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Interpretation of T cell states from single-cell
transcriptomics data using reference atlases
Massimo Andreatta 1,2, Jesus Corria-Osorio1, Sören Müller 3, Rafael Cubas4, George Coukos 1 &

Santiago J. Carmona 1,2✉

Single-cell RNA sequencing (scRNA-seq) has revealed an unprecedented degree of immune

cell diversity. However, consistent definition of cell subtypes and cell states across studies

and diseases remains a major challenge. Here we generate reference T cell atlases for cancer

and viral infection by multi-study integration, and develop ProjecTILs, an algorithm for

reference atlas projection. In contrast to other methods, ProjecTILs allows not only accurate

embedding of new scRNA-seq data into a reference without altering its structure, but also

characterizing previously unknown cell states that “deviate” from the reference. ProjecTILs

accurately predicts the effects of cell perturbations and identifies gene programs that are

altered in different conditions and tissues. A meta-analysis of tumor-infiltrating T cells from

several cohorts reveals a strong conservation of T cell subtypes between human and mouse,

providing a consistent basis to describe T cell heterogeneity across studies, diseases, and

species.
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In response to malignant cells and pathogens, mammals (and
presumably most jawed vertebrates) mount an adaptive immune
response characterized by a finely-tuned balance of several

specialized T cell subtypes with distinct migratory and functional
properties and metabolic lifestyles. Occasionally, however, malig-
nant cells and pathogens escape immune control, leading to cancer
and chronic infections. Antigen persistence in cancer and chronic
infections profoundly alters T cell differentiation and function,
leading antigen-specific cells into a collection of transcriptional and
epigenetic states commonly referred to as “exhausted”1. The com-
plexity and plasticity of T cells make the study of adaptive immune
responses in these contexts particularly challenging.

In recent years, single-cell RNA-sequencing (scRNA-seq)
enabled unbiased exploration of T cell diversity in health, dis-
ease and response to therapies at an unprecedented scale and
resolution. While the presence of tumor-infiltrating T lympho-
cytes (TILs) in cancer lesions has been broadly associated with
improved prognosis and response to immune checkpoint
blockade2,3, scRNA-seq has uncovered a great diversity within
TILs, suggesting that distinct TIL states contribute differently to
tumor control and response to immunotherapies4–6. However,
a comprehensive definition of T cell “reference” subtypes
remains elusive. Poor resolution of T cell heterogeneity remains
a limiting factor towards understanding the effect of induced
perturbations, such as therapeutic checkpoint blockade and
genetic editing, in particular when these simultaneously affect
the frequencies and intrinsic features of T cell subtypes.

A major challenge towards the construction of reference single-
cell atlases is the integration of gene expression datasets produced
from heterogeneous samples from multiple individuals, tissues,
batches and generated using different protocols and technologies.
Several computational methods have been developed to correct
technical biases introduced by handling experiments in batches,
and to align datasets over their biological similarities7–13. We
previously developed STACAS14, a bioinformatic tool for scRNA-
seq data integration specifically designed for the challenges of
integrating heterogeneous datasets characterized by limited
overlap of cell subtypes. This is particularly relevant for the
construction of T cell atlases, where differences between datasets
are not merely the result of technical variation of handling
samples in different batches, but rather due to subtypes of highly
variable frequency, and in many cases subtypes that are entirely
missing from one or more samples as a result of study design or
biological context. While whole-organism single-cell atlases are
very powerful to describe the global properties of cell
populations15, only by constructing specialized atlases for indi-
vidual cell types can one achieve the level of resolution required
to discriminate the spectrum of transcriptional states that can be
assumed by each cell type.

A second outstanding challenge in single-cell data science is the
mapping of single cells to a reference atlas16, and several methods
have been proposed to address this task17–20. These methods allow
mapping cluster annotations of a reference atlas to individual cells
of a query dataset (also referred to as “label transfer”). However,
these methods define a new embedding space specific for the query,
not preserving the integrity of the reference atlas space upon
mapping. The ability to embed new data points into a stable
reference map would enable robust, reproducible interpretation of
new experiments in the context of curated and annotated cell
subtypes and states. In addition, different conditions (e.g. pre- vs.
post-treatment, or mutant vs. wild-type) could be compared over a
unified transcriptomic reference landscape. In the absence of reli-
able reference cell atlases—and computational tools to project new
data onto these atlases—researchers must rely on unsupervised,
manual annotation of their data, a time-consuming and, to a certain
degree, subjective process.

In this work, we develop ProjecTILs, a computational frame-
work for the projection of new scRNA-seq data into reference
atlases. In contrast to other methods, ProjecTILs enables mapping
of new data into a reference atlas without altering the reference
space, as well as detecting and characterizing previously unknown
cell states that “deviate” from the reference subtypes. We demon-
strate the robustness of the method by interpreting the effects of T
cell perturbations in multiple model systems of cancer and infec-
tion, enabling the comparison of cell states from multiple studies
over a stable system of coordinates. Finally, ProjecTILs analysis of
T cell heterogeneity and clonal structure across patients, tissues,
and cancer types, shows a high degree of conservation between
human and mouse TIL states and provides insights into the dif-
ferentiation of CD8+ T cells in cancer.

Results
A cross-study reference atlas of tumor-infiltrating T cell states.
With the goal to construct a comprehensive reference atlas of T
cell states in murine tumors, we collected publicly available
scRNA-seq data from 21 melanoma and colon adenocarcinoma
tumors (see “Methods”). In addition, we generated scRNA-seq
data from four tumor-draining lymph node samples (MC38_dLN
dataset, see “Methods”). After data quality checks and filtering
pure αβ T cells, our database comprised expression profiles of
16,803 high-quality single-cell transcriptomes from 25 samples
from six different studies (Supplementary Table 1).

Substantial batch effects are typically observed between single-
cell experiments performed on different days, by different labs, or
using different single-cell technologies. Without batch-effect
correction, cells tend to cluster by study rather than by cell type
(Fig. 1a). We applied the STACAS algorithm14 to integrate the
datasets over shared cell subtypes and combine them into a unified
map (Fig. 1b, Supplementary Fig. 1). Unsupervised clustering and
gene enrichment analysis, supported by T cell supervised
classification by TILPRED21 (Fig. 1c), allowed annotating areas
of the reference map into “functional clusters” (Fig. 1d),
characterized by known gene expression signatures of specific T
cell subtypes. We observed a distinct separation between CD4+

and CD8+ T cells, which could be further divided into subgroups.
In particular, we identified a cluster of naive-like CD8+ T cells
(which may consist of naive as well as central memory cells) and a
smaller cluster of naive-like CD4+ T cells, co-expressing Tcf7 and
Ccr7 while lacking cytotoxic molecules and activation features
such as Pdcd1 and Tnfrsf9/4-1BB; a cluster of effector-memory
(also abbreviated as EM) CD8+ T cells, co-expressing Tcf7 and
granzymes (most prominently Gzmk), with low to intermediate
expression of Pdcd1; an “early-activation” state of CD8+ T cells,
with an intermediate profile between the naive-like and the EM
CD8+ types; a CD8+ terminally-exhausted (Tex) effector cluster,
characterized by high expression of granzymes, multiple inhibitory
receptors (Pdcd1, Ctla4, Lag3, Tigit, Havcr2/TIM-3, etc.) and
Tox21,22; a CD8+ precursor-exhausted (Tpex) cluster, with co-
expression of Tcf7, Pdcd1, Ctla4, Tox but low expression of Havcr2
or granzymes21,23,24; a cluster of CD4+ Th1-like cells, expressing
IFN-gamma receptor 1 (Ifngr1) and Fasl25; a CD4+ follicular-
helper (Tfh) population25,26, with a pronounced expression level
of Cxcr5, Tox, and Slamf6; and a cluster of regulatory T cells
(Treg), identified by Foxp3 (Fig. 1d–f). As expected, while TIL
samples were mostly enriched in Tex, Tpex, and Treg subtypes,
tumor-draining lymph nodes were enriched in naive-like
and follicular helper cells (Fig. 1g). We confirmed that clusters
identified by unsupervised analysis of individual datasets
were largely consistent with corresponding “functional clusters”
shared by multiple datasets in the integrated reference atlas
(Supplementary Fig. 1).
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Overall this reference atlas summarizes TIL diversity using
nine broad cell subtypes with distinct phenotypes, functions,
metabolic lifestyles, and preferential tissue distributions, and
strongly supported by experimental evidence in murine models.
An interactive interface of the TIL atlas, allowing the exploration
of T cell subtypes and gene expression over the reference map can
be accessed at http://TILatlas.unil.ch.

Accurate projection of scRNA-seq data onto reference atlases.
In order to enable interpretation of new datasets in the context
of reference T cell subtypes, we developed ProjecTILs, a com-
putational method for the projection of scRNA-seq data onto a
reference atlas. The essential input to ProjecTILs is the single-
cell expression matrix of the query dataset, e.g., in UMI counts
or TPMs, where rows represent the genes and columns represent
the individual cells. The pre-processing steps (Fig. 2a) normalize

scRNA-seq data using a log-transformation (if provided non-
normalized) and filter out non-T cells (see “Methods”). In order
to reduce batch effects between the query and the reference map,
the STACAS/Seurat integration procedure14 is used to align the
query to the reference, and in this way correct the expression
matrix of the query dataset (Fig. 2b, see “Methods”). The cor-
rected query matrix can then be projected onto reduced-
dimensionality representations (e.g., PCA, UMAP) of the
reference, effectively bringing them into the same reference
space. To this end, the algorithm computes the PCA rotation
matrix of the reference map, which contains the coefficients to
linearly transform gene expression into PCA loadings (i.e., the
eigenvectors and their relative eigenvalues); the same PCA
rotation matrix is then also applied to the query set (Fig. 2c).
Likewise, the UMAP transformation (allowing the computation
of UMAP coordinates from PCA loadings) is applied to the

Integrated datasets Supervised annotationUnaligned datasets STACAS TILPRED
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Fig. 1 Building a reference map of TIL transcriptomic states. a Uniform Manifold Approximation and Projection (UMAP) plots of single-cell
transcriptomic profiles from different studies, before batch-effect correction (i.e., unaligned datasets); (b) Same plot for integrated datasets after STACAS
alignment: successful dataset integration mitigates batch effects while preserving biological differences between T cell subtypes; (c) Supervised T cell
subtype classification by TILPRED shows that, after alignment, cells cluster mainly by cell subtype rather than by dataset of origin; (d) Unsupervised
clusters were annotated as nine functional states based on TILPRED prediction, as well as by (e) average expression of marker genes in each cluster and by
(f) single-cell expression of key marker genes over the UMAP representation of the map; (g) Reference atlas colored by tissue of origin (tumor and
draining lymph node). An interactive reference TIL atlas can be explored online at http://tilatlas.unil.ch.
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query set to project it into the original UMAP embedding of the
reference map. Note that while the expression counts of the
query set and their embedding into reduced spaces are modified
by the alignment procedure, those of the reference map are not,
and its low-dimensional visualizations remain unaltered; dif-
ferent query sets, or experiments containing different conditions
can therefore be compared over the same reference map. After

projection, a nearest-neighbor classifier predicts the subtype of
each query cell by a majority vote of its annotated nearest
neighbors (either in PCA or UMAP space) in the reference map.
Benchmarking ProjecTILs by cross-validation experiments
showed a high accuracy (>90%) both for the projection (Sup-
plementary Fig. 2, and “Methods”) and classification tasks,
significantly outperforming Azimuth/Seurat 427 and scmap17,
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two alternative methods for reference-based single-cell data
analysis (Supplementary Fig. 3).

As an illustrative application of ProjecTILs to analyze a query
scRNA-seq dataset, we projected onto the reference murine TIL
map a dataset of tumor-specific CD8+ T cells isolated by tetramer
staining from untreated B16 melanoma tumors expressing chicken
ovalbumin (OVA), from the study by Miller et al.28. Consistently,
ProjecTILs assigned the great majority (90.2%) of tumor-specific
cells to the Tex subtype, while small fractions were assigned to the
Tpex (4.4%) and EM-like (3.9%) compartments (Fig. 2d–f). The
expression profile of CD8_Tex cells matches well with the reference
map for a panel of marker genes, with a pronounced overexpression
of Gzmb and the proliferation marker Mki67 (Fig. 2e), as expected
by antigen-induced activation29,30. ProjecTILs allows visualizing an
additional dimension on the z axis together with the 2D UMAP
representation. In this case, we chose to plot a cell cycling signature
score, which reveals a striking proliferative signal for the cells in the
query dataset (Fig. 2g). Taken together, these results are in
agreement with experimental observations and well compatible with
the notion that tumor-specific CD8+ T cells, as a result of
continued antigenic stimulation in the tumor, become enriched in a
highly expanded, terminally exhausted state28,31.

ProjecTILs reveals altered gene programs following T cell
perturbations. CD8+ T cells depend on the microRNA 155
(miR-155) to acquire anti-tumoral or anti-viral effector
functions32,33. To interpret the impact of miR-155 deficiency on
the TIL landscape, we submitted to ProjecTILs the data from Ekiz
et al.34, which consist of total immune (CD45+) single cells from
untreated B16 melanoma tumors growing in miR-155 T cell
conditional knock-out (KO) mice, as well as in wild type (WT)
mice. Note that, although the WT sample from this study was
included in the construction of the reference map, for this ana-
lysis it was re-projected using the same pipeline applied to the
miR-155 KO sample. This ensures that the two conditions were
processed and projected uniformly and that they could be com-
pared over the same reference map. Projecting these data onto the
reference TIL atlas revealed that in WT mice, the majority of TILs
correspond to CD8_Tex, with smaller populations of other cell
types. Conversely, CD8+ TILs from miR-155 KO mice were
mostly projected to the naive-like compartment (Fig. 3a).
Moreover, while T cells accounted for 16% of the total immune
infiltrate in WT mice, they were reduced to 8% in KO mice.
Consistently with the predicted change in the dominant T cell
phenotype from exhausted to naive-like upon miR-155 KO, the
expression of activation markers (e.g., Tnfrsf9 and Ifng) was
reduced in the KO mice, while memory/naive markers such as
Tcf7 and Ccr7 were overexpressed (Fig. 3b). The KO TILs
also scored lower in terms of the cycling signature (Fig. 3c).
Altogether, these results are consistent with the critical role of
miR-155 for T cell activation and differentiation. Unable to dif-
ferentiate and acquire effector functions, miR-155 KO CD8+ TILs
fail to control tumor growth34. In brief, by comparing the
changing landscape and cell subtypes distribution of the KO

compared to the WT TILs, ProjecTILs provides a straightforward
interpretation of the effect of this genetic alteration, all in the
context of annotated, reference T cell subtypes.

While low-dimensional representations such as the UMAP are
useful to summarize the most prominent transcriptional features
that discriminate distinct T cell subtypes, they are often not
sufficient to fully capture the heterogeneity of cell transcriptomes.
With the goal to provide more resolution to the analysis of T cell
states, and in particular to identify gene programs that are shared
by multiple cell subtypes, we decomposed the reference atlas into
50 dimensions using Independent Component Analysis (ICA)
(see “Methods”). Because ICA finds a representation of the data
where the dimensions share minimal mutual information, it can
be useful to separate different gene modules and transcriptional
programs within complex gene expression datasets35 and
provides a complementary description to the UMAP representa-
tion—which in turn is built over a PCA reduction of the
transcriptomic space. In order to interpret the biological
relevance of the ICA components in the reference TIL atlas, we
investigated their correlation with annotated molecular signatures
from the mSigDB database36 and observed several modules
associated with key cellular pathways (Supplementary Fig. 4). For
example, the component ICA 33 was driven by several genes
associated with hypoxia (e.g., Tpi1, Pkg1, Ldha, Slc2a1); ICA 40
was rich in E2F targets (Mcm2 to Mcm7, Dut, Cdc6), indicating a
module of key regulators of cell cycle progression; ICA 26
contained multiple genes involved in cytotoxicity, such as Prf1
(encoding perforin 1) and several granzymes (Gzme, Gzmc,
Gzmb); and ICA 37 was strongly associated with response to
interferons (e.g., Ifit1, Ifit3, Rsad3) (Supplementary Fig. 5).
Critically, some ICA components appeared to affect mainly
specific T cell subtypes or regions in the context of our reference
map (e.g., ICA 43 and 45), while others captured features of
multiple subtypes/regions (e.g., ICA 33 and 37, Supplementary
Fig. 6).

Importantly, we can compare a projected query dataset with
the reference map—or two query conditions between themselves
—in their ICA representations, and identify components in which
the query dataset deviates from the reference. ICA dimensions
where the two sets differ significantly suggest gene modules that
are up- or down-regulated in the query set, and may aid the
biological interpretation of experimental observations. As an
illustrative example of this approach, we re-analyzed the scRNA-
seq fromWei et al.37. In this study, the authors show that ablation
of Zc3h12a (which encodes Regnase-1) in CD8+ T cells improved
the therapeutic efficacy of adoptively transferred, tumor-specific
cells in mouse models of melanoma and leukemia. Projection of
the Regnase-1-null CD8+ TILs and WT counterparts into our
TIL reference atlas showed that cells from the two conditions
occupied similar CD8+ regions of the map (Fig. 3d). However,
Regnase-1-null CD8+ T cells displayed a 3-fold relative enrich-
ment in Tpex and a 1.8-fold enrichment in Tex compared to WT
T cells (Fig. 3e). Consistently, Regnase-1-null TILs showed an
overall increased expression of Tcf7, Slamf6, and Pdcd1 (Fig. 3f).

Fig. 2 The ProjecTILs analysis workflow. a The essential input to ProjecTILs is a query dataset in the form of a gene expression matrix. Pre-processing
steps include data normalization and filtering of non-T cells. b The normalized, filtered gene expression matrix is aligned to the reference map using
STACAS, to bring the query data into the same scale as the reference map. c The PCA rotation matrix and UMAP transformation calculated on the
reference map are applied to the query set, effectively embedding it into the same space of the reference map, and allowing their direct comparison and
joint visualization. d–g Projection of tumor-specific tetramer+ CD8+ TIL single-cell data from Miller et al. d Predicted coordinates of the projected query in
UMAP space as density contours. e Gene expression signature of query cells (orange) and reference cells (black) for the three most represented T cell
subtypes; average gene expression for the reference is normalized between 0 and 1. f Percentage of cells predicted by the algorithm for the nine cell states
of the reference atlas; over 90% of total cells are predicted to be CD8+ terminally exhausted cells (CD8_Tex). g UMAP plot augmented with cell cycling
score on the z axis (side and top view); CD8_Tex cells for the query dataset are shown in red.
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Fig. 3 ProjecTILs reveals the effect of genetic perturbations on T cell transcriptomes and phenotypes. a–c ProjecTILs analysis of the tumor
CD45+ scRNA-seq data by Ekiz et al.34: a WT and miR-155 KO TILs projected on the reference atlas (black points and density contours) and barplots
depicting percentage of cells projected in each T cell subtype for the two conditions. T cells constituted 16% and 8% of the CD45+ cells for
the WT and miR-155 KO samples, respectively; (b) Violin plots showing expression of activation and cytotoxicity (Pdcd1, Tnfsf9/4-1BB, Gzmb, Ifng)
and naive/memory (Tcf7, Ccr7) markers; (c) Cell cycling score represented on the z axis of the UMAP for the reference map of WT cells and miR-155
KO cells. d–i ProjecTILs analysis of the scRNA-seq data by Wei et al.37: d Single-cell projection on the reference TIL atlas (similar to A); (e)
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Ablation of Regnase-1 favored acquisition of the Tpex state,
explaining the increased T cell persistence reported by Wei et al.
However, T cell-mediated tumor control additionally requires
enhanced effector functions. To investigate whether Tex Regnase-
1-null cells displayed altered gene programs compatible with an
enhanced effector state, in addition to their increased relative
abundance, we applied ProjecTILs discriminant ICA components
analysis. Interestingly, ICA discriminant analysis of Tex cells
between the two conditions revealed that the most significant
deviation was in ICA 25 (KS test statistic= 0.612, p= 0), a
component driven by the checkpoint molecules Lag3 and Klrc1
(Fig. 3g,h). Visualizing the ICA 25 coordinates of the Regnase-1-
null cells on the z axis of the UMAP plot, we clearly observe that
this component is highly down-regulated compared both to the
WT data and the reference map (Fig. 3i). Accordingly, Klrc1
expression was lower in Regnase-1-null cells (Fig. 3f). While
analyzing the expression levels of key marker genes can suggest
global patterns of alteration due to genetic perturbations
(Fig. 3f), only by comparing gene programs in each cell subtype
individually across conditions can one pinpoint the molecular
programs affected by the perturbation while avoiding confound-
ing effects due to global shifts in relative proportions of T cell
subtypes. Importantly, a similar distribution of predicted cell
subtypes and significant down-regulation of ICA 25 could be
detected even in the absence of a control sample, by direct
comparison of the Regnase-1-null cells to the reference map
(Supplementary Fig. 7).

Interpreting T cell states in the context of acute and chronic
infections. While ProjecTILs was originally conceived to study
the diversity of TILs, it can be readily applied to any other bio-
logical context for which a reference atlas can be constructed. A
prominent example is the lymphocytic choriomeningitis virus
(LCMV) infection model, one of the best-studied models of acute
and chronic viral infection. In order to construct a reference atlas
for viral infection models, we collected scRNA-seq data of virus-
specific CD8+ T (P14) cells from three different studies38–40,
consisting of single-cell gene expression measurements at differ-
ent time points for acute and chronic LCMV infection (Fig. 4a).
Alignment by STACAS (Fig. 4b) was followed by unsupervised
clustering (Fig. 4c, see “Methods”). By inspecting the gradients of
gene expression across the UMAP representation of the atlas
(Fig. 4d), as well as the average expression of a panel of marker
genes in the different unsupervised clusters (Fig. 4e), we anno-
tated seven functional clusters: effector early, effector inter-
mediate, effector cycling, memory precursor, short-lived effector
cells (SLEC), precursor exhausted (Tpex), and exhausted (Tex)
(Fig. 4c). Cells from early acute infection (day 4.5) were mostly
located in the early, intermediate and cycling effector areas, as
well as in the memory precursor subtype; however, at a later time
point (day 7.5) their distribution of cell subtypes shifted towards
the SLEC subtype (Fig. 4f). Similarly, early chronic infection (day
4.5) was characterized by effector T cell types, nearly indis-
tinguishable from the acute cells at the same time point; but as the
infection progressed (days 7.5 and 30) their subtype distribution
diverged from the acute infection towards Tpex and Tex subtypes
(Fig. 4g) with a non-persistent wave of SLEC-like cells at an
intermediate time point (day 7.5). An interactive interface to the
viral CD8+ T cell atlas is available at http://virustcellatlas.unil.ch.

With this virus-specific CD8+ T cell reference atlas in hand,
we proceeded to project new datasets to study the effect of
genetic alterations on CD8+ T cells during viral infection. The
phosphatase PTPN2 has been proposed as an attractive
immunotherapeutic target to enhance T cell cytotoxicity in
chronic infection and cancer39,41. Automated ProjecTILs analysis

of co-transferred Ptpn2-KO and control P14 cells at day 30 after
LCMV infection and CD4 depletion39 revealed that the large
majority of cells, both Ptpn2-KO and WT, were projected either
in the Tpex or Tex clusters (Fig. 4h). Importantly, while the Tex
compartment constituted only about 20% of the WT T cells, it
amounted to over 50% of Ptpn2-KO cells (Fig. 4i). Moreover,
analysis of the average expression of key marker genes confirmed
a good agreement between Tpex expression profiles (for control,
KO and reference subtype), as well as overexpression of Pdcd1
and Tox in the Ptpn2-KO cells (Fig. 4j). Therefore, ProjecTILs
automated analysis supported the original observations that in
chronic infection, Ptpn2 deletion promotes differentiation of
Tpex into Tex, which translates into a higher number of effector
cells, improving—at least transiently—viral and tumor control39.

As a second example of projection, we applied ProjecTILs to
study the effect of deleting the transcription factor Tox in virus-
specific CD8+ T cells during chronic viral infection. Projection of
the data from Yao et al.40 revealed that Tox-KO cells had a
dramatic alteration in subtype composition compared to WT
controls (Fig. 4k). In particular, it showed a large increase in the
fraction of SLECs, at the expense of memory precursors and Tpex
cells (Fig. 4l). Analysis of marker profiles confirmed that the Tox-
KO cells classified as SLEC express high levels of Klrg1 (Fig. 4m).
These results are consistent with previous studies that demon-
strated that TOX is required for the establishment of the
exhaustion CD8+ T cell program22,40,42–44.

Finally, we projected P14 cells from CD4-depleted (or isotype
control) chronically infected mice from Kanev et al.45. We
observed that anti-CD4 antibody-treated mice had a dramatic
shift in their T cell subtype composition from SLEC to Tpex
compared to control mice, while the proportion of Tex
remained similar (Supplementary Fig. 8a, b). This effect is in
agreement with the conclusions of the original study, which
found that in chronic infections, progenitor cells (Tpex) are
unable to properly differentiate into effector cells in the absence
of CD4+ T cell help45, and therefore “accumulate” in this state.
We could also confirm that CD4 depletion had an effect on
increasing Pdcd1 expression, especially in Tex cells (Supple-
mentary Fig. 8c). These data were generated using the SCRB-
seq protocol46, a type of sequencing that was not included in
the reference LCMV atlas. Therefore, this example also
highlights the robustness of ProjecTILs to accurately project,
and enable the correct interpretation of, single-cell data across
multiple sequencing platforms.

A crucial variable affecting the heterogeneity of T cells is their
environment. Sandu et al.47 investigated the diversity of CD8+

T cells in chronic LCMV infection across six different tissues, and
defined organ-specific transcriptomic profiles that could be
divided into five main functional subtypes. Taking advantage of
our reference CD8+ T cell atlas for viral infection, we re-analyzed
the data from Sandu et al. to investigate if tissue-specific
transcriptomic alterations could be detected using our automated
ProjecTILs pipeline (Fig. 5a). In general, the majority of virus-
specific T cells were predicted to be terminally exhausted (Tex) as
expected in this infection model, but different tissues were
composed of variable fractions of other T cell subtypes (Fig. 5b).
For instance, lung, blood, and spleen had the highest percentage
of effector cells (SLEC), while lymph node and spleen had an
exceeding percentage of Tpex cells compared to other tissues.
While the original study defined fewer T cell states compared to
our reference atlas for infection (Fig. 5c), the tissue-specific
composition for the main T cell subtypes showed a remarkable
correspondence between the ProjecTILs prediction and the
original, unsupervised analysis (Fig. 5d). A unique advantage of
projection into a stable reference atlas is that multiple samples (or
multiple tissues, in this case) can be compared over the same
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reference, and for specific T cell subtypes. Differential expres-
sion analysis between SLEC from blood and spleen showed that
SLEC in spleen overexpress markers of activation such as Nfkbia,
Nr4a1, and Cd69 (Fig. 5e), indicating that these cells may have
recently encountered antigen, unlike circulating cells. A similar
observation can be made by comparing Tex cells from liver and
spleen, but in this case also a significant overexpression of Gzma
in liver is observed (Fig. 5f), as also noted in the original study.

Interestingly, two of the most discriminant ICA components
between spleen and other tissues contain several genes involved in
T cell activation and TCR signaling (Fig. 5g). This analysis
demonstrates that, given an appropriate reference atlas, Projec-
TILs can detect tissue-specific signals using a fully automated
pipeline and default parameters, and obtain very similar results
compared to a manually curated analysis performed by expert
immunologists and bioinformaticians.
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ProjecTILs reveals a strong conservation of TIL subtypes
across species. Mouse models are essential to gain mechanistic
insights into tumor immune responses. Yet, precise definition of
TIL subtype conservation between human and mouse has
remained elusive. Here we asked whether the T cell states
described in human tumors have a clear mapping to mouse TIL
subtypes. Using orthologous genes between the two species, we
applied ProjecTILs to analyze human TIL scRNA-seq data from
30 cancer patients from two cohorts (melanoma cohort of Li
et al.5 and basal cell carcinoma cohort of Yost et al.48) in the
context of the reference murine TIL atlas (see “Methods”). Pro-
jected TILs from individual patients broadly distributed over the
reference murine atlas (Fig. 6a, Supplementary Fig. 9).

ProjecTILs T cell subtype classification showed a good
correspondence with the T cell annotations assigned by the
authors of the original studies (Li et al.5 and Yost et al.48). For
example, human TILs originally defined as Treg, follicular-helper,
naive or T-helper were largely projected to the corresponding
subtypes on the murine reference atlas; the “CD8 effector” (Li
et al.) and “CD8 cytotoxic” (Yost et al.) cells were projected to the
reference effector memory (EM) subtype; the “CD8 exhausted”
cells (Yost et al.) and “CD8 dysfunctional” cells (Li et al.), were
mostly projected to the reference exhausted subtype (Fig. 6b,
Supplementary Fig. 10). Surprisingly, a significant fraction of the
cells annotated by the authors as “exhausted/dysfunctional”
were projected on the EM state of the murine atlas. Further
examination revealed that these cells displayed a clear effector-
memory gene profile (i.e., high GZMK, GZMA, and GZMB
expression) but lacked markers of exhaustion, such as TOX,
ENTPD1, HAVCR, PDCD1 (Fig. 6c), indicating that they were
correctly projected to the EM reference subtype. SingleR49

classification of exhausted/dysfunctional T cells of one cohort
using expression profiles of the second cohort confirmed that a
large fraction of these cells displayed a cytotoxic/effector-memory
phenotype (Supplementary Fig. 11a, b). Similarly, naive cells from
one cohort could not be unequivocally identified as such from
the expression profiles of the other cohort (Supplementary
Fig. 11c, d); a singleR model trained on human PBMC single-cell
data27 suggested that cells annotated as naive in both cohorts
contained naive/central memory cells as well as CD4+ effector
cells (Supplementary Fig. 11e, f), in line with the ProjecTILs
classification.

As an alternative projection algorithm to interpret human TIL
states, we applied Azimuth/Seurat 427, that by default utilizes a
human PBMC reference atlas. We applied Azimuth to project T
cell data from the Yost et al. cohort using the PBMC reference
provided by the authors, as well as using our mouse TIL atlas.
While broad T cell states (CD4+ vs. CD8+, Tregs) could be
distinguished in the projections on the PBMC atlas, Azimuth
could not discern between more specific subtypes. A considerable
fraction of T cells were also assigned to the NK and MAIT areas

of the reference map (Supplementary Fig. 12). When Azimuth
was applied to the more specialized TIL reference atlas developed
by us, projections appeared reasonable for certain cell types (Treg,
Tfh, CD8+ effector), but naive-like cells were mostly misclassi-
fied, as well as exhausted T cells (Supplementary Fig. 13a, b). On a
subset of cell subtypes that could be confidently mapped between
studies, Azimuth resulted less accurate than ProjecTILs for the
classification task (Supplementary Fig. 13c, d). These results
highlight the importance of an accurate projection algorithm, but
also of a robust atlas, specific for the problem at hand, rather than
generalist, whole tissue atlases.

To further study the conservation of the reference TIL
subtypes of our atlas, we analyzed scRNA-seq data from 132
tumor biopsies from 10 different studies, covering 7 different
cancer types. After applying ProjecTILs projection and
classification, we identified the differentially expressed genes
of each TIL subtype across all datasets (see “Methods”), and
used these to calculate average expression profiles for individual
studies and TIL subtypes (Fig. 7, Supplementary Data 1). For
example, Gzma, Gzmk, and Ccl5 were significantly more
expressed in CD8_EM cells from most cancer types, both
murine and human; Pdcd1, Havcr2, and Prf1, among other
genes, identified CD8+ exhausted cells; Xcl1, Tnfsf4, and Tox,
among others, marked precursor exhausted CD8+ T cells; Sell,
Tcf7, Il7r, and Ccr7 were enriched in both CD4+ and CD8+

naive-like cells; Foxp3, Il2ra, Ctla4 and several other genes
identified Tregs; Tox2 and Tbc1d4 were differentially expressed
in Tfh; and Cd40lg, Anxa1 and Rora were enriched in T helper
cells. Multiple other genes without previously documented
associations with tumor-infiltrating T cells were also identified,
revealing interesting targets for future validation (Supplemen-
tary Data 1). Overall, average expression profiles clustered
preferentially by TIL reference subtype rather than by study,
cancer type or species (Fig. 7). In particular, observing human
and murine samples clustered together in each of the nine
reference subtypes is statistically significant (p < 3 × 10−6), and
points to a large conservation between human and mouse TIL
states.

As a further example of projection to identify differences
between human cohorts, we analyzed biopsies taken at baseline
from the study by Sade-Feldman et al.6, consisting of 19
melanoma patients that were classified as responders (R) and
non-responders (NR) to checkpoint blockade. In agreement with
the authors’ observations, ProjecTILs revealed that TCF7-high
TIL subtypes were enriched in responders vs. non-responders
(Supplementary Fig. 14a). Intriguingly, these subtypes corre-
sponded to naive-like CD8+ and CD4+ cells, and not to TILs
displaying markers of tumor reactivity, such as PD-150. A similar
subtype bias was found between metastatic lymph nodes and
tumors, irrespectively of the patients’ responsiveness to immu-
notherapy (Supplementary Fig. 14b). This prompted us to analyze

Fig. 4 A reference atlas of virus-specific CD8+ T cells during acute and chronic infection. a Unaligned datasets of lymphocytic choriomeningitis virus
(LCMV)-specific CD8+ T (P14) cells during infection show pronounced batch effects, which (b) can be mitigated by STACAS alignment. c Unsupervised
clusters were annotated to seven functional clusters by examining (d) the gradient of expression and (e) the average expression of marker genes by
cluster, i.e., Memory Precursors; Early, Cycling, Intermediate, and short-lived (SLEC) effectors; Precursor Exhausted (Tpex) and Terminal exhausted (Tex)
CD8+ T cells. f Density of cells across the map at two time points in acute infection and (g) at three different time points in chronic infection. h–j Analysis
of Ptpn2 KO versus control (WT) using the data by Lafleur et al.39: h ProjecTILs projection of WT and Ptpn2 KO cells onto the infection reference map; (i)
predicted percentage of cells for each T cell subtype; (j) normalized average expression for selected markers in the reference map, in WT and Ptpn2 KO
cells. k–m Analysis of Tox KO versus control (WT) using the data by Yao et al.40: k Projection in UMAP space by ProjecTILs for the WT and Tox KO
samples; (l) predicted percentage of cells for each T cell type; (m) normalized average expression for selected markers in the reference map, in WT and
Tox KO cells. Batches for integration (panels a, b): Chen: chronic infection day 8; LaFleur: chronic infection day 30; Yao_D4.5_D7Arm: acute and chronic
infection day 4.5 + acute infection day 7; Yao_D7_Cl13_1 chronic infection day 7 sample 1; Yao_D7_Cl13_2 chronic infection day 7 sample 2.
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in more depth the defining features of tumor-specific human TILs
in terms of reference cell subtypes.

Insights into the differentiation of human tumor-specific
CD8+ T cells. Some studies have suggested that only a fraction of
tumor-resident CD8+ T cells are able to recognize tumor
antigens51,52 and identification of tumor-reactive T cells is far
from trivial. Persistent antigenic stimulation of T cells in cancer
and chronic infection induce a (TOX-driven) exhaustion program
that sustains high expression of inhibitory receptors. Indeed,
multiple surface markers associated with exhaustion have been

proposed as markers of tumor reactivity, including PD-150, TIM-
353, and CD3951.

To test the assumption that human Tex cells are tumor-
specific, we first analyzed TIL subtype composition across tissues
in the Li et al. melanoma cohort. As expected, the most abundant
T cell subset in blood was the naive-like, followed by EM cells
(Fig. 8a). Naive-like cells are likely to include both naive and
central memory cells, which share very similar transcriptional
profiles. Compared to blood, metastatic lymph node (mLN)
biopsies were enriched in Tfh, Tregs, Tex, and Tpex, and tumor
biopsies were strongly enriched in Tex and Tpex compared to
mLN and blood (Fig. 8b). Moreover, we observed that the top
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Fig. 6 Accurate classification of human TIL states by projecting cancer patient transcriptomes on a reference mouse atlas. a scRNA-seq data
from patients’ biopsies were analyzed using ProjecTILs in human-mouse orthology mode. Below, UMAP projection for TILs from one subject, colored
by annotation according to Li et al. Projections for other subjects are available in Supplementary Fig. 9. b Fraction of cells classified in different
subtypes by ProjecTILs compared to main original annotations by Yost et al. or Li et al. (complete annotation in Supplementary Fig. 10). c UMAP
projections of cell subsets defined according to TIL state annotations by Yost et al. (e.g. exhausted, effector) or Li et al. (e.g. dysfunctional, cytotoxic).
Radar plots display representative expression profiles of cells classified in the reference states for T cell marker genes. BC carcinoma basal cell
carcinoma.
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Fig. 7 Conservation of T cell subtypes across studies, cancer types, and species. Columns correspond to reference TIL subtypes for a given study,
including all subtype-study combinations represented by at least 50 cells. Rows represent 88 marker genes, identified by concatenating all genes that were
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integrated average expression for the given gene and subtype-study combination, scaled and centered by row. Clustering by column shows that subtype-
study expression profiles cluster preferentially by TIL subtype rather than by study, cohort or species (top colored bars). Species abbreviations: H human,
M mouse.
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Fig. 8 ProjecTILs analysis of human TIL states across tissues and their clonal relatedness. a ProjecTILs projections and predicted subtype frequencies in
biopsies from different tissues: blood, metastatic lymph nodes (mLN) and tumors (data from Li et al. cohort). b Subtype composition bias (fold change) in
tumors vs mLN. c Frequency of cells from the top 10 expanded clonotypes over the total number of cells in each subtype. d–e The upper panels (heatmaps)
display Morisita similarity indices measuring TCR repertoire overlap for each pair of TIL subtypes in the Li et al. (d) and Yost et al. (e) cohorts. Bottom
panels: projection of TIL clones for the top three expanded clonotypes enriched in Tex or Tpex subtypes in each patient cohort. f Average normalized gene
expression of human T cells projected in the CD8+ NaiveLike, CD8+ Effector Memory (CD8_EM), CD8+ Tpex and CD8+ Tex subtypes for a panel of key
marker genes.
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expanded clonotypes were mostly occupying the Tex and Tpex
subtypes (Fig. 8c). The positive correlation of Tex and Tpex
subtype frequency with tumor burden, as well as the enrichment
of clonally expanded T cells in these compartments, is consistent
with the notion that, in cancer patients, tumor-specific TILs are
mostly found in (PDCD1-high TOX-high) exhausted states,
similarly to mouse28,31.

We next exploited TCR clonal linkage to evaluate the
presence of tumor-specific TILs that do not correspond to Tex
and Tpex subtypes. First, we calculated TCR clonal repertoire
overlap between TIL subtypes. We verified a strong overlap
between Tex and Tpex repertoires in both cohorts, as measured
by Morisita similarity index (Fig. 8d,e, top panels), consistent
with mice studies showing that Tpex cells give rise to
Tex21,28,31,54. Interestingly, we also found a similarly strong
clonal relatedness between Tex/Tpex and EM subtypes in the Li
cohort as well as, to a lesser extent, in the Yost cohort (Fig. 8d,e).
This suggested that a fraction of EM TILs were also tumor
specific. Next, we selected all clonotypes that were enriched
(at least 50% of the clones) in Tex or Tpex—i.e., tumor-specific
clonotypes. Projection of these tumor-specific clonotypes
confirmed that they spanned the three Tex, Tpex, and EM
subtypes in the two cohorts (Fig. 8d–e, bottom panels).

Gene expression profiles for human T cells projected onto the
reference murine atlas confirmed that most key T cell markers
were consistent with their ProjecTILs subtype assignment
(Fig. 8f). TOX and TNFRSF9 (4-1BB) expression values were
higher in Tpex and Tex compared to EM, indicating higher
exhaustion and activation levels in Tpex and Tex. Consistently,
PDCD1, LAG3, HAVCR2 (TIM-3), and ENTPD1 (CD39) were
also higher in Tex compared to EM, and lower in EM compared
to the naive-like state. In contrast, CXCR3, GZMK, and GZMA
expression was highest in EM. Compared to Tex, tumor-specific
Tpex cells expressed higher levels of TCF7 and IL7R, and lower
levels of cytotoxicity molecules including GZMA, GZMB, and
PRF1. Notably, expression of the type 1 classical dendritic cells
(cDC1) chemoattractant XCL1 was specific to the Tpex subtype,
consistent with Tpex gene profiling in mice21,28,31 and their co-
localization with professional antigen-presenting cells niches in
murine and human tumors31,55. Finally, Tpex had lower
expression of cell cycling genes such as MKI67 compared to
Tex, consistent with their higher quiescence.

Altogether, these observations demonstrate that, in different
human cancer types, tumor-specific CD8+ TILs co-exist in three
distinct subtypes: a cytotoxic TOX-high exhausted subtype; its
TOX-high TCF7-high exhausted precursor, quiescent and char-
acterized by lower cytotoxicity; and a precursor subtype that does
not display the hallmarks of tumor-specific TILs but resembles
blood-circulating effector memory T cells. These results are
compatible with a model in which CXCR3-high blood-circulating
EM cells are recruited in the tumor, irrespectively of their antigen
specificity. Then, rare tumor-specific TOX-low EM TILs driven by
persistent antigenic stimulation differentiate into TOX-high XCL1-
high quiescent (Tpex) cells which, following interaction with
XCR1+ APCs, give rise to highly proliferative terminally
exhausted/dysfunctional (Tex) CD8+ TILs that engage in tumor
cell killing (Fig. 9). Alternatively, TCR clonal linkage is compatible
with a model in which some EM TILs might directly differentiate
into Tex cells, without transitioning through the Tpex subtype.
Importantly, our results demonstrate that these subtypes are
conserved across cohorts, cancer types, and species.

Discussion
We share the goal of many others to be able to “read” immuno-
logical states in health and disease by single-cell transcriptomics

and identify therapeutic opportunities. Definition of robust, bio-
logically relevant cellular states by scRNA-seq analysis is typically
an iterative, time-consuming process that requires advanced
bioinformatics and biological domain expertise. Even after suc-
cessful analysis, cell clusters are not directly comparable between
studies, preventing us from learning general biological rules across
cohorts, conditions, and models. Construction of single-cell tran-
scriptomic atlases is a very effective approach to condense the
diversity of molecular profiles within a cell type, a tissue, or an
entire organism. This is particularly powerful to characterize the
heterogeneity of cell populations, to elucidate mechanisms and
trajectories of differentiation as well as to aid the design of thera-
pies targeted to specific cell types. Reference atlases can also serve
as a reliable, stable baseline for the interpretation of new experi-
ments, against which to evaluate the effect of cellular perturbations,
such as changes in the balance between pre-existing subtypes or the
identification of novel states in response to immunotherapies. In
this work we described a computational method to interpret
immunological states by projecting scRNA-seq data onto a refer-
ence T cell atlas, allowing the analysis of new data in the context of
a stable, curated collection of T cell subtypes. Compared to other
available methods, ProjecTILs has the advantage that its reference
atlas remains unaltered upon projection of new datasets. Therefore,
this approach allows mapping into the same reference space T cell
states that were defined across different studies, cohorts and cancer
types, and provides a framework for large scale meta-analyses to
identify cell states associated with prognosis and responsiveness to
immunotherapy.

While it is useful to summarize cell heterogeneity as discrete
subtypes for conceptualization and the design of experimental
validations, it is also apparent that cells exist in a continuum of
states, which would be best described as probability distributions,
or regions in a multi-dimensional transcriptional space. A key
advantage of embedding new data into a reference atlas of cell
states is that the query cells can be interpreted in a continuous
space of transcriptional states, allowing the visualization of
dynamic changes between experimental conditions. While Pro-
jecTILs can be thought of as a classifier into pre-annotated discrete
reference states, it also operates in a continuous space and can,
therefore, capture intermediate and transient cellular states. For
instance, we observed a pattern of expression of the chemokine
receptor Cx3cr1 that straddles the Tpex and Tex subtypes in the
TIL atlas (Fig. 1f), as well as a gradient of expression for this

Blood Tumor

bystander EM

CXCR3

XCR1+ cDC

tumor-reactive
EM Tpex

XCL1

Tex

cancer cells

Fig. 9 A model of intratumoral CD8+ T cell differentiation supported by
meta-analysis of human scRNA-seq data using ProjecTILs. Blood-
circulating CXCR3-high EM cells are recruited to the tumor; these include
tumor-specific EM cells as well as bystander TILs. Persistent antigen
stimulation drives differentiation of tumor-specific EM TILs into XCL1-high
Tpex cells which, following interaction with XCR1+ APCs, give rise to highly
proliferative Tex CD8+ TILs with capacity to kill cancer cells. An alternative
differentiation path from EM directly to Tex is also plausible. EM: CD8+

effector memory/CD8_EM (TOX-low GZMK-high CXCR3-high). Tpex:
CD8+ precursor-exhausted (TOX-high TCF7-high GZMB-low). Tex: CD8+

exhausted/dysfunctional (TOX-high, TCF7-low, GZMB-high).
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molecule within the Tex compartment in infection. Indeed, mul-
tiple studies have identified Cx3cr1 as a marker for a transitory,
intermediate state between the Tpex and Tex populations56–58.

Beyond the interpretation of new data in terms of known,
annotated cell subtypes, we have shown that ProjecTILs can aid
the discovery of novel states that deviate from the reference, e.g.,
as a consequence of a genetic alteration or tissue adaptation. A
case in point, analysis of the Regnase-1 KO data of Wei and
colleagues not only explained the increased T cell persistence and
tumor control in terms of changes in T cell subtype frequencies
(Fig. 3e) but also revealed the previously unreported down-
regulation of a novel inhibitory gene program in exhausted CD8+

TILs. This program (ICA 25) was driven by Klrc1 (coding
NKG2A) and Lag3 (Fig. 3g,h), and its expression was uncoupled
from that of other inhibitory receptors such as PD-1, TIM-3, or
CTLA4, suggesting a potential benefit of targeting these two
programs simultaneously. Indeed, dual blockade of PD-1 and
LAG-3 results in robust and synergistic reinvigoration of Tex cells
in cancer59 and chronic infection60, while NKG2A blockade has
been shown to potentiate CD8+ T cell immunity induced by
cancer vaccines61.

In most experiments aimed at studying the effect of a pertur-
bation, it is imperative to design a control group, as a baseline to
compare the effect of the perturbation of interest. In single-cell
experiments, when studying the effect of a genetic perturbation or
of a treatment, the control group usually consists of the same cell
population as the perturbation group but under basal conditions.
It is conceivable, as reference atlases become increasingly com-
plete, that the control group is already satisfactorily included in
the reference atlas—the new condition could then be directly
evaluated against the atlas, bypassing the need for deeply re-
sampling the transcriptional space of basal conditions, as we have
illustrated with the analysis of Regnase-1 KO data in absence of a
control sample (Supplementary Fig. 7).

Compared to murine models, the analysis of human TIL states
is complicated by the large genetic and environmental variability
between patients, as well as the large variability between biopsies
due to tissue-specific effects and tumor heterogeneity. Tumor
scRNA-seq studies typically describe T cell heterogeneity in terms
of several clusters, which are then manually annotated in “states”
or “subtypes” defined by the authors and that tend to suffer from
batch effects between samples. As a result, systematic comparison
of T cells states across studies, cohorts and cancer types becomes
extremely difficult. In this work, by meta-analysis of 132 cancer
patient biopsies, we have shown that ProjecTILs can accurately
project human T cell transcriptomes onto a reference mouse atlas,
and that human TIL heterogeneity can be largely explained in
terms of robust T cell subtypes. Such level of conservation
between human and mouse TIL states is encouraging for trans-
lational research in cancer immunotherapy. It also provides the
foundations to identify and characterize human-specific T cell
heterogeneity.

Preventing or reverting exhaustion/dysfunction of tumor-
specific CD8+ T cells is currently one of the major goals in
cancer immunotherapies. While there is evidence suggesting that
pre-exhausted/dysfunctional tumor-specific CD8+ T cells are
present in human tumors, a robust definition of such TIL states
and the differentiation process by which they acquire exhaustion
features has remained elusive. Our meta-analysis of scRNA-seq
and TCR-seq data from two cohorts of melanoma and basal cell
carcinoma patients with ProjecTILs, revealed that (i) the majority
of human TILs do not display features of exhaustion or tumor-
reactivity, and are clonally disconnected from the exhausted TILs,
suggesting that most of them are not tumor specific; and that (ii)
tumor-specific exhausted/dysfunctional CD8+ TILs can co-exist
with two rare, quiescent precursor subtypes: an exhausted TOX+

PD1+ TIM3- XCL1+ (Tpex) state; and a pre-exhausted/dys-
functional (EM) state with low expression of TOX and inhibitory
receptors, and high expression of CXCR3 and GZMK, that
resemble blood circulating EM cells. The proposed CD8+ TIL
differentiation model based on these observations has important
implications for the design of therapies aimed at preventing T cell
exhaustion, and for the identification of tumor-specific T cells
with high stemness for their use in adoptive cell therapies62.

We have described the construction of reference single-cell
atlases for murine T cells in pan-cancer and infection models that
are strongly supported by literature. While we observed that the
main, known T cell subtypes can be accurately recapitulated in
these reference maps, they do not yet encompass the full diversity
of transcriptional states that can be acquired by T cells, especially
for CD4+ TILs (which were under-represented compared to
CD8+ among available data) and for γδ T cells (which were not
represented at all). Only very recently, with the popularization of
single-cell technologies, it has become possible to generate data of
sufficient depth and quality to construct such high-resolution
reference maps. We are therefore just beginning to appreciate the
full potential of combining information from multiple studies and
perform meta-analyses across models, tissues, and cancer types.
Considering the pace at which new single-cell data are generated,
we anticipate that reference maps will quickly grow in size and
completeness, increasingly covering the space of possible tran-
scriptional states that can be assumed by individual cells. We
expect that the accuracy of projection of new data into such
exhaustive reference atlases will also improve as a consequence.

While we have shown that ortholog mapping offers a viable
solution to interpret human T cell responses in the context of a
robust mouse atlas, we envision that, with rapidly growing data, it
will soon become feasible to construct high-quality reference
human T cell atlases able to capture human-specific diversity. In
this respect, mouse atlases could serve as scaffolds to build their
human counterparts. Finally, projecting whole tissue data into a
collection of high-resolution cell type atlases, covering multiple
immune cell compartments, would enable interpreting immune
responses at a systems level, by the study of correlation, and
putative interaction and cross-talk, between not only cell types,
but between cells in very specific differentiation states.

We have implemented ProjecTILs as an R package (https://
github.com/carmonalab/ProjecTILs) and we provide a Docker
image ready to use. Because ProjecTILs is integrated with Seurat,
it can be easily combined with other tools for up- and down-
stream analyses. We believe our approach will have a great impact
in revealing the mechanisms of action of experimental immu-
notherapies and to guide novel therapeutic interventions in
cancer and beyond.

Methods
Mice. Eight- to 10-week-old female C57Bl/6 mice were obtained from The Charles
River Laboratories and housed at Genentech in standard rodent micro-isolator
cages to be acclimated to study conditions for at least 3 days before tumor cell
implantation. Mice were housed in individually ventilated cages within animal
rooms maintained on a 14:10-h, light:dark cycle. Animal rooms were temperature
and humidity-controlled, between 68–79 °F and 30–70% respectively, with 10–15
room air exchanges per hour.

All animal studies were reviewed and approved by Genentech’s Institutional
Animal Care and Use Committee. Mice were maintained under specific pathogen
free conditions under the guidelines of US National Institute of health. Genentech
is an AAALAC-accredited facility and all animal activities in the research studies
were conducted under protocols approved by the Genentech’s Institutional Animal
Care and Use Committee (IACUC). Mice whose tumors exceeded acceptable size
limits (2000 mm3) or became ulcerated were euthanized and removed from
the study.

Single-cell RNA-seq of tumor-draining lymph node T cells. Tumor draining
lymph nodes from mice with established MC38 tumors (~190 mm3) were excised
and single-cell suspensions were stained for CD45 (Biolegend, clone 30-F11,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23324-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2965 | https://doi.org/10.1038/s41467-021-23324-4 | www.nature.com/naturecommunications 15

https://github.com/carmonalab/ProjecTILs
https://github.com/carmonalab/ProjecTILs
www.nature.com/naturecommunications
www.nature.com/naturecommunications


dilution 1:100), TCRb (Biolegend, clone H57-597, 1:100), CD44 (eBioscience,
clones IM7, 1:200), CD62L (eBioscience clone Mel14, 1:80) and LIVE/DEAD (Life
Technologies, Fixable Dead Cell Stain) and sorted into CD45+TCRb+ T cells,
gating out the antigen-inexperienced CD62L+CD44- population. Sorted cells were
then loaded onto a 10x Chromium Chip A using reagents from the Chromium
Single-Cell 5’ Library and Gel Bead Kit (10x Genomics) according to the manu-
facturer’s protocol. Amplified cDNA was used for both 5’ RNA-seq library gen-
eration and TCR V(D)J targeted enrichment using the Chromium Single-Cell V(D)
J Enrichment Kit for Mouse T Cells (10x Genomics). 5’ RNA-seq and TCR V(D)J
libraries were prepared following the manufacturer’s user guide (10x Genomics).
The final libraries were profiled using the Bioanalyzer High Sensitivity DNA Kit
(Agilent Technologies) and quantified using the Kapa Library Quantification Kit
(Kapa Biosystems). Each single-cell RNA-seq library was sequenced in one lane of
HiSeq4000 (Illumina) to obtain a minimum of 20,000 paired-end reads (26 × 98
bp) per cell. Single-cell TCR V (D)J libraries were multiplexed and sequenced in
one lane of HiSeq2500 (Illumina) to obtain minimum of 5000 paired-end reads
(150 × 150 bp) per cell. The sequencing specifications for both single-cell RNA-seq
and TCR V(D)J libraries were according to the manufacturer’s specification (10x
Genomics).

Single-cell RNA-seq data for each replicate were processed using cellranger
count [CellRanger 2.2.0 (10x Genomics)] using a custom reference package based
on mouse reference genome GRCm38 and GENCODE63 gene models. Individual
count tables were merged using CellRanger aggr to reduce batch effects.

Cell lines. The murine colon adenocarcinoma MC38 cell line was obtained from a
former Genentech colleague, Rink Offringa, in 2008. Cells were cultured in RPMI-
1640 medium plus 2 mmol/L l-glutamine with 10% fetal bovine serum (HyClone).
Cells in log-phase growth were centrifuged, washed once with Hank’s balanced salt
solution (HBSS), counted, and resuspended in 50% HBSS and 50% Matrigel (BD
Biosciences) at 1 × 106 cells/mL for injection into mice.

Batch-effect correction and construction of reference atlases. Prior to dataset
integration, single-cell data from individual studies were filtered using TILPRED-
1.0 (https://github.com/carmonalab/TILPRED), which removes cells not enriched
in T cell markers (e.g., Cd2, Cd3d, Cd3e, Cd3g, Cd4, Cd8a, Cd8b1) and cells
enriched in non-T cell genes (e.g., Spi1, Fcer1g, Csf1r, Cd19). Dataset integration
was performed using STACAS14 (https://github.com/carmonalab/STACAS), a
batch-correction algorithm based on Seurat12. For the TIL reference map, we
specified 600 variable genes per dataset, excluding cell cycling genes, mitochondrial,
ribosomal, and non-coding genes, as well as genes expressed in <0.1% or >90% of
the cells of a given dataset. For integration, a total of 800 variable genes were
derived as the intersection of the 600 variable genes of individual datasets, prior-
itizing genes found in multiple datasets and, in case of draws, those derived from
the largest datasets. We calculated pairwise dataset anchors using STACAS with
default parameters, and filtered anchors using an anchor score threshold of 0.8.
Integration was performed using the IntegrateData function in Seurat, providing
the anchor set identified by STACAS, and a custom integration tree to initiate
alignment from the largest and most heterogeneous datasets. Similarly, to construct
the LCMV reference map, we split the datasets into five batches that displayed
strong technical differences, and applied STACAS to mitigate their confounding
effects. We computed 800 variable genes per batch, excluding cell cycling genes,
ribosomal and mitochondrial genes, and computed pairwise anchors using 200
integration genes, and otherwise default STACAS parameters. Anchors were fil-
tered at the default threshold 0.8 percentile, and integration was performed with
the IntegrateData Seurat function with the guide tree suggested by STACAS.

Both for the TIL and LCMV atlases, we performed unsupervised clustering of
the integrated cell embeddings using the Shared Nearest Neighbor (SNN)
clustering method64 implemented in Seurat with parameters {resolution= 0.6,
reduction= “umap”, k.param= 20} for the TIL atlas and {resolution= 0.4,
reduction= “pca”, k.param= 20} for the LCMV atlas. We then manually
annotated individual clusters (merging clusters when necessary) based on several
criteria: (i) average expression of key marker genes in individual clusters; (ii)
gradients of gene expression over the UMAP representation of the reference map;
(iii) gene-set enrichment analysis to identify over- and under- expressed genes per
cluster using MAST65. In order to have access to predictive methods for UMAP, we
recomputed PCA and UMAP embeddings independently of Seurat using
respectively the prcomp function from basic R package “stats”, and the “umap” R
package (https://github.com/tkonopka/umap).

The ProjecTILs pipeline. The essential input to the ProjecTILs pipeline is an
expression matrix, where genes are rows and cells are columns. If raw counts (e.g.,
UMI counts) are provided, each entry x in the matrix will be normalized using the
formula: log (1+ 10,000 x / S), where S is the sum of all counts for that cell, and log
is the natural logarithm. To ensure that only T cells are included in the query
dataset, by default TILPRED-1.0 is applied to predict the composition of the query,
and all cells annotated as “Non-T cells” or “unknown” are removed from the query.
This filter can be optionally disabled by the user. Then, a reference atlas of
annotated cells states (by default the TIL atlas) is loaded into memory, together
with its cell embeddings in gene, PCA and UMAP spaces, and all associated

metadata. In order to bring the query data in the same representation spaces as the
reference map, batch-effect correction is applied to the normalized cell-gene counts
of the query set using the anchor-finding and integration algorithms implemented
in STACAS and Seurat, where the genes for integration consist of the intersection
of the variable genes of the reference map and all genes from the query. After
batch-effect correction, the PCA rotation matrix pre-calculated on the reference
atlas (i.e., the coefficients allowing the transformation from reference gene space
into PCA space) is applied to the normalized, batch-corrected query matrix. In the
same way, the predict function of the “umap” package allows transforming PCA
embeddings into UMAP coordinates. By this means, the query data can be
embedded into the original, unaltered coordinate spaces of the reference atlas,
enabling joint visualization as well as classification of the query cells into T cell
subtypes.

ProjecTILs is implemented as a modular R package, with several functions that
aid interpretation and analysis. The make.projection function is the core utility that
implements the projection algorithm described above. It can be run in “direct”
mode, in which case the PCA and UMAP rotations are directly applied without
batch-effect correction. This may be useful for very small datasets, where alignment
and integration algorithms will not be applicable. To project human data onto a
murine reference atlas, the user must set the flag “human.ortho= TRUE”, which
automatically converts human genes to their mouse orthologs before projection.
Plot.projection allows visualizing the query dataset as density level curves
superimposed on the reference atlas. The cellstate.predict function implements a
nearest-neighbor classifier, which predicts the state of each query cell by a majority
vote of its annotated nearest neighbors (either in PCA or UMAP space) in the
reference map. Find.discriminant.genes performs differential expression analysis
for specific cell states/subtypes between two paired conditions, or alternatively
between one condition and the reference map. Find.discriminant.dimensions
analyses PCA and ICA embeddings (described below) to identify dimensions where
the query deviates significantly from the reference map. Several additional
functions allow visualizing multiple aspects of the reference and projected dataset
and aid the biological interpretation of the results. The code and description of the
package, together with tutorials and applications to analyze public datasets can be
found at: https://github.com/carmonalab/ProjecTILs.

ICA and discriminant dimensions. Independent component analysis (ICA) is a
computational technique aimed at deconvoluting a multivariate signal (such as
simultaneous expression of many genes) into additive, independent sources (in this
case different genetic programs). Because ProjecTILs relies on PCA for dimen-
sionality reduction and projection, we reasoned that ICA components could pro-
vide a complementary and non-redundant decomposition of transcriptomics
signals compared to PCA. We applied the fastICA implementation66 to calculate 50
independent components on the integrated expression matrix of the TIL reference
atlas. To suggest a biological interpretation of the ICA components, we down-
loaded hallmark gene sets (H) and canonical pathway gene sets (CP) from the
Molecular Signatures Database36 (mSigDB), as well as selected immunological
signatures from previous studies. We scored each ICA against these signatures by
summing the ICA gene loadings for all genes in a given signature, and then taking
the absolute value of this score. We retained the top-three scoring signatures for
each ICA, and clustered ICA components based on the union of all retained
signatures (see Supplementary Fig. 4).

After projection, query datasets are also subject to transformation in ICA space
through the ICA rotation matrix. The find.discriminant.dimensions function
implemented in ProjecTILs evaluates the distribution of the cells in the query for
each ICA dimension, and compares it to the distribution of cells in the reference
(or to a control query dataset, if provided) in the same ICA dimension. For each
ICA dimension, a statistical test can then be applied to confirm or reject the null
hypothesis that, in this dimension, the cells in reference and query are drawn from
the same distribution. ProjecTILs implements a Kolmogorov-Smirnov (KS) test or
a t test to the null hypothesis, multiplying p values by the number of tests (i.e., 50)
to correct for multiple testing (i.e., Bonferroni correction). ICA dimensions where
the query deviates significantly from the reference (or the control, if provided) are
ranked by their test statistic to identify the top discriminant dimensions. ICA
embeddings can be visualized as an additional dimension on the z axis of the
reference UMAP space with the function plot.discriminant.3d.

Cross-validated projection benchmark. To estimate the accuracy of the projec-
tion algorithm, we devised a cross-validation experiment where we removed part of
the data from the reference before projecting the removed data back into the map.
Each of the seven datasets included in the reference TIL map, except one, was
composed of at least two samples; we constructed a cross-validation experiment by
removing, at each cross-validation step, half of the samples of a given dataset, and
then projected these samples into a reduced version of the map that does not
contain the data points from these samples. The dataset by Singer et al.67 consists
of a single sample, and therefore we removed all of its cells before projecting it back
into its reduced map. After systematically projecting all cells in cross-validation, we
compared their projected coordinates (either in UMAP or PCA space) with their
original coordinates in the reference map (Supplementary Fig. 2). By the same
token, we evaluated the performance of ProjecTILs (and two other methods, with
parameters detailed in the next section) by comparing the composition of any given
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dataset in terms of predicted cell states compared to the annotated cell states in the
reference map (Supplementary Fig. 3). We found that using ProjecTILs with batch-
correction, 90.0% of the projected cells are found within a radius of one unit (their
neighborhood) in UMAP space (Supplementary Fig. 2) from their original coor-
dinate in the reference map, and 93.4% within a radius of five units in PCA space.
In terms of cell state classification, 91.6% of the projected cells were correctly
assigned to their cell subtype (Supplementary Fig. 3a).

Projection with Azimuth and scMap. By default, Azimuth runs on a reference
atlas of human PBMC cells. When applied in this setting, we followed the default
pipeline recommended by the authors: normalization with SCTransform, fol-
lowed by TransferAnchors with supervised PCA, TransferData to predict
“celltype.l2” labels from the reference to the query, and finally Inte-
grateEmbeddings and ProjectUMAP to calculate projected embeddings for the
query over the space of the reference. To apply Azimuth to a custom reference
atlas (in this case, our mouse TIL reference atlas), it was necessary to recalculate
the UMAP using the RunUMAP function from Seurat and setting return.model
= TRUE, to obtain a usable model for projection. We verified that this step
altered only marginally the shape of the UMAP compared to our atlas (which
was generated with the “umap” R package). We then applied the same steps
outlined above for label transfer and projection, except that we utilized Log-
Normalize as a normalization method for query datasets, and set PCA as the
reduction method, consistently with the transformations applied to construct the
TIL reference atlas. Both for the cross-validation benchmark and the projection
of human query data, we transferred the “functional.cluster” labels from the
reference to the query using the TransferData function, and compared these
predicted cell states with the original annotation.

Scmap17 is a method that enables mapping cell type identities between
experiments, and could be applied to classify query data using the subtypes of our
mouse TIL atlas. First, we ran scmapCell using default parameters to find the 10
nearest neighbor reference cells for each query cell. Then, the scmapCell2Cluster
function was applied over the nearest neighbors (with parameters threshold= 0
and w= 1) to predict subtypes for each cell in the query dataset.

T cell classification with singleR. SingleR49 is a generic method for single-cell
classification that allows annotating cells of a query data set by reference expression
profiles. To generate singleR prediction models from human single-cell TIL data
from two patient cohorts, we first down-sampled reference sets to a maximum of
1000 cells per original annotation, preserving only annotations represented by at
least 100 cells. Then, single-cell profiles for each annotation were aggregated into
pseudo-bulk profiles using the singleR “aggregateReference” function, subsetting
on genes that were differentially expressed between annotation classes. The func-
tions “trainSingleR” and “classifySingleR” were then applied to generate a predictor
and classify cells from a query data set. To train a singleR classifier from human
PBMC data, we obtained the normalized counts from the default PBMC Azimuth
reference atlas, and calculated pseudo-bulk expression profiles for T cell state
annotations as detailed above for the TIL data. To simplify analysis and inter-
pretation, we combined annotations for related T cell subtypes from the reference
into a single annotation (CD8 TCM, CD8 Naive, CD4 TCM, CD4 Naive as Naive/
TCM; CD4 TEM, CD4 CTL as CD4 TEM/CTL).

Human-mouse ortholog projection. We downloaded the list of orthologous genes
between human and mouse from Ensemble BioMart release 101. When mapping
was ambiguous (i.e., a human gene mapping to several murine genes and viceversa)
we favored the identical upper-case human ortholog translation of mouse genes,
when available. When projecting human scRNA-seq data onto a mouse reference
atlas with ProjecTILs (human.ortho= TRUE), the expression matrix was auto-
matically subset on the human genes with a valid ortholog, and submitted for
projection using the mouse gene identifiers. All subsequent analyses were per-
formed in the mouse ortholog space.

Clonal overlap between subtypes was calculated using the Morisita index
implementation of scRepertoire68. Because of the large imbalance in terms of cell
subtypes in the Yost et al. cohort, we uniformly down-sampled all subtypes to a
maximum of 500 cells for clonal overlap calculation. For the analysis of gene
expression profiles in the Li et al. and Yost et al. cohorts, we calculated the average
expression of all cells projected in the CD8_NaiveLike, CD8_EM, CD8_Tpex, and
CD8_Tex subtypes for 16 key marker genes. To be able to compare the profile of
different genes, we rescaled the average expression value of a given gene by its
maximum average expression over the four subtypes under analysis
(CD8_NaiveLike, CD8_EM, CD8_Tpex, and CD8_Tex).

TIL subtype conservation across cohorts, cancer types, and species. The
following datasets were included in the TIL subtype conservation analysis: Azizi
et al. breast cancer4, Carmona et al. melanoma21, Jerby-Arnon et al. melanoma69,
Li et al. melanoma5, Nieto et al. colorectal, liver and lung cancer70, Sade-Feldman
et al. melanoma6, Xiong et al. colon adenocarcinoma71, Yost et al. basal cell
carcinoma48. TILs were classified by ProjecTILs using default parameters for
murine datasets, and by setting the parameter human= TRUE for human datasets.
For each projected dataset, we calculated differentially expressed genes in the

original log-normalized RNA expression space of each dataset, using the Fin-
dAllMarkers Seurat function for all reference subtypes represented by at least 50
cells. Genes that were detected as differentially expressed in at least four studies
were considered for subsequent analyses, limiting the number of genes per TIL
subtype to at most 25 genes. The intersection of differentially expressed genes with
variable genes from the reference TIL atlas resulted in 88 genes, from 81 subtype-
study combinations, for which we calculated average integrated expression profiles.
The resulting data matrix was visualized as a heatmap using the pheatmap package,
normalizing data by row (genes), and clustering rows and columns by the ward
algorithm.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Generated scRNA-seq data of MC38 tumor-draining lymph node T cells were deposited
in the ArrayExpress database with accession ID E-MTAB-9274.

To construct the reference TIL atlas, we obtained single-cell gene expression matrices
from the following GEO entries: GSE12469125, GSE11639021, GSE12147834,
GSE8602867; and entry E-MTAB-791971 from Array-Express. For the TIL projection
examples (OVA Tet+, miR-155 KO and Regnase-KO), we obtained the gene expression
counts from entries GSE12271328, GSE12147834 and GSE13701537, respectively.

Single-cell data to build the LCMV-specific CD8+ T cell reference map were
downloaded from GEO under the following entries: GSE13153538, GSE13413939 and
GSE11994340, selecting only samples in wild type conditions. Data for the Ptpn2-KO,
Tox-KO, and CD4-depletion projections were obtained from entries GSE13413939,
GSE11994340, and GSE13700745 and were not included in the construction of the
reference map. Single-cell expression matrices for LCMV-specific CD8+ T cells in
multiple tissues (Fig. 5) were kindly provided by the authors47; raw single-cell data are
also available at ENA under accession code PRJEB36998.

Processed single-cell RNA-seq gene expression matrices from cancer patient samples
were downloaded from GEO under the following entries: GSE123139 (Melanoma_Li)5,
GSE123813 (BasalCC_Yost)48, GSE120575 (Melanoma_Sade-Feldman)6, GSE115978
(Melanoma_Jerby-Arnon), GSE114727 (Breast_Azizi). For the liver, lung, and colorectal
cancer samples, we used the single-cell expression matrices collected by Nieto et al.70

(https://doi.org/10.5281/zenodo.4263972).
Source data for the TIL and viral reference atlases were deposited in figshare with DOI

(https://doi.org/10.6084/m9.figshare.12478571)72 and (https://doi.org/10.6084/m9.
figshare.12489518)73, respectively.

All other data are provided in the article and its Supplementary files or from the
corresponding author upon reasonable request. Source data are provided with this paper.

Code availability
ProjecTILs is freely available as an R package at: https://github.com/carmonalab/
ProjecTILs. The package release used for this study is available at DOI74 (https://doi.org/
10.5281/zenodo.4601466).

Several reproducible case studies that apply ProjecTILs for the analysis of published
single-cell datasets can be found at: https://github.com/carmonalab/
ProjecTILs_CaseStudies.
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