
 
 
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
 

Year : 2019 

 

 
Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase 

 
Cinesi Cinzia 

 
 
 
 
 
 
Cinesi Cinzia, 2019, Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase 

 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_BDA89CB72B699 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/�


 
 

Ecole de Biologie 
 

 
Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase 

 
 
 
 

Thèse de doctorat ès sciences de la vie (PhD) 
 

présentée à la 
 

Faculté de biologie et de médecine  
de l’Université de Lausanne 

 
 

par 
 
 
 

Cinzia CINESI 
 

Master de l’Université de Lausanne 
 
 
 
 

Jury 
 

Prof. Laurent Lehmann, Président 
Prof. Alexandre Reymond, Directeur de thèse 

Prof. Vincent Dion Co-directeur de thèse 
Prof. Nicole Déglon, Experte 

Prof. Geneviève Gourdon, Experte 
 
 
 
 
 

Lausanne 
May 2019 

 





 2 

Acknowledgments 
 

I would like to thank my thesis professor Vincent Dion for this great opportunity. I have learned 

so much and improved in many different aspects during these years thanks to your guidance. 

Support, new ideas, smiles and positive words made my project a beautiful experience. Thank 

you for everything.  

 

Thank you to Prof. Alexandre Reymond for being my co-Director and especially for allowing 

me to finish this project in a more relaxed and focused way.  

My Committee experts, Prof. Nicole Déglon and Prof. Geneviève Gourdon, offered me the 

opportunity to have great scientific discussions and feedbacks. I always left our meetings with 

a big smile, satisfaction and new ideas in mind, thanks for your supportive comments.  

 

I would like to thank all the collaborators that took part to my PhD project. 

Prof. Vanessa Wheeler gave me the opportunity to be hosted in her laboratory and work under 

her supervision. It was a great experience where I enriched my scientific knowledge and 

techniques.  

Prof. Beverly Davidson and Dr. Alejandro Monteys took part in this project and I am really 

happy I could visit and experience the great team and science they are doing. Particularly I 

would like to thank Alejandro for the nice conversations we had and the warm welcome I 

received in Philadelphia from the entire research team.  

I had the pleasure to work under the supervision of Prof. Geneviève Gourdon. I had a really 

enriching experience working with her team, scientifically and personally. I really felt part of 

a big family fighting for the same goal. I would like to particularly mention Stephanie for being 

so supportive and a great friend since the first minute I joined the team. Many thanks to Aline, 

who patiently taught me so many new things, French included! Thank you to Antoine, my 

exchange-lab buddy, for your smile and our chats.  

 

The Dion’s team has been my family for 5 years and I couldn’t have asked for more. We have 

been a great group, and the amazing memories and time spent together is an indelible record 

in my mind. The coordination and support from every single member brought everyone’s 

project to success. I am glad I could be part of this team during these years, allowing me to 

grow up in many aspects to a better me.  



 3 

Thank you to Lorène, without whom our life in the lab would have not been the same. Lorène 

patiently answered all my doubts, helped me in many experiments and was a supportive voice 

during dark days when nothing was working.  

Bin has been a great colleague and my best friend. I will always be thankful for her presence 

and support. Thank you for being a great listener and sharing dreams with me. 

Thank you to Gustavo and Oscar without whom the lab’s vibe wouldn’t be so much fun.  

Nathalie has been the angel, saving me from many paper work headaches. Thank you for the 

great time we spent together, in and outside of the lab. 

 

If I am here I mostly owe it to my parents, without whom I couldn’t have afford any of this, 

career and life achievements, surprising myself solving any issue I faced. Thank you for 

believing in me, following me in my decisions and never discouraging me.  

 

I would never stop thanking my friends, who made my life in Lausanne, Boston and Paris a 

great experience. I need to thank my three first supporters, Patrick, Andrea and Matteo who 

have always found a way to put a smile on my face, even during difficult moments. Thank you 

for the really inspiring conversations and for pushing me to do better. 

Alessia has been my conscience and my bravery at the same time. Thank you for being present 

and for all the sweet and revealing words.  

I cannot forget to mention the person who helped me when I was on the other side of the ocean 

and believed in me without really knowing each other: Maria. Thank you for your help, for our 

chats and for our great friendship. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4 

Abstract 
 
 
Expanded trinucleotide repeats (TNRs) are responsible for at least 20 neurological, 

neuromuscular, and neurodegenerative diseases, 14 of which are caused by CAG/CTG repeats. 

No effective therapy has been found yet. Since repeat expansions induce the onset and are 

thought to precipitate pathogenesis, contractions to a normal size may alleviate the symptoms. 

Unfortunately, there is currently no efficient way to induce specifically contractions. As a 

therapeutic approach, here I tested whether engineered nucleases, specifically (Zinc Finger 

Nucleases (ZFNs) and CRISPR-Cas9, can induce contractions in expanded CAG repeats. 

Using a GFP reporter assay, I found that a ZFN and the Cas9 nuclease activity induced both 

contractions and expansions. Surprisingly, the nickase version of Cas9 (D10A) selectively 

induced repeat contractions. Moreover, ATR and ATM, two kinases involved in the DNA 

damage response, controlled the generation of contractions and expansions induced by the 

nickase. We proposed a model in which DNA gaps created by the nickase lead to contractions. 

Therefore, my results show that contraction bias is possible in human cells. Cas9 nickase 

showed repeat contractions events in patient-derived cells for Myotonic Dystrophy type 1 

(DM1) and Huntington’s Disease (HD). Since gene therapy holds the promise for curing 

genetic disorders, a viral vector has been tested as delivery tool for Cas9 nickase. It is also not 

clear whether delivery of Cas9 nickase with a gene therapy approach can result in contraction 

events and reversion of pathogenic phenotypes in affected tissues. We injected Adeno-

associated Viruses (AAVs) expressing the Cas9 nickase and a gRNA against the repeat tract 

into DM1 and HD mouse models. I started to assess whether this treatment induces repeat 

contractions and reversion of pathogenic phenotypes in vivo. This Cas9 nickase-based gene 

therapy approach remains to be optimized to develop an efficient therapeutic tool. 

Nevertheless, my work has opened the door towards a novel therapeutic avenue for 14 different 

expanded TNR disorders. 
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Sommaire 
 
 
Les répétitions trinucléotides expansé (TNR) sont responsables d’au moins 20 maladies 

neurologiques, neuromusculaires and neurodégénératives, de les quelles 14 sont causée par 

répétitions de CAG/CTG. Aucune thérapie efficace n’a été trouvée. De nombreuses études sont 

en cours mais aucune n’est dirigés directement sur la cause de la maladie: la répétition CTG 

étendu. Depuis qu’on sait que les expansions de répétition induisent l'apparition de phénotype 

pathogène, il a été proposé que les contractions de longues répétitions en dessous de la longueur 

limite pourraient soulager les symptômes. Mais pour le moment il n’existe actuellement pas de 

moyens efficaces pour induire spécifiquement les contractions de répétitions. Avec le bout de 

développer un traitement thérapeutique, ici J’ai testé si l’ingénierie nucléases, comme 

″Nucléase à doigt de zincʺ (ZFN) et CRISPR-Cas9, peuvent induire des contractions 

spécifiquement dans répétitions de CAG expansés. Dans un dosage de GFP sur un système 

cellulaire, les ZFN et Cas9 nucléase introduisent des contractions et expansions de répétitions. 

Différemment, Cas9 nickase (D10A) qui crée des nick dans l’ADN introduise des contractions 

dans les répétitions. ATR et ATM, deux kinases qui font part de mécanisme de réponse après 

dommage dans l’ADN, contrôlent la génération des contractions et expansions. Nous 

proposons un modèle dans lequel des gaps de ADN crées par l’activité du nickase produite des 

contractions des répétitions. Donc, mes résultats montrent qu’induire des contractions est 

possible dans des cellules humaines. 

Pour mieux comprendre si Cas9 nickase peut vraiment être un traitement pour des maladies 

causés par the répétitions expansés, nous avons testé le nickase sous des modèles des maladies. 

Avec l’utilise des lentiviruses, nous avons exprimés Cas9 nickase dans des cellules de patinent 

affecté par la Dystrophie Myotonique type 1 (DM1) and la maladie de Huntington (HD). Cas9 

nickase a montré sa capacité d’induire contractions des répétitions déjà dans 3 jours d’activité 

avec une gRNA pour les répétitions de CAG/CTG. Pour tester si l’utilise des virus peut être un 
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moyen efficace pour la livraison de Cas9, la méthode de thérapie génique a été testé. Nous 

avons produit des AAV qui expressent Cas9 nickase et log RNA, et des souris modèl pour 

DM1 et HD ont été injecté. Malheureusement, il n’est pas encore possible d’avoir une 

conclusion à propos de l’efficacité de Cas9 nickase dans le modèle de souri pour DM1 et HD. 

Évaluation de capacité Cas9 nickase en reversant les symptômes pathogéniques est une 

important resultat pour développer un traitement efficace. Les résultats de ce projet vont élever 

les connaissances sur les désordres du TNR, spécifiquement l'efficacité des Cas9 nickase 

dirigées vers TNR comme des traitements thérapeutiques. 
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I.I Trinucleotide repeat disorders 
 

 

Repetitive sequences are commonly present in the human genome at different locations. 

Expansions of short repeats are responsible and associated with numerous neurological 

diseases (Gomes-Pereira, Cooper, and Gourdon 2011a; Ami Mankodi et al. 2000; Orr and 

Zoghbi 2007a; Zhao and Usdin 2015) (Table I.I.1), 14 of them are caused by expanded 

CAG/CTG trinucleotide repeats (TNRs) (López Castel, Cleary, and Pearson 2010). In different 

disorders, the expanded repeat tract is located in distinct loci. The nature of the pathogenic 

symptoms and the affected cellular functions is determined by the expanded repeat locus. Since 

expanded CAG/CTGs are the most common repeat units causing diseases, in this study I 

focused on CAG/CTG disorders, such as Myotonic Dystrophy type 1 (DM1) and Huntington’s 

disease (HD). 

CAG/CTG TNRs present in unaffected people are short, generally less than 30 units. When 

TNRs expand over a threshold of 35 repeats – this exact number depends somewhat on the 

disorder – they become highly unstable leading to the appearance of the pathogenic symptoms. 

The repeat length in patients is directly correlated with the severity of the symptoms (Holmans, 

Massey, and Jones 2017; Pešović et al. 2017) and determines much of the variation in the onset 

age, which can vary from childhood to late onset. Affected families display anticipation, a 

phenomenon characterized by repeat expansion events and increased disease severity over 

generations, as evidenced by an earlier age of onset (Cynthia T. McMurray 2010; Mirkin 2007). 
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Table I.I.1 TNR disorders. Adapted from Zhao and Usdin 2015, Cortese et al. 2019.  

 
  

 

 

  

Disease Repeat unit Gene Normal 
repeat 

Expanded 
repeat 

Repeat location  

      
DRPLA CAG ATN1 7-35 49-93 Exon 
HD CAG HTT 9-35 36-121 Exon 
SBMA CAG AR 9-34 38-62 Exon 
SCA1 CAG ATXN1 6-42 39-83 Exon 
SCA2 CAG ATXN2 14-31 32-200 Exon 
SCA3 CAG ATXN3 12-44 52-86 Exon 
SCA6 CAG CACNAIA 4-18 21-33 Exon 
SCA7 CAG ATXN7 4-35 37-306 Exon 
SCA12 CAG PPP2R2B 7-28 55-78 5’UTR 
SCA17 CAG TBP 25-42 45-66 Exon 

DM1 CTG DMPK 5-38 >50 3’UTR 
FECD CTG TCF4 10-37 >50 Intron 
HDL2 CTG JPH3 6-28 40-59 3’UTR 
SCA8 CTG ATXN8 16-34 >74 3’UTR       

FRA7A CGG ZNF13 5-22 68, 72, ~450 Intron 
FXPOI CGG FMR1 <55 55-200 5’UTR 
FXTAS CGG FMR1 <55 55-200 5’UTR 
FXS CGG FMR1 <55 >200 5’UTR 

FRAXE MR GCC AFF/FMR2 6-25 >200 5’UTR       

FRDA GAA FXN 8-33 >90 Intron 
      
DM2 CCTG ZFN9 <30 75-11000 Intron 
      
SCA10 ATTCT ATXN10 9-32 800-4500 Intron 
 
CANVAS 

 
AAGGG 

 
RFC1 

 
NA 

 
NA 

 
Intron 

      
SCA36 G2C2TG NOP56 3-8 1500-2500 Intron 
      
ALS/FTD G4CC C9orf72 2-22 700-1600 Intron 

EPM1 C4GC4GCG CSTB 2-3 30-78 Promoter 
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Myotonic Dystrophy type 1 

DM1 is the most common adult form of muscular dystrophy (Gourdon and Meola 2017). It is 

an autosomal dominant multisystemic disorder characterized by myotonia, muscle weakness 

and wasting, cataracts, and by defects in cardiac conduction (Gomes-Pereira, Cooper, and 

Gourdon 2011b; A Mankodi 2000; Udd and Krahe 2012a). It is categorized as a rare disorder 

and has a frequency of 1 case in a population of 8000 (Hammans 2002). It exists in 4 different 

forms which differ in the underlying repeat lengths leading to different ages of onset: 

congenital, childhood-onset, adult-onset and late onset oligosymptomatic (Udd and Krahe 

2012b).  

 

 

Figure I.I.1 Model of DM1 cellular pathogenesis induced by expanded CTG repeats in DMPK gene.  
Expanded CTG repeats in DMPK gene affect multiple tissues: brain, heart, skeletal muscles. 
CUG hairpins in the DMPK mRNA lead to the formation of nuclear foci alterning the right metabolism of the cells. The 
sequestration of MBNL1 and up-regulation of CELF1 induce affected splicing regulation of targeted genes and developmental 
remodeling of the transcriptome (Chau and Kalsotra 2015). 
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DM1 is characterized by a toxic RNA-mediated gain of function mechanism. The presence and 

expression of an expanded CTG repeat localized in the 3’UTR of the myotonic dystrophy 

protein kinase (DMPK) gene, located on chromosome 19, is sufficient to induce DM1 

pathogenesis (Figure I.I.1) (A Mankodi 2000). The expanded CUGs in the DMPK mRNA fold 

into hairpin-like structures and interact with proteins forming aggregates inside the nucleus. 

This leads to the direct sequestration of muscleblind-like 1 protein (MBNL1) and by 

consequent stabilization of CUGBP/Elav-like family protein 1 (CELF1). The imbalance of 

these two antagonistic splicing regulators induces the dysregulation of several muscle-specific 

genes, such as chloride channel (CLC1), bridging integrator 1 (BIN1), insulin receptor (IR), 

and others. This in turn produces the DM1 pathogenic phenotype in central nervous system, 

heart and skeletal muscles (G.-S. Wang et al. 2007; Hernández-Hernández et al. 2013).  

 

Currently there is no cure available for this disorder. Medications helping affected patients are 

aimed to alleviate the motor impairments: physiotherapy and specific drugs, such as mexiletine, 

an anti-myotonia treatment (Logigian et al. 2010), and anti-inflammatories to manage muscle 

pain. Psychiatric support is also needed. The direct action on the ultimate cause of these 

disorders, the expanded repeats, can be the winning approach to definitely reverse the 

pathogenic symptoms. 

 

Huntington’s Disease 

George Huntington described HD for the first time as an inherited neurodegenerative disorder 

mainly causing symptoms such as chorea, depression, and memory deficits (Huntington 1872; 

Orr and Zoghbi 2007b). HD is an autosomal dominant disorder and manifests at different ages 

and with different severity based largely on the size of the repeat tract (Holmans, Massey, and 
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Jones 2017). The frequency rate is 1 in 7000 individuals in Western countries (Rawlins et al. 

2016).  

The expanded CAG repeat is located in the first exon of the Huntingtin gene (Htt) in 

chromosome 4. Th repeat size ranges in 36-121 units in the affected patients (Group 1993). As 

a gain-of-function pathogenic mechanism, the expanded CAG repeats translate into long 

polyglutamine tract that causes protein misfolding and aggregate formation. These inclusion 

bodies in neural cells are characteristic of neurodegenerative diseases. Mutated huntingtin 

proteins accumulate and result in neuronal dysfunction and neurodegeneration (Orr and Zoghbi 

2007b; Saudou et al. 1998). Although the HTT gene is ubiquitously expressed, HD pathology 

develops only in distinct brain areas, particularly in the striatum.  

 

Similar to DM1, no drug has been found for patients that definitely cure HD yet. Medical 

treatments to reduce movement impairment symptoms, such as Tetrabenazine, are the only 

solutions available at the moment (Yero and Rey 2008). Psychiatric support is also necessary 

to help patients against psychosis. 

 

Treating expanded CAG/CTG repeat disorders 

To date, there is no effective therapy for expanded TNR disorders but some potential strategies 

of therapeutic interventions have been expressed. The most promising approaches in a clinical 

point view are aimed in targeting mRNA or DNA of the mutant allele. Targeting of the mRNA 

can be achieved by antisense oligonucleotides (ASOs), RNA interference (RNAi) or chemical 

inhibitors. ASOs are synthetic nucleotide molecules that bind pre-mRNA and induce 

degradation by RNase H in the nucleus. ASO targeted against the CUG repeat in DMPK mRNA 

has been shown to be successful in alleviating DM1 cellular symptoms (Johanna E. Lee, 

Bennett, and Cooper 2012). Lee et al. were able to induce RNase-H mediated degradation of 
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CUG-repeat transcript in DM1 cell lines and transgenic mice. They found gapmers able to 

specifically disrupt the RNA foci formed by the pathological DMPK transcripts and MBNL1 

(J. E. Lee, Bennett, and Cooper 2012). Similar therapeutic strategy has been found by other 

teams where silencing of the expanded DMPK transcript reduced foci accumulation and DM1 

symptoms (Mulders et al. 2009; Furling et al. 2003). Silencing of the mutant allele with ASOs 

has also been shown to be successful in HD models (J. B. Carroll et al. 2011; Kordasiewicz et 

al. 2012; Drouet et al. 2009). The reduction of mutant HTT presence by ASOs reversed motor 

coordination in HD mouse models (Kordasiewicz et al. 2012). Kordasiewicz et al. injected 

HTT targeted ASOs into cerebrospinal fluid of BACHD mice and HTT mRNA degradation 

resulted in delayed disease progression and improvement of motor deficits. Similar 

improvement of HD pathology has been observed by Drouet et al. Moreover, they showed that 

silencing of HTT, non-allele dependently, did not induce deleterious toxicity in striata cells 

(Drouet et al. 2009).  

Another study approach is to induce the degradation of the expanded repeats mRNA with 

synthetic RNAi molecules. Differently from ASOs, RNAi works on mature mRNA and triggers 

its degradation in the cytoplasm. In an in vivo study, synthetic siRNA targeting the CUGexp 

RNA was injected into the muscles of HSALR mice (Sobczak et al. 2013). Treated mice showed 

reduced ribonuclear foci and CUG transcript levels. Moreover, they exhibited almost complete 

reversion of aberrantly spliced transcript as well as of the myotonia. RNAi approach has also 

been tested in HD mouse model where AAV delivered shRNA targeted to HTT mRNA. 

Reduced HTT expression by shRNA activity resulted in improved pathological and behavioral 

features (Harper et al. 2005).These are promising results that require further insights to exclude 

possible off target effects, which are common in siRNA approaches. 

The steric inhibition of interaction between the mutant mRNA and interacting protein has been 

the basis of small molecules-based strategies. A methylene linker that prevents the binding 
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between expanded CUG repeats and MBNL1, has been proposed by Coonrod et al. as 

therapeutic small molecule against DM1. The administration of heptamidine to mice model for 

DM1 also reversed splicing defects and reduced significantly myotonia (Coonrod et al. 2013). 

Other small molecules have shown positive results or are ongoing in ameliorating DM1 and 

HD symptoms (García-lópez et al. 2011; Warf et al. 2009; E M Doherty 2017).  

All these approaches, which would hopefully alleviate the phenotype in patients, need to be 

administrated for long periods. Unfortunately, prolonged administration could increase 

toxicity, already generated by low specificity, resulting in a not optimal solution for affected 

patients.  
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I.II CAG/CTG instability and pathogenesis 
 

 

The primary cause of the TNR disorder symptoms is the presence of a long repeat tract, 

characterized by high instability and frequency of expansion and contraction events. The longer 

the repeat tract is, the more unstable the repeats are. TNR instability results from multiple 

mechanisms related to DNA metabolism, concerning processes such as DNA repair, replication 

and transcription (Pearson, Nichol Edamura, and Cleary 2005; Moss et al. 2017; Bettencourt 

et al. 2016; J.-M. Lee et al. 2015). TNR expansions vary in different disorders and from tissue 

to tissue (Dion 2014). Due to their propensity to form non-B DNA structures, long TNRs tend 

to be highly unstable, leading to expansions and contractions (Kohwi, Wang, and Kohwi-

Shigematsu 1993; Marquis Gacy et al. 1995; Axford et al. 2013; Lin et al. 2010; López Castel, 

Cleary, and Pearson 2010). These unusual structures are recognized as damaged DNA and are 

processed aberrantly due to their repetitive nature. Moreover, these structures interfere with 

proper DNA repair in cis. Thus, the longer the repeat tract is, the more unstable it becomes, 

establishing a positive feedback loop in which expansions induce more expansions (C. T. 

McMurray 2011).  

 

Somatic instability plays an important role in the disease progression, as shown by studies in 

HD mouse models where somatic instability correlated with disease progression (Kennedy and 

Shelbourne 2000; Kumar et al. 2016, 201; Kielar and Morton 2018; Huguet et al. 2012). In 

fact, Wheeler et al. confirmed this hypothesis by showing the stabilization of CAG repeats in 

an in vivo model for HD induced by the complete lack of Msh2, which is essential for DNA 

mismatch repair (Wheeler et al. 2003; Kovalenko et al. 2012). Moreover, Msh2 deficiency 

delayed the accumulation of mutant huntingtin in the nucleus and, thus, the onset of the disease 

(Wheeler et al. 2003). This was in line with previous studies showing a central role of Msh2 in 
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promoting repeat expansion (Wheeler et al. 2003; Broek et al. 2002; Tomé et al. 2009; C. 

Savouret et al. 2004; Â. Savouret et al. 2003; Manley et al. 1999; Kovtun, Thornhill, and 

McMurray 2004; Kovtun and Mcmurray 2001). This and other subsequent studies suggest that 

somatic repeat instability greatly influences disease progression.  

Since disease onset and progression is affected by repeat size and instability, variations in 

repeat size could impact and reverse pathogenesis. Reversion of DM1 and HD pathogenic 

symptoms has already been shown to be possible in different models (Yamamoto, Lucas, and 

Hen 2000; Díaz-Hernández et al. 2005; Garriga-Canut et al. 2012; Mahadevan et al. 2006a; S. 

Yang et al. 2017). The induction of repeat contraction by using pharmacological stabilizers of 

repeats or genetic modifications, such as gene silencing, could lead to the alleviation of 

pathological symptoms by removing the underlying cause of the disease. Mahadevan et al. 

developed a mouse wherein the overexpression of a normal DMPK 3‘UTR linked to a GFP 

sequence led to the generation of some of the main DM1 symptoms. Shutting off the expression 

of this transgene, alleviated the myotonia, cardiac conduction abnormalities, histopathology, 

RNA splicing defects, and nuclear inclusion disappeared in skeletal and cardiac muscles 

(Mahadevan et al. 2006b). Similarly, in multiple studies repression of HTT expression 

corrected behavioural symptoms and molecular pathogenesis in HD mouse models (Díaz-

Hernández et al. 2005; Yamamoto, Lucas, and Hen 2000; Garriga-Canut et al. 2012). In fact, 

the silencing of the mutant HTT gene reversed the cellular phenotype in HD mouse models 

(Yamamoto, Lucas, and Hen 2000; Díaz-Hernández  et al. 2005). This mouse model carries a 

tetracycline-inducible promoter that activates/deactivates the expression of a truncated N-

terminal HTT sequence with 94 CAGs. The expression of this truncated HTT led to 

neuropathology, such as Htt aggregate formation, small brain size, and behavioral deficits. 

Blocking transgene expression by doxycycline administration reversed aggregate formation 

and motor dysfunction (Yamamoto, Lucas, and Hen 2000). Even more, the excision of repeats 
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in a mutant HTT allele induced by Clustered regularly interspaced short palindromic repeats 

Cas9 (CRISPR-Cas9) combined with two gRNAs resulted in gene silencing. Consequently, 

transcription blockade led to attenuated neuropathology in this HD mouse model (S. Yang et 

al. 2017). Thus, reversibility of DM1 and HD pathogenic phenotypes is possible and targeting 

the expanded repeats could be a successful strategy to tackle expanded TNR disorders. 

 

Even if more than 25 years have passed since the discovery of the expanded repeat toxicity in 

TNR disorders, no cure has been developed yet. Finding a tool able to contract repeats and 

alleviate pathogenic symptoms is a challenge. Thus, we decided to tackle this question and 

investigate how to specifically induce contractions using gene editing techniques. 

 

A requirement to recognize which specific players affect TNR instability is a system in which 

instability can be directly traced. Understanding how repeat contractions, without concomitant 

expansions, can be produced is important to develop efficient therapeutic approaches to tackle 

TNR disorders. Since a long time, many research teams are working on better understanding 

the mechanisms of repeat instability. There have been studies aiming at inducing repeat 

contractions specifically. Most of these are focused on the induction of DNA damage, 

specifically double-strand breaks (DSBs) within or near the repeat tract (G. F. Richard, Dujon, 

and Haber 1999; B. a Santillan et al. 2014; Mittelman et al. 2009a). Different techniques have 

been used to measure the ability of different tools in inducing repeat instability. Small-Pool 

PCR (SP-PCR) and sequencing are the most used techniques to determine repeat instability at 

the moment (Monckton et al. 1995; Dandelot and Gourdon 2018; Mangiarini et al. 1996; 

Aeschbach and Dion 2017). Specifically, SP-PCR consists in the amplification of only few 

alleles per reaction through big dilutions of genomic DNA. An electrophoresis run followed 

by a southern blot, due to the low DNA quantity, are the fundamental steps that allow to 
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visualize repeat instability in SP-PCR (Monckton et al. 1995; Aeschbach and Dion 2017). 

However, these available assays hide weak points that slow down the understanding of repeat 

instability dynamics and the discovery of tools capable of specifically inducing repeat 

contractions. In fact, these techniques are time consuming and show lack in sensitivity. The 

development of new reporters able to measure repeat instability efficiently is fundamental for 

the discover of therapeutic tools for expanded TNR disorders.  

 

In 2003, a new cell line reporter for repeat instability detection was developed. This selectable 

chromosomal reporter allowed to determine repeat size variations in CHO cells (Gorbunova et 

al. 2003). The integrated APRT mini gene and HPRT transgene have been modified to carry an 

intron containing a CAG repeat tract. In the presence of long repeat tracts, the CAGs enhance 

the inclusion of the repeat itself into an alternative exon, leading to loss of the APRT function 

(Gorbunova et al. 2003). By selecting for APRT+ and HPRT+ cells, large contraction events 

can be measured in the surviving colonies. This system allows test of experimental treatments, 

such as DNA plasmid transfection and selection of repeat contraction inducers in mammalian 

cells (Mittelman et al. 2009b; Lin, Dion, and Wilson 2005). Unfortunately, the sensitivity of 

this reporter is limited to large repeat contraction events and is blind for expansions.  

In 2014, a new instability assay was presented by John Wilson’s group (B. A. Santillan et al. 

2014). They showed the ability of a new reporter in measuring repeat instability by detection 

of GFP fluorescence intensity expressed in mammalian cells. A single copy of a GFP mini gene 

carrying a CAG repeat sequence was integrated into the genome of HEK 293 T-Rex Flp-In 

cells. The GFP sequence is divided in two exons by an intron within which a CAG repeat tract 

is present. The shortening of the repeat tract results in stronger GFP expression in these cells. 

Similar to the APRT and HPRT systems, expanded CAG repeats affect the correct splicing of 

GFP mRNA, resulting in a reduction of GFP levels. Thus, GFP intensity inversely correlates 
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with repeat size and fluorescence can be easily measured by flow cytometry. Repeat size 

variations can then be determined by single cell sorting of different population based on GFP 

intensity and measured by sequencing. This method has a straightforward readout, since within 

5 days it is possible to measure the effect of a treatment on repeat instability. Santillan et al. 

were able to detect only repeat contraction events (B. A. Santillan et al. 2014). However, in our 

study, we show that both repeat expansions and contractions can be detected after treating this 

GFP(CAG)101 cell line with engineered nucleases (Cinesi et al. 2016). These results confirmed 

the GFP reporter as the first chromosomal mammalian assay able to detect contractions and 

expansions in a CAG/CTG repeat tract within 5 days. The GFP(CAG)x cell lines were used in 

Chapter 2 to determine the ability of different treatments to induce repeat contractions.  
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I.III Genome editing 
 

Genome editing consists of using engineered nucleases to target specific genomic sites and to 

trigger DNA sequence mutations (Chen et al. 2007). These nucleases induce DNA 

modifications, such as deletions, insertions, or replacements (Figure I.III.1). After specific site 

recognition, they cause a double-stranded break (DSB) that induces the activation of 

endogenous DNA repair mechanisms, such as non-homologous end joining (NHEJ) and 

homologous recombination (HR). NHEJ involves the joining of the DNA ends of the DSB 

without a homologous template to direct the repair. This process is often error-prone and can 

induce deletions and frameshifts. HR, on the other hand, uses a homologous sequence to 

regenerate the missing DNA sequence for HR and is usually error-free. Providing an ectopic 

template can be used to introduce specific mutations to an endogenous locus. 

Genome editing has been optimized and used more and more during the last 30 years. ZFNs, 

Transcription Activator-like Effector Nuclease (TALEN) and the CRISPR-Cas9 are the main 

tools used in genome editing (H. Kim and Kim 2014). 

 

 

Figure I.III.1 Genome editing induced by engineered nucleases. 
A) Activation of NHEJ mechanism induced by presence of DSB leads to 3 different possible results. Generation of a DSB 
can result in deletions or small insertions at the damaged locus leading to the disruption of the target gene. Alternatively, 
generations of two DSBs proximal to each other can result in either inversion of the excised sequence or deletion of it. B) 
HR is activated in presence of a donor double stranded DNA carrying a homologous sequence. Addition of a sequence or 
correction of a possible mutation are the possible results (Gaj, Gersbach, and Barbas 2013). 
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Zinc Finger Nucleases 

ZFNs constitute the first generation of 

customizable DNA binding domains 

fused to a nuclease harnessed for the 

manipulation of animal and plant 

genomes (Y.-G. Kim, Cha, and 

Chandrasegaran 1996). They are composed of two different domains: the DNA-binding 

domain (DBD) and the DNA-cleavage domain (Figure I.III.2). The DBD has generally three 

zinc fingers that recognize the target site in the genome, binding a specific DNA sequence. 

Every zinc finger recognizes and binds 3 nucleotides. For increased sequence specificity, 

multiple zinc fingers are linked to each other for a recognition sequence of generally 9 to12 bp 

(Figure I.III.2) (Segal et al. 1999). The catalytic domain is a restriction enzyme, FokI, that 

induces a DSB at the target locus (Dana Carroll 2008; Cathomen and Joung 2008a). To trigger 

the nuclease activity at a specific locus, two ZFN arms have to recognize and bind to their 

complementary sequences. This allows FokI dimerization, thereby creating a DSB within a 5 

bp spacer sequence (Christian et al. 2010; Dana Carroll 2008; Cathomen and Joung 2008a). 

ZFNs have been tested to correct and treat specific genetic disorders. For instance, their 

application has shown potential in preventing AIDS (Perez et al. 2008a). A deletion in a 

chemokine receptor gene, CCR5, is associated with HIV infection resistance (Perez et al. 

2008b). Perez et al. were able to target the ZFNs to the human CCR5 gene with the use of 

adenovirus, and induce a deletion at this locus with a frequency of 50% in human CD4+ T cells. 

Furthermore, with the use of a DNA donor, ZFN-mediated editing can lead to the insertion of 

a specific sequence, through the activation of HR (Moehle et al. 2007).  

Figure I.III.2 Representation of ZFNs heterodimerization (H. Kim 
and Kim 2014). 
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Even if ZFNs can efficiently target a specific locus, this method has a major limitation: off-

target activity. Caused to the presence of repetitive sequences in the whole genome similar to 

the targeted one, ZFNs induced a high frequency of off-target mutations (D Carroll 2008; 

Cathomen and Joung 2008b). This is a significant risk factor when applied to clinical attempts. 

In fact, off-target events can generate additional mutations and clinical side effects (Pattanayak 

et al. 2011). Variable quantities of ZFNs can also induce off-target events since strong presence 

of this molecule reduces the cleavage specificity (Mussolino and Cathomen 2011; Pattanayak 

et al. 2011; Gabriel et al. 2011). Further optimizations of different variables of ZFN mechanism 

of action and administration are necessary to achieve a safe and precise standard for clinical 

use.  

 

ZFNs have previously been designed and tested on CAG/CTG repeats (Mittelman et al. 2009b). 

Mittelman et al. used APRT and HPRT selection assays. Transfection of ZFNs showed increase 

in contractions in human and CHO cells. Long repeat tracts appeared also to be a better target 

for ZFN binding and cutting resulting in activity with higher rates of contractions, 7-10 fold 

increase, compared to shorter repeat tract, 2 fold increase (Mittelman et al. 2009b). Thus, ZFNs 

showed specificity in inducing DSBs and contraction events for expanded repeat sizes, such as 

patient mutant alleles, compared to WT allele sizes. Thus, ZFNs induced repeat contractions 

in human and CHO cells, but their contribution to expansions was unknown.  

The role of ZFNs in inducing repeat contractions was successively confirmed in GFP reporter 

described above (B. A. Santillan et al. 2014). Transfection of ZFNs into this system showed a 

10-fold increase in the number of cells with contracted repeats. However, only contraction and 

deletion events were observed (B. A. Santillan et al. 2014). Mittelman et al. and Santillan et. 

al. detected only repeat contractions, not measuring other events induced by ZFN activity. We 

optimized the GFP assay and observed that ZFN transfection induced repeat instability, 
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resulting in both contractions and expansions. These results are shown in Chapter II (Cinesi et 

al. 2016).  

 

TALEN 

A second family of engineered nucleases, 

broadly used in many different organisms, 

is TALEN. Similar to ZFNs, TALENs are 

formed by a DNA-cleavage domain, FokI. 

However, the DNA binding domain specifically designed to recognize the target locus, is based 

on transcription activator-like effectors (TALEs), originally from the plant pathogen 

Xanthomonas bacterium (Cermak et al. 2011). They are constituted of a tandem of repeats of 

33 to 35 amino acids. The specificity for the target site is established by two amino acids in 

position 12 and 13 that allow the recognition of a specific base-pair (Boch et al. 2009; Moscou 

and Bogdanove 2009). The heterodimerization of the two complementary monomers is 

necessary to induce the formation of DSBs (Figure I.III.3) (Beumer et al. 2013). 

 

CAG repeat contractions with TALENs were observed in yeast (G.-F. Richard et al. 2014b; 

Mosbach et al. 2018). In this genomic assay, the intron present within the SUP4 gene has been 

replaced by 30-75 CAG/CTG repeats. The effect of TALENs designed to recognize and induce 

DSBs within the repeat sequence was tested. In homozygous yeast diploid cells, TALEN 

activity resulted in repeat contractions below the pathogenic threshold with 100% efficacy (G.-

F. Richard et al. 2014b). Moreover, deep-sequencing of surviving yeast colonies revealed no 

off target mutations induced by TALENs (G.-F. Richard et al. 2014a). These results are 

promising as they could form the basis for new therapeutic treatment against TNR disorders. 

Compared to ZFNs, TALENs have several advantages: longer recognition site for higher 

specificity, easier construction, less toxicity-related cell death, and higher on-target success 

Figure I.III.3 Representation of TALEN dimerization and 
binding on a target DNA (H. Kim and Kim 2014) 
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rate (Beumer et al. 2013). However, a new engineered nuclease has been developed in the last 

5 years, with more promising results and an easy-to-design system: CRISPR-Cas9. 

 

 
CRISPR-Cas9 
 
CRISPR-Cas9 is the most recently developed and widely used engineered nuclease. CRISPR 

system was firstly discovered and described by Nataka and his team in 1987 as 30 bp 

palindromic repeats divided by 36 bp spacer genomic sequences present in E.coli (Ishino et al. 

1987). In 2002, due to its repetitive structure it has been named clustered regularly interspaced 

short palindromic repeats (Jansen et al. 2002). These sequences were successively recognized 

as being of viral origin and were described as the bacterial and Archaea’s immune system 

against viral infection (Mojica et al. 2005). In 2008, John Van Der Oost and colleagues 

described this adaptive immune system as composed by a Cas9 nuclease and a small RNA 

(crRNA) complementary to the viral DNA sequence, necessary to target the invader genome 

(Figure I.III.4) (Brouns et al. 2008). Once the organism survived a bacteriophage infection, 

bacteria store part of the foreign DNA in protospacers that will be subsequently transcribed 

into RNA and used to recognize and cleave invader DNA with the help of the cas endonuclease 

protein. In addition to the crRNA, a second RNA molecule is necessary for the CRISPR system 

to be efficient: the trans-activating CRISPR RNA (tracrRNA) (Deltcheva et al. 2011). The two 

RNA components can be fused in one single synthetic guide RNA (gRNA) as shown 

successively by Charpentier and Doudna, thereby simplifying the system (Jinek et al. 2012b). 

In 2013, CRISPR-Cas9 was shown to efficiently edit human and mouse genomes thanks to the 

optimized design developed by Zhang and his team (Cong et al. 2013; Mali et al. 2013). This 

engineered nuclease is an efficient and versatile tool for genome editing for any target DNA 

sequence. 
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Figure I.III.4 The CRISPR-Cas9 targeting system. 
CRISPR-Cas9 targets a nucleotide sequence present in the genome. On the conplementary strand upstream of the target, a 
specific PAM sequence needs to be present in order to activate Cas9 cleavage. gRNA is originally composed by 2 RNAs: 
crRNA and tracrRNA. The union of the two RNA form a gRNA that allowed the binding of Cas9 to the target DNA and 
DSBs induction (Memi, Ntokou, and Papangeli 2018). 

 

Since its discovery, the CRISPR-Cas9 has been optimized to use a gRNA that recognizes and 

binds the complementary sequence forming a DNA-RNA hybrid. The specific binding recruits 

the Cas9 nuclease to the locus and induces a DSB (Jiang et al. 2013; Jinek et al. 2012a). The 

Cas9 protein needs the presence of a specific sequence downstream of the binding site defined 

as protospacer adjacent motif (PAM). For Streptococcus pyogenes Cas9, the PAM is usually 

5’-NGG-3’, that can vary, albeit with a reduced efficiency (Zhang et al. 2014). 

Different successful studies are aimed to optimize this engineered nuclease efficiency and 

develop variations in CRISPR-Cas9 function. By mutating part of the nuclease domain, an 

inactivated form of CRISPR-Cas9 (dCas9) was developed. dCas9 binds to the target locus and 

can prevents transcription or protein interaction (Pinto et al. 2017). The fusion of dCas9 to 

specific protein can also be used to induce epigenetic variation at specific genomic sites. 
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By catalytically inactivating one of the two nuclease domains via point mutations, it was 

possible to turn the CRISPR-Cas9 nuclease into a DNA nickase (Cas9 nickase) (Cong et al. 

2013). This Cas9 mutant is able to cleave only one of the two DNA strands, thus forming 

single-strand breaks. The Cas9 nickase used in this study carries an aspartate-to-alanine 

mutation (D10A) in its RuvC catalytic domain. Being formed by two separated genes, the Cas9 

and the gRNA, allows easy adaptation and application for different designs. By simple cloning 

techniques, the Cas9 can be easily optimized for new purposes. Low costs and easy 

manipulation make the CRISPR-Cas9 a faster and better tool compared to the previous 

engineered nucleases (Gaj, Gersbach, and Barbas 2013). 

 

CRISPR-Cas9 off targets 

Engineered nucleases are known to induce off-target effects, and the Cas9 showed similar 

outcomes (Fu et al. 2013). Even if some studies confirmed undetectable off-targets induced by 

Cas9 activity (Cinesi et al. 2016; van Agtmaal et al. 2017; Monteys et al. 2017; S. Yang et al. 

2017; Merienne et al. 2017), care should be taken before starting Cas9 clinical attempts. In 

fact, 20 nucleotides used to target the cleavage component to the locus, is an extreme small 

dimension and similar sequences can be found multiple times over the wide size of the 

eukaryotic genome, especially when targeted to repeat sequences. Even more, Cas9 binding 

tolerates a few mismatches in the target and PAM sequence, giving rise to possible off-target 

bindings (Fu et al. 2013). The off-target events constitute one of the major limitations for 

engineered nuclease for application in clinical treatments. In fact, the induction of additional 

random unwanted mutations can lead to the development of side effects and worse clinical 

condition, such as oncogenesis. 

Prediction of possible off-target effects in gene editing is still challenging. Different techniques 

and designs can reduce the probability of off-target mutations. At the moment, online softwares 
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help the discovery of potential sites and the optimization of Cas9 gRNAs (Yee 2016, 20). By 

the use of genome databases, the sequence homology with the target is evaluated. The ranking 

based on the number of mismatches and the relative position evaluates possible alternative 

bindings. Increased specificity can be also achieved by combination of two gRNAs (Kolli et 

al. 2017; Ran et al. 2013). In fact, inducing double nicks with two gRNAs targeted upstream 

and downstream can efficiently excise the targeted locus. The induction of off-target nicks can 

be easily repair without mutation induced and avoid the generation of unspecific DSBs. (Kolli 

et al. 2017; Ran et al. 2013). Moreover, optimized form of Cas9 with reduced off-target events 

can be obtained by structural changes of this protein. In fact, in 2016 Kleinstiver et al. 

developed an optimized High Fidelity Cas9 generated by aminoacidic variations in the Cas9 

sequence at Cas9-DNA contact points. The High Fidelity Cas9 showed similar on-target 

efficiency and eliminated off-target activity at undetectable levels in vitro (Kleinstiver et al. 

2016).  

Another approach that can be taken into consideration with the aim of reducing Cas9 unspecific 

bindings is a time limited expression of this editing tool. The modulation of Cas9 activity can 

be achieved in different ways. Preventing binding and editing after a time window can be done 

by specific protein inhibitors. Indeed, in 2017 Rauch et al. discovered 4 bacteriophage proteins 

able to regulate and inhibit Cas9 activity in Listeria Monocytogenes (Rauch et al. 2017). In 

addition, the blockade of Cas9 expression can be obtained by self-inactivation (Merienne et al. 

2017; A. Li et al. 2019). In fact, providing a gRNA complementary to Cas9 sequence leads to 

generation of mutations and silencing of the Cas9 gene itself (Merienne et al. 2017). Merienne 

et al. provided in addition to the Cas9 and a gRNA, a second gRNA targeted to the ATG starting 

site of the Cas9 sequence, in order to disrupt its expression. HD-iPSC-derived neurons were 

treated with self-inactivating KamiCas9 system and strong reduction in KamiCas9 protein level 

was observed due to the 58% indels events happened in the Cas9 sequence over 4 weeks. 
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Comparison of regular Cas9 and KamiCas9 system did not show any difference in gene editing 

efficiency. Thus, progressively reduced activity of Cas9 is an efficient and specific solution 

that reduces potential off-target events. Determining the efficiency of Cas9 in inducing the 

correct mutation is relevant and essential for therapeutic attempts. 

 

CRISPR-Cas9 delivery 

The Cas9 nickase is an attractive way to induce genome modification in vivo and many genome 

editing studies have proved its efficiency. Delivery of the Cas9 to the affected tissues can be 

established and over the years, different approaches have been developed and optimized to 

deliver the CRISPR-Cas9 to cells.  

Firstly, the CRISPR-Cas9 and the gRNA can be in different physical forms: DNA sequence-

based, mRNA or ribonucleoprotein complexes (RNPs). The RNPs showed numerous 

advantages compared to the plasmid-based Cas9, from lower toxicity to fast and efficient 

action, including reduced off-targets and costs (S. Kim et al. 2014; Liang et al. 2015; Staahl et 

al. 2017; Kouranova et al. 2016; Zuris et al. 2015; M. Wang et al. 2016). By skipping the 

expression and the protein synthesis, Cas9 RNPs show a faster activity and consequently decay. 

However, transfection of RNP Cas9 into embryonic stem cells still induced mutations with a 

higher frequency, 23%, compared to plasmid transfection, 10%, with no detectable off-target 

events (S. Kim et al. 2014). No off-target resulting from Cas9 RNPs can be explained by the 

reduced time activity that this form offers compared to plasmid. However, the DNA-based 

Cas9 still remain the most common used form due to high delivery efficiency and widespread 

transgene expression (Koike-Yusa et al. 2014; Zincarelli et al. 2008).  
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Figure I.III.5 Cas9 genome editing with the CRISPR-Cas9 and delivery system. 
Different delivery approaches can be used to shuttle Cas9 to the target cells and allow its expression and activity: viral, non-
viral and mechanical systems (left). Protein, RNA and DNA are the three different options to be delivered for Cas9 and the 
gRNA. An additional DNA donor sequence can be added in order to induce homologous recombination at the target locus 
(center). The gRNA recognizes the target sequence and recruits the Cas9 protein at the locus. The induction of DSB triggers 
the DNA repair and genome modification is achieved by the activation of either non-homologous end joining or homologous 
directed repair (right) (Babačić et al. 2019).  

 

Engineered nucleases can be delivered in three different ways: physical delivery, viral, and 

non-viral carriers (Figure I.III.5). Microinjection and electroporation are the most known 

techniques to mechanically introduce CRISPR-Cas9 into cells (Horii et al. 2014; H. Yang et 

al. 2013; Hashimoto and Takemoto 2015; Ousterout et al. 2015). Both approaches deliver 

protein and nucleic acids into mammalian cells with efficiency close to 100% (Horii et al. 

2014). Microinjections and electroporation are efficient delivery techniques for single cell 

transfection, for in vitro and ex vivo work. However, due to really precise localization delivery 

and strong stressed induced, they are not suitable for in vivo studies.  

In the non-viral carriers, lipid nanoparticles, polymer nanoparticles, cell-penetration peptides, 

and gold nanoparticles have also been used efficiently (Kang et al. 2017; Suresh, Ramakrishna, 
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and Kim 2017; Finn et al. 2018). These techniques are perfectly suitable for CRISPR-Cas9 

gene editing in cells and mouse models. However, they do not fit good standards for in vivo 

experiments and clinical approaches due to low delivery efficacy compared to viral systems. 

In fact, viral approaches have been used and optimized for DNA-based tools since a long time. 

Although viral delivery approaches often result in unwanted mutations, they have proved to be 

the most efficient in vector distribution and extensive transgene expression, especially in 

central nervous system (Deverman et al. 2016; Choudhury, Harris, et al. 2016; Choudhury, 

Fitzpatrick, et al. 2016; Zincarelli et al. 2008). Viral delivery can be established by the use of 

lentiviruses, adenoviruses and adeno-associated viruses (AAVs). For our studies, we selected 

lentiviruses and AAVs to deliver the Cas9 nickase in patient-derived cells and mouse models, 

respectively. These viral shuttles will be described in detail in the following section. 

 

CRISPR-Cas9 in expanded TNR disorders 

Many studies have focused their attention on Cas9 induced gene editing in order to ultimately 

reverse the pathogenic phenotype in expanded TNR disorders. The optimization of Cas9 in 

different forms led to similar readouts and proved the feasibility of this technique in improving 

pathogenic symptoms.  

Taking advantage of the epigenome potential of the Cas9, reduced toxicity and alleviation of 

cellular phenotype can be achieved. Targeting dCas9 to hypermethylated regions can induce 

chromatin changes and reactivate the transcription. In fact, the induction of demethylation at 

the CGG repeats present in FMR1 gene is possible with the use of dCas9-Tet1 (Liu et al. 2018). 

Normal levels of FMR1 were observed after switching to an active chromatin state at the 

promoter and the open reading frame (ORF) in FXS iPSCs and neurons.  

Excision of different expanded repeats leads to phenotypic amelioration. Pribadi et al. designed 

two gRNAs in order to cut the hexanucleotide repeats in C9orf72 gene. The excision of the 
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entire expanded repeat sequence by Cas9 activity reduced foci formation and the 

hypermethylation of the allele in patient-derived iPSCs (Pribadi et al. 2016). Cas9 activity was 

also able to restore FMR1 expression in FXS iPSCs (Park et al. 2015). Deletion of CGG repeats 

in FMR1 gene with DSB right upstream the repeat tract resulted in reactivation of gene 

expression. Moreover, this study demonstrated the possibility of inducing repeat excision with 

only one DSB (Park et al. 2015). 

Deletion of the full CTGs repeat tract with part of flanking sequences showed improvements 

in cellular morphology, ribonucleoprotein foci formation and splicing alteration in DM1 

patient-derived cells and DM1 mouse models (van Agtmaal et al. 2017; Provenzano et al. 2017; 

Scrudato et al. 2017; Dastidar et al. 2018; Y. Wang et al. 2018). Reversion of RNA foci and 

splicing defects was observed in DM1 patient myoblasts and fibroblasts when expanded CTG 

repeat were deleted by Cas9 activity combined with two gRNAs (van Agtmaal et al. 2017; 

Provenzano et al. 2017). 

Cas9 can also select, cut and silence the mutant HTT gene by detection of SNPs characterizing 

the specific mutant allele (Dabrowska et al. 2018; Monteys et al. 2017; Shin et al. 2016; 

Merienne et al. 2017). The recognition of mutant allele by SNP presence and excision of 

promoter and part of ORF in HTT prevented generation of mutant HTT mRNA. Repeat excision 

consequently reversed of pathogenic phenotype in HD patient-derived fibroblasts (Shin et al. 

2016). Selection of mutant allele by SNP detection has also been proposed by Monteys et al. 

where two gRNAs selected and cut part of the expanded allele in HD fibroblast cell line 

(Monteys et al. 2017). The silencing of the mutant allele led to phenotypic improvements. This 

approach showed also to be efficient in another TNR disorder context: FRDA. Increased FXN 

expression was observed when two ZFNs targeted upstream and downstream the expanded 

GAA repeat tract in fibroblasts (Y. Li et al. 2015). Similarly, FXN expression and protein level 

were restored when the GAA repeats were excised by the use of the Cas9 combined with two 
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gRNA in mouse model (Ouellet et al. 2017). The use of two gRNAs has shown to be a 

successful approach for targeting the mutant allele. 

Unfortunately, all of the techniques mentioned above are not ideal for therapeutic approaches 

where flanking sequences should be perturbed at the minimum level, especially when repeat 

are placed in translated regions. The ideal solution is to directly change repeat size maintaining 

the genomic context as normal as possible. Even more, the generation of DSBs into the DNA 

is a stressful condition that cells need to overcome, with the probability of resulting adverse 

mutations and side effects. However, the direct target of the repeat tract without concomitant 

flanking sequence variation can be a safer solution. The direct contraction in repeat size is 

possible by using the Cas9 nickase (Cinesi et al. 2016). The Cas9 nickase targeted to CAG/CTG 

repeats is able to predominantly induce repeat contractions in mammalian cells. Induction of 

multiple nicks constitute a safer and less dangerous damage compared to DSBs that can be 

easily repaired. This gene editing tool holds the promise of possible therapeutic cure for patient 

and additional studies need to verify its efficiency at higher levels.  
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I.IV Gene therapy 
 

Gene therapy has been defined by the US Food and Drugs Administration (FDA) as a technique 

that manipulate an individual’s genome by replacing or inactivating disease-causing genes, or 

introducing new modified genes to cure a disease (FDA). By taking advantage of virus ability 

to detect and infect target cells, it is possible to induce genomic corrections to ameliorate and 

treat genetic disorders in patients, via either in vivo or ex vivo approach. This approach has 

been tested and optimized over the last 30 years for different purposes.  

 

In the late ‘80s, this technique was considered particularly suitable for monogenic disorders. 

However, over the years different studies improved detailed understanding of this technique 

and gene therapy has shown to be efficient for other human disorders (Blaese et al. 1995; 

Gaspar et al. 2011; Ylä-Herttuala 2012; Maguire et al. 2008; Biagioni et al. 2018). 

The first clinical attempt for gene therapy as a therapeutic approach was established by Blaese 

et al. in 1990. Two patients affected by a severe immunodeficiency, adenosine deaminase 

deficiency, took part in this clinical trial. Through an ex vivo approach, white blood cells of 

severe combined immune deficient patients were treated with retroviral vectors to express the 

normal adesine deaminase gene, and re-implanted into the patients (Blaese et al. 1995). The 

attempt had positive results but with temporary effects only. In the following years, retro- and 

adeno-viruses were also injected in human brains to treat cancer for the first time in an in vivo 

gene therapy treatment (Puumalainen et al. 1998). At the end of 20th century, the first case of 

death caused by gene therapy reduced the enthusiasm for such approaches. A high dose of 

adenovirus injected into the patient resulted in multiorgan failure and consequent death 

(Stolberg 1999). But in 2001 a successful gene therapy attempt, in a canine model for a 

congenital disorder, provided the proof-of-concept for the gene therapy approach, renewing 

the interest in the field (Acland et al. 2001). Over the last 20 years the gene delivery systems, 
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especially the viral components, have improved significantly and several trials have been 

shown to help a wide array of disorders (Bennett et al. 2012; MacLaren et al. 2014; Maguire et 

al. 2008; Nathwani et al. 2014; Tardieu et al. 2014; Mendell et al. 2015). One notable example 

is the reversion of blindness in patients with leber congenital amaurosis with as few as two 

retinal adeno-associated virus injections (Sengillo et al. 2017). 

Three gene therapy treatments have already been approved in the European market and 

demonstrate safety in using this approach. Glybera was the first gene therapy approved in 

Europe where delivery of lipoprotein lipase gene (LPL) is done via AAV (Ylä-Herttuala 2012; 

European Medicines Agency 2012). Lipoprotein lipase deficient patients carry a defective LPL 

gene. Delivery of correct LPL restores protein levels and results in normalized fat metabolism 

reversing the symptoms (Ylä-Herttuala 2012; Stroes et al. 2008; Ross et al. 2004).  

In 2016, an ex vivo gene therapy for Adenosine deaminase severe combined immune deficiency 

(ADA-SCID) has been approved in Europe: Strimvelis (Aiuti, Roncarolo, and Naldini 2017). 

Patient affected by ADA-SCID show impaired immune reactions and lymphocyte development 

caused by silenced mutated ADA gene. Hemapoietic Stem cells are treated with retrovirus 

carrying ADA gene and re-administered to patients (Aiuti et al. 2002, 2009). During clinical 

trials patients showed, improved immune functions and lower toxic metabolites, demonstrating 

Strimvelis as able to alleviate ADA-SCID symptoms. Several expectations are hold by gene 

therapy approach for curing cancer. One gene therapy treatment already present in the 

European market that demonstrate its efficiency against melanoma is Imlygic (European 

Medicines Agency 2015). This lentivirus carries a granulocyte macrophage colony stimulating 

factor that induces systemic antitumor response in patients. This oncolytic immunotherapy 

showed benefits in tumor lysis and boost in immune reaction in metastatic melanoma 

(Andtbacka et al. 2015). Gene therapy is the new generation therapeutic avenue for many 

different genetic disorders. 
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A major factor important for the success of the gene therapy approach is the choice of the 

delivery shuttle. Recombinant lentiviruses, adenoviruses, retroviruses, and others are the 

vectors used to vehicle the DNA treatment. Differences in the composition of the viral particles 

confer specific characteristics, such as tissue tropism, genomic integration. Thus, selection of 

the virus is important for the success of the treatment.  

 

Lentiviruses 

Lentiviruses belongs to the retroviral family and they originally cause chronic disorders in 

mammalian species, including humans. The most famous lentivirus is the human 

immunodeficiency virus (HIV). They are characterized by a RNA genome that is retro-

transcribed into DNA by the reverse transcriptase enzyme once the host cell has been infected. 

The viral DNA is then integrated in the host genome, generally in coding regions (Lewinski et 

al. 2006). In 1996, Naldini et al. developed the first engineered lentivirus from HIV and 

efficiently delivered it in humans (Naldini et al. 1996). In the following years, steps have been 

taken to improve safety and reduce virulence and oncogenic potential of lentiviruses (Dull et 

al. 1998). These include the removal of accessory genes, self-inactivating mutations, and 

division in multiple plasmids during viral production (Modlich et al. 2006; Salmon and Trono 

2007). With the scope of reducing genotoxicity, self-inactivation can be achieved by deleting 

one of the two long terminal repeats that triggers gene expression, reducing possibility of 

inducing or silencing gene expression in the surrounding area of integration (Modlich et al. 

2006). Recombination events can potentially occur during the viral production, generating 

viruses able to replicate and leading to an increased mutagenesis frequency in the host genome. 

Thus, the genes necessary for recombinant lentivirus production were distributed in different 

plasmids to reduce as much as possible the probability of producing replication competent 

viruses (Salmon and Trono 2007). Lentiviruses tend to integrate viral genes into transcribed 
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regions of active genes, giving rise to potential dangerous gene mutations (G. P. Wang et al. 

2009; Mitchell et al. 2004; Schröder et al. 2002). Nevertheless, host genomic insertions tend to 

happen in 5’ regions of active genes and differently from other retroviruses, lentivirus showed 

to not integrate in tumor growth genes reducing possibility of oncogenesis (Montini et al. 

2006). They elicit a stronger immune reaction in mouse models compared to other viruses 

(Nienhuis, Dunbar, and Sorrentino 2006; High 2011). However, lentiviruses showed to be a 

safer delivery shuttle for clinical gene therapy than other retroviruses (Cattoglio et al. 2010; 

Lewinski et al. 2006). The limitation in being neutralized and inactivated by human serum 

make lentiviruses not an optimal delivery system for in vivo gene therapy (DePolo et al. 2000). 

Nevertheless, they have shown to efficiently transduce hematopoietic stem cells in ex vivo 

experiment. In a successful clinical trial, hematopoietic stem cells have been treated with ß-

globin SIN lentivirus (Cavazzana-Calvo et al. 2010). In patients affected by ß-thalassemia, a 

mutation in the ß-globin gene induces silencing and consequent absence of this protein. The 

restoration of normal blood hemoglobin levels can be achieved by re-administration of 

hemopoietic stem cells transduced by ß-globin SIN lentivirus (Cavazzana-Calvo et al. 2010). 

Ex vivo lentivirus gene therapy showed few successes in different disorders (Aiuti, Roncarolo, 

and Naldini 2017; Andtbacka et al. 2015). 

 

Adeno-associated viruses 

More promising results and ongoing clinical trials in gene therapy have been obtained using 

AAV-based vectors (clinicaltrials.org). AAVs are non-pathogenic parvoviruses able to infect 

dividing and non-dividing cells. They contain a single stranded DNA genome and host genome 

integration happens rarely. AAV genome integration has been observed in clinical trials 

(Kaeppel et al. 2013). Even though, it showed a low integration frequency without toxicity 

observed. Once released in the cell, viral DNA tends to remain in extrachromosomal circular 
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form (Xiao, Li, and Samulski 1996). This allows viral gene expression in a certain time 

window. Recombinant AAVs have been developed to limit the immune reaction, bringing this 

vector to a safer level compared to others (Nayak & Herzog 2010). However, the packaging 

capacity of AAV-mediated delivery limits its use. Inserts longer than 4 kb strongly reduce the 

production efficiency of AAVs (Wu, Yang, and Colosi 2010). Despite Streptococcus pyogenes 

Cas9 being 4’140 bps in length, its functionality when packed into an AAV has been well 

demonstrated in a HD mouse models (Monteys et al. 2017; S. Yang et al. 2017). AAV virion 

is constituted of capsid proteins whose aminoacid sequences determine the viral interactions 

and specificity for target cells and transduction efficiency. Based on capsid composition, AAVs 

are categorized in 11 serotypes that show specific tropism (Wu, Asokan, and Samulski 2006; 

Schmidt and Grimm 2015). AAV1 is well suited for delivery gene expression in brain 

(Monteys et al. 2017; Swiech et al. 2015). Muscles and liver are the prominent targets for 

AAV8 (Nelson et al. 2016; Ran et al. 2015; Y. Yang et al. 2016). Differently, AAV9 can 

efficiently drive the gene editing to wide range of tissues, including skeletal muscles, heart and 

brain (Bisset et al. 2015; Dufour et al. 2014; Tabebordbar et al. 2016; Kemaladewi et al. 2017; 

Johansen et al. 2017; Chow et al. 2017; Zincarelli et al. 2008). Even more, generation of new 

hybrid AAVs with modified tropism and increased transduction efficiency is possible by 

combination of structural capsid components from different serotypes (Tervo et al. 2016; 

Murlidharan et al. 2016). For these reasons, AAVs are considered one of the most suitable 

delivery vectors for gene therapy, leading us to the choice of AAVs to target the specific 

affected cell types in DM1 and HD mouse models. 

 

Unfortunately, for expanded TNR disorders no gene therapy treatment is available for the 

moment. Nevertheless, many pre-clinical studies showed successful results in delivering 

treatments via a viral vector, the Cas9 included. The efficiency of AAV-Cas9 delivery in DM1 
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mouse model was demonstrated. The dSaCas9 was targeted on CTG repeats in HSALR mice 

muscles, which carry an expanded CUG repeat within the final untranslated exon of the human 

skeletal actin. The dSaCas9 activity inhibited repeat expression, rescued RNA foci formation 

and missplicing events in muscle fibers (Pinto et al. 2017). In HD knock-in mice, AAV 

expressing the Cas9 and 2 gRNAs, efficiently transduced striatal cells and allowed Cas9 

components expression. This successfully led to permanent excision of the CAG repeats, 

consequent depletion of Huntingtin aggregates and alleviation of motor deficits, such as 

muscular strength and motor coordination (S. Yang et al. 2017). Differently, recombinant AAV 

expressing Cas9 showed ability in infecting brain cells in HD mouse models. Reduced level of 

human HTT mRNA confirmed excision of the repeat tract induced by Cas9 and the efficient 

treatment approach (Monteys et al. 2017).  

In conclusion, AAV vector and gene therapy approach is a good technique to delivery Cas9 

nickase to affected tissues.  
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The goal of this project is to design a gene editing approach capable of specifically inducing 

repeat contraction to be used as a novel therapeutic avenue for expanded CAG/CTG repeat 

disorders. In Chapter II, I demonstrate the ability of the CRISPR-Cas9 nickase to induce repeat 

contractions predominantly, using a mammalian system. Lipofectamine transfection of the 

Cas9 nickase induced repeat contractions in GFP(CAG)101 cells, with a rate of 30% over the 

total alleles in only 5 days (Cinesi et al. 2016). In chapter III, with a gene therapy approach, 

patient-derived cells and DM1 and HD mouse models have been treated with the Cas9 nickase 

AAV and targeted to the CAG/CTG repeat tract. Repeat instability at the mutated loci was 

measured by SP-PCR and sequencing. Results from this project will shed the light on the Cas9 

nickase gene therapy approach as a possible cure for expanded TNR disorders. 
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CAG/CTG repeat expansions cause over 13 neurological diseases that remain without a cure.

Because longer tracts cause more severe phenotypes, contracting them may provide a

therapeutic avenue. No currently known agent can specifically generate contractions. Using a

GFP-based chromosomal reporter that monitors expansions and contractions in the same cell

population, here we find that inducing double-strand breaks within the repeat tract causes

instability in both directions. In contrast, the CRISPR-Cas9 D10A nickase induces mainly

contractions independently of single-strand break repair. Nickase-induced contractions

depend on the DNA damage response kinase ATM, whereas ATR inhibition increases both

expansions and contractions in a MSH2- and XPA-dependent manner. We propose that DNA

gaps lead to contractions and that the type of DNA damage present within the repeat tract

dictates the levels and the direction of CAG repeat instability. Our study paves the way

towards deliberate induction of CAG/CTG repeat contractions in vivo.
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R
epetitive DNA sequences are hotspots for genome
instability because they pose a particular challenge to the
DNA repair and replication machineries. Their mutation

often leads to disease1. For example, tracts of CAG/CTG triplets
(henceforth referred to as CAG repeats) longer than about 35
units cause at least 14 different currently incurable neurological
and neuromuscular diseases2. In addition, when CAG repeats
expand to pathological lengths, they become highly dynamic and
their length changes at high frequencies in both somatic and germ
cells throughout the lifetime of an individual3–6.

The molecular mechanisms governing CAG repeat instability
revolve around the ability of these sequences to fold into non-B-
DNA structures when exposed as single-stranded DNA7–9. These
unusual structures are mistaken for damaged DNA whether or
not they contain lesions. The subsequent repair is error-prone
due to the repetitive nature of the sequences and their structure-
forming ability3. Another non-mutually exclusive model suggests
that DNA damage within the repeat tract triggers repair, which is,
in turn, error-prone due to secondary structures formed by
these sequences5. In support of these models, several DNA repair
pathways promote the instability of expanded CAG repeats,
including mismatch repair10, double-strand break (DSB)
repair11–14, transcription-coupled nucleotide excision repair15,16,
base excision repair (BER)17,18, as well as DNA replication19. In
contrast, single-strand break (SSB) repair (SSBR)20 and signalling
via the DNA damage response (DDR)21 antagonize CAG repeat
instability. Therefore, changes in repeat length provide an
opportunity to understand the interaction and interdependence
of several different DNA repair pathways at naturally occurring
sequences.

Importantly, repeat length determines in large part the severity
of the diseases caused by expanded repeats4. It has therefore been
proposed that contracting the repeat tract would be beneficial in
reducing phenotype expression. Repeat expansion, on the other
hand, would further exacerbate the disease symptoms4,22,23.
Currently, there is no treatment that specifically shrinks CAG
repeats. This is, in part, because the assays used to measure repeat
instability are tedious, slow and/or can only survey instability in
one direction. Consequently, the understanding of the
mechanism of CAG repeat instability remains poor. Elucidating
how contractions can be induced, without also provoking
expansions, is critical in designing therapeutic avenues.

Here we present a green fluorescent protein (GFP)-based
chromosomal reporter assay that can monitor both CAG repeat
expansions and contractions in the same human cell population.
We combined this assay with gene-editing tools, namely zinc
finger nucleases (ZFNs) and the CRISPR-Cas9 technology.
We found that DSBs induced within the expanded repeat tract
either by the Cas9 nuclease or a ZFN led to both expansions and
contractions. Remarkably, the Cas9 D10A mutant (referred to as
the Cas9 nickase) induces instability with a marked bias towards
contractions and no detectable off-target mutations. We implicate
the DDR kinases ataxia telangiectasia mutated (ATM) and ataxia
telangiectasia and Rad3 related (ATR) in promoting contractions
and preventing instability, respectively. Moreover, it is not
dependent on the SSBR factors XRCC1 and PARylation. Cas9
nickase-induced repeat contraction appears to occur via a
pathway different from SSBR- or BER-induced instability.
We propose that DNA gaps may be the crucial mutagenic
intermediate during nickase-induced contractions. Our results
have important implications for gene editing in expanded
trinucleotide repeat diseases.

Results
A GFP-based assay to detect CAG repeat instability. We made
use of a recently described GFP-based assay capable of detecting

contractions in human cells24 (Fig. 1a). In this assay, CAG repeats
within the intron of a GFP mini-gene interfere with splicing in a
repeat length-dependent manner, with longer repeats diminishing
GFP production. Thus, GFP intensities, measured by flow
cytometry, serve as a proxy for the length of the repeat tract
(Supplementary Fig. 1A,B). The reporter is present as a single
copy integrated in the genome of human HEK293 T-Rex Flp-In
cells. Its transcription is driven by a doxycycline (dox)-inducible
promoter. A second isogenic cell line, GFP(CAG)0, harbours the
same reporter at the same genomic location but is devoid of a
CAG repeat. Santillan et al.24 validated the assay by expressing a
ZFN that cuts the CAG repeat tract. This treatment increased
the number of cells with higher GFP intensities (GFPþ ) in a
reporter cell line with 89 repeats (GFP(CAG)89) by about 3.5-
folds, suggesting that the ZFN treatment induced contra-
ctions. They did not report testing for expansions.

To determine whether we could monitor expansions using this
assay, we sorted GFP� and GFPþ cells from a population of
GFP(CAG)101 cells using fluorescence-activated cell sorting
(FACS). We defined GFP� cells as those within the 1% of the
cells in the population expressing the least amount of GFP.
Similarly, GFPþ cells are the brightest 1% in the population.
From the GFP� population, we isolated 19 clones with
expansions reaching up to 258 CAGs (Supplementary Fig. 1C).
Of the 12 GFPþ clones isolated, 11 had contractions, the largest
of which shrank the repeat tract down to 33 CAGs. The allele
sizes in GFP� and GFPþ cells were significantly different
(P¼ 1.0� 10� 5, using a Wilcoxon U-test), demonstrating that
repeat size differences can be detected with this assay. Sequencing
the region flanking the CAG repeats also uncovered deletions in
five single clones with contractions (Supplementary Fig. 1D).
With the exception of one clone that contained a complex
rearrangement, the clones with deletions included 2 bp of
microhomology at the junction, suggesting that a minor CAG
repeat instability pathway is due to an error-prone alternative
end-joining mechanism, as suggested recently25. Similar results
were obtained after sorting cells from populations that were kept
in culture for 6 months with or without dox (Supplementary
Fig. 1E–H). These results demonstrate that the assay can detect
contractions as well as expansions that nearly triple the size of the
repeat tract.

DSBs induce both contractions and expansions. To determine
whether ZFN-induced expansions in addition to the contractions
reported by Santillan et al.24, we first repeated the same
experiment. Here we defined GFP� and GFPþ cells as those
with GFP intensities in the brightest and dimmest 1%
after transfection with the control vector, (Supplementary
Fig. 2A—see Methods). We reproduced their results: ZFN
expression increased the frequency of GFPþ cells by 3.2-folds,
but had no effect on the number of GFP� cells (Fig. 1b). While
optimizing the assay, we noted that GFP intensities increased on
the addition of dox for 72 h before reaching a steady-state level
(Supplementary Fig. 2B). This is in contrast to the 24 h previously
reported24. Increasing the time of GFP induction raised the
overall apparent average intensity of GFP and unmasked an
additional GFP� cell population only in the sample transfected
with both ZFN arms (Fig. 1c). This approach revealed 2.5- and
3.9-fold increases in the proportion of GFP� and GFPþ cells,
respectively, on expression of both ZFN arms compared with
transfecting an empty vector control (Fig. 1d). Expressing either
ZFN arm individually led to only small changes in GFP levels:
between 1.3- and 1.4-fold increases in the number of GFP� cells
and between 0.9- and 1.5-fold for GFPþ cells (Fig. 1d).
Expressing both ZFN arms in the GFP(CAG)0 cell line had no
effect on GFP intensities (Supplementary Fig. 2C), confirming
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that the presence of the repeat tract is necessary. We confirmed
that GFP� cells contained expansions and GFPþ cells harboured
contractions by sorting cells exposed to both ZFN arms. Of the 9
GFP� clones analysed, 8 revealed an expansion (Supplementary
Fig. 2D,E). None of them contained deletions and were therefore
not GFP� because they had lost the GFP reporter. Of the 13
GFPþ clones, 11 had contractions. Of those, 3 had deletions in
the flanking sequences, which is similar to the findings of a
previous study constrained to measuring only contractions and
using a different ZFN26. Here again, the size of GFP� and GFPþ

cells in the recovered clones were significantly different
(P¼ 5� 10� 4, using a Wilcoxon U-test). These results
demonstrate that GFP� and GFPþ cells accurately reflect the
presence of expansions and contractions, making this assay
especially well suited to detect expansions and contractions
quickly within a chromosomal environment.

To confirm that DSBs within the repeat tract lead to both
expansions and contractions, we used a second type of
programmable nuclease: CRISPR-Cas9. This bacterial nuclease

is guided to virtually any sequence of interest by a guide RNA
(gRNA) molecule, where it induces blunt-ended DSBs, making it
a highly effective gene-editing tool27–29. Transfection of a vector
expressing a gRNA that targets the unrelated DMPK locus
(gDM1d) together with Cas9 did not affect GFP expression
(Fig. 1e). Similarly, expressing a gRNA containing six CTGs as
the target sequence (gCTG) alone, expressing the Cas9 nuclease
plus the gCTG in GFP(CAG)0 cells, or the gCTG together with a
catalytically inactive version of Cas9 (Cas9m4) did not change
GFP expression significantly (Fig. 1e and Supplementary Fig. 2F).
However, expressing the Cas9 nuclease together with gCTG
resulted in a meek 1.4- and 1.5-fold induction of GFP� and
GFPþ cells, respectively, compared with co-transfecting the Cas9
expression vector with the empty gRNA vector (Fig. 1e). This low
efficiency may reflect that the protospacer adjacent motif next to
the target sequence of gCTG is not the canonical NGG. We
conclude that DSBs induced within the repeat tract by a ZFN or
the Cas9 nuclease provoke nearly as many expansions as
contractions.
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Figure 1 | DSBs within CAG repeats lead to expansions and contractions. (a) GFP-based assay to detect changes in repeat length. (b) Representative

flow cytometry profiles after expression of a ZFN in GFP(CAG)101 using the protocol from ref. 24. (c) Representative flow cytometry profiles with increased

dox induction time uncovering an increase in GFP– cells on ZFN expression in GFP(CAG)101 cells (arrow). (d) Quantification of the ZFN experiments in c

revealed that ZFN induces the appearance of GFP– and GFPþ cells. ZFNs are composed of two different ZFN arms, each fused to a FokI nuclease that must

dimerize to be active. ZFN 50 and ZFN 51 are individual ZFN arms24. The dashed line represents the number of cells present in gates set to include the

dimmest (GFP–) or brightest (GFPþ) 1% of the cells when a control vector, pcDNA3.1 Zeo, is transfected. Error bars are s.e.m. from 15 replicates for

experiments with both ZFN arms, 12 for the single ZFN transfections. (e) Quantification of GFP– and GFPþ cells obtained after expression of the indicated

vectors. Dashed line: dimmest (GFP–) or brightest (GFPþ) 1% of the cells transfected with the Cas9 nuclease vector and the empty gRNA plasmid, pPN10.

The error bars are s.e.m. Number of replicates per treatment: pcDNAþ gDM1d, n¼ 3; pcDNAþ gCTG, n¼ 5; Cas9 m4þ gCTG, n¼4; Cas9þ gDM1d,

n¼ 3; Cas9þ gCTG, n¼ 7. FC, flow cytometry; dox, doxycycline.
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The Cas9 nickase induces mainly CAG repeat contractions. The
use of the Cas9 enzyme allowed us to test whether the type of
DNA damage present within the repeat tract influences CAG
repeat instability. The Cas9 D10A mutant can be used with the
same gRNA to introduce DNA nicks on the strand com-
plementary to the gRNA30. DNA nicks are important
intermediates in repeat instability in vitro31,32. We therefore
asked whether inducing DNA nicks with the Cas9 nickase could
influence CAG repeat instability.

We found that expressing the Cas9 nickase together with
gCTG in GFP(CAG)101 cells increased the number of GFP� cells
by 1.6-fold and GFPþ cells by 3.2-folds compared with cells
expressing only the nickase (Fig. 2a). Transfecting the Cas9
nickase with gCAG, which cuts the opposite strand compared
with gCTG, had a similar effect, leading to increases of 1.4- and
3.7-folds in GFP� and GFPþ cells, respectively (Fig. 2a).
To control for potential indirect effects on GFP expression, we
expressed the Cas9 nickase along with gDM1d. This had no effect
on GFP expression (Fig. 2a). In addition, the gCTG alone did not
increase either GFP� or GFPþ cells, similar to expressing the
gCTG together with the Cas9m4 mutant (Fig. 1e), suggesting that
the activity of the nickase is necessary. Increasing the number of

transfections to three in the span of 12 days further increased the
number of GFPþ cells to 6.2-folds, without a concomitant
change in GFP� cells (Fig. 2b and Supplementary Fig. 2G,H;
P¼ 0.32 and 0.001 for GFP� and GFPþ cells, respectively, using
a Wilcoxon U-test). The Cas9 nickase did not increase the
number of dead cells, which could skew the quantification of
GFP� and GFPþ cells (Supplementary Table 1). Also, the
difference in the number of GFPþ cells induced between the
nuclease and the nickase was not due to differences in expression
levels of the Cas9 enzyme (Supplementary Fig. 3A,B). We further
confirmed that the way we quantified the data did not induce a
bias against expansions (Supplementary Fig. 3C,D). These
observations suggest that the Cas9 nickase leads to instability
with a bias towards contractions.

To confirm this effect using an assay that is independent of the
GFP reporter, we isolated DNA after expressing the Cas9 nickase
and gCTG together and performed small-pool PCR (SP-PCR).
This method bypasses the inherant advantage in amplification
efficiency that smaller alleles have by setting up a larger number
of reactions, each with only a few genomes as templates33. Using
samples treated according to our 12-day regimen, we could detect
larger and more frequent contractions in cells exposed to both the
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nickase and gCTG (Fig. 2c). The number of contractions
accounted for nearly a third of the total alleles compared with
only 8% when cells were transfected with the Cas9 nickase-
expressing vector alone (Fig. 2c, Po0.0001, using a Fisher’s exact
test). On nickase expression there was also an increase in the
number of expansions, but there were fewer of them and the
changes in size were smaller than for the contractions. We
conclude that the Cas9 nickase targeted by gCAG or gCTG leads
to a marked bias towards contractions, which is in sharp contrast
to the results we obtained with the ZFN and the Cas9 nuclease.

We next examined the effect of repeat length on Cas9 nickase-
induced contractions. To do so, we used GFP(CAG)x cell lines
with repeat sizes ranging from 0 to 270 CAGs. We detected slight
increases of 1.2- to 1.6-fold in GFP� cells on expression of both
the Cas9 nickase and gCTG. This effect was largely independent
of the repeat size, suggesting that this slight increase in GFP�

cells seen in GFP(CAG)101 is only partly caused by changes in
repeat length (Fig. 2d). By contrast, the same treatment increased
the proportion of GFPþ cells in GFP(CAG)270 and GFP(CAG)101

cells, but not in GFP(CAG)42, GFP(CAG)18 nor GFP(CAG)0

(Fig. 2d). These observations suggest that normal-length repeats
are not prone to instability on action of the Cas9-nickase. We
further substantiated this claim by examining the extent of the
Cas9-induced changes at seven different loci in the genome
harbouring repeats of normal sizes (Supplementary Table 2). We
used nine GFPþ clones with contractions within the GFP
reporter caused by the action of the Cas9 nickase guided by
gCTG. Of the 126 alleles sequenced, we found that they all
remained mutation-free (Table 1), suggesting that the frequency
of off-target mutations caused by the nickase is low. Together,
these results argue that expanded CAG repeats are targets of the
Cas9 nickase, leading predominantly to contractions.

SSBR is not involved in Cas9 nickase-induced contractions.
Our results suggest that the type of damage induced within the
repeat tract influences instability. It was therefore important to
confirm the mutagenic intermediate created by the Cas9 nickase.
The simplest hypothesis is that DNA nicks are themselves
mutagenic. We therefore tested the effect of X-Ray Repair Cross-
Complementing Protein 1 (XRCC1) and Poly (ADP-ribose)
polymerase (PARP) activities on nickase-induced instability. The
XRCC1–PARP1 complex works as a nick sensor and is involved
in their repair34. In addition, XRCC1 interacts with a number of
DNA glycosylases and is required for the repair of single-
nucleotide gaps, i.e., SSBs that arise during BER35. This is highly
relevant because BER causes expansion in a Huntington disease
mouse model17,18, and both XRCC1 and PARP1 protect against
contractions in a mammalian-based assay that is blind to
expansions20. Therefore, the prediction was that the knockdown
of XRCC1 or the inhibition of PARP using Oliparib would

significantly affect the contraction frequencies caused by the Cas9
nickase if DNA nicks or SSBs are mutagenic. This prediction was
not confirmed: neither the knockdown of XRCC1 nor the
chemical inhibition of PARP activity changed the frequency of
GFPþ cells compared with controls (Fig. 3a,b and Supplementary
Fig. 4A,B). We confirmed that the XRCC1 protein levels were
substantially reduced and that the Oliparib concentration used
led to an accumulation of cells in G2 and that it inhibited
PARylation in response to Zeocin assault (Supplementary Table 3
and Fig. 3a,b). These observations suggest that the mutagenic
intermediate is neither a DNA nick nor a SSB, and imply that
nickase-induced contractions occur through a mechanism that is
distinct from spontaneous and BER-dependent CAG repeat
instability. We posit instead that DNA gaps larger than a single
nucleotide may lead to nickase-induced contractions.

ATR and ATM in Cas9 nickase-induced CAG repeat instability.
DNA gaps, for example, those induced by ultraviolet light during
G1 of the cell cycle, activate ATR36. We therefore tested the effect
of inhibiting this DDR kinase on nickase-induced instability using
the small molecule VE-821 (ref. 37). We found that this inhibitor
led to a 3.1- and 5.9-fold increase in GFP� and GFPþ cells,
respectively, when used in combination with the Cas9-nickase
and gCTG (Fig. 4a, P¼ 0.03 compared with dimethylsulphoxide
(DMSO) treated cells, using a Wilcoxon U-test). This treatment
did not affect GFP expression in GFP(CAG)0 (Supplementary
Fig. 4B), confirming that the effect depends on the Cas9 nickase
activity within the expanded repeat tract. These data suggest that
ATR prevents CAG repeat instability at Cas9 nickase-induced
damage.

ATM is a related DDR kinase that is partially redundant with
ATR38. Thus, we wanted to know what effect ATM might have
on nickase-induced contractions. KU60019, a specific inhibitor of
ATM39, led to a nearly two-fold reduction in the frequency of
GFPþ cells compared to DMSO-treated cells (Fig. 4a, P¼ 0.01,
using a Wilcoxon U-test). To test whether the effect of ATR was
dependent on the activity of ATM, we treated the cells with both
inhibitors simultaneously. This double treatment reduced the
number of contractions induced by the Cas9 nickase compared
with DMSO-treated cells (P¼ 0.03, using a Wilcoxon U-test), to a
level similar to using the ATM inhibitor alone (Fig. 4a, P¼ 0.57,
using a Wilcoxon U-test). These observations suggest that the
activity of ATM is required to cause nickase-induced instability in
the absence of ATR.

A role for MSH2 and XPA in the absence of ATR activity. We
next aimed to further define how the Cas9 nickase leads to a
contraction bias. A central player in CAG repeat instability is
MutS Homolog 2 (MSH2), which is essential for mismatch repair.
MSH2 knockout in mouse models and its knockdown in human
cell-based assays nearly eliminates expansions10,40,41. Its role in

Table 1 | Effect of the Cas9 nickase targeted by gCTG at CAG/CTG sites in the genome.

Locus No. of repeats* No. of alleles sequenced No. with changes

Allele 1 Allele 2

AR 20þ 5 21þ 5 18 0
ATN1 15 16 18 0
ATXN1 12þ 11 12þ 12 18 0
DMPK 5 5 18 0
PPP2R2B 10 10 18 0
TBP 9þ 18 9þ 19 18 0
TCF4 14 17 18 0

See Supplementary Table 1 for sequence composition at these loci.
*Alleles from GFPþ cells sorted from GFP(CAG)101 cells transfected with the Cas9 nickase and gCTG expressing plasmids.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13272 ARTICLE

NATURE COMMUNICATIONS | 7:13272 | DOI: 10.1038/ncomms13272 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


contraction, however, is more controversial. In mouse models,
knocking out MSH2 either promoted or had no effect on
contractions10. In human cells MSH2 downregulation promotes
contractions or instability in both directions, depending on the
model system used15,40,42,43. We found that MSH2 knockdown
did not consistently reduce the number of Cas9 nickase-induced
GFPþ cells compared with a control knockdown of vimentin
(Fig. 4b, P¼ 0.14, using a Wilcoxon U-test). MSH2 promotes
CAG repeat contractions together with the NER factor,
Xeroderma Pigmentosum, Complementation Group A (XPA)15,
in a human cell-based assay. XPA is also required for CAG repeat
instability in mouse neuronal tissues44 and for contractions in a
human cell-based assay15. It was therefore not surprising that the
knockdown of XPA alone or in combination with MSH2
knockdown did not significantly reduce the frequency of
nickase-induced GFPþ cells (Fig. 4b, P¼ 0.18, using a

Wilcoxon U-test, for comparing XPA and vimentin (VIM)
knockdowns; and P¼ 0.07, using a Wilcoxon U-test, when
comparing double knockdown to vimentin knockdown). These
results argue that neither MSH2 nor XPA are involved in
generating contractions at Cas9 nickase-induced lesions.

We reasoned that ATR inhibition may be increasing the
number of expansions and contractions because DSB intermedi-
ates may form under these conditions. We therefore tested
whether the NER pathway, which is known to generate DSBs on
ultraviolet damage45 and at short inverted repeats46, could
contribute to repeat instability in the absence of ATR activity.
Knockdown of XPA in cells treated with VE-821 led to results
indistinguishable from those obtained when treating cells with
DMSO together with a control siRNA (Fig. 4c, P¼ 0.70, using a
Wilcoxon U-test). Similarly, the effect of VE-821 treatment was
suppressed by MSH2 knockdown (Fig. 4c, P¼ 0.71 compared
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with control DMSO and vimentin siRNA treatments, using a
Wilcoxon U-test). These results suggest that expansions and
contractions induced by the inhibition of ATR occur because of a
XPA- and MSH2-dependent activity that may eventually
generates DSBs.

Discussion
Many assays have been used with great success to dissect the
mechanisms of repeat instability. Unfortunately, they are often
slow, labour-intensive and/or cannot probe both expansions and
contractions at once15,24,33,47–49. Here we have adapted a
chromosomal-based reporter assay such that it can monitor
instability in both directions within only 5 days. We show that the
assay can be coupled to pharmaceutical treatments, siRNAs and
cDNA overexpression, making it highly versatile and well suited
for screening.

DNA nicks appear to be repaired by distinct and still poorly
understood mechanisms. For example, they stimulate homology-
directed repair in a human cell-based assay50. Intriguingly, this
process is suppressed by RAD51 and BRCA2, which are required
for homologous recombination at DSBs50. PARP inhibition
also stimulates nick-induced homology-directed repair51. Our
observation that the same PARP inhibitor has no effect on
nickase-induced contraction is suggestive of a different pathway
being used at CAG repeats and that DNA nicks are not the
mutagenic intermediates leading to nickase-induced contractions.
Furthermore, the lack of an effect when knocking down XRCC1
or inhibiting PARP1 implies that the Cas9 nickase leads to
contraction via a pathway different from that of BER-generated
SSBs. We cannot rule out that DNA nicks lead to contractions
independently of the known pathways leading to spontaneous
instability. Instead, however, we offer a model (Fig. 5) whereby
the Cas9 nickase induces several nicks on the same strand within
the repeat tract, thereby generating DNA gaps. This hypothesis is
attractive because it provides an explanation for the repeat-length
dependency of nickase-induced contractions: shorter repeats have
fewer gCTG-binding sites and thus DNA gaps are not created as
readily, leading to a stable tract. Together, these observations
suggest that different types of DNA lesions found within the
repeat tract are repaired by different pathways, which may dictate
the direction of repeat instability.

DNA gaps are important intermediates in CAG repeat
instability in model systems as varied as yeast and mice52–54.
How they lead to contraction, however, has remained unclear. In
our model (Fig. 5), we propose that DNA gaps caused by the Cas9
nickase are converted to contractions via an ATM-dependent
mechanism—perhaps by promoting ligation of single-stranded
DNA ends across a hairpin. This intermediate could be further
processed or simply replicated in the following cell cycle to create
a contraction. DNA gap filling, promoted by ATR, would prevent
the involvement of ATM, providing an explanation for the
apparent role of ATR in antagonizing ATM. When ATR
signalling is compromised, an intermediate, possibly stabilized
by MSH2 (ref. 55) and/or XPA56, lingers and is processed more
often by an XPA-dependent recruitment of downstream
nucleases. The resulting DSB is further repaired via the same
error-prone pathway that processes ZFN and Cas9-induced DSBs.

The yeast homologue of ATR, Mec1, prevents the appearance
of contractions, most likely by preventing DSB formation at
expanded CAG repeats21. Tel1, the ATM homologue, had no
effect on CAG repeat instability14. Admittedly, budding yeast
displays a bias towards contractions in wild-type cells and may
therefore process CAG repeats differently than human cells.
Nevertheless, it is unclear why the roles that we have uncovered
here should be different than the ones uncovered in yeast. One

possibility is that the mutagenic intermediates that Mec1 and Tel1
are sensing in the yeast studies were different than those involved
here.

ATR and ATM heterozygosities also have distinct effects on the
instability of CGG/CCG repeats in mice. In agreement with data
presented here, ATR prevents the expansion of CGG/CCG
repeats both in somatic tissues as well as in non-replicating
prophase I-arrested mouse oocytes57. The effect of ATR on
contractions was not reported. Atmþ /� animals, by contrast, did
not display an overt somatic instability phenotype. Instead, they
showed markedly increased frequencies of expansions in the male
germlines58. The effect on contractions was not reported. The
reason for these differences is currently unclear but may include
the very different nature of the trinucleotide repeats studied
(CAG/CTG versus CGG/CCG), and/or the difference between the
human cells used here and the in vivo mouse model used in both
previous studies. More work is required to resolve this issue.

Our results have profound implications for somatic gene
editing of expanded CAG diseases. Programmable nucleases were
proposed to provide a tool to shorten repeat tracts and a much
needed cure59. Some attempts have been made to test this
hypothesis using ZFNs or TALENs24,26,60,61. Our data caution
that inducing DSBs within the repeat tract in an attempt to shrink
them would also lead to repeat expansion. This would be a
problem because the expansions are likely to exacerbate the
disease phenotype22,23. An alternative may be to induce two DSBs
in regions immediately flanking, but not within, the repeat tract.
This approach would be prone to off target effects62–64, may lead
to the mutation of the wild-type allele, and gRNAs would have to
be designed and tested for each disease locus. Our approach
would be simpler, using a single gRNA that could target any of
the disease loci. In addition, our data argue that only longer,
pathogenic, repeat tracts are targeted for contractions; an ideal
scenario as it leaves the normal allele intact.

For CAG repeat contraction to be a viable therapeutic avenue,
the disease phenotypes must be reversible. There is some evidence
that this is the case. Indeed, the myotonia and cardiac symptoms
of a myotonic dystrophy mouse model were reversible on
shutting off the expression of the pathogenic transgene65.
Similarly, halting the expression of a spinocerebellar ataxia type
1 allele with 82 CAGs markedly improved the pathological
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Figure 5 | Model for Cas9-nickase-induced repeat contraction.
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phenotype of Purkinje cells and reversed motor dysfunction66.
Homology-directed replacement of an expanded CAG repeat in
induced pluripotent stem cells (iPSC) derived from Huntington
disease patients improved suceptibility to cell death and
mitochondrial defects67. Removing a CGG/CCG repeat tract
along with flanking sequences from the FMR1 gene with CRISPR-
Cas9 nuclease reactivated the expression of FMRP in a few iPSC
clones68. Finally, excising expanded GAA/TTC repeats in
Friedreich Ataxia fibroblasts reactivated the expression of
frataxin, improved the activity of the Fe-S-containing Aconitase,
and increased cellular ATP levels69. Together with our results,
these studies offer great hope that Cas9 nickase-mediated
shrinkage of expanded repeat tracts in somatic tissues may
alleviate disease symptoms in patients.

Methods
Cell culture. The GFP(CAG)0 and GFP(CAG)101 cells lines were a kind gift from
John H. Wilson24. The cells tested negative for mycoplasma using the MycoAlert
detection kit (Lonza) at the start of our experiments and during the revisions of this
manuscript. The GFP(CAG)15, GFP(CAG)18, GFP(CAG)42, GFP(CAG)50 and
GFP(CAG)270 were isolated from populations grown for 6 months unperturbed or
after transfection with the ZFN. They did not contain mutations in the region
flanking the repeat tract. The cells were maintained at 37 �C with 5% CO2 in
Dulbecco’s modified Eagle’s medium (DMEM) glutamax, supplemented with 10%
fetal bovine serum (FBS), 100 U ml� 1 penicillin (pen), 100 mg ml� 1 streptomycin
(strep), 15mg ml� 1 blasticidine and 150mg ml� 1 hygromycin. When the cells were
destined for flow cytometry, they were kept in DMEM glutamax, with 10% of
dialysed calf serum, along with pen–strep. During the long-term culturing, the
unstransfected and unperturbed cells were split one to five twice a week, and the
medium was supplemented with blasticidine and hygromycin to ensure continued
expression of the TetR and GFP transgenes.

Plasmids and siRNA transfections. The plasmids used in this study are found in
Supplementary Table 4. They are available on request. cDNA transfections were
performed using 6� 105 cells per well in 12-well plates using a total of 1 mg of DNA
and Lipofectamine 2000 (Life Technologies) per well. The culture medium was
replaced 6 h after transfection and 2 mg ml� 1 of dox, diluted in DMSO, was added.
Controls without dox were treated with DMSO alone. Forty-eight hours later, the
medium was replaced and dox was freshly added. Flow cytometry, protein
extraction and/or DNA extraction were performed after another 48 h of incubation.

The siRNAs used in this study are found in Supplementary Table 5. When
transfecting with both a cDNA and a siRNA, 8� 105 cells per well were used along
with 1 mg of DNA and 20 nM of siRNAs using Lipofectamine 2000. The medium
was replaced 6 h later and dox was added. Forty-eight hours after the first
transfection, we performed a second siRNA transfection with RNAiMax (Life
Technologies) using half of the cells present and 20 nM of siRNA. We collected the
cells to assess knockdown efficiency or GFP fluorescence analysis 48 h later. When
transfecting two siRNAs, we used a final siRNA concentration of 40 nM, where
20 nM of each individual siRNA were used. We found that single knockdowns at
20 nM were no different from those also containing 20 nM of the vimentin siRNA
and were pooled for the statistical analyses and in the presented figures.

Pharmacological inhibitors. When using small-molecule inhibitors
(Supplementary Table 6), the cells were treated as above. The medium, along with
the dox and the inhibitors, was replaced after 48 h and for another 48 h of treat-
ment. Cell cycle analysis was performed after 96 h of treatment. Briefly, the cells
were fixed with 100% ethanol and treated with RNAseA (50 mg ml� 1) before
adding propidium iodine (50 mg ml� 1). Flow cytometry analysis was performed as
described below.

Flow cytometer and cell sorting. In preparation for flow cytometry analysis, cells
were re-suspended in phosphate-buffered saline (PBS) with 1 mM EDTA to a
concentration of about 106 cells per ml. For each condition, we measured at least
2� 105 events using a LSRII from BD. Data analysis was done using Flowing II.
FACS was performed using a FACS Aria II (BD) or MoFlo Astrios (Beckman
Coulter). For single-clone analyses, we re-suspended the cells to a concentration of
2� 106 cells per ml and sorted the GFP� and GFPþ cells. The cells were then
expanded in DMEM glutamax supplemented with pen–strep, blasticidine, hygro-
mycin, 5% FBS and 5% dialysed calf serum. For viability tests, cells were treated as
described above except that 96 h after the first transfection they were collected in
PBS with 1 mM EDTA, and 1 mM of TO-PRO-3 was added as a dead cell marker.

Quantification of GFP� and GFPþ cells. To quantify the fold increase in the
number of GFP� or GFPþ cells, we first established gates that contained the top
or bottom 1% of GFP-expressing cells in the control treatment, for example, the
nickase plasmid transfected together with an empty gRNA vector (pPN10). For
each treatment or cell line, therefore, the top and bottom 1% were adjusted to take

any shift in GFP expression into account. In some cases, we adjusted the voltage of
the flow cytometer laser to accommodate samples with very high or very low GFP
expression. This adjustment did not interfere with the quantification
(Supplementary Fig. 3C,D). Once the GFP gates were established, we calculated the
percentage of cells from the test population (for example, expressing both the Cas9
nickase and the gCTG) falling within these same gates. In cases where inhibitors or
siRNAs were used, the control population expressed the Cas9 nickase, pPN10 and
the inhibitor or siRNA. The 1% cutoffs were used to keep a balance between having
enough cells for robust statistics and detecting significant fold changes24. This
method probably underestimates the frequencies of change compared with SP-PCR
(Fig. 2).

Repeat length determination and SP-PCR. To determine the repeat length of
each sorted clone, we isolated DNA using the PeqGold MicroSpin Tissue DNA kit
(PeqLab). The DNA was then amplified with primers oVIN-0437 and oVIN-0459
(Supplementary Table 7). Several PCR reactions were set-up with MangoTaq and
the products were gel-extracted, pooled and sent for sequencing with the same
primers used for the amplification. The repeat size was determined from at least
two different amplification and sequencing reactions. The longest repeat size
determined was used in the rare cases where the repeat length was not identical
between the runs. SP-PCR was done based on the protocol described in ref. 70.
Briefly, primers oVIN-0459 and oVIN-0460 were used for the amplification along
with between 50 and 100 pg of genomic DNA per PCR. The products were then
run on an agarose gel and transferred into a membrane. The probe was derived
from a PCR product amplified with the same primers from a plasmid containing 40
repeats. The primers used to amplify the off-target loci are found in Supplementary
Table 7.

Antibodies and western blotting. Protein extraction was done using RIPA buffer
and proteinase inhibitor cocktail tablets (Roche, Germany) and at least 10 mg of
proteins were loaded onto 6 or 10% Tris/glycine SDS polyacrylamide gels and
transferred onto nitrocellulose membranes. The antibodies used in this study are
found in Supplementary Table 8. An Odyssey Infrared Imager (Licor) was used for
signal detection. All uncropped western blots are found in Supplementary Fig. 5.

Statistics. When determining whether there were differences in the frequency of
GFP� and GFPþ cells between treatments, we were unable to guarantee that the
data were normally distributed using a two-tailed Kolmogorov–Smirnov test.
We therefore used a two-tailed Wilcoxon U-test as it is non-parametric. We also
performed two-tailed Student’s t-tests, which gave similar results as the U-tests.
The same was true when comparing length of the repeat tracts in clones sorted
from different populations. We used a Poisson distribution to evaluate the total
number of alleles amplified in our SP-PCR experiments based on the proportion of
PCRs that did not yield a detectable product. Fisher’s exact tests were used to
determine whether there were changes in the number of contractions and
expansions seen in the SP-PCR experiment. All statistical analyses were done using
R Studio version 0.99.441. We concluded that a significant difference existed when
Po0.05.

Data availability. The data presented in this study are available from the
corresponding author.
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Supplementary Fig. 1: 
Characterization of the GFP 
reporter assay and GFP– and 
GFP+ cells isolated from 
GFP(CAG)101. A) Profile of GFP 
intensity in three cell lines 
isolated by FACS after six 
months of culturing 
compared to the starting 
population of GFP(CAG)101. 
The repeat length in each 
clone is marked above the 
flow cytometry profiles. B) 
Same as A, but in the 
presence of 2µg/ml dox for 5 
days. C) Repeat length for 
clones isolated from the GFP‒ 

and GFP+ populations from 
GFP(CAG)101 cells. The 
distributions of repeat 
lengths between GFP– and 
GFP+ cells were significantly 
different (P=1x10-5). D) 
Schematic representation of 
clones from C with mutations 
in the flanking sequences. *: 
Three different clones were 
isolated with the same 
deletion, two with 78 
repeats, one with 77. E) 
Same as C, but with clones 
cultured in the presence of 
dox for 6 months. The 
distributions of repeat 
lengths between GFP– and 

GFP+ cells were significantly different (P=0.025). F) Schematic representation of the deletions found after 6 
months of culturing in the presence of dox. G) Same as E, except that the cells were exposed to DMSO. The 
distributions of repeat lengths between GFP– and GFP+ cells were significantly different (P=0.035). H) Same 
as F, but for clones cultured in DMSO. *: The 19bp insertion is a direct repeat of the 19bp immediately found 
before the insertion. 
  



 
 
Supplementary Fig. 2: Assay optimization, the effect of ZFN and Cas9 nuclease on GFP(CAG)0 and analysis of 
GFP– and GFP+ clones collected after ZFN treatment. A) Example of data quantification. The GFP– and GFP+ 
gates are set as the top or bottom 1% of the control population, in this case transfected with pcDNA3.1. The 
same gates are then used to determine the proportion of cells from the treated population that falls within 
these set gates have changed expression. B) Flow cytometry profile of cells treated with dox for an 
increasing amount of time. C) One of 10 flow cytometry experiments of GFP(CAG)0 cells transfected with 
vectors expressing both ZFN arms or with a control vector (pcDNA3.1 Zeo). D) Repeat tract lengths in GFP– 
and GFP+ clones after treatment of GFP(CAG)101 cells with both ZFN arms. Dashed grey bars: repeat size in 
the starting population: 101 CAG repeats. The distributions of repeat lengths between GFP– and GFP+ cells 
were significantly different (P=5x10-4) E) Schematic representation of clones with deletions in the sequences 
surrounding the CAG repeat. F) One of two flow cytometry experiments comparing cells expressing the Cas9 
nuclease and the gCTG or transfected with an empty gRNA vector (pPN10). G and H) Representative flow 
cytometry profiles showing that the number of GFP+ cells increases after two more transfections over a total 
period of 12 days compared to our standard 5-day treatment. 
  



 
Supplementary Fig. 3: Cas9 
nickase induces repeat 
instability with a bias 
towards contractions. A) 
Expression levels of the 
Cas9 nuclease and Cas9 
nickase do not account for 
the different effects of 
these two enzymes on the 
number of GFP‒ and GFP+ 
generated. Dashed line: 
dimmest (GFP–) or brightest 
(GFP+) 1% of the cells 
transfected with the 
indicated amount of the 
Cas9 nickase or nuclease 
vector together with the 
empty gRNA plasmid. B) 
Western of Cas9 levels for 
the experiment presented 
in (A). C) Flow cytometry 
data results from 
GFP(CAG)101 cells 
transfected with the Cas9 
nickase and with either 
pPN10 or gCTG-expressing 
vector showing that 
changing the laser 
intensity, and thus the 
apparent GFP expression, 
does not change the results 
of the quantifications. D) As 
in (C) but with GFP(CAG)270. 
E) Size of repeat in clones 
isolated from GFP(CAG)101 
cells transfected with the 
gCTG and the Cas9-nickase 
expressing vectors. The 
distributions of repeat 
lengths between GFP– and 
GFP+ cells were significantly 

different (P=2x10-4). F) Schematic of the rearrangements from in 3 GFP+ clones from (E). *: This clone 
contained a complex rearrangement with the 36bp insertion that includes a 10bp insertion followed by two 
direct repeats of 13bp corresponding to the last 13bp prior to the insertion. G) Same as in E, but with cells 
transfected with the Cas9 nickase together with gCAG. The distributions of repeat lengths between GFP– and 
GFP+ cells were significantly different (P=1.5x10-6). H) Schematic of the clones from (G) that had changes in 
the sequences flanking the repeat. *: This clone had a 19 CAG repeat expansions downstream of a 
duplication that included the 40bp immediately upstream of the repeat tract and 36 more CAGs. 

 
 



 
 
Supplementary Fig. 4: Effect of siRNA and inhibitor treatments on GFP(CAG)0 cells and knockdown efficiency. 
A) Representative flow cytometry plots from siRNA knockdown experiments (MSH2: n=6; XPA: n=6; XRCC1: 
n=4). B) Representative flow cytometry results for inhibitor experiments (ATMi: n=5; ATRi: n=5; PARPi: n=4). 
C) Western blot showing knockdown efficiency by the MSH2 and XPA siRNAs. 



 
 
Supplementary Fig. 5: Full size western blots. A) Cas9 (top) and ACTIN (bottom) immunoblots from 
Supplementary Fig. 3B. B) XRCC1 (top) and ACTIN (bottom) blots from Fig. 3A. C) PARP (top) and ACTIN 
(bottom) western blots from Fig. 3B. D) MSH2 (top) and ACTIN (bottom) immunoblots from Fig. 4C. E) XPA 
(left) and ACTIN (right) immunoblots from Supplementary Fig. 4C. Boxes indicate the bands that were 
cropped. 
  



Supplementary Tables 
 

Treatment Viability %* 

pcDNA 76.6 

ZFN 50 81.6 

ZFN 51 79.8 

ZFNs 75 

Cas9 + pPN10 76.9 

Cas9 + gDM1d 76.1 

Cas9 + gCTG 85.4 

Cas9 D10A + pPN10 77.3 

Cas9 D10A + gDM1d 75.8 

Cas9 D10A + gCTG 

DMSO 81 

ATRi 82.6 

ATMi 77.2 

PARPi 75.9 

Supplementary Table 1: Cell viability after transfection with the indicated plasmids and treatments.  
*: derived from three experiments. 
 
 

Locus Sequence 

AR (CAG)20-21-CAA GAG ACT AGC CCC AGG (CAG)5 

ATN1 CAG-CAA-CAG-CAA-(CAG)15-16 

ATXN1 (CAG)12-CAT-CAG-CAT-(CAG)11-12 

DMPK (CTG)5 

PPP2R2B (CAG)10 

TBP (CAG)3-(CAA)3-(CAG)9-CAA-CAG-CAA-(CAG)18-19-CAA-CAG 

TCF4 (CTG)14-17-(CTC)6 

Supplementary Table 2: Sequences of loci with CAG/CTG repeats in GFP(CAG)101. Pure stretches are 
designated with parenthesis with the number of repeat as subscript. When two numbers are present, they 
refer to the number of repeats present on each allele. 
 
 

Treatment inhibitor <2n G1 S G2 >4n 

Cas9 D10A 

DMSO 4.3 ± 0.5* 50.0 ± 1.1 18.8 ± 0.7 20.2 ± 1.4 6.2 ± 0.8 

ATMi 7.5 ± 0.8 34.9 ± 1.6 15.3 ± 1.7 37.2 ± 1.6 4.9 ± 1 

ATRi 2.0 ± 0.1 41.4 ± 1.4 20.9 ± 2.5 25.4 ± 2.2 10.3 ± 3 

PARPi 5.0 ± 0.4 40.7 ± 1.9 19.0 ± 2.2 30.0 ± 4.9 5.3 ± 1 

Supplementary Table 3: Cell cycle analysis upon inhibitor treatment and Cas9 D10A transfection. 
*: n=4 for each treatment. Average % of cells ± standard deviation. 



Name Content Source  

pcDNA3.1 Zeo Empty vector 
Life 

Technologies 

pcDNA3.3-TOPO - 
Cas9_D10A 

Cas9 D10A 1 via Addgene 

pcDNA3.3-TOPO hCas9 human Cas9 1 via Addgene 

pPN10 Empty gRNA This study 

pPN10-gCAG pPN10 with (CAG)6 gRNA – PAM: CAG This study 

pPN10-gCTG pPN10 with (CTG)6 gRNA – PAM: CTG This study 

pPN10-gDM1d 
pPN10 with gRNA against the 3’ UTR of the DMPK 

gene  
target: TGCGAACCAACGATAGGTG PAM: GGG 

This study 

pZFN50 Single ZFN arm: 50 2 

pZFN51 Single ZFN arm: 51 2 

Supplementary Table 4: Plasmids using in this study. All plasmids created here are available upon request. 
 

siRNA Target Sequence Reference 

siVIN-0001 VIM GAAUGGUACAAAUCCAAGU 
3 

siVIN-0002 MSH2 UCUGCAGAGUGUUGUGCUU 
3 

siVIN-0003 XPA GCUACUGGAGGCAUGGCUA 
3 

siVIN-0062 XRCC1 CAGUUUGUGAUCACAGCACAGGAAU 
4 

Supplementary Table 5: siRNAs used in this study. 
 
 

Name inhibitor Target Concentration  

Oliparib PARP1/2 1 μM 

KU60019 ATM 1 μM 

VE-821 ATR 1 μM 

Supplementary Table 6: Inhibitors used, their known target, and the concentration used in our experiments. 
  



Primer Locus Sequence 

oVIN-0437 Pem1 intron in the GFP cassette TACCAGGACAGCAGTGGTCA 

oVIN-0459 Pem1 intron in the GFP cassette AAGAGCTTCCCTTTACACAACG 

oVIN-0460 Pem1 intron in the GFP cassette TCTGCAAATTCAGTGATGC 

oVIN-1251 DMPK GAGCGTGGGTCTCCGCCCAG 

oVIN-1252 DMPK CACTTTGCGAACCAACGATA 

oVIN-1255 ATN1 ACTCAGCCTTCTCTCCCATC 

oVIN-1256 ATN1 TGTAGGACACCTGGCTGTGA 

oVIN-1257 AR TAGGGCTGGGAAGGGTCTAC 

oVIN-1258 AR CTCTGGGACGCAACCTCTCT 

oVIN-1259 ATXN1 TTCCAGTTCATTGGGTCCTC 

oVIN-1260 ATXN1 GTGTGTGGGATCATCGTCTG 

oVIN-1269 TBP TTCTCCTTGCTTTCCACAGG 

oVIN-1270 TBP GGGGAGGGATACAGTGGAGT 

oVIN-1273 PPP2R2B GCAGCAAAGAGCAGCCGCAG 

oVIN-1274 PPP2R2B CTGGTCCCACGGGAGGGCGG 

Supplementary Table 7: Primers used here with the locus targeted. 
 
 

Antibody Species Dilution Source Reference 

Anti-Actin Rabbit 1:2000 Sigma-Aldrich A2066-.2ML 

Anti-CRISPR-Cas9 Rabbit 1:1000 Abcam ab204448 

Anti-MSH2 [3A2B8C] Mouse 1:2000 Abcam ab52266 

Anti-PAR  Mouse 1:1000 Amsbio 4335-AMC-050 

Anti-XPA [5F12] Mouse 1:2000 Abnova MAB6747 

Anti-XRCC1 [33-2-5] Mouse 1:1000 Abcam ab1838 

Supplementary Table 8: List of antibodies used, the dilution that we used for western blotting, the source 
and reference number. 
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III.I Introduction 
 
 

We previously showed that the Cas9 nickase can induce contractions in a cell line carrying 100 

repeats. Although useful to uncover the basic mechanism of repeat instability, the system used 

was not a disease model. Thus, we tested the effect of the Cas9 nickase on expanded CAG 

repeat tracts in patient sizes. The use of DM1 and HD patient derived cells will determine the 

activity of Cas9 nickase on longer repeats. Since a viral infection technique showed a stronger 

efficiency in integrating exogenous DNA into the genome compared to transfection methods, 

the Cas9 nickase coding sequence can be packed into lentiviral vectors. This experiment would 

determine whether the Cas9 nickase is effective in contracting expanded repeats in DMPK and 

HTT loci. 

For therapeutic purposes, it is fundamental to determine whether the Cas9 nickase can be used 

to improve pathogenic symptoms in vivo and be delivered via a gene therapy approach. The 

efficiency of the Cas9 nickase in inducing repeat contractions and reversing the pathogenic 

phenotype in specific affected tissues are essential steps that need to be investigated. To test a 

gene therapy approach and the activity of Cas9 nickase in vivo, DM1 and HD mouse models 

were injected with AAV expressing Cas9 nickase and gRNA. This experiment would 

determine the feasibility of the Cas9 nickase in curing expanded TNR patients with a gene 

therapy approach. 
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III.II Materials and Methods 
 
 

Plasmids and cloning 

Plasmids and primers used in this study are listed in Table III.II.1 and Table III.II.2. 

The lentiviral vector expressing the Cas9 nickase for viral production was obtained from 

Addgene (Addgene plasmid #63593; http://n2t.net/addgene:63593; RRID:Addgene_63593), 

here referred as bVIN-478. To produce the lentiviral vector containing gCTG (bVIN-418), the 

gRNA sequence was cloned into pLenti X1 Puro DEST (694-6), (Addgene plasmid #17297; 

http://n2t.net/addgene:17297; RRID:Addgene_17297) vector by the use of 

Gateway®Technology (Invitrogen, Carlsbad, CA), for 3rd generation lentivirus packaging 

system (Campeau et al. 2009). The U6 promoter linked to gCTG sequence was amplified with 

primers oVIN-1374 and oVIN-1375, and flanked by the attB-sites. A BP reaction was then 

performed to generate an entry clone, which was successively cloned into the destination vector 

using LR Clonase (Invitrogen, Carlsbad, CA).  

 

 
Table III.II.1 List of plasmids used in this study. 

Name Alias Content Description Reference 

bVIN-235 pDONR221 ChlR, ccdB Donor plasmid for entry clone Addgene plasmid #2394 

bVIN-321 pPN10-gCTG gRNA target to 
(CTG)6 

gCTG expressing vector under 
U6 promoter (Cinesi et al. 2016) 

bVIN-374 pMD2.G pMD2.G + VSV-G 3rd generation lentiviral 
packaging plasmid (Dull et al. 1998) 

bVIN-375 pRSV-Rev pRSV-Rev 3rd generation lentiviral 
packaging plasmid (Dull et al. 1998) 

bVIN-376 pMDLg/pRRE pMD + GAG/POL 3rd generation lentiviral 
packaging plasmid (Dull et al. 1998) 

bVIN-387 pLenti X1 
Puro DEST Empty vector 3rd gen Empty vector for 

Lentiviral production (Campeau et al. 2009) 

bVIN-418 pLenti-Puro-
gCTG 

U6 promoter and 
gCTG 3rd gen Lenti-gCTG production This study 

bVIN-478 
pLenti-

Cas9(D10A)-
Blast 

Cas9 D10A 3rd gen Lenti-Cas9-D10A 
production 

(Sanjana, Shalem, and Zhang 
2014) 
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Table III.II.2 Primer list used in this study 

Name Structure Fragment 
amplified 

Sequence Reference 

oVIN-100 10 CAG repeats SP-PCR 
probe 

AGCAGCAGCAGCAGCAGCAGCAGCAGCAGC (Dion et al. 2008) 

oVIN-1663 For: Gag GAG gene GGAGCTAGAACGATTCGCAGTTA 
(Salmon and Trono 2007) oVIN-1664 Rev: Gag GGTGTAGCTGTCCCAGTATTTGTC 

oVIN-1665 For: WPRE WPRE gene GGCACTGACAATTCCGTGGT 
(Salmon and Trono 2007) oVIN-1666 Rev: WPRE AGGGACGTAGCAGAAGGACG 

oVIN-2018 For: Albumin ALB gene GCTGTCATCTCTTGTGGGCTGT 
(Salmon and Trono 2007) oVIN-2019 Rev: Albumin ACTCATGGGAGCTGCTGGTTC 

oVIN-1251 For: 3'UTR-Dmpk human 
DMPK gene 

GAGCGTGGGTCTCCGCCCAG 
(Aeschbach and Dion 2017) oVIN-1252 Rev: 3'UTR-Dmpk CACTTTGCGAACCAACGATA 

oVIN-1333 For: exon1-Htt Human HTT 
gene 

CCGCTCAGGTTCTGCTTTTA 
This study oVIN-1334 Rev: exon1-Htt CAGGCTGCAGGGTTACCG 

oVIN-2530 Rev: exon1-Htt Murine HTT 
gene 

TTCCCTAACTTCGCAAACTG 
This study oVIN-2548 For: exon1-Htt CCACCTCATCCTCTTGCTT 

oVIN-1374 For: att site-U6 prom-
gRNA 

U6 prom-
gRNA 

CTGACCTAGGGGACAAGTTTGTACAAAAAAGCAGGCTAAGGTCGGGCAGGAAGAGGG 
This study 

oVIN-1375 Rev: att site-gRNA CTGACCTAGGGGACCACTTTGTACAAGAAAGCTGGGTAAAAAGCACCGACTCGGTGC 

FAM6 For: exon1-Htt FAM 
labelled  

Human HTT 
gene 

ATGAAGGCCTTCGAGTCCCTCAAGTCCTTC 
(Mangiarini et al. 1997, 3) 

HU3 Rev: exon1-Htt  GGCGGCTGAGGAAGCTGAGGA 
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Patient-derived cells 

Patient-derived LCLs were obtained from the Coriell Institute Repository (Camden, New 

Jersey). In this study, we used GM14044 (an HD-derived LCL) and GM06077 (from a DM1 

individual) (Table III.II.3). Cells were maintained in RPMI 1640 (Invitrogen, Carlsbad, CA) 

containing 15% FBS, 1% penicillin and streptomycin in 15 mL flasks. Cells were incubated at 

37°C in a 5% CO2 humidified atmosphere. 

 

 
Table III.II.3 LCLs used in this study 

Name Disease Repeat size 
allele 1 

Repeat size 
allele 2 

Age at 
onset Symptoms Reference 

GM06077 DM1 NA 1600 2 Cognitive and motor 
symptoms 

(Kalman et al. 
2013) 

GM14044 HD 19 750 2.5 Dementia and motor 
disfunctions  

(Nance et al. 
1999) 

 

 

Lentiviral transduction was established by two subsequent and not concomitant transductions 

of the patient cells with the 2 lentiviruses. At D0 100’000 lymphoblastoid cells were plated in 

12 well/plates with 2 mL of media. The following day, 5 µL of lentivirus was added directly 

into the media and incubated over 3 days. In order to select for transduced cells, specific 

selection markers were added into the medium: 15 µg/mL blasticidin for Lentivirus-Cas9-

nickase and/or 1 µg/mL puromycin for Lentivirus-gCTG. Genomic DNA was extracted at 

different time points with NucleoSpin® Tissue kit (MACHEREY-NAGEL, Düren, Germany). 

Cells transduced with only Lenti-Cas9-D10A were used as control reference.  

 

Lentivirus 

Plasmids used to generate lentiviruses are listed in Table III.II.1. To produce 3rd generation 

lentiviruses, I followed the Trono lab protocol (Salmon and Trono 2007). 3x106 HEK 293T 

cells were plated in four 20 cm/plates, in DMEM/glutamax (Invitrogen, Carlsbad, CA) 

supplemented with 10% fetal bovine serum (FBS) and incubated at 37°C in a 5% CO2 

humidified atmosphere for 56 hours. Two hours before the transfection, medium was replaced 

with 22.5 mL fresh medium. Cells were then transfected with CalPhos Mammalian 

Transfection kit (Takara, Clontech, Cat#631312). I added in each tube: 2.64 mL of TE Buffer 

0.1X (final 0.06 X), 1.09 mL H2O, 90 µg vector with gene of interest (either bVIN-418 or 

bVIN-478), 31.6 µL of pMD2G (conc. 1 µg/µL), 58.4 µL of pMDLg/pRRE (conc. 1 µg/µL), 
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24 µL of pRSV-Rev (conc. 1 µg/µL), 0.562 mL of CaCl2 2M (final 0.25 M). Successively, 

solution in the first tube was added to a second tube, containing 4.5 mL of HeBs 2x, drop-by-

drop and vortex. The final mix was then incubated for 5 min at RT, and 2.25 ml was distributed 

into each of the four dishes. Transfection mix was incubated overnight, before the medium was 

replaced with a fresh 14 mL of medium. Eight hours later, the medium was collected and 

replaced. The same procedure was followed during the next day. On the 4th day, medium 

containing viruses was filtered with 0.22 µm Stericup filter (Millipore) and distributed equally 

into six conical tubes (#358126, BECKMAN COULTER, Indianapolis, IN). The medium was 

then ultracentrifuged in an Optima™ L-90K Ultracentrifuge (BECKMAN COULTER, 

Indianapolis, IN) for 2 hours at 14°C at 19500 rpm. The supernatant was removed and the 

pellet was collected in 200 µL of PBS. The viral solution was finally aliquoted and stored at -

80°C.  

 

AAV 

Alejandro Monteys took care of AAV vector cloning and rAAV production. Two vectors 

containing either Cas9 nickase or gCTG were cloned. Cas9 nickase was under a CMV promoter 

(Figure III.II.1). The U6 promoter triggered the expression of gCTG linked to a CMV-eGFP 

sequence. Viruses were generated thanks to the Research Vector Core at the Raymond G 

Perelman Center for Cellular and Molecular Therapeutics at The Children’s Hospital of 

Philadelphia.  

 

 

Figure III.II.1 Plasmids used to generate AAV-Cas9-D10A and AAV-gCTG 
Left) PFBZHmCMV_SpCas9D10AApA contains Cas9 nickase gene under CMV promoter. Cas9 D10A is HA tagged and it 
is flanked by ITR sequences necessary for integration into the viral genome. Right) gCTG sequence is under the U6 
promoter necessary for its expression and is linked to eGFP for visual expression localization through fluorescence. gCTG 
and eGFP are flanked by the ITR sequences.  
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Mouse models and viral injections 

In collaboration with Geneviève Gourdon and her team, DM250 and DMSXL mice (Seznec et 

al. 2000a; Huguet et al. 2012) were housed at the Animal facility, Institute Imagine, Paris. 

Housing and handling of mice were performed in accordance with the guideline established by 

French Council on animal care “Guide for the Care and Use of Laboratory Animals”: 

EEC86/609 Council Directive -Decree 2001-131. These transgenic mice have been generated 

by the integration of 45 kb long fragment derived from patient LCLs into B6D2/F1 mouse 

embryos as described in (Geneviève Gourdon et al. 1997; Seznec et al. 2000b; Huguet et al. 

2012). This fragment contains dystrophia myotonica WD repeat-containing gene (DMWD), 

DMPK and SIX5. DM250 mouse carries 250 CTG repeats and shows repeat genomic instability 

similar to human and motor disfunctions (Panaite et al. 2008). Stronger phenotype is observed 

in DMSXL mice, which carries over 1000 CTG repeats, from repeat instability, RNA foci 

formation to motor symptoms (Huguet et al. 2012). DM250 and DMSXL mice were injected 

by Aline Huguet-Lachon, Imagine Institute, Paris. Different injection sites were used: tail vein, 

facial vein, or intraventricular at birth or in 2 months old mice (Table III.II.4). Three virus 

conditions were used: AAV9-Cas9-D10A+AAV9-gCTG, AAV9-Cas9-D10A, or AAV9-

gCTG. Different quantities of viruses were injected based on the site of injection: tail vein: 

3x1011 v.g. AAV9-Cas9-D10A + 3x1011 v.g. AAV9-gCTG; facial vein: 1x1011 v.g. AAV9-

Cas9-D10A + 1x1011 v.g. AAV9-gCTG; intraventricular vein: 1x1011 v.g. AAV9-Cas9-D10A 

+ 1x1011 v.g. AAV9-gCTG. I collected 15 different tissues from each mouse: frontal cortex, 

hippocampus, cerebellum, brainstem, diaphragm, heart, liver, pancreas, spleen, kidney, 

quadriceps, gastronemius, testis/ovaries, tail, skin. Tissues were frozen in liquid nitrogen and 

store at -80°C. Genomic DNA from mouse tissues was extracted with phenol/chloroform 

extraction protocol. 
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Table III.II.4 DM250 and DMSXL mice injected with Cas9 nickase. 
Experimental details of DM250 and DMSXL mice injected with AAV9 Cas9 D10A and gCTG. P0: at birth; P1: at 1 day of 
age; mo: months; SAC: sacrifice; F: female; M: male; NA: not available. 

 

 

 

 

 

 

Mouse Line N° 
repeats Injection Type of 

injection 
Age at 

injection 
Week after 
treatment 

Age at 
SAC Sex 

347 

DM250 250 

No injection 

4 mo F 

350 3.75 mo M 

278 5.75 mo F 

2349 

AAV9-gCTG + 
AAV9-Cas9-

D10A 

Facial vein 

P0 6 1.5 mo F 

2354 P0 6 1.5 mo M 

2356 P1 10 2.5 mo M 

2351 

Intraventricular 

P0 11 2.75 mo F 

2360 P0 6 1.5 mo F 

2359 P0 6 1.5 mo F 

2363 P1 10 2.5 mo F 

279 

Tail vein 

~2 mo 11 4.75 mo NA 

267 ~2 mo 6 3.5 mo NA 

270 ~2 mo 10 4.5 mo NA 

224 ~2 mo 6 3.5 mo NA 

2378 

DMSXL 1000/1600 

AAV9-gCTG + 
AAV9-Cas9-

D10A 
Facial vein 

P0 6 1.5 mo M 

2377 P0 10 2.5 mo M 

2381 P0 6 1.5 mo F 

2380 P0 11 2.75 mo F 

2413 
AAV9-gCTG Facial vein 

P0 6 1.5 mo M 

2411 P0 11 2.75 mo M 

2382 AAV9-Cas9-
D10A Facial vein P0 6 1.5 mo F 

2372 

AAV9-gCTG + 
AAV9-Cas9-

D10A 
Intraventricular 

P0 6 1.5 mo F 

2370 P0 6 1.5 mo M 

2376 P0 10 2.5 mo F 

2375 P0 11 2.75 mo F 

1962 

AAV9-gCTG + 
AAV9-Cas9-

D10A 
Tail vein 

~2 mo 10 4.5 mo NA 

1956 ~2 mo 6 3.5 mo NA 

1961 ~2 mo 6 3.5 mo NA 

1952 ~2 mo 11 4.75 mo NA 
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In collaboration with Vanessa Wheeler and her team, HdhQ111 knock-in mice (White et al. 

1997a; V. C. Wheeler et al. 1999) were tested and hosted at the Center for Comparative 

Medicine, MGH, Boston. Housing and handling of mice were performed in accordance with 

the recommendations in the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health under and approved protocol of Massachusetts General Hospital 

Subcommittee on Research Animal Care. In this mouse model, part of the murine exon 1 and 

intron 1 of HTT gene (Hdh) have been replaced with the human homologue, carrying 

(CAG)109CAACAG (White et al. 1997b; V. C. Wheeler et al. 1999). HdhQ111 mouse shows 

cellular phenotype of HD already at 1 month old, such as nuclear mutant huntingtin aggregates 

in the striatum (Vanessa C. Wheeler et al. 2000, 200). Injections have been done by Ricardo 

Mouro Pinto, Center for Genomic Medicine, MGH, Boston, or Julieanne Brandolini from 

Center for Comparative Medicine, MGH, Boston. All HdhQ111 knock-in mice received a tail 

vein injection with different AAV8 solutions: AAV8-Cas9-D10A+AAV8-gCTG, AAV8-

Cas9-D10A, AAV8-gCTG, or PBS (Table III.II.5). Mice of 1 month of age received 1.5x1012 

v.g. per virus and 6 months old mice received 3x1012 v.g. per virus. Four weeks after treatment, 

mice were sacrificed and 11 tissues per mouse collected: striatum, cortex cerebellum, heart, 

liver, kidney, spleen, quadricep, pancreas, testis/ovaries, tail. Tissues were frozen in liquid 

nitrogen and store at -80°C. Genomic DNA have been extracted from the different tissues with 

QIAamp DNA FFPE Tissue Kit (#56404, QIAGEN). 
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Table III.II.5 HdhQ111 mice injected with AAV8 Cas9 nickase and gCTG 
Experimental design of AAV Cas9 D10A + gCTG injection into HD mouse model. Mo: months; SAC: sacrifice; F: female; 
M: male.  

Mouse Line N° 
repeats Tail vein injection Age at 

injection 
Week after 
treatment 

Age at 
SAC Sex 

G2128 Q111/+ 107 

AAV8-gCTG + 
AAV8 Cas9-D10A 

1 mo 4 2 mo M 

G2129 Q111/+ 111 1 mo 4 2 mo M 

G2130 Q111/+ 110 1 mo 4 2 mo M 

F2336 Q111/+ 114 6.25 mo 4 7.25 mo F 

M3605 Q111/+ 109 1 mo 4 2 mo M 

G2380 Q111/+ 113 1 mo 4 2 mo M 

F2334 Q111/+ 113 6.25 mo 4 7.25 mo F 

F2330 Q111/+ 115 6.25 mo 4 7.25 mo M 

G2132 Q111/+ 111 
AAV8-Cas9-D10A 

1 mo 4 2 mo M 

F2332 Q111/+ 114 6.25 mo 4 7.25 mo M 

G2133 Q111/+ 110 AAV8-gCTG 1 mo 4 2 mo M 
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zQ175 mouse experiment is the result of a collaboration with Francesca Cicchetti and Melanie 

Alpaugh, University of Laval, Quebec City. Melanie Alpaugh took care of the project design, 

mice housing, AAV injections, behavioral tests and tissues collections. The zQ175 knock-in 

mouse line carries a chimeric Hdh:Htt gene, mouse/human, in a C57BL/6J background and has 

been generated from natural expansion in CAG 140 mouse (Menalled et al. 2012, 2003). The 

human sequence has been integrated at the exon 1 of Hdh murine sequence, and constitutes of 

(CAG)173CAACAG followed by 10 bp of the human intron 1 sequence. Homozygous mice 

showed motor deficits at 9 months of age, cognitive impairments and transcriptional 

abnormalities (Menalled et al. 2012, 201). All mice were injected into the cortex and striatum 

at 1 year of age and different combinations of viruses have been used: AAV8-Cas9-

D10A+AAV8-gCTG, AAV8-Cas9-D10A alone or AAV8-gCTG alone (Table III.II.6). Mice 

received 1.5x1012 v.g. of each virus. Behavioral tests were performed at 14/30/60/90 days after 

injection and both cognitive and motor abilities were measured. 

Cortex and striatum were collected at 90 days after injection. Tissues were frozen in liquid 

nitrogen and store at -80°C. Genomic DNA was extracted from striatum. 
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Table III.II.6 zQ175 mice injected with AAV8-Cas9-D10A + AAV8-gCTG 
WT and zQ175 mice have been injected with Cas9 nickase and gCTG viruses or only one of the two. WT: wild-type; mo: 
months; w: weeks; F: female; M: male.  

Mouse Line N° 
repeats 

Intraventricular 
injection 

Age at 
injection 

Weeks after 
treatment 

Age at 
SAC Sex 

8919 

WT 

  
  
  
  
  
  
  
  
  
  
  

AAV9-Cas9-D10A + 
AAV9-gCTG 

12 mo 6 w 14 mo M 
8920 12 mo 6 w 14 mo M 
8936 12 mo 6 w 14 mo M 
8942 12 mo 6 w 14 mo M 
9024 12 mo 6 w 14 mo M 
9038 12 mo 6 w 14 mo M 
8921 

AAV9-Cas9-D10A 

12 mo 6 w 14 mo M 
8922 12 mo 6 w 14 mo M 
8928 12 mo 6 w 14 mo M 
8941 12 mo 6 w 14 mo M 
9044 12 mo 6 w 14 mo M 
8930 

zQ175 175 

AAV9-Cas9-D10A + 
AAV9-gCTG 

12 mo 6 w 14 mo M 
8937 12 mo 6 w 14 mo M 

8940 12 mo 6 w 14 mo M 

9041 12 mo 6 w 14 mo M 

8929 

AAV9-gCTG 

12 mo 6 w 14 mo M 

8935 12 mo 6 w 14 mo M 

9039 12 mo 6 w 14 mo M 

8943 

AAV9-Cas9-D10A 

12 mo 6 w 14 mo M 

9040 12 mo 6 w 14 mo M 

9042 12 mo 6 w 14 mo M 

9045 12 mo 6 w 14 mo M 
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Sequencing  

Repeat sequences from HdhQ111 mice have been PCR amplified with conditions previously 

described (Mangiarini et al. 1997). Briefly, a forward primer was fluorescently labeled with 6-

FAM (FAM6) (Perkin Elmer) coupled with the HU3 reverse primer. PCR conditions: 67 mM 

Tri-HCl pH 8.8, 16.6 mM NH4SO4, 2.0 mM MgCl2, 0.17 mg/mL BSA, 10 mM 2-

mercaptoethanol, 10% DMSO, 200 µM dNTPs, 8 ng/µL primers with 0.5 U/µL Taq 

polymerase. The PCR program was: 90 sec at 94°C, 25 cycles of 30 sec at 94°C, 30 sec at 

65°C, 90 sec at 72°C followed by 10 min at 72°C. Sequences were obtained with ABI 3720 

DNA analyzer (Applied Biosystems). GeneMapper v3.7 with GeneScan 500-LIZ as internal 

standard size was used as size reference. GeneMapper determines the repeat size based on the 

highest trace (J.-M. Lee et al. 2010). 

  

SP-PCR 

Genomic DNA was extracted from treated cells using NucleoSpin Tissue Kit (MACHEREY-

NAGEL, Düren, Germany). Genomic DNA from mouse tissues was extracted with 

phenol/chloroform extraction protocol. SP-PCR was performed and adapted from previously 

described protocol (Dion et al. 2008). 

One negative control per seven PCR reactions per sample were settled using MangoTaq 

polymerase (bioline) for both HD patient-derived LCLs and zQ175 mouse samples and 

MyFi™ DNA polymerase (bioline) for both DM1 patient-derived LCLs and DM250 mouse 

samples.  

 

MyFi PCR conditions: 1X reaction buffer, 0.5µM oVIN-1251, 0.5µM oVIN-1252, MyFi™ 

DNA polymerase (bioline), from 0.2 to 20 ng of DNA and H2O to 10µL. The PCR program 

used for MyFi reaction consists in 95°C for 1 min, followed by 32 cycles at 95°C for 15 sec, 

60°C for 15 sec and 72°C for 2 min, at the end a final extension of 72°C for 10 min.  

 

Mango Taq PCR conditions: 1X reaction buffer, 0.2mM dNTP mix, 1 mM MgCl2, Forward 

primer 0.5 µM (oVIN-1333 for human HTT, oVIN-2548 for murine HTT), Reverse primer 0.5 

µM (oVIN-1334 for human HTT, oVIN-2530 for murine HTT), 3% DMSO, 1U/µL Mango 

Taq, from 0.2 to 20 ng of DNA and H2O to 10µL. The PCR program used for Mango Taq 

reaction consists in 95°C for 5 min, followed by 5 cycles at 95°C for 20 sec, 52°C for 20 sec 

and 72°C for 4 min, followed by 25 cycles at 95°C for 30 sec, 55°C for 30 sec and 72°C for 90 

sec, at the end a final extension of 72°C for 10 min. 
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PCR products were subsequently loaded on a 2% agarose gels and run for 4 hours at 180 Volts. 

Gel was cut in function of PCR products sizes and washed twice in Alkaline Transfer Buffer 

(0.4M NaOH, 1M NaCl) for 20 min. DNA is successively transferred onto a nylon membrane 

(Fisher Scientific #NP0HYA0010) overnight by capillary action. The membrane was washed 

in Neutralization Buffer (1.5M NaCl, 0.5M Tris base, pH 7.4) for 5 min at RT. Successively, 

the membrane was incubated with Ultrahyb buffer (Thermo Scientific #AM8670) and Salmon 

Sperm DNA for 1 hour at 52 °C. The hybridization probe was generated by the activity of T4 

PNK (New England BioLabs #M0201S), oVIN-100 oligonucleotide and radioactively marked 

ATPs with the following reaction: 1X Reaction buffer, 50 pmol of oVIN-100, 10mM [γ-32P] 

ATP, 10U T4 PNK, and H20 to 25 µL. After an incubation of 1 hour at 37°C, the probe was 

exposed to a temperature of 65 °C for 10 min. The probe was then added directly to the 

membrane and incubated at 52 °C for 2 hours. After two washes with Washing Buffer (0.5X 

SSC, 0.1% SDS) for 20 min, the membrane was exposed to a phosphoscreen from 2 to 24 

hours, and revealed with a Typhoon scannersphoimager. 

 

Lentivirus titration 

Lentivirus titration was done using Trono’s protocol (Salmon and Trono 2007).  

HEK 293 cells were cultured at 37°C in a 5% CO2 humidified atmosphere in DMEM/glutamax 

(Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS), 100 U/mL 

penicillin, 100 µg/mL streptomycin. On day 1, 100’000 cells were plated in 12 well/plates in 

seven wells. On day 2, one out of the seven wells was used to count the number of cells present. 

The other wells were transduced with the addition of the virus as following: no virus, 3 µL of 

virus, 2 µL of virus, 10 µL of dilution A (1/10 dilution of Virus in PBS), 10 µL of dilution B 

(1/10 dilution of A in PBS), 10 µL of dilution C (1/10 dilution of B in PBS). After 96 hours of 

incubation, the cells were harvested and their genomic DNA was extracted.  

qPCR was performed with the FastStart Universal SYBR Green Master (Roche) using a 

7900HT Fast Real-Time PCR System in a 384-Well Block Module (Applied Biosystems™). 

Primers used to detect virus copy number are: oVIN-1663 and oVIN-1664 for GAG, oVIN-

1665 and oVIN-1666 for WPRE, oVIN-2018 and oVIN-2019 for ALB. PCR conditions are 50 

cycles of 10 min at 95°C, 15 sec at 95°C and 1 min at 60°C. Copy numbers were obtained by 

comparison of specific viral gene with albumin values. 
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Protein extraction and Western Blot 

Tissue proteins have been collected by the used of precellys 24 Tissue Homogenizer (Bertin 

Technologies). Tissue portions have been collected in TUBES and RIPA buffer was added. 

RIPA buffer was constituted of 50 mM TrisHCl pH 8.0, 150 mM NaCl, 1% TritonX-100, 0.1% 

SDS, 0.5% Na-deoxycholate, 1x Protease inhibitor (Roche). Samples were homogenized for 

10 sec at 5000 rpm. The solution was successively collected and incubated on ice for 30 min, 

followed by 30 min of centrifugation at 20000 g at 4°C. The supernatant was then collected 

and stored at -20°C. The samples were boiled for 5 min in LSD sample Buffer 4x (Invitrogen, 

Carlsbad, CA). The protein extracts were run on a NuPAGE™ 3-8% Tris Acetate gel 

(#EA0375BOX, ThermoFisher Scientific) for 1.5 hour at 120 V. The proteins were then 

transferred to a nitrocellulose membrane for 1.5 hour at 100 V. The membrane was 

blocked with Blocking buffer for Fluorescent Western blotting (Bioconcept). The 

primary antibodies were incubated overnight at 4°C with specific dilution in PBS (anti-

Cas9 1:1000, anti-HA 1:1000, anti-actin 1:2000). An Odyssey Infrared Imager (Licor) was 

used for signal development and detection. 
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III.III Results 
 
 

III.III.I The Cas9 nickase readily contracts repeat tracts in patient-derived LCLs 

 

The Cas9 nickase activity resulted in contraction events in the GFP(CAG)101 cell line. The 

ability of this engineer nickase in inducing repeat contractions needs to be verified in a disease 

model, such as patient-derived cells. To determine whether the nickase can induce contractions 

in patient-derived cells, we used a DM1-derived LCL with one allele reaching 1600 CTGs and 

the other having normal length as well as a HD-derived LCL with 750 CAGs on allele and 19 

on the other. We used lentiviral transduction to integrate the Cas9 nickase in the LCLs and 

selected for cells expressing the blasticidin resistance gene fused to Cas9. Then, we transduced 

these cells with viruses containing the gCTG expression cassette and took samples over 56 

days. Repeat instability was successively measured by SP-PCR. 

 

 

Figure III.III.1 Experimental design of Cas9 nickase viral transduction into DM1 and HD LCLs.  
Cells were first exposed to Lenti-Cas9 nickase by direct addition into the medium and transduced clones were selected by 
blasticidin resistance (up). Cas9 nickase expressing cells were successively infected with Lenti-gCTG and selection marker 
was added. Genomic DNA was extracted at different time points (down). 
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SP-PCRs results show broadly a shortening of the repeats over time induced by Cas9 nickase 

activity compared to cells expressing only the Cas9 nickase (Figure III.III.2). A higher number 

of bands with shorter sizes is present in cells treated with both Cas9 nickase and gCTG, in both 

DM1 and HD cases. Already after three days of treatment increased the abundance of shorter 

bands. Unfortunately, results for longer than 3 days exposure of Cas9 nickase and gCTG in 

HD LCLs are not available yet. For the DM1 sample, shortening of the repeat tract is visible 

over the time course. After 5 days of treatment, the expanded band disappear, leaving space to 

a variety of shorter bands. At 29 days we observe only bands with WT repeat size almost 

without any presence of expanded repeats. However, 56 days of treatment shows variable sizes 

of expanded repeats above the WT ones. Quantification of shortening events and to which 

repeat size are yet to be performed. In conclusion, Cas9 nickase showed ability to induce repeat 

contractions in patient-derived LCLs for DM1 and HD within as little as 3 days of nicking the 

repeat tract.  



 86 

 

 

Figure III.III.2 Cas9 nickase transduction into DM1 and HD patient-derived LCLs showed repeat contraction events. 
A) SP-PCR of DM1 patient-derived cells treated with Cas9 nickase and gCTG. B) SP-PCR of HD LCLs treated with Lenti-
Cas9-nickase and Lenti-gCTG. 
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III.III.II Cas9 nickase gene therapy in expanded TNR mouse models 

 

Cas9 nickase demonstrated, in the previous experiments, its ability to induce repeat contraction 

in a repeat tract of pathogenic length. To test whether the Cas9 nickase could induce repeat 

contractions in a more physiological and systemic level, we selected 1 mouse model for DM1, 

DM250 and DMSXL, and 2 mouse models for HD, HdhQ111 and zQ175. A viral transduction 

of Cas9 nickase into mouse models can reveal the efficiency of a gene therapy approach in 

delivering this treatment into affected patients. To do so, mice have been injected with 2 AAVs 

expressing Cas9 nickase or gCTG. Mouse tissues have been collected at different time 

windows for Cas9 activity. Repeat instability was then measured by either SP-PCR or 

GeneScan sequencing.  
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Cas9 nickase + gCTG did not show an increase in CAG/CTG instability in DM250 and 
DMSXL mice 
 

 

 

Figure III.III.3 Time line of AAV9 injections in DM250 and DMSXL mice.  
Mice have been injected with both AAV9-Cas9-D10A and AAV9-gCTG at two different time points: at birth (P0) or at 2 
months old (2 mo). Tissues have been collected either at 6 weeks or at 10/11 weeks after injections and genomic DNA was 
extracted.  
 

 

To measure repeat instability induced by the engineered nickase in DM250 injected mice, I 

performed a SP-PCR on quadricep genomic DNAs. SP-PCR results did not reveal any effect 

specifically induced by Cas9 nickase activity (Figure III.III.4). In all the membranes, a strong 

signal for 250 CTG repeat band was present as expected. Distribution of additional band was 

very similar over the different samples, not injected sample included. We observed unexpected 

smeary bands for many reactions, that hide possible results. It is, in fact, difficult to visualize 

whether large discrete contractions are present. It is also notable the irreproducibility of results 

within the same sample. Sample 278, for example, showed different distribution patterns in 

two distinct membranes. This variability makes comparison between control non-injected and 

injected not possible. Quantification of band distributions revealed a variable percentage of 

contracted alleles over the total number in mouse transduced with Cas9 nickase and gCTG 

(Table III.III.1). This high variability and the low number of alleles measured did not allow me 

to draw conclusions. No significant difference was observed between injected and non-injected 

mice. I conclude that if an increase in contractions is present in these samples, they are masked 
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by the high variability found in our not-injected controls. More samples will need to be 

analyzed to resolve the matter.  

 

 

Table III.III.1 SP-PCR quantification of contracted alleles of quadricep genomic DNAs isolated from Cas9 nickase treated 
and untreated DM250 mice. 

Sample Injection % contracted alleles total alleles 

278 - DM250 - 2 823 

224 - DM250 Cas9-D10A + gCTG 2.7 725 

267 - DM250 Cas9-D10A + gCTG 0.91 659 

279 - DM250 Cas9-D10A + gCTG 5.9 152 
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Figure III.III.4 CTG repeat instability after 6 or 11 weeks of Cas9 nickase in DM250 mice quadriceps did not show any 
difference compared to untreated DM250 mice. 
SP-PCRs have been performed on genomic DNA from quadriceps of AAV9-Cas9-D10A and AAV9-gCTG injected DM250 
mice. Amplification of CTG repeat tract in the DMPK gene did not reveal repeat instability induced by the treatment. Two 
different membranes of each sample are presented in this figure. SAC: sacrificed. 
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To determine whether the infection and gene expression was efficient, we decided to do WB 

experiment to detect Cas9 in liver protein extracts. WB was performed by Lorène Aeschabch. 

The Cas9 levels were measured by the use of Cas9 nickase and HA antibodies (Figure III.III.5). 

Cas9 sequence carried by AAVs was HA-tagged. Cas9 nickase protein was not detectable in 

liver protein extracts of AAV9-Cas9-D10A injected mice. No one of the 4 mouse samples 

selected showed the presence of this protein. However, a strong signal is observed in 

GFP(CAG)101 cells transfected with a plasmid expressing the Cas9 nickase. It is not clear the 

nature of the small band observed in mice samples, but its presence in non-injected mouse 

excludes relation with the engineered nickase. Moreover, a second antibody, anti-HA, 

confirmed the absence of Cas9. The Cas9 nickase is not detectable in DM250 mouse liver 

infected with AAV9-Cas9-D10A. Thus, whether the AAV-based delivery of the Cas9 nickase 

leads to contractions in the DM250 mice remains an open question.  

 

 

 

 

Figure III.III.5 Cas9 nickase protein was not present at detectable levels in DM250 mouse livers. 
WB with anti-Cas9 and anti-HA did not show presence of Cas9 nickase protein in DM250 mouse liver compared to 
GFP(CAG)101 cells transfected with increasing amount of Cas9 nickase. 
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Cas9 nickase activity did not induce detectable repeat size variation in HdhQ111 mice 

 

 

Figure III.III.6 Time line of AAV8 injections in HdhQ111 mice. 
Mice have been injected with both AAV8-Cas9-D10A and AAV8-gCTG at either 1 month old (1 mo) or at 8 months old (8 
mo). Mice have been sacrificed and tissues collected 1 month after injections. 

 

 

Repeat sizes measured by GeneScan sequencing (Figure III.III.7) remained stable over the 4 

weeks of treatment compared to the original size (Table III.III.2). We observed 1 to 3 repeat 

units differences and no strong repeat size variations have been observed after sequencing. 

Results lead us to the possible conclusion that the Cas9 nickase activity does not result in repeat 

instability in HdhQ111 mice. 

 

Table III.III.2 No variation in repeat size has been detected by GeneScan sequencing of CAG at Hdh from different tissues 
after Cas9 nickase injection. 
Genomic DNA was extracted from different tissues of treated mice. However, ear punch genomic DNA has been collected at 
the day of injection. Numbers correspond to repeat unit at the Hdh locus.  

Sample Ear punch Heart Kidney Pancreas Spleen Tail Testis/ ovaris Original 
size 

G2128 107 107 108 108 108 107 - 107 

G2129 - - 112 - 110 110 - 111 

G2130 - - - 111 111 111 - 110 

G2132 111 - - - - 110 111 111 

G2133 - - 110 109 112 109 - 110 

F2330 - - - 118 116 116 - 115 

F2332 - - - - 114 115 - 114 

F2334 - - 113 - 115 115 113 113 

F2336 - - - 119 115 114 118 114 
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at 8 mo

1 month

5 monthsBirth
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Figure III.III.7 Representative GeneMapper histogram of HdhQ111 mouse samples. 
Up) Histogram representation of GeneScan sequencing of CAG repeat sizes at Hdh locus of spleen genomic DNA from AAV-Cas9-D10A + AAV-gCTG injected mouse. Different repeat sizes 
were clustered in different peaks. Down) Same as up, GeneMapper result from tail genomic DNA of same mouse. 
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To understand whether the Cas9 nickase was expressed in vivo, Cas9 protein levels were 

determined by WB in liver cells (Figure III.III.8) 1 month after injections. Neither Cas9 nor 

HA-tag antibodies detected Cas9 nickase protein in mouse liver extracts. We included a 

positive control in which GFP(CAG)101 cells were transfected with the Cas9 nickase, not HA-

tagged. I conclude that Cas9 nickase protein was absent in liver extract of treated mice 

explaining the undetected CAG repeat instability.  

 

 

 

Figure III.III.8 Cas9 nickase protein was not detected in treated mouse livers. 
Liver protein extracts from HdhQ111 mice did not reveal presence of the Cas9 protein with both Cas9 and HA antibodies by 
WB. However, protein form GFP(CAG)101 cells lipofectamine transfected with Cas9 nickase presented a strong presence of 
this protein.  
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AAV8-Cas9-D10A + AAV8-gCTG have been injected into zQ175 mouse model 

 

From promising preliminary data where Cas9 nickase improved motor functions in zQ175 mice 

(unpublished data from the Cicchetti lab), we evaluated the repeat instability activity induced 

by nicks in this mouse model for HD. Due to poor quality results, data from mice injected with 

AAV8-Cas9-D10A + AAV8-gCTG could not be compared to mice injected with only AAV8-

Cas9-D10A (Figure III.III.9). Unfortunately, ratios of repeat distributions cannot be calculated 

yet. We can visually observe that repeat sizes are grouped in two different clusters. In one 

cluster repeats distribute around 175 repeat size, as the original repeat length with a certain 

variable range. However, a second group is characterized by repeats at 400 units. Due to poor 

quality results no conclusion can be drawn at the moment about Cas9 nickase efficiency in 

zQ175 mice and additional experiments need to be performed. 
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Figure III.III.9 zQ175 were injected with AAV8-Cas9-D10A + AAV8-gCTG 
A) Experimental design of AAV8 Cas9 nickase and AAV8 gCTG injections in zQ175 mice. Mice have been injected with 
either one or both viruses at 1 year of age. Behavioral tests were performed at 14/30/60/90 days after injection. Mice were 
sacrificed at 90 days after injection. B) SP-PCR of striatum genomic DNA collected from zQ175 mice treated with AAV8 
Cas9 nickase.  
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III.IV Conclusions 
 
 

The main goal of this second part of the project was to evaluate Cas9 nickase activity, combined 

with gCTG, in patient-derived cells and in vivo. In this Chapter preliminary results have 

partially confirmed the promising conclusions presented in Chapter II.  

 

The Cas9 nickase showed the ability to induce repeat shortening in both DM1 and HD patient-

derived cells. The expanded allele slowly disappeared, giving rise to shorter bands that 

distributed in a wide size range. It will be interesting to determine the frequency of contracted 

alleles and the time of exposition of Cas9 nickase necessary to reach the healthy threshold, 

stabilizing the repeat tract. SP-PCRs will be repeated and longer time of treatment will be tested 

in HD-patient derived cells. WB and IF will also measure Cas9 protein presence and lentivirus 

transduction efficiency in treated LCLs. Additional experiments will determine better the 

efficiency and the mode of action of this tool. 

 

Measurements of gene therapy experiment performed up to date did not reveal the expected 

results in mouse models. We observed appearance of contracted bands induced by Cas9 nickase 

activity in DM250 mice. However, it was not sufficiently to clarify and distinguish the result 

from spontaneous somatic instability. The Cas9 nickase protein presence was at undetectable 

levels by WB in liver, possibly explaining the low or absent ratio of contraction events. Repeat 

instability measurements by SP-PCR need to be repeated, in quadriceps, and additionally in 

liver samples. IF will also determine gCTG and Cas9 nickase presence with a different 

approach.  

Repeat instability was measured by GeneScan in mouse tissues from HdhQ111 injected mice. 

No variation in repeat size was observed in the tested tissues. This could be a result of the 
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absence of the Cas9 protein as suggested by the WBs of liver samples. Performing SP-PCR, 

more sensitive technique for variations in repeat instability, in tissues from Cas9 nickase + 

gCTG injected mice could uncover possible readouts not observed at the moment induced by 

the gene editing. Visual measurements of the Cas9 nickase and gCTG presence will be tested 

with IF. 

In preliminary data, Cas9 nickase showed to improve motor deficits in zQ175 mice 

(unpublished data from the Cicchetti lab). Unfortunately, whether the Cas9 nickase activity in 

this mouse model induces repeat contractions remain inconclusive. More SP-PCR data are 

required to see the results. 

 

The ultimate goal of this project is to develop a gene therapy-based system able to target 

expanded CAG/CTG and induce repeat shortening in patients. Combination of Cas9 D10A and 

AAV delivery could be the successful approach to cure 14 expanded TNR disorders.  
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IV.I The Cas9 nickase induces CAG/CTG repeat contractions in GFP(CAG)101 

cells and patient-derived cells. 

 

 

The aim of this project was to discover and develop a therapeutic tool for expanded TNR 

disorders. The shortening of expanded repeats in vivo and the reversing the phenotype is the 

possibility raised by the data presented here. The Cas9 nickase fit the desired characteristics 

necessary to be an effective therapeutic tool and showed efficiency in mammalian cells and 

patient-derived cells.  

 

We improved the GFP reporter previously published and used it to measure both CAG repeat 

contraction and expansion events induced by engineered nucleases (B. A. Santillan et al. 2014; 

Cinesi et al. 2016). Originally, the use of the GFP reporter allowed measurements of CAG 

repeat contraction events induced by an applied treatment. Due to not sufficiently long period 

of transcription through the GFP cassette, the GFP steady state levels was not reached masking 

possible expansion results. We prolonged expression of the GFP cassette over 72 hours, by 

addition of doxycycline, and reached the steady state level of GFP protein. This revealed 

hidden results, such as expansion events.  Thus, the optimization of the experimental protocol 

allowed us to detect repeat instability, both contractions and expansions, at the same time. No 

system previously available could perform this result. The GFP(CAG)x assay is the first 

inducible chromosomal reporter able to detect repeat instability within 5 days in mammalian 

cells.  

 

Our results suggested that induction of different types of DNA damage within trinucleotide 

repeats activate different DNA repair mechanisms (Cinesi et al. 2016). The induction of DSBs 
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within the repeat tract by ZFNs and Cas9 resulted in concomitant expansions and contractions. 

However, nick induction by the Cas9 nickase led predominantly to repeat contractions.  

 

Investigation of the DNA repair mechanisms involved in repeat contraction induced by nick 

formation can highlight possible players useful for therapeutic approaches. Thus, we tested the 

involvement of well-known repair pathways. The inhibition of PARP and XRCC1, involved in 

SSBR, did not affected contraction frequency induced by the Cas9 nickase. This argued against 

the involvement of SSBR in the repair of the Cas9 nickase induced nicks. However, players 

from DDR showed contribution in the regulation of Cas9 nickase induced repeat contractions. 

In fact, ATR inhibition increased repeat instability possibly through DSB formation in a XPA- 

and MSH2-dependent manner. On the other hand, ATM kinase activity promoted repeat 

contractions. These results led us to the hypothesis that multiple nicks induced by the Cas9 

nickase within the repeat tract form DNA gaps, as mutagenic intermediate, and result in 

contractions events. 

 

The Cas9 nickase showed encouraging results from a potential therapeutic point of view. In 

fact, the induction of nicks within the CAG/CTG repeats in GFP(CAG)101 cells led to 30% of 

contraction events in 12 days. We observed an increased number of contracted alleles over time 

with no off-target effects in the observed loci induced by Cas9 nickase activity. This engineered 

nickase showed a repeat length-dependent activity. These results revealed the Cas9 nickase as 

an efficient way of contracting expanded TNRs. 

 

The transduction of patient-derived LCLs showed an increase in contracted alleles induced by 

the Cas9 nickase targeted on the repeat tract. In both DM1 and HD LCLs, the Cas9 nickase 

induced contractions were observed after only 3 days of activity. However, additional 
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experiments need to be performed to understand and explain different unclear results. Firstly, 

we cannot explain the presence/absence of the WT allele over the different membranes and 

period of treatment. Absence of large contractions to WT size could be caused by low 

sensitivity of the experimental technique for short repeats. In fact, the use of a 10 CAG long 

probe limits the detection to alleles with repeats longer than this size. It is also not clear at 

which exact point expanded allele is contracted to a WT size. At 29 days after transduction, we 

observed the disappearance of the expanded bands, converging to the WT size. At this point 

cells have already been through about 9 cell cycles and are under continuous selection for Cas9 

expression and for expression of puromycin, which is expressed from the sgCTG lentivirus. 

With the knowledge of LCLs having a similar growth rate as HEK293 cells, contraction to the 

WT size of the whole population could happen after 29 days of the Cas9 nickase. This is a 

promising result, where in 1 month of Cas9 nickase activity the expanded repeat tract can 

possibly reach a healthy range size. However, at 56 days we observed the re-appearance of 

expended repeats. Different hypothesis can be exposed to explain this event. First and more 

probable, the WT size was not reached by the whole population at 29 days, and we observed a 

selection of contracted alleles caused by the dilution performed before PCR amplification. 

Alternatively, the expansion events occurred after 29 days of the Cas9 nickase activity due to 

possible advantageous growth of expanded alleles.  

Since repeat instability is also caused by replication events, additional experiments are 

necessary to evaluate the involvement of somatic instability present in the observed results. 

Comparison of repeat instability between cells treated with Cas9 nickase for 56 days and cells 

that went through same passaging and replication events will be necessary. In case the observed 

results were induced by somatic instability, comparison between treated and untreated cells 

will show no difference in alleles distribution and frequencies. However, if the instability 



 103 

observed is the result of Cas9 nickase activity, higher frequency of contracted alleles will be 

measured in treated cells. 

The ratio of contracted repeats and the ability to bring repeat size below the pathogenic 

threshold are fundamental steps for reversing the pathogenic phenotypes and defining the Cas9 

nickase as an effective approach for curing expanded TNR disorders.  

 

These promising results, of Cas9 inducing repeat shortening in GFP(CAG)101 cells and patient-

derived cells, brought us to the attempt of developing a gene therapy approach for this tool, 

aimed to contract the expanded repeats as therapeutic avenue. Unfortunately, the injections of 

the Cas9 nickase into systemic models for DM1 and HD, such as mouse models, did not show 

a clear result as in cell cultures. Even if repeat sizes present in these mouse models were the 

same range as the ones in previously tested cells, GFP(CAG)x and patient-derived LCL, 

contractions events induced by Cas9 nickase activity were not as frequent as in tested cell 

cultures. In DM250 mice, the Cas9 activity over 6/10 weeks showed a small increased in 

number of contracted alleles under the 100 repeat units compared to the not-injected mice. 

However, presence of the Cas9 nickase protein was not detected by WB in liver. The Gene-

Scan of repeat tract exposed to the Cas9 nickase activity for 1 month did not showed any repeat 

variations in different tissues from injected HdhQ111 mice. Similar to the DM250 mice, the 

presence of the Cas9 protein was not observed in HdhQ111 mouse livers. 

The major difference that have been applied in mice for the Cas9 nickase treatment compared 

to cell culture experiments is the delivery system. In fact, for a safer and more efficiency 

delivery we decided to use AAVs instead of lentiviruses. Differently from the cell transduction 

experiments where lentiviruses were released into the media at high concentrations and we 

selected for transduced cells, the AAVs have been injected into the blood stream or directly 

into the mouse brain. Results showed an undetectable or complete absence of Cas9 protein in 
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injected mouse livers. Low presence of Cas9 nickase in tissues and consequent Cas9 inefficacy 

in inducing repeat instability could be caused by low expression levels and/or inefficient 

delivery of the Cas9 nickase to the cells.  To determine if the Cas9 nickase gene is present in 

the transduced cells, qPCR for this gene coul be performed on genomic DNA from different 

tissues of the injected mice. Amplification of the Cas9 nickase gene would confirm presence 

and efficient transduction of the targeted cells. Differently, to understand whether the 

inefficient delivery is responsible for the absence of Cas9 nickase activity, detection of GFP 

fluorescence and Cas9 presence in transduced cells will be established by IF. This will 

determine whether AAV-Cas9-D10A and AAV-gRNA delivery happened efficiently.  

Optimization of the AAV delivery system will be necessary if tissues of injected mice do not 

show GFP and Cas9 signals. Different variations can be done to increase Cas9 nickase 

expression and optimize AAV transduction in the affected tissues. Optimization of Cas9 

nickase treatment will be discussed in the following section. 
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IV.II Further optimization for Cas9 nickase treatment in mouse models 

 

 

Low or absence of Cas9 nickase expression could be caused by an inefficient promoter. 

Selection of a different promoter with expression specificity for the target tissues could 

increase Cas9 nickase expression and allow its activity. In fact, different promoters have shown 

to have specific expression pattern in function of the tissue localization (Watakabe et al. 2015; 

Salva et al. 2007). In our case, Cas9 nickase expression will be necessary in the most affected 

tissues in expanded TNR disorders: skeletal muscles, heart and brain. Since it has been used 

and demonstrated strong gene expression in muscles and brain, we selected and tested the 

minimal CMV promoter for Cas9 nickase expression (Monteys et al. 2017; Long et al. 2016; 

Tabebordbar et al. 2016; H. Lin et al. 2018). However, replacing the minimal CMV promoter 

with different alternative promoters specific for brain and muscle cells, such as CaMKII, 

MHCK7, Syn, could improve gene expression (Holehonnur et al. 2015; Watakabe et al. 2015; 

Salva et al. 2007).  

 

Transduction efficiency of the target tissues could be increase by the packaging of the two 

components, Cas9 and gRNA with respective promoters, into a single AAV vector. This also 

removes the possibility of having cells ineffectively transduced expressing only one of the two 

components. Moreover, a single vector carrying Cas9 nickase and gRNA allows injections with 

reduced viral load since the single vector contains both Cas9 components. The packaging of 

Cas9 and gRNA in a single vector could lead to a greater improvement of the Cas9 treatment 

efficacy. Unfortunately, the Streptococcus pyogenes Cas9 (spCas9) sequence added to the 

gRNA and respective promoters exceed the upper limit that AAV vectors can carry. In fact, 

the recombinant AAV can carry a DNA sequence size up to 5 kb. Exceeding this sequence 
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length leads to the production of inefficient virions with truncated genome (Wu, Yang, and 

Colosi 2010; Grieger and Samulski 2005). To generate a functional AAV carrying Cas9 

nickase and the gRNA, the use of alternative and shorter Cas9 nickases needs to be taken into 

consideration (Truong et al. 2015; Zetsche, Volz, and Zhang 2015). These shorter Cas9 

alternatives have already been tested and showed their efficiency in different models. Distinct 

species Cas9 orthologues with shorter sizes have been previously selected and their efficacy 

have been tested (Friedland et al. 2015; Ran et al. 2015; Hou et al. 2013; E. Kim et al. 2017). 

The Staphylococcus aureus Cas9 (saCas9) orthologue showed comparable results to the 

spCas9, in both nuclease and nickase versions (Friedland et al. 2015). The saCas9 is the most 

common orthologue used with a 3’159 bps sequence. Ran et al. packaged saCas9 under a CMV 

promoter and the gRNA into a single AAV vector and injected it into mice. This saCas9 

targeted to a cholesterol regulatory gene was able to induce more than 40% of insertions and 

deletions (indel) formations in liver cells in one week (Ran et al. 2015). The Neisseria 

meningitidis Cas9 (3’246 bps) and the Campilobacter jejuni Cas9 (2’952 bps) also showed 

their efficiency in target genomic DNAs in iPSCs and mice (Hou et al. 2013; E. Kim et al. 

2017). We were able to generate the nmCas9 and the saCas9 nickase versions and their gRNAs 

in the laboratory and test them in GFP(CAG)101 cell line (unpublished data). The expression of 

these orthologues combined with gRNAs targeted within the CAG/CTG repeat tract did not 

result in a strong activity such as shown by the spCas9 nickase, probably due to the inefficient 

PAM sequence. Although they showed more contractions than expansions. These results 

confirmed the nick generation as a successful step to induce repeat contractions and the 

feasibility of short Cas9 orthologues in reproducing the spCas9 nickase results.  

The use of an alternative shorter Cas9 need consequent optimization of PAM sequences for 

CAG/CTG repeat in order to obtain efficient levels of activity. In fact, different Cas9s need 

specific gRNA scaffold sequences and PAMs. It has been shown how important the presence 
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of a proper nucleotide PAM sequence is to obtain a good cleavage efficiency (Anders et al. 

2014; Kleinstiver et al. 2015). Non-specific PAM sequences drastically reduce the Cas9 

cleavage efficiency. To select CAG/CTG repeat recognition and cleavage by the use of 

alternative Cas9, the PAM sequence needs to be optimized for CAG. PAM specificity can be 

improved by the induction and selection of specific modifications in the Cas9 sequence that 

allow non-canonical PAM, as shown by Kleinstiver et al. (Kleinstiver et al. 2015). In fact, 

PAM optimization is possible by the use of a bacterial selection system. Mutations in the PAM-

interaction domains of Cas9 followed by the survival selection for a specific PAM gives rise 

to mutated Cas9 able to cleave DNA sequences in presence of the selected altered PAM. The 

specific selection for NAG or NTG could optimize alternative Cas9 nickases and improve 

contraction rates in expanded CAG/CTG repeats.  

 

The undetected Cas9 protein levels observed in injected livers could be caused by inefficient 

delivery of the Cas9 gene due to unspecific tropism of the selected AAV. Detection and binding 

to receptors present on the target cells surface by the capsid determines the specific tropism 

and transduction efficiency of the AAV (Wu, Asokan, and Samulski 2006; Schmidt and Grimm 

2015).  However, to find virus with high tropism and good transduction efficiency for the target 

cells, different mutations and combinations of different serotypes need be generated and tested 

in mice (Kienle et al. 2012). We selected AAV8 and AAV9 since they have shown to efficiently 

infect muscles and brain tissues (Zincarelli et al. 2008; Z. Wang et al. 2005; Dufour et al. 2014; 

Foust et al. 2009; Bish et al. 2008). However, alternative serotypes, such as AAV1, could be 

taken into consideration to target these tissues (Zincarelli et al. 2008; Rabinowitz et al. 2002). 

Distinct serotypes for AAV could be tested for selecting a vector with specific tropism for brain 

and muscles tissues. Delivery to the correct tissues and expression of functional Cas9 nickase 
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will determine the ability of this engineered nickase in inducing repeat contraction in DM1 and 

HD mouse models. 

 

Improvement in delivery efficiency, increased presence and prolonged activity of Cas9 nickase 

could increase off-targets and side effects. Patients affected by expanded TNR disorders do not 

need a constant presence of Cas9 nickase to reverse pathogenic symptoms, but only a certain 

time window of activity. In fact, once reached the healthy length induced by Cas9 nickase 

activity, the short repeat tract should remain stable and reverse the pathogenic symptoms. The 

temporary expression and functionality of Cas9 nickase can be achieved in different ways. The 

use of self-inactivating system can be efficiently applied and reduce time exposition of the 

Cas9 to the target locus. Providing a gRNA specific for the Cas9 sequence can induce self-

cleavage and disruption of the Cas9 expression after a certain time (Merienne et al. 2017; A. 

Li et al. 2019). Alternatively, temporary presence of this tool can be achieved by the use of 

RNPs. During the last years, studies developed the Cas9/gRNA RNPs delivery as a valuable 

alternative to the DNA based approach (Ramakrishna et al. 2014; Mout et al. 2017; D’Astolfo 

et al. 2015). In fact, the delivery of a ready to use protein complex brings advantages compared 

to the use of the DNA-based Cas9. Efficient gene disruption, higher gene editing rate and 

reduced off-target effect are the major differences observed in RNP compared to Cas9 plasmid-

based in cell cultures (Ramakrishna et al. 2014; S. Kim et al. 2014; Liang et al. 2015; Zuris et 

al. 2015; M. Wang et al. 2016). Zuris et al. observed an increased specificity and a lower off-

target frequency induced by Cas9/gRNA RNP compared to DNA plasmid when transfected 

into 293 HEK cells (Zuris et al. 2015). They also observed efficient indel formation induced 

by the Cas9 protein:gRNA with cationic lipid when injected into mouse cochlea. Thus, 

Cas9/gRNA RNPs are promising alternative for DNA plasmid-based Cas9 form. In conclusion, 

reduced exposition of the Cas9 activity to the target gene can be achieved in different ways. 
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IV.III The Cas9 nickase treatment as the most promising gene therapy approach 

for expanded TNR disorders 

 

The induction of nicks generation within the trinucleotide repeats is a promising strategy to 

cure the expanded TNR disorders. The silencing of an expanded allele has shown to reverse 

the symptoms (Yamamoto, Lucas, and Hen 2000; Mahadevan et al. 2006a; Zu et al. 2004). 

Thus, the use of gene editing to shrink repeat tract could ultimately reverse the symptoms. We 

decided to directly target the repeat tract and induce the DNA damage within the trinucleotide 

sequence. However, others have used a different approach to tackle expanded TNR disorders: 

a whole or partial excision of the repeats. Although this approach reversed pathogenic 

conditions in different models (van Agtmaal et al. 2017; Provenzano et al. 2017; Scrudato et 

al. 2017; Pribadi et al. 2016; Monteys et al. 2017; Shin et al. 2016; Merienne et al. 2017; Y. Li 

et al. 2015; Ouellet et al. 2017; Park et al. 2015), it showed several limitations, such as indels 

generation, high inversion frequency. The generation of a DSB in the proximity of the CGG 

repeats in FMR1 gene resulted in repeat excision and reactivation of the gene expression (Park 

et al. 2015). However, this technique relies on the NHEJ repair and resection mechanisms and 

results in a random loss of the target sequence. With a therapeutic point of view, the 

uncontrollable and random nature of this excision is a dangerous condition that cannot be used. 

In fact, unpredictable genome changes on the site of cleavage, such as unwanted deletions, 

could result in worse phenotypic conditions. A more precise excision of the repeat tract can be 

achieved by the generation of two concomitant cuts upstream and downstream of the target 

locus (Y. Wang et al. 2018; Provenzano et al. 2017; Y. Li et al. 2015; van Agtmaal et al. 2017). 

However, in these studies the excision of the repeats by the use of two gRNAs or two ZFNs 

caused frequent inversion events of the expanded repeats, resulting in an unsuccessful 

amelioration of the pathogenesis. The excision of the CTG repeats at the DMPK locus by two 
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gRNAs with saCas9 resulted in 20% inversion events in DM1 neural stem cells (Y. Wang et 

al. 2018). The expanded CTGs were inverted to expanded CAG repeats leading to antisense-

foci formation. Due to inversion events, the foci formation was not reversed to healthy 

phenotype in DM1 neural stem cells (Y. Wang et al. 2018).  

The targeting of repeats flanking sequences does not discriminate the specific mutant allele 

from the WT. Thus, the DNA damage is also induced at the WT locus. In fact, presence of 

indels in the WT allele due to the unspecific-allele targeting has been observed in different 

studies induced by NHEJ mechanism (Pribadi et al. 2016; Dastidar et al. 2018). Depending on 

the type of mutations generated by the activity of the engineered nuclease, non-sense, frame-

shit, truncated proteins can be produced resulting in even worse conditions (Mangiarini et al. 

1996).   

Allele specificity can be obtain by selection of specific SNPs present in the mutant allele 

(Dabrowska et al. 2018; Monteys et al. 2017; Shin et al. 2016; Merienne et al. 2017). However, 

this technique owns a major limitation: the specific treatment needs to be customized for every 

single disorder and individual.  

By contrast, the use of the Cas9 nickase that directs the DNA damage within the CAG/CTG 

repeat solves all the limitations present in the previously mentioned approaches (Cinesi et al. 

2016). The induction of nicks instead of DSBs within the repeat tract activates a DNA repair 

mechanism different than the NHEJ, reducing the possibility of dangerous on and off-target 

mutations (Cinesi et al. 2016). Even more, the Cas9 nickase showed repeat length-dependent 

specificity (Cinesi et al. 2016). In fact, variation in repeat sizes has been observed only in cells 

carrying expanded repeats, GFP(CAG)101 and GFP(CAG)270, transfected with Cas9 nickase 

and gCTG. This promising result demonstrated the specificity of Cas9 nickase for mutant 

alleles. Finally, the direct targeting of the repeat tract allows the use of the same tool for all 14 

CAG/CTG disorders. For these reasons, direct action into the repeat tract and the induction of 
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contractions by the Cas9 nickase appears to be the most suitable and promising solution at the 

moment.  
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In conclusion, results from this project have increased the knowledge on TNR pathogenesis 

and established the basis for a possible treatment against expanded TNR disorders. The 

ultimate goal is to use a gene therapy approach to induce repeat contractions in the mutant 

allele for expanded CAG/CTG repeat disorders. Since in this study the Cas9 nickase showed 

to induce predominantly repeat contractions in HEK293-derived cells and patient-derived 

LCLs, we should be able observe repeat instability induced by the Cas9 nickase in mouse 

models. Results from this would be fundamental to determine whether the Cas9 nickase can be 

used to improve the pathology in vivo and be delivered via a gene therapy approach. Should 

our approach be successful in inducing repeat contractions using the Cas9 nickase in somatic 

tissues, this treatment could be applied to every 14 different neurological disorders caused by 

CTG/CAG expanded. 
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Production of lentivirus with the third generation vector 
 

Protocol from (Salmon and Trono 2007). 

 

• Plate 2.5 x 106 HEK 293 T in 4 x 15 cm/dish in 20 mL of DMEM/glutamax 

supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL 

streptomycin. 

• Incubate at 37°C for 56 hours. 

• Replace medium with 22.5mL of fresh medium 2 hours before the transfection. 

• CalPhos Mammalian Transfection: 

 

All the plasmids need to be at a concentration of 1 µg/µL. 

Mix in one 15 mL tube as followed: 

- 2.64 mL of TE 0.1X 

 - 1.09 mL of H2O 

 - 90 µg of vector containing gene of interest = 90 µL 

 - 31.6 µg of pMD2G (bVIN-374) = 31.6 µL 

 - 58.4 µg of pMDL g/pRRE (bVIN-376) = 58.4 µL 

 - 24 µg of pRSV-Rev (bVIN-375) = 24 µL 

- 0.562 mL of CaCl2 2M (0.25M final) 

 

  Mix well by vortexing 

 

 - Add the mix drop by drop vortexing into a second tube with 4.5 mL of HeBs 2X 

 - Incubate at RT for 5 min. 

 - Distribute transfection solution 2.25 mL per dish. 

 - Incubate for 24 hours. 

 

• Replace medium with 14 mL of fresh medium in the early morning. 

• 8 hours after, collect the medium and store it 4°C. Add 14 mL of fresh medium to the 

plates. 

• Leave overnight in the incubator. 
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• In the early morning, collect the medium and store at 4°C. Add 14 mL of fresh 

medium. 

• 8 hours after, collect the last aliquot of the medium and store it at 4°C.  

 

Centrifugation 

• Mix all collected of medium containing virus and filter with a 0.22 µm Stericup 250 

mL 

• Distribute the medium in Ultracentrifuge tube 38.5ml (Beckman). 

• Ultracentrifuge 2 hours at 19500 rpm 16°C 

• Discard the supernatant by aspiration and dry tubes placing them upside down on a 

paper. 

• Resuspension total in 200µL 1X PBS: add 100 µL of PBS in first tube and 20 µL in 

five other tubes; incubate at RT for 15 min. 

• Resuspend the virus in PBS by pipetting with this technique: 

 - Start by resuspending the pellet in the first tube (100 µL). Choose one side of the 

  tube and do 10 ups and downs to detach the pellet, then rotate the tube of ¼. 

 - 10 ups and downs to detach the pellet, then rotate the tube of ¼. 

 - 10 ups and downs to detach the pellet, then rotate the tube of ¼. 

 - Finish with 10-20 ups and downs in the middle of the tube. 

 - Transfer the 100ul to the second tube and process in the same way. 

 - Repeat until collecting the entire PBS volume into the last tube. 

 - Avoid as much as possible to make bubbles. 

 - At the end, collect all 200 µL and aliquot the volume, 10 µL per tube. 

 - Store at -80°C. 
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Lentivirus titration by qPCR 
 

Protocol from (Salmon and Trono 2007). 

 

Cells transduction with the lentivirus 

Day 0: Plate 100’000 HEK 293 T cells in 7 wells of coated 12 wells plate. 

Day 1: Collect cells from 1 well and count. 

Change the medium with 500ul of fresh medium in the other wells. 

Cells infection with designed lentivirus: 

 -1 well: no infection 

 -1 well: 3 ul of virus 

 -1 well: 2 ul of virus 

 -1 well: 10 ul of dilution 1 (27 ul of PBS + 3ul of virus) 

 -1 well: 10 ul of dilution 2 (27 ul of PBS + 3ul of dilution 1) 

 -1 well: 10 ul of dilution 2 (27 ul of PBS + 3ul of dilution 2) 

Day 3: Collect and DNA extract with NucleoSpin Tissue Kit (MACHEREY-NAGEL, Düren, 

Germany) 

 

 

qPCR  

qPCR was performed with the FastStart Universal SYBR Green Master (Roche) using a 

7900HT Fast Real-Time PCR System in a 384-Well Block Module (Applied Biosystems™). 

1. Setup qPCR reaction. Prepare and run each sample per primers couple in triplicate 

(standard and viral).  

 

2. For one sample make a serial dilution of 1x1011 copies/mL stock to generate 1x1010, 

1x109, 1x108, 1x107, 1x106, 1x105 copy/mL solutions. 

 

qPCR conditions 

SybrGreen Master   3.2 uL 

Forward primer (100 uM)  0.3 uL 

Reverse Primer (100 uM)  0.3 uL 

Water      1.3 uL 
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The primers used are: 

oVIN-1663 For Gag 

oVIN-1664 Rev Gag 

oVIN-1665 For WPRE 

oVIN-1666 Rev WPRE 

oVIN-2018 Rev Albumin 

oVIN-2019 Rev Albumin 

 

qPCR program: 

I. 95°C  10 min 

II. 95°C  15 sec 

III. 60°C  1 min  50 cycles 

 

3. Use the standard curve to predict the titer of the vector. Make sure to account for the 

dilution factor and the single-stranded nature of the lentiviral vector genome. 

 

Ct values were analyzed using the SDS Software v2.4. The reported enrichments were obtained 

using the ΔCt method: 

 

ΔCt= Ct2-Ct1  

Ct1: viral gene 

Ct2: Actin 

 

2-ΔC= copy number 
 

N° of cells at infection x 2 x copy number x dilution factor x 1000 = TU /mL 

 

Consider the final titer as the average of the triplicates of the same dilutions. 
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Small-pool PCR of CAG/CTG repeats in human and murine HTT and DMPK 
 

Adapted from (Dion et al. 2008). 

 

gDNA dilutions 

For each 10 µL PCR reaction: 1 µL of gDNA dilution is required. 

Dilute the genomic DNA to a concentration of 1 ng/µL (HTT) or 1 ng/µL (DMPK). 

 

Small-pool PCR reaction 

Prepare a PCR reaction mastermix according to the following: 

 

HTT CAG repeats  10 µL reaction  DMPK CTG repeats 10 µL reaction 

5X Mango Taq buffer 2 µL (1X)  5X MyFi buffer 2 µL 

MgCl2   0.2 µL (1mM)  10 µM oVIN-1251 0.4 µL (0.4 µM) 

dNTPs   0.2 µL (200µM) 10 µM oVIN-1252 0.4 µL (0.4 µM) 

10 µM oVIN-1333/ 0.5 µL (0.5µM) MyFi Pol  0.4 µL 

       oVIN-2548    H2O   5.8 µL 

10 µM oVIN-1334/ 0.5 µL (0.5µM)  

       oVIN-2530 

DMSO   0.3 µL (3%) 

TAQ   0.2 µL (1U) 

H2O   6.1 µL 

 

Human HTT: F/R primers  (oVIN-1333 + oVIN-1334)  

Murine HTT: F/R primers  (oVIN-2548 + oVIN-2530)  

Human DMPK: F/R primers (oVIN-1252 + oVIN-1251)  

 

Multiply by the number of the PCR: 

7.5 PCR mastermix per dilution 

+ 1 negative control per dilution 

 

• Add 7.5 µL of gDNA dilution [1.5 ng/µL] + 67.5 µL of PCR reaction mastermix. 

• Mix well and distribute 10 µL into each individual PCR tubes. 

• For negative controls: 9 µL of master mix + 1 µL of H2O. 
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PCR Program for murine and human HTT 

1. 95°C  5 min 

2. 95°C  20 sec 

3. 52°C  20 sec 

4. 72°C  2 min  4 cycles, steps: from 2 to 4 

5. 95°C  30 sec 

6. 55°C  30 sec 

7. 72°C  90 sec  25 cycles: steps: from 5 to 7 

8. 72°C  10 min 

9. 15°C  Pause 

 

PCR Program for DMPK 

1. 95°C  1 min 

2. 95°C  15 sec 

3. 60°C  15 sec 

4. 72°C  2 min  32 cycles, steps: from 2 to 4 

8. 72°C  10 min 

9. 15°C  Pause 

 

Gel electrophoresis  

• Make a large 2% agarose gel, around 300 mL volume 

• Load 10 µL of PCR reactions and 5 µL of molecular markers. 

• Run at 180 V for 4 hours in TAE 1X. 

 

Transfer 

• Cut the excess of the gel. Take a picture of the gel 

• Incubate the gel 2 times for 20min in Alkaline Transfer Buffer. 

• Fill both ends of a transfer apparatus with Alkaline Transfer Buffer. 

• Cut a piece of Whatman paper wide enough to cover the surface where your gel 

will sit and long enough so that it dips into the Alkaline Transfer Buffer at both 

ends. Pour some more Alkaline Transfer Buffer on top so that the filter paper is 

wet. 
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• Place your gel onto the filter paper upside down. Make sure there are no bubbles 

between the filter paper and the gel (bubbles will prevent transfer at that spot). 

• Cut a piece of nitrocellulose membrane exactly the size of your gel. 

• Place the membrane on top of the gel. Make sure there are no bubbles between the 

gel and the membrane (bubbles will prevent transfer at that spot). 

• Cut 2 pieces of filter paper the size of your membrane and place them on top of the 

membrane. 

• Every bit of filter paper not touching the gel MUST be covered with parafilm. 

• Add paper towels on top of the filter papers. 

• Add some weight on top in order to allow capillary movement and transfer of the 

DNA from the gel to membrane. 

• Transfer overnight. You can transfer over the weekend. The longer the better, as 

long as you don’t run out of alkaline transfer buffer or paper towel. 

 

Probe preparation + Hybridization 

• Wash membrane in Neutralization buffer for 5 minutes. 

• Preheat oven, hybridization cylinders and hybridization buffer at 48°C for murine 

HTT and 52 ºC for DMPK or human HTT. 

• Prepare a CAG repeat probe as follows: 

  T4 PNK Buffer  2.5 µL 

  oVIN-100 (100X dilution) 5 µL 

  H2O    11.5 µL 

  (Continue in C lab) 

  α-P32-dATP   5 µL 

  T4 PNK   1 µL 

  1 hour  37 ºC 

  10 minutes 65 ºC 

 

Meanwhile prehibridize the membrane as follow: 

• Boil 500 µL salmon sperm for 5 min. Then put it on ice for ~1 min. 

• Add 15 mL of Ultrahyb buffer and 500 µL salmon sperm into the pre-heated 

hybridization tube. 

• Place membrane inside the hybridization tube with the DNA facing the inside. 
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• Get rid of any bubbles between the membrane and the tube. 

• Block the membrane by incubating for 1 hour at 48°C for murine HTT or 52 ºC for 

DMPK or human HTT. 

• Once the probe is ready, add it directly to the membrane. One probe can be shared 

in maximum 3 cylinders.  

• Hybridize for 2 hours at 48°C for murine HTT or 52 ºC for DMPK or human HTT. 

 

Washing 

• Pre-heat washing buffer at 48 ºC for murine HTT or 52°C for DMPK or human 

HTT. 

• Remove hybridization buffer. 

• Wash twice with ~15 mL warm Wash buffer for 30 min. 

 

Reveal 

• Place the membrane inside plastic sheet protectors. 

• Put the membrane inside the cassette and expose to a “clean” phosphoscreen at RT 

overnight. 
 

Materials and solutions 

• MyFi DNA polymerase (bioline # BIO-21117) 

• MangoTaq polymerase (bioline # BIO-21083) 

• Alkaline transfer buffer (0.4M NaOH, 1M NaCl) 

• Nylon membrane (Fisher Scientific #NP0HYA0010) 

• Neutralization buffer (1.5M NaCl, 0.5M Tris base pH7.4) 

• Salmon sperm DNA 10 mg/ml (Roche #11467140001)  

• T4 PNK kit (New England Biolabs #M0201S) 

• g-32P-dATP (Perkin Elmer #BLU502Z250UC) 

• oVIN-100: AGCAGCAGCAGCAGCAGCAGCAGCAGCAGC 

• dCTP, dATP, and dGTP at 100mM each (LabGene #KK1007) 

• Ultrahyb buffer (Thermo Fisher Scientific #AM8670)  

• 20X SSC (3M NaCl, 0.3M NaCitrate pH7.0)  

• Wash buffer (0.5X SSC, 0.1% SDS) 
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