

in 3% oxygen expressed as fold increase compared to the receptors levels in 20% oxygen. For all results, data 

are mean ±SEM, *p≤0.05. 

Three different BNP concentrations were tested to determine whether BNP is able 

to induce CM proliferation in vitro. A study from Becker demonstrated the 

importance of the natriuretic peptide concentration in vitro (195). Indeed, the 

potential of ANP to induce CM proliferation was dependent on its concentration: 

High level of ANP (1000nM) decreased CM proliferation, while a low level of ANP 

(10nM) stimulated CM proliferation (195). Therefore, we tested three different 

concentrations of BNP: 10, 100 and 1000nM.  

After 14 days of culture, low concentration of BNP (10nM) increased the number 

of CMs compared to untreated cells (+21%, p=0.03) (Fig. 30B). CM size decreased 

(with 10 and 100nM of BNP) when compared to untreated cells (-10% p=0.03 and 
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 -14% p=0.002, respectively) (Fig. 30C). Regarding the expression of mRNAs 

coding for cyclins D1 and D2, both increased after BNP treatment (+31%, p=0.04; 

+25%, p=0.05 respectively) (Fig. 30D), suggesting that BNP stimulates cyclin D1 

and D2 expression and drives CMs to re-enter the cell cycle in the G1/S phase. 

Finally, the number of binucleated CMs decreased with BNP treatment at 10nM (-

32%, p=0.01) (Fig. 30E). 
 

 
Figure 30: 14 days after the onset of culture, low concentration of BNP increases the number of neonatal CMs. 

A: Representative pictures of 14 days old CM cell culture with or without BNP treatment (10, 100 and 1000nM). 

Cells were stained with antibody against cTnI (red). B: Total number of CMs/0.9mm2 treated with 10, 100 and 

1000nM BNP and related to the number of CMs in untreated cells. C: CM cell area in BNP-treated CM cell cultures 

and related to untreated CMs. D: mRNA expression coding for genes of cyclin D1, D2, E1, A2 and B2. Results 

expressed as fold increase above the levels in untreated CMs. E: Panel shows the percentage of binucleated CMs 

obtained by relating the number of binucleated CMs to the total number of CMs. At least, 2718 CMs are counted. 

For all results, data are mean ±SEM, *p≤0.05, **p≤0.01, ***p≤0.005.  
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To assess for CM proliferation, double immunostainings against Ki67, pH3, Aurkb 

and cTnI were performed. BNP treatment at low concentrations (10 and 100nM) 

increased the percentage of Ki67+, pH3+ and Aurkb+ CMs compared to untreated 

CMs (Ki67: +19% p=0.03; pH3: +75% p=0.04, Aurkb: +59% p=0.01) (Fig. 31A-

C). Furthermore, in the Aurkb+ CM cell population, the percentage of CMs 

undergoing cytokinesis increased (+80%, p=0.04) in presence of BNP, whereas 

the percentage of CMs undergoing binucleation tended to decrease (-25%, 

p>0.05) (Fig. 31D). Finally, the percentage of CMs undergoing G2 phase remained 

unchanged (Fig. 31D). All these results confirm that BNP stimulates CM 

proliferation in in vitro studies. 
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Figure 31: BNP treatment at low concentration stimulates neonatal CM proliferation in vitro. A-C: Representative 

pictures of immunostainings against Ki67, pH3 and Aurkb (in green) and cTnI (in red) in BNP-treated CMs (10 

and 100 nM) and untreated CMs. On the panel A and B, white arrows correspond to the Ki67+ or pH3+ CMs. On 

the panel C, yellow arrow indicates binucleation and green arrow cytokinesis. Graphs below represent the 

percentage of Ki67+,
 
pH3+ 

and
 
Aurkb+ CMs related to the total number of CMs (2350, 520, 809 CMs are counted 

respectively in both groups). D: The percentage of CMs in the different phases of the cell cycle is obtained by 

relating the number of CMs in cytokinesis, binucleation and G2 phase to the total number of CMs expressing 

Aurkb in BNP- and NaCl-treated cells. At least, 124 Aurkb+ CMs are counted for each group. For all results, data 

are mean ±SEM *p≤0.05. 

An association between BNP treatment and CM dedifferentiation was not clearly 

established in vitro. In fact, after 7 days of culture, mRNA expression coding for 

Runx1, Dab2 and Nkx2.5 were upregulated (+60%, p=0.04; +75%, p=0.1; 

+48%, p=0.03 respectively) in BNP-treated CMs compared to untreated CMs (Fig. 

32A). However, no change in the expression of mRNAs coding for structural CM 

genes was observed (Fig. 32A). After 14 days of culture, the expression of mRNAs 

coding for dedifferentiated and structural CM markers as well as the percentage of 

dedifferentiated (cTnI+/-) CMs remained unchanged in BNP-treated cells (Fig. 32). 

 
Figure 32: BNP treatment has low impact on neonatal CM dedifferentiation. A: Graph represents mRNA levels 

of genes coding for dedifferentiated markers in neonatal CMs after 7 and 14 days, treated with (10-1000nM) or 

without BNP. Results expressed as fold increase above the levels of untreated CMs. B: Representative picture of 

CM cell culture stained with cTnI (red) after 14 days of culture. White arrow represents a dedifferentiated CM 

(cTnI+/- CMs). Panel on the right indicates the percentage of dedifferentiated CMs, 14 days after the onset of 

culture. Scale bar represents 50µm. At least 819 CMs are counted. For all results, data are mean ±SEM, *p≤0.05.  
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To conclude, in vitro studies showed that neonatal CMs can dedifferentiate 

naturally (Fig. 32B, picture on the left). BNP treatment might stimulate CM 

dedifferentiation after 7 days of culture by re-expressing CM dedifferentiated 

genes, whereas after 14 days of culture no increased level of dedifferentiation was 

observed. 

 

BNP stimulates neonatal CM proliferation in vivo and in vitro. We tested therefore 

the BNP effect on adult CMs, which exhibit a lower proliferative capacity than 

neonatal CMs. To determine if BNP treatment is able to stimulate CM proliferation 

in adult unmanipulated hearts, Myh6-MerCreMer transgenic mice were used. Mice 

were injected with Tamoxifen two weeks prior the first BNP injection. BNP was 

injected i.p. every 2 days during 14 days. Two weeks after the first BNP injection, 

mice were sacrificed and CMs were isolated by enzymatic digestion using the 

Langendorff-Free method, in order to determine the total number of CMs in BNP- 

and NaCl-treated hearts (Fig. 33A). 

Cardiac mass remained unchanged between BNP- and saline-treated hearts (Fig. 

33B). By contrast, BNP injection led to significant increase of the total number of 

CMs/heart compared to saline-injected mice (+25%, p=0.03) (Fig. 33C). mRNA 

expressions of cardiac genes, such as GATA4 (+55%, p=0.06), Myh6 (+77%, 

p=0.05) and ANF (69%, p=0.05), were upregulated in isolated adult CMs after 

BNP treatment (Fig. 33E). mRNA expression coding for the cyclin E1 (+32%, 

p=0.02) was also upregulated (Fig. 33F). The percentage of BrdU+ CMs was 

increased (+40%, p=0.03) in BNP-treated mice compared to saline mice (Fig. 

33F). Furthermore, the percentage of binucleated CMs slightly increased in BNP-

treated mice (+14%, p>0.5) (Fig. 33D). 
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Figure 33: BNP treatment leads to increased CM number in adult mice. A: Representative pictures of freshly 

isolated CMs from Myh6-MerCreMer mice. CMs express GFP as a consequence of Tamoxifen injection 2 weeks 

before BNP- or NaCl-treatment. B: Heart/body weight ratio of BNP-treated mice and saline-treated mice. C: Total 

number of CMs/heart isolated from BNP- and NaCl-treated mice. D: Representative picture of CMs stained with 

DAPI. White arrow depicts mononucleated CMs and yellow arrow binucleated CMs. Pie charts on the right 

represent the number of mono- or bi-nucleated CMs related to the total number of CMs in BNP- and saline-treated 

mice. At least, 1407 CMs are counted. E: mRNA expression coding for cardiac markers (Nkx2.5, GATA4, cTnT, 

Myh7, Myh6) and ANF in CMs isolated from BNP- and saline-treated hearts. Results expressed as fold increase 

above the levels of saline hearts. F: Graph on the left represents mRNA level of genes coding for cyclins (D1, D2, 

E1, A2 and B2) in CMs isolated from BNP- and NaCl-treated hearts. On the right, picture represents heart sections 

stained with BrdU (green) and laminin (red). White arrow shows BrdU+ CMs. Graph exhibits the percentage of 

BrdU+ CMs in BNP- and NaCl-treated mice. At least 1360 CMs are counted. For all results, data are mean ±SEM, 

*p≤0.05.  
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In order to determine by which mechanism BNP increased the number of CMs (i.e. 

CPC differentiation and/or pre-existing CM proliferation), we performed flow 

cytometry (FACS) analysis (Fig. 34). Three different CM populations were observed 

after staining with antibody against cTnT: 1) GFP+ cTnT+ CMs corresponding to 

well-organized pre-existing CMs, 2) GFP+ cTnT- CMs corresponding to 

dedifferentiated pre-existing CMs and 3) GFP- cTnT+ CMs originating from CPC 

differentiation or from a lack of recombination. Interestingly, BNP-treated mice 

exhibited an increased number of GFP+ cTnT+ cells/heart compared to the saline 

mice (+27%, p=0.01) (Fig. 34E). By contrast, BNP treatment did not change the 

number of GFP+ cTnT- cells/heart or GFP- cTnT+ cells/heart, when compared to 

saline-injected mice (Fig. 34E-F). 

To summarize, BNP increases the number of CMs by stimulating the proliferation 

of pre-existing CMs. Furthermore, in adult unmanipulated hearts, BNP had no 

effect on CM dedifferentiation. 
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Figure 34: BNP treatment stimulates pre-existing CM proliferation in adult hearts. A-D: Representative flow 

cytometry dot plot graphs of CMs isolated from Myh6-MerCreMer adult hearts and stained with antibody against 

cTnT. A: Dot plot graphs represent the CM isolated from Myh6-MerCreMer hearts without Tamoxifen injection (on 

the left) and 4 weeks after Tamoxifen injection (on the right). 94% of the CMs express GFP protein. B: Dot plot 

graphs show that 99% of the isolated CMs express the cTnT protein. C: GFP+ cells are studied for the expression 

of cTnT. The GFP+ cTnT- CMs represent pre-existing dedifferentiated CMs and the GFP+ cTnT+ CMs represent pre-

existing well-organized CMs. D: cTnT+ cells are studied for the expression of GFP. The cTnT+ GFP- CMs represent 

cells originating from CPC differentiation or from non-recombination after Tamoxifen injection. E: Graph 

represents the percentage increase of the number of dedifferentiatied CMs (GFP+ cTnT- CMs) and the number of 

pre-existing well-organized CMs (GFP+ cTnT+ CMs) in BNP related to NaCl-treated hearts. F: Graph represents the 

percentage increase of the number of CMs originating from CPC differentiation and/or from a lack of recombination 

in BNP related to saline hearts. E-F: For all results, the percentage of cells obtained by FACS analysis are related 

to the total number of CMs/heart. Data are mean ±SEM, **p≤0.01.  
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Our results demonstrated that BNP modulates CM proliferation in pathological and 

physiological conditions. We thus determined by which signaling pathways BNP 

modulates CM proliferation. Three main signaling pathways were investigated: 

PI3K/AKT, p38 MAPK, MAPK/ERK (137, 142, 231). The activation of PI3K/AKT, p38 

MAPK and MAPK/ERK pathways were assessed by measuring the phosphorylation 

of AKT, p38 and ERK proteins related to the total amount of protein. Western blots 

were performed on CMs isolated from adult infarcted and unmanipulated hearts as 

well as on CMs isolated from neonatal hearts, treated or not with BNP. In addition, 

we measured the mRNA expression coding for Pi3kcb (142). This gene is linked to 

the activation of Hippo signaling pathway. Once, YAP translocates into the nucleus, 

it upregulates the transcription of Pi3kcb, leading to PI3K/AKT activation (see 

section 1.2.2.5). Thus, the upregulation of Pi3kcb gene expression combined with 

the activation of PI3K/AKT pathway are markers of the activation of the Hippo 

signaling pathway. 

10 days after MI, BNP treatment increased the phosphorylation of ERK in ZI+BZ 

(+52%, p=0.14) and decreased its phosphorylation in RZ (-60%, p=0.01) (Fig. 

35A). The two other pathways (PI3K/AKT and p38 MAPK) remained unchanged in 

ZI+BZ after BNP treatment, whereas in RZ the phosphorylation of AKT (+140%, 

p=0.1) and p38 (+56%, p>0.05) tended to increase (Fig. 35A). ERK activation 

(+160%, p=0.008) was also observed in neonatal isolated CMs after BNP 

treatment (Fig. 35B). In addition, BNP increased the phosphorylation of AKT 

(+90%, p=0.1) in these cells (Fig. 35B). ERK was also activated in CMs isolated 

from unmanipulated adult hearts after BNP treatment (+66%, p=0.05) (Fig. 35C). 

Furthermore, no variation was observed on PI3K/AKT and p38 MAPK signaling 

pathways. 
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Figure 35: MAPK/ERK signaling pathway is one of the main pathways activated in CMs after BNP treatment.  

A: Representative western blots of CMs isolated from the ZI+BZ and RZ of saline and BNP-treated hearts, 10 

days after MI. B: Representative western blots of CMs isolated from neonatal hearts of mice treated or not with 

BNP. C: Representative western blots of CMs isolated from unmanipulated adult hearts of BNP- and saline-treated 

mice. A-C: Graphs on the right represent the quantification of the data issue from western blot analysis. Results 

from BNP-treated hearts are related to these saline-treated hearts. Blots on the left were stained with antibodies 

against ERK, pERK and Tubulin (used as loading control). Only the bands at the adequate molecular weight are 

represented here: ERK and pERK 42-44 kDa, Tubulin 55 kDa. For all results, data are mean ±SEM, *p≤0.05; 

**p≤0.01. 
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Finally, BNP treatment showed no significant change of Pi3kcb gene expression in 

CMs isolated from adult infarcted and unmanipulated hearts as well as neonatal 

hearts, suggesting that BNP did not modulate CM proliferation via Hippo signaling 

pathway (Fig. 36). 

To conclude, BNP activates in adult and neonatal treated hearts the MAPK/ERK 

signaling pathway in physiological and pathological conditions. 

 

 
Figure 36: BNP has no effect on Pi3kcb gene expression in CMs isolated from BNP- and NaCl-treated hearts. 

mRNA expression coding for Pi3kcb in CMs isolated from BNP- and saline-treated hearts in newborn, adult 

unmanipulated and infarcted hearts (ZI+BZ+RZ). Results expressed as fold increase above the levels of saline 

hearts. 
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 Discussion 
In my PhD thesis, I describe for the first time a new function for BNP on CM survival 

and proliferation. For this purpose, BNP was injected in: 1) injured adult mice, 2) 

unmanipulated adult mice, which exhibit a low potential of CM proliferation and 3) 

unmanipulated neonatal mice, which exhibit a high potential of CM proliferation. 

Interestingly, in all these mice, we showed that BNP modulates the fate of CMs, 

and BNP treatment resulted in increased number of CMs in treated hearts. In 

pathological conditions, 10 days after MI, BNP treatment increases CM number by 

protecting them against cell death and maybe also by stimulating their proliferation 

as we demonstrated that BNP stimulates the re-entry of CMs into the cell cycle. In 

healthy neonatal and adult mice, we clearly established that BNP stimulates CM 

proliferation. We observed that BNP activates the MAP/ERK signaling pathway in 

CMs isolated from these three animal models, suggesting that BNP could trigger 

CM proliferation via the activation of this pathway. 

The fact that natriuretic peptides (NPs) modulate CM fate was already reported. 

Indeed, NPs regulate CM fate during embryogenesis and postnatal cardiac growth 

(191-193, 195, 196). Under mechanical stretch, induced by volume or pressure 

overload, cardiac cells secrete high BNP levels. However, secreted BNP is to a large 

extent biologically inactive, suggesting that heart failure progression could be the 

consequence of a deficit of the biological active form of BNP (204). As CMs express 

BNP receptors NPR-A and NPR-B, I investigated during my PhD work whether 

addition of BNP, in its biological active form, could modulate CM fate in pathological 

and in physiological conditions. 

The results obtained during my thesis clearly demonstrate that BNP treatment 

increases the number of CMs in pathological and physiological conditions (Fig. 21B, 

26B, 33C). In adult mice after MI as well as in unmanipulated adult mice, BNP 

treatment increases plasmatic cGMP level. In isolated CMs from injured heart 

(ZI+BZ), BNP activates phospholamban (PLB), which proves that i.p. BNP 

injections act directly on CMs, at least in the ZI+BZ area (Fig. 18C). 

Three BNP receptors exist: NPR-A and NPR-B which possess a transmembrane 

guanylyl cyclase, and NPR-C, a non-guanylyl cyclase receptor. Contrarily to NPR-

A and NPR-B, whose binding to BNP increases intracellular cGMP level, the 

activation of NPR-C leads to the intracellular inhibition of cAMP (see section 1.3.2) 

(232). Thus, our results suggest that BNP binds on NPR-A and/or NPR-B to 
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modulate CM cell fate. However, a study from Becker and his group demonstrated 

that ANP is able to stimulate neonatal CM proliferation via the activation of NPR-C 

in vitro (195). In my work, we cannot totally exclude that BNP does not act on CMs 

via the receptor NPR-C, since cAMP level was not measured. However, the 

decreased activity of PLB, observed in adult infarcted heart in RZ after BNP 

treatment (Fig. 18C), could be the consequence of BNP binding affinity to NPR-C. 

Indeed, a decrease in cAMP level could lead to a decrease of PKA and PLB activity 

(233). Thus, further experiments have to be performed, which consist in evaluating 

the level of cAMP in order to determine the role of NPR-C after BNP treatment. 

Nevertheless, we clearly demonstrated in this study that BNP treatment stimulates 

a biological response from CMs in adult infarcted hearts by activating the NPR-A 

and/or NPR-B receptors, cGMP signaling and PLB. 

 

Thus, BNP stimulations 10 days after MI led to increased number of CMs in ZI area 

(+156%, p=0.01), but not in RZ (Fig. 21B). In parallel, BNP induced a 

phosphorylation of PLB in isolated CMs from ZI+BZ, whereas it decreased the 

pPLB/PLB ratio in isolated CMs from RZ. There might be two main reasons 

explaining why the biological activity of BNP is different between ZI+BZ and RZ: 

1) BNP bioavailability in the heart can depend on the vascularization and 2) CM 

regulatory mechanisms, such as cGMP compartmentation and differential 

expression of NP receptors, can be major determinants. All these mechanisms and 

factors influencing the biological activity of BNP in CMs will be discussed in the next 

part. 

BNP distribution in the heart is gradual, meaning that BNP treatment can be 

distributed progressively over time through the areas of injury. During the first 

few days after MI, BNP is mainly distributed in RZ, where the vascularization is 

more or less intact, but less in ZI+BZ, where the vascularization is impaired. 

Indeed, 3 days after MI, our group demonstrated that the neovascularization is 

higher 3 days after MI in RZ and increases progressively in ZI+BZ 10 days after 

MI (Li Na et al., 2020; article under submission). Thus, BNP could induce a 

response from CMs in RZ with a delay shorter than 10 days after MI. To test this 

hypothesis further experiments could be performed, for example, 3 days after MI. 

At this time, the expression of pPLB and pERK could be assessed in CMs to 

determine if BNP is able to stimulate them. 
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In infarcted heart, the vascularization modulates the level of oxygen in cardiac 

tissue, which in turn will differ from one heart area to the other. Indeed, in ZI+BZ, 

the oxygen level is lower (hypoxic conditions) compared to RZ (normoxic 

conditions) (234). Based on literature, a decrease in oxygen level after ischemia 

in ZI+BZ could induce three different modifications in CMs: 1) a switch in the 

regulation of gene expression, 2) a switch of CM architecture and 3) a metabolic 

switch from fatty acid to a “fetal–like” metabolism based on glycolysis (82, 88). 

A hypoxic environment can induce a change in gene expression (i.e. via HIF-1α), 

resulting in a different response of CMs in ZI+BZ compared to those in RZ. 

Interestingly, in neonatal CMs cultured at 3% O2, mRNA coding for NPR-B is 

increased (+127%; p=0.03) when compared to the level in CMs cultured at 20% 

O2 (Fig. 29). By contrast, the mRNA expression coding for HIF-1α remained 

unchanged between both oxygen conditions (data not shown). In isolated CMs 

from injured heart, NPR-B mRNA expression increases in RZ when compared to ZI 

area (+74%; p=0.018) (data not shown). This is related to a decreased mRNA 

expression of HIF-1α in RZ area (-40%; p<0.001) (data not shown). These results 

suggest that the expression of NP receptors is sensitive to oxygen concentration 

and probably also to HIF-1α. Thus, the expression of NP receptors is a factor which 

can affect the biological activity of BNP. 

Furthermore, when CMs are submitted to hypoxic condition, their architecture 

switches from a well-organized to a dedifferentiated one. Indeed, we demonstrated 

that hypoxia (3% O2), compared to hyperoxic environment (20% O2), triggers 

neonatal CM dedifferentiation in vitro (see section 4.1). Furthermore, CMs isolated 

from ZI area display an increased mRNA expression coding for Dab2 (+210%; 

p=0.008) and Runx1 (+850%; p=0.001) compared to RZ area (data not shown). 

Several studies also described in vivo that ZI+BZ are mainly composed of 

dedifferentiated CMs (106, 113, 115, 117, 235). Thus, BNP could affect in a 

different manner dedifferentiated CMs in ZI+BZ compared to mature structurally 

differentiated CMs in RZ. 

Dedifferentiated CMs have a different intracellular compartmentation of cGMP than 

differentiated CMs. cGMP compartmentation involves the regulation of cGMP 

signaling, which is temporally and spatially regulated by the phosphodiesterases 

(PDEs). PDEs are localized at different loci in the cells and are responsible for cGMP 

degradation (187, 236). PDE3 was shown to be associated with T-Tubule 

microdomains and with internally-organized sarcoplasmic reticulum structures, 
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whereas PDE4 is localized within the sarcolemma of CMs (Fig. 37, in green) (237). 

In addition, PDE2 is mainly localized in T-Tubular membrane (Fig. 37, in red) 

(190). 

Since dedifferentiated CMs are devoid of T-Tubule and thus of PDE3, we could 

suggest that BNP signaling may be sensitive to PED3 degradation in the RZ and 

avoid its activity in ZI+BZ, where CMs are dedifferentiated and PDE3 absent (237). 

Thus, cGMP concentration and bioavailability could be increased in ZI+BZ when 

compared to RZ. 

 

 
Figure 37: PDEs localization into CMs. 

The localization of NP receptors is also a factor influencing the biological activity of 

BNP (190). Indeed, NPR-A is linked to T-Tubular membrane, whereas NPR-B is 

linked to sarcolemma membrane in CMs (Fig. 37) (190). As PDE2 is mainly 

localized in T-Tubular membrane, cGMP produced by NPR-A will be degraded by 

PDE2 (Fig. 37, in red). By contrast, cGMP produced by NPR-B is not under the 

control of PDE2, leading to high cGMP concentration in sarcolemma (Fig. 37) (190). 

To conclude, the biological activity of BNP (intensity and duration) in CMs from 

different areas of the heart may depend on the cGMP compartmentation by PDEs. 

In summary, all these mechanisms could explain why the biological activity of BNP 

is different between ZI+BZ and RZ. Interestingly, in a natural environment, CM 

dedifferentiation, low oxygen concentration and glycolysis-based metabolism 

promote CM proliferation (18, 77, 89-91, 106, 112, 113). Therefore, we suppose 

that all these mechanisms in ZI+BZ might facilitate the biological activity of BNP 

to induce faster CM re-entry in the cell cycle and proliferation. 
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One essential question of this study is also to understand by which mechanisms 

BNP treatment leads to an increased CM number. 

First, we evaluated if the increased CM number could be due to an experimental 

artefact during enzymatic digestion of hearts. In this context, Leone and his group 

described that isolation of CMs by enzymatic digestion could lead to cell death 

(65). Therefore, we hypothesized that enzymatic digestion may induce CM cell 

death during isolation, which could be prevented by BNP treatment. To evaluate 

this hypothesis, the percentage of DAPI+ CMs was quantified by FACS analysis 

after CM isolations from BNP- and NaCl-treated hearts. The percentage of DAPI+ 

CMs between BNP- and NaCl-treated hearts remained unchanged (12.9% and 

11.4% respectively) (data not shown). Therefore, we concluded that in our 

conditions, the increased number of CMs obtained after CM isolation from BNP-

treated hearts is not due to the isolation procedure, but rather to a modulation of 

CM cell fate. 

Therefore, the essential question remains to understand by which mechanism(s) 

BNP treatment leads to increased number of CMs: 1) a protection of CM against 

cell death, 2) a stimulation of CPC differentiation into CMs and/or 3) a stimulation 

of pre-existing CM proliferation. 

CM cell death is a process which takes place during the first 6-24 hours after 

ischemia (11). Several cardiac cell death mechanisms were described, such as 

necrosis, apoptosis, autophagy and necroptosis (see section 1.1) (3, 5, 238). 

However, the two main mechanisms responsible for cell death after a permanent 

occlusion or in the ischemia/reperfusion model (I/R) remain apoptosis and necrosis 

(3). To determine, whether BNP treatment can protect CMs from cell death, we 

investigated CM cell death on infarcted hearts 1 day after LAD permanent ligature. 

First, we highlighted a reduced cTnT plasma level in BNP-treated mice (-67%, 

p=0.04), suggesting that less CMs die in these animals (Fig. 22A). In addition, we 

compared the levels of proteins involved in apoptosis in the hearts of BNP- and 

NaCl-treated mice 24h after MI. We observed that BNP treatment decreases the 

activity of the caspase 3 (-33%, p=0.07), which is a result in favor of a protection 

mediated by BNP on CMs from infarcted hearts (Fig. 22B). However, 

immunohistochemistry stainings revealed that the number of CM expressing the 

cleaved-caspase 3 remains unchanged in the hearts of BNP- and NaCl-treated mice 

(Fig. 22C). 
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The apoptotic level measured in heart failure is less than 1% (80–250 

myocytes/105 nuclei) (239). As the level of apoptosis is low, the method of 

detection used here (i.e. IHF) may not be sufficient to detect a difference in the 

number of CMs undergoing apoptosis between BNP- and saline-treated mice. 

Therefore, other technics could be used to evaluate the number of apoptotic CMs 

(i.e. Annexin V staining combined with phosphatidylethanolamine (PE) staining and 

followed by the quantification of CMs undergoing apoptosis and necrosis by FACS 

analysis) (3). 

Several studies evaluated already the role of BNP on apoptosis with contrasted 

results (240-242). In the rabbit heart, BNP treatment protects cardiac cells from 

apoptosis after ischemia/reperfusion (200, 241). Furthermore, neonatal rat CMs in 

culture are protected against apoptosis by BNP treatment after I/R (240). But it 

seems also that BNP triggers apoptosis. Zhang and his group determined that BNP 

stimulates the increased expression of lncRNA LSINCT5 in human myocardial CMs 

(in vitro), leading to CM apoptosis (242). 

In our case, BNP protects CM from cell death via decreased apoptosis. However, 

we cannot exclude that other cell death mechanisms, such as necrosis, necroptosis 

and/or autophagy could also be modulated by BNP treatment. To elucidate the 

exact mechanism of CM protection after BNP treatment, further experiments have 

to be performed. However, we clearly demonstrated in this study a new role for 

BNP to protect CMs in infarcted hearts and this is likely responsible for a part of its 

cardioprotective effect. 

If the increased number of CMs in BNP-treated hearts originates from BNP 

protection against cell death, other mechanisms can also participate at this cell 

increase. We thus used adult Myh6-MerCreMer transgenic mice to determine the 

origin of the CMs 10 days after MI in infarcted hearts and in unmanipulated hearts. 

In injured hearts, the origin of the CMs was determined by immunohistochemistry 

and GFP- α-act+ and GFP+ α-act+ CMs were quantified. In unmanipulated hearts, 

FACS analysis on isolated CMs were performed and GFP- cTnT+ and GFP+ cTnT+ 

CMs were quantified. We demonstrated that BNP treatment does not increase the 

number of CMs originating from CPC differentiation (i.e. GFP- α-act+ or cTnT+ CMs), 

neither in ZI of infarcted hearts, nor in adult hearts in physiological conditions (Fig. 

23 and 34). These results confirm those already published. Indeed, it was reported 

that the differentiation of CPCs into CMs takes place during heart development, 

and not really in adult hearts in physiological and pathological conditions (40, 117). 
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Thus, new adult CMs in adult hearts originate from the proliferation of pre-existing 

CMs rather than from CPC differentiation. 

Therefore, in the next step, we would like to determine the role of BNP on the 

proliferation of pre-existing CMs in pathological and physiological conditions. 

In the hearts of adult infarcted mice (ZI), healthy adult mice and healthy neonatal 

mice, we showed that BNP treatment increases the number of CMs expressing 

proliferative markers, such as Ki67, BrdU, pH3 and Aurkb, suggesting that BNP 

treatment stimulates the re-entry of CMs into the cell cycle. However, the key 

challenge in the field of CM regeneration is to confirm a real cell division (i.e. 

cytokinesis) and not only the re-entry of CMs into the cell cycle. Indeed, CMs can 

enter the cell cycle without going to karyokinesis or cytokinesis, leading to the 

formation of polyploid and/or binucleated CMs (see section 1.2.2.3). In our study, 

quantification of binucleated CMs and analysis of the localization of the Aurkb 

protein were used to determine whether BNP treatment triggers a real CM 

proliferation. The staining against Aurkb allows visualizing the mitotic spindle 

orientation, which is symmetric during cytokinesis and asymmetric during 

binucleation (154). 

In adult infarcted hearts, BNP treatment increases the percentage of CMs 

undergoing cytokinesis in ZI, 10 days after injury (+29%, p=0.05) (Fig. 25D). 

Recent publications mentioned that Aurkb alone is not sufficient to easily 

distinguish a real cell division from a binucleation (156, 243). However, in our 

study, we not only observed an increase of cytokinesis, but we also demonstrated 

that BNP treatment increases the percentage of CMs expressing BrdU (+90% 

p=0.01), pH3 (+62% p=0.04) and Aurkb (+400% p=0.03) (Fig. 25A-C), 

decreases the percentage of binucleation (-50%, p>0.05) (Fig. 25D) and 

upregulates the cyclin D2 in ZI (+20%, p=0.06) (Fig. 21C). All these results 

suggest that BNP treatment stimulates CM proliferation in injured hearts, in 

addition to protecting CMs from cell death. 

In adult unmanipulated mice, which display a low potential of CM proliferation, 

BNP treatment increases by 25% (p=0.03) the number of CMs (Fig. 33C). This 

result was confirmed by FACS analysis, where BNP-treated hearts increased by 

27% (p=0.01) the number of CMs compared to NaCl-treated hearts (Fig 34E). 

Furthermore, we observed that BNP treatment upregulates the cyclin E1 (+32%, 

p=0.02) and increases the percentage of CMs expressing BrdU (+40%, p=0.03) 
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(Fig. 33F). However, BNP did not decrease the percentage of binucleated CMs 

(+14%, p>0.5) (Fig. 33D). In adult unmanipulated hearts, no or only very few 

CMs undergo cell death (3). Thus, increased number of CMs in these hearts is 

unlikely the consequence of protection against cell death, but results rather from 

BNP stimulation on CM proliferation. 

To determine, if BNP can induce CM proliferation in optimal conditions, we focused 

on unmanipulated neonatal mice, which exhibit a high potential of CM proliferation. 

We demonstrated that BNP treatment in neonatal mice leads to 25% (p=0.005) 

increase of the number of CMs (Fig. 26B). Furthermore, the percentage of 

binucleated CMs is decreased (-8%; p=0.01) and the mRNA expressions of two 

cyclins, required at the end of the cell cycle progression, are upregulated (cyclin 

A2: +126% p=0.002; cyclin B2: +70% p=0.04) (Fig. 26C-D). In addition, 

neonatal CMs in cell culture treated with low concentration of BNP, displayed a 

decreased percentage of binucleated CMs (-32%, p=0.01) (Fig. 30E), which is 

linked to an increased number of CMs undergoing cytokinesis (+80%, p=0.04) 

(Fig. 31D). 

To summarize, BNP treatment in adult and neonatal unmanipulated hearts 

increases 1) the number of CMs, 2) the percentage of CMs expressing markers 

related to cell cycle progression (BrdU, Ki67, pH3 and Aurkb), 3) the expression of 

some cyclins (cyclin E1, A2 and B2). Furthermore, in neonatal hearts, we detected 

an increased cytokinesis and an increased percentage of mononucleated CMs. 

Therefore, taken all these results together, we conclude that BNP treatment 

stimulates CM proliferation in unmanipulated adult and neonatal hearts. In injured 

heart, BNP treatment protects CMs from cell death. Evidences also suggest that 

increased proliferation exists in the ZI after BNP treatment. Indeed, BNP treatment 

in ZI increases the percentage of CM expressing proliferative markers, increases 

cytokinesis and decreases binucleation. In this situation, we could hypothesize 

that, if there is no CM proliferation, the process of binucleation should be increased, 

which could also participate in the protection of hearts in ischemic conditions (see 

section 1.2.2.3) 
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During my thesis, I also assessed the signaling pathway activated by BNP in CMs. 

The three signaling pathways which have been already described to play a role in 

the fate of CMs were studied: MAPK/ERK, PI3K/AKT and p38 MAPK (95, 136, 137). 

Interestingly, we highlighted the activation of the same signaling pathway after 

BNP treatment in physiological (neonatal and adult hearts) and pathological 

(ZI+BZ) hearts. Indeed, BNP modulates the fate of CMs by activating the 

MAPK/ERK signaling pathway (Fig. 35). 

The MAPK/ERK pathway plays a central role in cardiac physiology by modulating 

cell proliferation, cell growth and hypertrophy (244-246). After phosphorylation of 

ERK, it translocates into the nucleus and upregulated the transcription of cyclin D1 

and D2 and thus the transition from G1 to S phase (130, 131). Interestingly, in 

our study isolated CMs, 10 days after MI, exhibit an increased expression of the 

cyclin D2 in ZI+BZ after BNP treatment. In addition, cell culture of neonatal CMs 

in presence of low concentration of BNP also displays an increased expression of 

the cyclin D1 and D2 (Fig. 30D). Thus, BNP could activate the MAPK/ERK signaling 

pathway and the cyclin D1 and D2 in order to push CMs to re-enter the cell cycle 

in the S phase. This hypothesis is in correlation with the literature. In fact, the 

MAP/ERK pathway was described to modulate CM proliferation alone or in synergy 

with PI3K/AKT (245-249). 

Furthermore, BNP treatment slightly modulates PI3K/AKT (+140%, p>0.5) in CMs 

isolated from RZ and in CMs isolated from neonatal hearts (+90%, p>0.5). In 

addition, p38 MAPK is also modulated by BNP in CMs isolated from neonatal hearts 

(+80%, p>0.5) (Fig. 35B). By contrast, no variation occurs in unmanipulated adult 

hearts (Fig. 35C). These results suggest that in our conditions, BNP does not 

directly modulate these signaling pathways. However, we could hypothesize that 

some factors (i.e. environmental factors) counterbalance the BNP effect on the 

regulation of these signaling pathways. 

Finally, the Hippo signaling pathway and the effector YAP are also key regulators 

of CM proliferation (250-252). Once YAP is translocated into the nucleus, it 

activates the transcription of several genes, such as Pi3kcb gene (142). In this 

study, we evaluated the effect of BNP on the expression of Pi3kcb gene. In the 

three different models of this study, isolated CMs after BNP treatment display no 

variation of the Pi3kcb gene expression (Fig 36). 



  98 

Taken all these findings together, our results strongly suggest that BNP stimulates 

CM proliferation through the activation of the MAK/ERK signaling pathway. To 

confirm this hypothesis, the next experiment is to inhibit the phosphorylation of 

ERK by using drugs such as PD0325901 (253). If the MAPK/ERK signaling pathway 

is linked to BNP modulation of CM’s fate, less CMs in adult BNP-treated 

unmanipulated hearts should be observed. Furthermore, by modulating the use of 

ERK inhibitor and the time after MI, we could dissociate BNP effect on cell death 

from its effect on CM proliferation. Indeed, if the increased CM number, observed 

10 days after MI, is due to a protection against cell death, the use of ERK inhibitor 

one day after MI should induce no difference in the number of CMs. By contrast, if 

the increased CM number is due to a stimulation of CM proliferation, the use of 

ERK inhibitor will decrease CM number 10 days after MI. 

 

Identifying the role and the mechanism of action of the biologically active form of 

BNP in injured heart is essential for cardiac rehabilitation. Several clinical studies 

already exist and focus on increasing BNP concentration in the injured heart. The 

recombinant human natriuretic peptide BNP (nesiritide) was used, but showed 

conflicting outcomes depending on its concentration and its way of administration 

(254). 

In 2014, a promising therapeutic treatment for patients with heart failure, the 

LCZ696, was developed. Its beneficial effects on the structure and function of the 

heart have been demonstrated (see section 1.3.6) (255). However, it remains 

unclear, whether the treatment has a direct effect on cardiac cells. Therefore, our 

group was interested to study the role of LCZ696 on adult mice 10 days after MI 

(see chapter 8, supplementary data). For this experiment, two concentrations of 

LCZ696 were tested: 6 and 60 mg/kg/day (Supplementary Fig. 1A). 

LCZ696 treatment (60mg/kg/day) increases fractional shortening (+100%; 

p=0.09) as well as ejection fraction (+83%; p=0.1) and decreases heart 

remodeling during systole (-70%; p=0.07) (Supplementary Fig. 1C). Furthermore, 

the heart to body weight-ratio remains unchanged (Supplementary Fig. 1B). 

Preliminary results highlight also a direct role of LCZ696 on CMs. Indeed, LCZ696 

treatment (6 and 60mg/kg/day) reduces CM cross-sectional area in all zones of 

the heart compared to untreated mice, suggesting that LCZ696 decreases CM 

hypertrophy induced by MI (Supplementary Fig. 2C). In addition, LCZ696 
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(60mg/kg/day) increases the number of CMs in RZ (+40%, P<0.5), whereas in 

ZI+BZ, CM number remains unchanged (Supplementary Fig. 2B). 

Regarding CM proliferation, LCZ696 treatment increases the number of CMs 

expressing BrdU in all zones of the hearts and increases the percentage of CMs 

expressing Ki67 in RZ (LCZ696 6mg/kg/day for Ki67 in RZ: +125%, P<0.5) 

(Supplementary Fig. 3). Furthermore, MAPK/ERK signaling pathway is activated in 

RZ after LCZ696 treatment (6mg/kg/day) (+150%, P<0.5), whereas it remains 

unchanged in ZI+BZ (Supplementary Fig. 4A). 

Finally, LCZ696 treatment (60mg/kg/day) also increases cGMP plasma level by 3-

fold (44.5 for untreated mice vs 138 for LCZ696-treated mice; data not shown), 

suggesting that the treatment could increase concentrations of NPs as already 

demonstrated by others in mice and rats (256, 257). In patients with heart failure, 

a decreased NEP activity after LCZ696 treatment is also correlated with an 

increased concentration of proBNP and ANP (224). Since it is complicated to 

determine which NPs (ANP, BNP or CNP) are involved in the cardioprotective role 

of LCZ696 treatment, there is a real interest in targeting every NP separately (i.e. 

BNP) and to study its direct role on CMs. 

Taken all these results together, we demonstrated that LCZ696 treatment 

increases the number of CMs after MI in RZ, which could be one reason of its 

cardioprotective role. By contrast, in ZI+BZ no increased number of CMs is 

observed after LCZ696 treatment. In addition, MAPK/ERK signaling pathway is 

activated in RZ, whereas it remains unchanged in ZI+BZ. 

Therefore, LCZ696 treatment acts on CMs in a different area of injured hearts than 

BNP treatment. Indeed, 10 days after MI, BNP increases the number of CMs in ZI, 

whereas LCZ696 treatment increases the number of CMs in RZ. 

Regarding these results, the following question raises: why BNP increased number 

of CMs 10 days after MI in ZI, but not LCZ696. Three hypotheses are put forward: 

1) LCZ696 stimulates CM proliferation in this zone, however this process takes 

more than 10 days. Thus, an increased CM number could be detected by using an 

extended experimental protocol (i.e. study of CM cell fate 14 days after MI). 2) 

Contrarily to BNP protocol, mice from LCZ696 protocol were not treated with 

LCZ696 directly after MI but only one day after injury. As cardiac cell death occurs 

in the first 24 hours after injury, LCZ696 cannot protect CMs from cell death with 

this protocol. Thus, the increased number of CMs detected in the ZI+BZ of BNP-
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treated hearts could be due to protection against cell death and a limited number 

of CMs must be present to detect CM proliferation. 3) NEP activity could be 

dependent on the area of injury. This hypothesis suggests that NEP could be 

inactive in ZI after MI as a consequence of the environment, whereas its activity 

could remain high in RZ. In this case, LCZ696 treatment should have no effect on 

CM cell fate in ZI, by contrast to RZ, where the level of NPs should be increased 

due to NEP inhibition. 

Furthermore, the second question is to understand why LCZ696 increases the 

number of CMs in RZ, while BNP treatment has no effect on CM number in the 

same zone (Fig. 38). The main difference between LCZ696 and BNP treatment is 

that LCZ696 increases the concentration of the three NPs (ANP, BNP, CNP) by 

inhibiting NEP activity. These NPs have a specific affinity for NP receptors (see 

section 1.3.2). In addition, ANP and CNP have been shown to be more sensitive to 

NEP degradation than BNP, suggesting that ANP and CNP levels after LCZ696 

treatment are expected to be strongly increased compared to BNP (258). 

Thus, increased number of CMs in the RZ after LCZ696 treatment could be due to 

ANP and/or CNP increase, and not due to BNP increase. This could be the 

consequence of activation of different receptors than those activated by BNP 

treatment (NPR-A or NPR-C for example versus NPR-B) (Fig. 38). 

Finally, regarding MAPK/ERK signaling pathway, the increased CM number in RZ 

after LCZ696 treatment and the activation of MAPK/ERK pathway observed in the 

same area strongly suggests that ERK signaling is linked to CM proliferation rather 

than a protection against CM cell death. 

 
Figure 38: LCZ696 and BNP treatment model on CM cell fate in remote zone. On the left: LCZ696 treatment in 

RZ increases number of CMs. On the right: BNP treatment in RZ has no effect on CM number. 
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 Conclusions and Perspectives 
Increasing CM replacement in injured hearts is the goal of new therapeutic 

strategies aimed to restore heart function after CVDs. That is why during my thesis 

I focused on determining the role of oxygen and of brain natriuretic peptide (BNP) 

on cardiomyocyte (CM) cell fate. 

 

The results presented in my thesis demonstrate that low (or physiologically 

normoxic) oxygen concentration (i.e 3% O2) compared to atmospheric oxygen 

concentration (20% O2) favors CM dedifferentiation and proliferation in vitro in 

neonatal CM cell culture. These results are crucial for cardiac research as they 

demonstrate that cultivated neonatal CMs at low oxygen concentration highlight 

some cellular physiological mechanisms occurring in CMs which can be blind in 

20% oxygen. Nevertheless, in our study, one limitation is that neonatal CMs were 

cultivated in a hypoxia chamber which was opened three times during the 14 days 

of culture, in order to change the medium. Thus, cells were submitted several 

times to increased oxygen concentration (20% O2) that could generate the release 

of ROS and cell damage. Therefore, we tested the use of an antioxidant, the N-

acetylcysteine, in order to regulate ROS scavenging. The use of this antioxidant 

increases the number of surviving CMs (+200%; n=2) after 14 days of culture 

compared to untreated cells, suggesting that this approach could limit the harmful 

effects of ROS production. 

Interestingly, strategies based on reducing oxygen supply in order to treat CVDs 

emerge, such as intermittent hypoxia therapy (IHT). This strategy is defined as 

recurrent episodes of hypoxia interspersed with episodes of normoxia after heart 

injury. 

In various animal models (mice, rats and dogs) it was shown that animals, 

conditioned to intermittent hypoxia prior to MI, present less damage in the heart 

after I/R injury. Indeed, intermittent hypoxia conditioning (IHC; performed prior 

heart injury) on animal models enhances cardiac function, reduces infarct size and 

has a cardioprotective effect by reducing necrosis and increasing antioxidant 

enzymatic capacity (259-264). This cardioprotective role observed after IHC may 

be also associated with a stimulation of cardiac regeneration. Thus, IHC may be a 

potential therapeutically approach to treat CVDs. Clinical trials on patients with 

ischemic heart diseases and indication for coronary artery bypass graft were 
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already performed. Indeed, IHT showed promising results by decreasing the level 

of plasmatic Troponin I and serum lactate after I/R (265). An increased level of 

plasmatic Troponin I is related to CM cell death, and an increase of lactate 

concentration is related to a deficiency of oxygen supply to the tissues. Thus, these 

results demonstrate the cardioprotective role of IHT therapy on patients suffering 

from ischemia (265). The benefit of IHT depends however on the patients and on 

the severity of hypoxia (level of hypoxia, the number as well as the duration of 

hypoxic episodes) (266). Indeed, high number of prolonged hypoxia per day leads 

to detrimental outcomes, whereas a small number of short hypoxia per day leads 

to beneficial outcomes (267). 

Therefore, our protocol used on neonatal CM cell culture (low oxygen concentration 

and reoxygenation) could be adapted to a model in order to study IHT therapy and 

its role on CM cell fate. 

 

Regarding the role of BNP on CM cell fate in physiological and pathological 

conditions, I clearly demonstrated in my thesis that BNP protects CMs from cell 

death, increases the number of CMs and stimulates the re-entry of CMs into the 

cell cycle in the infarction zone (ZI) of adult mice 10 days after MI. Thus, a part of 

the “BNP cardioprotective effect” in ischemic conditions is due to a protection of 

CMs against cell death and maybe also due to a stimulation of CM proliferation. By 

targeting unmanipulated adult and neonatal mice, we provide evidences that BNP 

increases the number of CMs by stimulating their proliferation. Interestingly, BNP 

treatment activates the MAPK/ERK signaling pathway in CMs isolated from the 

three models, suggesting a possible correlation between BNP treatment, 

MAPK/ERK pathway and CM proliferation. 

In infarcted hearts, BNP effects on CMs are dependent on the area of the heart, 

suggesting that probably different mechanisms regulate the biological activity of 

BNP in the ZI+BZ and RZ (Fig. 39). 
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Figure 39: BNP effects on CMs after ischemia in RZ and ZI+BZ. On the left, in RZ, BNP treatment decreases the 

activity of PLB (1) and ERK (2). No increased CM number was observed (3). The activated-NP receptors are 

unknown. On the right, in ZI, BNP treatment increases cGMP level (2) via NPR-A and/or NPR-B activation (1). 

This leads to increased PLB (3) and ERK (4) activity. BNP treatment in ZI protects CMs from cell death, increases 

the number of CMs and stimulates CM re-entry into the cell cycle (5). 

Thus, in order to maximize the biological activity of BNP on patients suffering from 

CVDs, it is essential to determine in the future, by which mechanism BNP acts in 

the different areas of infarcted hearts. We will thus focus on the regulation of NP 

receptor expression (NPR-A, NPR-B and NPR-C) and the cGMP compartmentation. 

Therefore, further experiments have to be done in order to characterize, which NP 

receptor is activated during BNP treatment. First, we could take advantage of 

transgenic mouse models, of NPR-A, NPR-B or NPR-C transgenes linked with a 

fluorescent marker and under the activity of the α-MHC promoter. The main 

advantage of these mice compared to immunostainings will be to facilitate the 

follow up of expression and localization of NP receptors in CMs. For example, 

intracellular NP trafficking (see section 1.3.2) could be followed by time lapse 

imaging on adult and neonatal CM cell culture after BNP treatment. Also, the 

localization and expression of NP receptors in CMs could be assessed in different 

areas of injured infarcted heart treated or not with BNP. In a second time, to 

determine which NP receptor is associated with BNP effects on CMs, NPR-A, NPR-

B and NPR-C, transgenic knockout (KO) mice could be used. To overcome the issue 

encountered with our systemic NPR-A and NPR-B knockout (KO) mice (low survival 
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rate during embryogenesis for NPR-A KO mice and rapid death after birth for NPR-

B KO mice), we could generate transgenic mice with an inducible CM-specific 

excision of the NPR-A, NPR-B or NPR-C gene (Fig. 40A). Using Cre recombinase 

expression, driven by the α-MHC, NPR-A, B or C can be deleted. Thanks to these 

mice, NP receptors expression could be silenced only in CMs and at a specific time 

after Tamoxifen injection. 

 

 
Figure 40: Which NP receptor is involved in CM responses after BNP treatment? A: The NPR-A, B or C-KO mice 

could be used. Thanks to the Cre recombinase expression driven by α-MHC promoter (Myh6), the NPR-A, B or C 

genes flanked by loxP sites (yellow arrows) can be deleted. Thus, after Tamoxifen injection, the NPR-A, B or C 

expression is silenced only in CMs. B: In RZ, by using the KO mice, the aim is to define which NP receptor is 

related to the decreased expression of pPLB and pERK and showing no change in CM number. In ZI, the aim is 

to define which NP receptor is related to PLB and ERK activation and to an increased CM number. 

Furthermore, cGMP compartmentation is a key mechanism, which depends on NP 

receptors and phosphodiesterases (PDEs) localization. This mechanism regulates 

the intracellular level of cGMP and thus the biological activity of BNP. Because PDEs 

hydrolyze intracellular cGMP, the perspective is to determine, whether BNP 

signaling is associated to some PDEs. Therefore, it would be interesting to test the 

effect of a PDE inhibitor in combination with BNP treatment after MI and observe 

the response from CMs (Fig. 41). In RZ, where BNP treatment induces no change 

of CM number compared to ZI, the use of PDE inhibitors can suppress PDE activity 

and then stimulates CM responses after BNP treatment. In ZI, the use of PDE 
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inhibitors can delay over time cGMP activity and induces a stronger response from 

CMs compared to BNP treatment. Furthermore, delayed cGMP signal over time can 

also stimulate additional signaling pathways and/or promote longer CM cell cycle 

activity. 

 

 
Figure 41: Do PDE inhibitors increase the biological activity of BNP treatment? On the left, in RZ, the first question 

is (1) to determine if some PDEs decrease cGMP level after BNP treatment. This could explain why pPLB and pERK 

expression decreases after BNP treatment. The second question is (2) to determine if, by using PDE inhibitors 

combined with BNP, the cGMP level increases. In this case, pPLB and pERK expression will increase and maybe 

also CM proliferation and the number of CMs. On the right, in ZI, the question is to determine if the use of PDE 

inhibitors combined with BNP treatment can increase over time the level of cGMP (3). With this approach, CM 

response after BNP treatment could be stronger compared to BNP treatment alone. 

Interestingly, some PDE (i.e. PDE1, 3) inhibitors already exist, which are used to 

treat cardiac failure and then could be easily combined with BNP treatment. 

Indeed, PDE1 or PDE4 inhibitors on mice and rats were shown to promote cardiac 

function and cardioprotection by decreasing, for PDE1, CM cell death (268, 269). 

In patients suffering from heart failure, PDE3 inhibitor was already used and 

increases heart rate and cardiac contractility (270). Besides the promising positive 

effects of PDE3 inhibitor, negative effects such as arrhythmias and sudden death 

have also been observed during chronic treatment over time (271). Furthermore, 

a clinical trial already combined low dose of BNP (nesiritide) with a PDE5 inhibitor 

(sildenafil) in order to improve the renal function on patients with chronic heart 

failure (272). Thus, if biological activity of BNP is regulated by PDEs across areas 
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of injured hearts, the perspective will be to associate BNP treatment with PDE 

inhibitors in order to delay cGMP activity over time and increase CM responses 

after ischemia. 

 

An alternative to increase the signaling pathway(s) mediated by BNP could be to 

decrease the natural degradation of BNP by neprilysin. That is, why we also 

evaluated the role of LCZ696 on CM cell fate after MI in mice. Interestingly, we 

determined that LCZ696 treatment increases the cardiac function and attenuates 

cardiac remodeling 10 days after MI. In addition, preliminary results showed that 

LCZ696 increases the number of CMs and stimulates CM re-entry into the cell cycle 

in the remote zone (Fig. 42). 

 

 
Figure 42: LCZ696 effects on CM cell fate after ischemia in RZ and ZI+BZ. The box represents the mechanism 

of action of LCZ696. LCZ696 inhibits neprilysin (NEP), leading to an increased concentration and activity of ANP, 

BNP and CNP. On the left, in RZ, LCZ696 treatment increases cGMP level (1) and ERK activity (2). In addition, 

LCZ696 increases the number of CMs and stimulates CM re-entry into the cell cycle (3). On the right, in ZI, 

LCZ696 treatment has no effect on pERK expression and induces no change in CM number (1). 

These results are clearly relevant, because for the first time we demonstrated that 

a part of the cardioprotective role of LCZ696 could be associated with CM cell fate 

regulation. 

Interestingly, LCZ696 and BNP treatments showed similar benefits on the heart 

function and on CM cell fate, suggesting that LCZ696 may increase the biological 
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activity of BNP after MI. Nevertheless, one limitation of this study is that the 

relation between LCZ696 and BNP remains to be established. Therefore, it seems 

relevant to determine whether the beneficial effects of LCZ696 on CMs are the 

consequence of an increased activity of BNP. To answer this question, BNP-KO 

mice could be used (Fig. 43). These mice are viable throughout adulthood and 

both sexes were fertile. They develop no signs of hypertension and ventricular 

hypertrophy (199). In addition, the systolic blood pressure and the heart to body 

weight ratio do not differ between BNP-KO and WT mice in physiological conditions. 

However, they develop fibrotic lesions in the ventricle and CMs could be 

disorganized with supercontracted sarcomeres in the same conditions as 

mentioned above (199). By using these mice treated with LCZ696 and comparing 

them with WT mice treated with LCZ696 after MI, we will be able to determine if 

the beneficial effects of LCZ696 observed in CMs is due to the biological activity of 

BNP or whether other NPs, such as ANP and CNP, also participate (Fig. 43). 

 

 
Figure 43: Is the LCZ696 effect on CM cell fate due to an increased activity of BNP? The aim will be to determine 

if LCZ696 benefits, observed on CM cell fate after ischemia, are due to an increase of BNP activity (1). To answer 

this question, the transgenic BNP-KO mice can be used and compared to WT mice, both treated with LCZ696. If 

LCZ696 treatment increases BNP activity, BNP-KO mice could display no increased CM number and no stimulation 

of CM re-entry into the cell cycle (2), contrarily to WT mice (3). 

Furthermore, preliminary results have shown that LCZ696 treatment does not 

increase the number of CMs in ZI+BZ. In this experiment, the first dose of LCZ696 

administered to mice was performed one day after MI. Thus, with this protocol, it 

seems unlikely that LCZ696 protects CMs from cell death. Therefore, in order to 

determine the role of LCZ696 treatment on CM cell death protection, further 

experiments consist in treating mice with LCZ696 directly after surgery and 
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- Stimulates CM re-entry into the cell cycle
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sacrifice animals 24 hours and 10 days after MI. With this approach, the measure 

of plasmatic Troponin I concentration could be assessed 24 hours after MI in 

LCZ696-treated mice and compared with untreated mice. In addition, 10 days after 

MI, the number of CMs could be assessed. In the case of a CM protection from cell 

death, we expect to observe in LCZ696-treated mice a decrease of Troponin I 

plasma level 24 hours after MI and an increased number of CMs 10 days after MI. 

Finally, why LCZ696 increases the number of CMs in the RZ and not BNP, remains 

an opened question. LCZ696 increases the level of NPs (ANP, BNP and CNP), 

suggesting that ANP and CNP, rather than BNP, can trigger a response from CM in 

RZ. Furthermore, the route of administration between LCZ696 (oral gavage) and 

BNP (intraperitoneal injection) is not the same. Thus, both treatments could be 

metabolized differently, leading to activation of others mechanisms. The dosage 

of treatment could be also a key factor influencing the response from CMs. Indeed, 

we and others already demonstrated that BNP concentration influences the 

response from CMs (195). Therefore, we could suggest that the concentration of 

BNP in ZI and LCZ696 in RZ promotes CM response, whereas the dose after 

diffusion into the heart is no longer adequate to observe a beneficial response on 

CMs. 

 

To conclude, low oxygen concentration, BNP and LCZ696 are three factors able to 

modulate CM cell fate in infarcted hearts. LCZ696 is already used in clinic to treat 

patients suffering from HF, whereas for BNP and low oxygen concentration, trials 

are still ongoing. Therefore, based on the results presented in this thesis, it 

appears clearly that improving knowledge regarding their role on cardiac 

regeneration will help to identify them as new options to treat patients suffering 

from CVDs. 
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 Supplementary Data 
The LCZ696 experiments were performed by our master student, Alexia Carboni. 

I had the opportunity to supervise Alexia. 

 

 
Supplementary Figure 1: High dose of LCZ696 (60 mg/kg) improves cardiac function. A: Experimental protocol 

as described in details in Materials and Methods. B: Cardiac mass (Heart/body weight ratio) of infarcted mice 10 

days after MI. C: Cardiac function and remodeling index measured by echocardiography 10 days after MI. 
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Supplementary Figure 2: The number of CMs increases in response to high dose of LCZ696 (60 mg/kg) 10 

days after MI in RZ. A: Representative pictures of injured heart stained with laminin (red) 10 days after MI. 

Pictures covered a range of 0.015mm2. B: Graphs represent the number of CMs counted per heart sections in 

ZI+BZ and RZ. C: Graphs represent cross sectional area of CMs evaluated on heart sections in ZI+BZ and RZ. 

Only CMs with circularity >0.5 are considered. Data are mean ±SEM, *p≤0.05. 
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Supplementary Figure 3: LCZ696 treatment stimulates the re-entry of CMs into the cell cycle 10 days after 

MI. A-B: Representative pictures of injured heart (RZ and ZI+BZ) 10 days after MI stained with BrdU (upper 

panel) or Ki67 (lower panel) in green and combined with α-actinin in red. Pictures covered a range of 0.015mm2. 

White arrows show CMs expressing BrdU (upper panel) or Ki67 (lower panel). A: Graphs on the right represent 

the number of CMs expressing BrdU counted per heart section in RZ and ZI+BZ. B: Graphs on the right represent 

the percentage of Ki67+ CMs in RZ and ZI+BZ. Scale bars are 100µm and 50µm for magnification. For all results, 

data are mean ±SEM, *p≤0.05 and, **p≤0.01. 
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Supplementary Figure 4: MAPK/ERK signaling pathway is activated after LCZ696 treatment, 10 days after MI 

in RZ. A-B: Representative western blots of untreated and LCZ696-treated hearts 10 days after MI. Blots on the 

left were stained with antibodies against ERK, pERK and Tubulin (used as loading control) in RZ (A) and ZI+BZ 

(B). Only the bands at the adequate molecular weight are represented here: ERK and pERK 42-44 kDa, Tubulin 

55 kDa. Graphs on the right represent the quantification of the data issue from western blot analysis. Protein 

expression in LCZ696-treated hearts are related to the average of untreated-hearts. For all results, data are mean 

±SEM, *p≤0.05.  
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Primary antibodies Species Dilution Reference Usage 
a-actinin mouse 1/50 sigma A7811  Immunohistology 
Aurkb rabbit 1/1000 Abcam ab139188    Immunohistology 
BrdU rat 1/100 Abcam ab6326  Immunohistology 
cleaved caspase 3  rabbit 1/400 Cell Signaling 9661  Immunohistology 
GFP rabbit 1/1000 Abcam ab290 Immunohistology 
Histone H3 (phospho s10) rabbit 1/100 Millipore 06-570 Immunohistology 
ki67 rat 1/1000 ebioscience 14-5698-80 Immunohistology 
Laminin rabbit 1/200 Sigma  L9393 Immunohistology 
NPR-A rabbit 1/50 Abcam ab70848   Immunohistology 
NPR-B rabbit 1/100 Abcam ab139188    Immunohistology 
Troponine I goat  1/100 Santa Cruz Biotechnology SC-8118 Immunohistology 
Akt rabbit 1/1000 Cell Signaling Western Blot 
Phospho-Akt rabbit 1/500 Cell Signaling Western Blot 
Bax rabbit 1/1000 Cell Signaling Western Blot 
Bcl-2 rabbit 1/1000 Cell Signaling Western Blot 
cleaved caspase 8  rabbit 1/1000 Cell Signaling Western Blot 
cleaved caspase 3  rabbit 1/1000 Cell Signaling Western Blot 
Erk rabbit 1/3000 Cell Signaling Western Blot 
NPR-B goat  1/20 Santa Cruz SC-34421 Flow cytometry 
NPR-A rabbit 1/50 Abcam ab70848   Flow cytometry 
Phospho-Erk rabbit 1/2000 Cell Signaling Western Blot 
p38 rabbit 1/1000 Cell Signaling Western Blot 
Phospho-p38 rabbit 1/500 Cell Signaling Western Blot 
phospholamban mouse 1/1000 Abcam Western Blot 
Phospho-phospholamban rabbit 1/500 Millipore Western Blot 
Troponine T goat  1/50 Abcam ab56357 Flow cytometry 
Tubulin mouse 1/10000 Sigma T5168 Western Blot 
Secondary antibodies 

 
      

Anti-rabbit Alexa 488 donkey 1/1000 Molecular Probes A21206 Immunohistology 
Anti-rabbit Alexa 594 donkey 1/1000 Molecular Probes A21207 immunohistology 
Anti-goat Alexa 594 donkey 1/1000 Molecular Probes A11058 Immunohistology 
Anti-mouse Alexa 647 goat 1/1000 Molecular Probes A21240 Immunohistology 
Anti-rat 647 donkey 1/500 Jackson Immuno 712-605-150  Immunohistology 
Anti-rat Alexa 488 donkey 1/1000 Molecular Probes A21208 Immunohistology 
Anti-rat biotinylated goat 1/200 Vector BA-9400 Immunohistology 
Steptavidine Alexa 594 

 
1/1000 Molecular Probes S11227 Immunohistology 

anti-rabbit Alexa 680  goat 1/5000 Molecular Probes A21109 Western Blot 
Anti-mouse IRDye 800  goat 1/10000 Rockland Immunochemicals 610-

132-121 
Western Blot 

Anti-goat APC-conjugated chicken 1/10 R&D systems F0108 Flow cytometry 
 

Supplementary Table 1: Antibodies used in flow cytometry analysis, immunohistology and western blot analysis. 

Gene Forward primer Reverse primer Product size (bp) 
ANF ACAGGATTGGAGCCCAGAGC GTCCATGGTGCTGAAGTTTATTC 337 

Cyclin D1 TGAGAACAAGCAGACCATCC TGAACTTCACATCTGTGGCA 71 
Cyclin D2 GGATGATGAAGTGAACACACTCAC GGATCTTCCACAGACTTGGATCC 180 
Cyclin E1 GAAAGAAGAAGGTGGCTCCGAC GTTAGGGGTGGGGATGAAAGAG 190 
Cyclin A2 ATGTCAACCCCGAAAAACTG GCAGTGACATGCTCATCGTT 157 
Cyclin B2 AGCTCCCAAGGATCGTCCTC TGTCCTCGTTATCTATGTCCTCG 116 

Dab2 TGCTCGTGATGTGACAGACA AGGGTCATTAGGGCCTCACT 225 
GATA4 CTGTCATCTCACTATGGGCA CCAAGTCCGAGCAGGAATTT 259 
Nkx2.5 CAAGTGCTCTCCTGCTTTCC GTCCAGCTCCACTGCCTTCT 130 

Troponin T GCGGAAGAGTGGGAAGAGACA CCACAGCTCCTTGGCCTTCT 127 
α-MHC AACCAGAGTTTGAGTGACAGAATG ACTCCGTGCGGATGTCAA 130 
β-MHC ATGAGACGGTGGTGGGTTT CTTTCTTTGCCTTGCCTTTG 117 
Runx1 GATGGCACTCTGGTCACCG GCCGCTCGGAAAAGGACA 298 
α-SKA TGGACTTCGAGAATGAGATGG TCGTCCTGAGGAGAGAGAGC 509 
NPR-A CCAATTATGGCTCCCTGCTA CGGTACAAGCTCCCACAAAT 198 
NPR-B TCATGACAGCCCATGGGAAA GGTGACAATGCAGATGTTGG 209 
18S ACTTTTGGGGCCTTCGTGTC GCCCAGAGACTCATTTCTTCTTG 96 

 

Supplementary Table 2: Sequences of primers used in quantitative RT-qPCR. 


