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In a previous work using 1H-NMR we reported encouraging steps towards the construction of a robust expert system for the
discrimination of coffees from Colombia versus nearby countries (Brazil and Peru), to assist the recent protected geographical
indication granted to Colombian coffee in 2007. This system relies on fingerprints acquired on a 400MHz magnet and is thus well
suited for small scale random screening of samples obtained at resellers or coffee shops. However, this approach cannot easily be
implemented at harbour’s installations, due to the elevated operational costs of cryogenic magnets.This limitation implies shipping
the samples to the NMR laboratory, making the overall approach slower and thereby more expensive and less attractive for large
scale screening at harbours. In this work, we report on our attempt to obtain comparable classification results using alternative
techniques that have been reported promising as an alternative toNMR:GC-MS andGC-C-IRMS. Although statistically significant
information could be obtained by all threemethods, the results show that the quality of the classifiers dependsmainly on the number
of variables included in the analysis; hence NMR provides an advantage since more molecules are detected to obtain a model with
better predictions.

1. Introduction

Colombian coffee is a protected geographical indication
(PGI), a recognition for its high quality, and the result of
decades of efforts and strategies to federate more than half
a million coffee growers. Moreover, the consumption of high
profile coffees from specific origins is constantly increasing,
meaning that the 100% Colombian coffee label represents an
economical plus-value for local growers. In addition, Colom-
bia imports coffee from neighboring countries to supply its
internal market.This context calls for methods able to ensure
the quality and origin of the coffee beans. Ideally, they should
be sufficiently robust and cost-effective to be implemented at
harbour installations for screening of material immediately
after arrival or just before being shipped.

Several efforts have been directed to this aim; the stable
isotopes composition, such as 𝛿2H, 𝛿13C, 𝛿15N, and 𝛿18O,
determined by Isotope Ratio Mass Spectrometry (IRMS)

has been used as markers for environmental conditions and
agricultural practices, as well as for the identification of the
origin of coffee [1, 2]. Using the same technique, Rodrigues et
al. [3] determined that the differences in geographic location
are due mainly to altitude and precipitation. Near-Infrared
Spectroscopy (NIRS), Mass Spectrometry (MS), and Nuclear
Magnetic Resonance (NMR) have initially been applied to
determine the composition of mixtures of Coffea arabica L.
and Coffea canephora var. robusta [4–13], before targeting
the determination of the origin of coffee beans. Hyphenated
separation methods coupled to Mass Spectrometry, such
as HS-SPME-GC-TOF-MS for the detection of volatile and
semivolatile compounds and LC-MS and GC-FID for the
quantification of amino acids and carbohydrates, could also
distinguish coffees from different origin [14, 15].

A very nice review by Kelly et al. [16] lists the different
techniques that have been successfully applied to the deter-
mination of origin of food products, while an up-to-date list
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of articles that report on the determination of origin of coffee
can be found in Table 1. At first glance, it can be appreciated
that a wide range of methods have been evaluated and second
that only a small fraction of contributions are based on
NMR. More interestingly, looking at the sampling schemes
reported, in particular the choice of countries per continents,
indicates that these results should be considered with care
and that further evaluations are required to evidence the
potential of such methods for precise localization of samples,
for example, to distinguish between neighboring countries.
In addition, the sources of variance that may influence the
profiles in one country, altitude, precipitations, postharvest
processing, and so forth, are hardly accounted for in such
experimental design. Last but not least, another important
issue is uncovered from Table 1: most contributions report
on a single techniquemaking comparison between them very
impractical.

In a previous work [17] we have shown that 1H-NMR led
to accurate discrimination of roasted Colombian beans when
using samples collected during several years and from all over
Colombia forming, in a good approximation, a representative
set of Colombian coffees. In addition, a large set of samples
from the same period of time and collected from all over
the world formed the best possible approximation to a repre-
sentative set of non-Colombian samples. In this contribution
a subset of these collections was carefully chosen to retain
most of the sources of variance and was analyzed using two
additional methods as an attempt to obtain a fair comparison
of their abilities to distinguish coffees from Colombia, Peru,
and Brazil. In Section 2 we will describe the sample set,
the preparation protocols, and the chemometrics methods.
In Section 3 we present our results. Finally, conclusions are
provided in Section 4.

2. Materials and Methods

2.1. Samples Collection and Preparation. A total of 34 samples
of roasted coffees (Coffea arabica L.) were collected over a
two-year period, 2012 to 2013, from 3 different countries
of South America. The samples were provided by Almacafé
S.A. (Colombia) and distributed as follows: 15 samples from
Colombia, 11 from Brazil, and 8 from Peru. Colombian coffee
samples were distributed as follows: 2 samples came from
coffee farms located in the Department of Tolima, 4 samples
came from Huila, and 9 samples came from Nariño. Each
delivered parcel contained samples from different origins
according to harvests.

It is important to highlight that sampling took place
at regional collection centers, where coffee grains from the
region are checked for quality and stored together.Thismeans
that the origin of the beans is duly controlled by collecting
authorities, in a manner very close to real implementation of
the tool. This also means that no fine grain geographic data
such as GPS coordinates are available for this study, which
is not relevant to the specific purpose of comparing different
analytical techniques.

Batches were analyzed in random order. The sample
preparation process for GC-C-IRMS experiments was the

one proposed by Weckerle et al. [19] and starts with a
liquid-liquid extraction. First, 80mg of coffee powder was
extracted in 1mL of boiling water during 10min agitation by
vortex. The filtered solution was subjected to liquid-liquid
extraction with 1mL of chloroform during 10min vortex.
The organic phase was dried over anhydrous Na

2
SO
4
and

filtered. Subsequently, 180 𝜇L of extract was transferred to a
vial and 20𝜇L of tetradecanoic acid methyl ester (40 𝜇g/mL)
was added as internal standard. For GC-MS samples, 200mg
of finely ground coffee was extracted at room temperature
in 1mL of dichloromethane. After two-minute agitation with
vortex, the samples were filtered and transferred to a vial
with 0.2mg/mL of 1-decanol as internal standard. For 1H-
NMR, 200mg of finely ground coffee powderwas extracted at
room temperature in 1mL HPLC grade methanol. After two-
minute agitation with vortex, the samples were centrifuged
for 10min at 17∘C and 450𝜇L of the extract was transferred
to the NMR tube. Last, 90 𝜇L of deuterated methanol with
TMS was added.

2.2. Analytical Techniques

2.2.1. GC-C-IRMS. The 𝛿13C values of caffeine were deter-
mined with a Delta V Advantage Isotope Ratio Mass Spec-
trometer (IRMS) system (Thermo Fisher Scientific, Bremen,
Germany) coupled to a Trace GC Ultra Gas Chromatograph
via a GC-C/TC III interface operating in the “Combustion”
(C) mode and equipped with a TriPlus� autosampler. DB-
17MS GC column was used for the separation with the fol-
lowing operating conditions: injection temperature, 280∘C;
oven temperature, 70∘C for 2min, ramp at 15∘C/min to reach
160∘C, ramp at 10∘C/min up to 280∘C, and constant temper-
ature for 2min. The total run duration was of 32 minutes.
A constant flow (1.6mL/min) of helium gas was injected as
carrier gas and 1 𝜇L of sample solutionwas injected in splitless
mode. The detection of ions at 44, 45, and 46 m/z is carried
out by an impact source with a 3 kV acceleration voltage, a
magnetic field, and a Faraday collector for the measurement
of each mass. The temperatures inside the combustion and
reduction ovens were of 940∘C and 600∘C, respectively. Six
pulses of reference gas, CO

2
, of 20 s each were introduced

during the chromatographic separation. Complete oxidation
of the combustion chamber was performed after each batch
of 20 samples. Randomly chosen duplicates were intertwined
between runs to check for experimental error. Acquisition
and evaluation of GC-C-IRMS data were performed with
software ISODAT 2.5 (Thermo Fisher Scientific, Bremen,
Germany). After the complete conversion of the C atoms into
CO
2
at 1000∘C and separation of the water vapor, the carbon

isotope ratio was determined by measuring the 3 masses, 44,
45, and 46. The relative 𝛿13C values were calculated with
respect to the reference gas (CO

2
), where the symbol 𝛿 is

the standard notation to express the carbon isotope ratio.
The latter is defined as parts-per-thousand deviation from the
isotopic composition of Vienna Pee Dee Belemnite (VPDB)
and is calculated according to [31]:

𝛿
13Cmu (‰) = [(

𝑅mu
𝑅st
) − 1] ∗ 10

3
. (1)
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Table 1: Scientific articles on determination of origin of coffee.

Analytical
technical

Presentation
of coffee

Number of
samples Countries Chemometric

tool Metabolites Reference

ICP-AES Roasted 160
Costa Rica (20), Colombia (20), Kenya,
Guatemala, Panama, Sulawesi, Ethiopia,
Sumatra

PCA, CDA,
DFA, ANN

Multielements
(19) [18]

EA-P-IRMS Green 45

Ethiopia, Malawi, Yemen, Zambia, Kenya,
Tanzania, Brazil (5), Colombia (3),
Guatemala, Mexico, Costa Rica, India,
Sumatra, Jamaica, Hawaii

LDA, CART Stable isotope
ratios of C, H, O [19]

IRMS Green 46

Guatemala, Panama, Costa Rica, Brazil,
Mexico, Venezuela, Nicaragua, Salvador,
Honduras, India, Timor, Papua NG, Sri
Lanka, Cameroon, Ethiopia, Uganda,
Rwanda, Kenya, Zimbabwe

PCA Stable isotope
ratios of C, N, B [1]

NIRS Green 120 PCA

Moisture, fat,
protein, sucrose,
caffeine,
trigonelline,
organic acids,
chlorogenic
acids

[20]

GC-TOF-MS Roasted 47
Production area: Brazil (11) and Colombia
(8). Markets of coffee: Brazil (2), Colombia
(12), Costa Rica, Guatemala

PCA
Volatile and
semivolatile
compounds

[14]

IRMS/EA Green 68

4 R (Angola), 62 A (Papua NG, Ethiopia,
Tanzania, Kenya, Hawaii, Costa Rica,
Jamaica, Malawi, Guatemala, Brazil (8), East
Timor, Peru (2), Ecuador, Mexico, Salvador,
Nicaragua, Zambia, Rwanda, Indonesia)

PCA

Stable isotope
ratios of C, N, O
and percentage
composition of
C and N

[3]

HPLC Green 107

57 A (Guatemala, Cameroon, Congo,
Uganda, India, Indonesia, Java, Vietnam), 50
A (Brazil (6), Colombia (1), Costa Rica,
Salvador, Guatemala, Honduras, Mexico,
Nicaragua, Panama, Venezuela, Cameroon,
Congo, Ethiopia, Kenya, Rwanda, Uganda,
Zimbabwe, India, Indonesia, Java, Papua
NG, Timor, Vietnam)

PCA, LDA,
PLS-DA, CART

Chlorogenic
acids, amides
cinnamoyl,
cinnamoyl
glycoside,
phenolic acids

[21]

LC-MS/
GC-FID Roasted 21 Asia (4), South America (11), Africa (6) PCA

Total protein,
total
carbohydrates,
monosaccha-
rides,
amines

[15]

IRMS/MC-ICP-
SFMS Green 47 5 different Hawaii coffee-producing regions CDA

Stable isotope
ratios of C, N, S,
O, Sr and
multielements
(30)

[22]

MC-ICP-MS/
IRMS Green 60

Rwanda, Ethiopia, Tanzania, Kenya, Malawi,
Zambia, Zimbabwe, Hawaii, Mexico, Costa
Rica, Guatemala, Peru, Salvador, Nicaragua,
Brazil, Ecuador, Jamaica, Indonesia, East
Timor, Papua NG

PCA
Stable isotope
ratios of Sr and
O

[23]

ICP-MS/ IRMS Green 64

Mexico, Guatemala, Honduras, Costa Rica,
Salvador, Dom. Rep., Colombia (4), Brazil
(6), Uruguay, Ivory Coast, Cameroon,
Congo, Ethiopia, India, Indonesia

CDA

Stable isotope
ratios of H, C,
N, O and
multielements
(54)

[2]
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Table 1: Continued.

Analytical
technical

Presentation
of coffee

Number of
samples Countries Chemometric

tool Metabolites Reference

1H-NMR Roasted 40

Cape Verde, Ethiopia, Kenya, Malawi, Saint
Helena, Tanzania, Brazil (5), Colombia (2),
Costa Rica, Salvador, Galapagos, Hawaii,
Peru (2), Guatemala, Honduras, Jamaica,
Nicaragua, India, Sumatra, Nepal, Yemen

OPLS-DA

Chlorogenic
acids,
trigonelline,
lactate, caffeine,
fatty acids

[12]

13C-NMR Green 60 Brazil (10), Colombia (10), Guatemala,
Tanzania, Indonesia, Vietnam PCA, OPLS-DA

Sucrose,
caffeine,
chlorogenic
acids, choline,
amino acids,
organic acids,
trigonelline

[13]

ICP-MS/ICP-
AES

Green and
roasted 42

Kenya, Ethiopia, Uganda, Indonesia, India,
East Timor, Australia, Papua NG, Cuba,
Dom. Rep., Costa Rica, Peru (1), Guatemala,
Colombia (3), Brazil (2)

LDA, PCA Multielements
(59) [24]

FT-IR Green 18 4 different Brazil coffee-producing regions ANN, SIMCA,
MLP [25]

MC-ICP-MS Green 21

Taiwan, Ethiopia, Kenya, Tanzania, Malawi,
Rwanda, Uganda, Brazil, Colombia, Peru,
Salvador, Guatemala, Costa Rica, Puerto
Rico, Jamaica, East Timor, Indonesia, Papua
NG

PCA

Stable isotope
ratios of B and
Sr and
multielements
(7)

[26]

1H-NMR Green and
roasted 340

Brazil (19), Colombia (70), Ecuador, Peru
(16), Hawaii, Costa Rica, Dom. Rep., Mexico,
Guatemala, Honduras, Nicaragua, Uganda,
Togo, Tanzania, Ivory Coast, Cameroon,
China, India, Indonesia, Vietnam

PCA, PLS-DA

Fatty acids,
caffeine, acetate,
organic acids,
trigonelline,
chlorogenic
acids

[17]

HR-CS-AAS Roasted 9
Brazil, Ethiopia, Colombia, India, Cuba,
Mexico, Honduras, Guatemala, Kenya,
Papua NG, Timor, Mussulo, China

ANOVA, CDA Ca, Mg, Na, K,
Fe, Mn [27]

PTR-TOF-MS Roasted 6 Brazil, Ethiopia, Guatemala, Costa Rica,
Colombia, India

PCA, RF, PDA,
dPLS, SVM,
ANOVA

H
3
O+, NO+,

O
2

+ [28]

NIRS Green 90 4 different Brazil coffee-producing regions PLS-DA

Sucrose, lipids,
amino acids,
caffeine,
trigonelline,
chlorogenic
acids

[29]

UPLC-MS Green 100 4 different Ethiopia coffee-producing
regions

PCA, LDA,
ANOVA

Chlorogenic
acids [30]

ICP-AES, Inductively Coupled Plasma Atomic Emission Spectroscopy; EA-P-IRMS, Elemental Analysis-Pyrolysis-Isotope Ratio Mass Spectrometry;
NIRS, Near-Infrared Spectroscopy; GC-TOF-MS, Gases Chromatography-Time-of-Flight-Mass Spectrometry; HPLC, High Performance Liquid Chro-
matography; LC-MS, Liquid Chromatography-Mass Spectrometry; GC-FID, Gas Chromatography-Flame Ionization Detector; MC/ICP/SFMS, Multiple
Detector/Collector-Inductively Coupled Plasma-Sector Field Mass Spectrometry; NMR, Nuclear Magnetic Resonance; FT-IR, Fourier Transform Infrared
Spectroscopy; PCA, Principal Component Analysis; CDA, Canonical Discriminant Analysis; DFA, Discriminant Function Analysis; ANN, Artificial Neural
Network; LDA, Linear Discriminant Analysis; CART, Classification and Regression Tree; PLS-DA, Partial Least Squares-Discriminant Analysis; OPLS-DA,
Orthogonal Partial Least Squares-Discriminant Analysis; SIMCA, Soft Independent Modelling of Class Analogy; MLP, Multilayer Perceptron; RF, Random
Forest; PDA, Penalized Discriminant Analysis; dPLS, Discriminant Partial Least Squares; SVM, Support Vector Machines.

𝑅mu and 𝑅st correspond to the sample and to the stan-
dard 13C/12C isotope ratio, respectively. The 𝛿13C CO

2
iso-

tope ratio was determined using the international standard,
tetradecanoic acid methyl ester, whose isotope ratio is 𝛿13C =
−29.98. Each sample was analyzed in duplicate.

2.2.2. GC-MS. The GC-MS analysis was carried out with
a gas chromatograph 6890N (Agilent Technologies, Palo
Alto, CA), equipped with the same column, as mentioned
above, a DB-17MS GC column (length: 30m, inner diameter:
0.25mm, and film thickness: 0.25mm), coupled to an inert



Journal of Analytical Methods in Chemistry 5

mass selective detector model 5975 and an autosampler
HP 7673 (Agilent Technologies, Palo Alto, CA). Randomly
chosen duplicates were included in each batch to check for
experimental error. The syringe was rinsed three times with
dichloromethane and then with the sample solution prior
to and after injection. 1 𝜇L of sample solution was injected
in split mode (10 : 1). Operating conditions were as follows:
injection temperature, 280∘C; oven temperature kept at 50∘C
for 2min, ramp at 10∘C/min to reach 220∘C, ramp at 5∘C/min
up to 300∘C, and constant temperature for 5min, for a total
of 40min. Helium gas was used as carrier in constant flow
mode (1.0mL/min) with a linear velocity of 36.0 cm/s. The
detection was set in electron impact mode (70 eV) in order
to observe masses from 50 to 500 m/z. The temperatures
inside the transfer line and the ion source were set at 250
and 230∘C. The identification of the compounds was carried
out by comparisonwith spectra of pure reference compounds
and with the Wiley library [32]. Identified compounds were
quantified by integration of their signals. Each integral was
normalized with respect to the sum of the integrals present
in each trace, thus computing relative intensities for each
compound [6] (see Supplementary Material, File 1, available
online at http://dx.doi.org/10.1155/2016/8564584).

2.2.3. 1H-NMR. All NMR experiments were performed on a
400MHz Bruker spectrometer using a BBO probe head with
triple-axis gradients and automated tuning and matching
accessories. Accurate control of the sample temperature was
achieved using a BVT-1000 and BCU-1 units. Samples were
measured at 300K in fully automatic mode, with the help
of a Sample Express changer accessory. Randomly chosen
duplicates were analyzed with each batch to check against
experimental error.

The acquisition of the spectra was achieved as described
elsewhere [17]. Three experiments were run sequentially.
First, a simple one-pulse experiment (zg30) with a 1 s
relaxation delay, a short excitation pulse (0.1 𝜇s), and a 4 s
acquisition time was used to estimate the frequencies of
methanol and to build a cosine modulated shape pulse of 1 s
(25Hz) with 50.000 complex data points for band-selective
saturation.

The second experiment (zgps) was run using a 6 s band-
selective saturation achieved by the just mentioned pulse.
The resulting spectra were used to refine the frequencies
measured for the two signals of methanol.

The final experiment (noesygpps) was recorded with a
receiver gain of 90.5, a mixing time of 10ms, 4 dummy scans,
and 64 FIDs.The resulting FIDs were apodized using a 0.3Hz
exponential function prior to Fourier transformation and
only zero order phase correction was allowed.

2.3. Chemometrics. PCA was used to check data quality and
identify possible outliers or detect unexpected aggregation.
Box-plots and ANalysis Of VAriances (ANOVA) were used
for an initial assessment of the information provided by
the techniques that is relevant to discrimination by country
of origin. Here we were looking for variables that are
distributed significantly different on the subset of Colombian

samples relative to the rest of the samples. Then, multivariate
analysis was performed by means of Partial Least Squares-
Discriminant Analysis (PLS-DA) models for classification
according to country of origin (Colombia versus other coun-
tries). These models were validated using the 7-fold Cross-
Validation (CV) method. Average 𝑄2 values (as defined by
Szymańska and collaborators [33]) over the 7 models were
used as indicators of quality and for the determination of
the best number of components (at the turning point of 𝑄2
versus number of components curve). Variable-Importance-
in-Projection (VIP) estimators [34] were then computed for
each predictor and provided us with an estimation of which
and how many predictors are relevant to the classification.

Because PLS-DA is a supervised method that learns from
data with known labels, the quality of the model may vary
from one CV sampling to another. Thus, simply comparing
𝑄
2 estimators of two models obtained with different param-

eters, for instance, with different numbers of predictors, is
meaningful only as long as the width of the distribution of
𝑄
2 values arising from resampling is much lower than the

effect of interest. However the magnitudes of these effects are
not known a priori. A workaround consists in comparing the
manners in which 𝑄2 values vary among a large number of
models, 100 in our case, computed for each condition to be
compared, that is using either all the available predictors or a
subset of them.

Analyses were run using SIMCA (http://umetrics.com/
products/simca) and the caret package [35] of the R statistical
software [36].

3. Results

3.1. GC-C-IRMS. Figure 1 (upper left) shows the box-plots for
the 𝛿13C ratio of caffeine in coffee samples from Colombia
versus other countries, alongwith the corresponding𝐹 values
given by ANOVA. It is found that the distributions are
significantly different, with 𝐹 = 13.1. Yet, the overlap
observed in the box-plots immediately suggests that a clas-
sifier based solely on this predictor would incur significant
error. These findings agree with results reported by Weckerle
and collaborators [19]. Indeed the authors found, using fewer
samples from each country, significant overlap of the 𝛿13C
isotope values of Brazil, Colombia, and Costa Rica and
observed an improvement in their classifications when ratios
for other elements, in particular 𝛿18O, were included.

3.2. GC-MS. A Principal Component Analysis performed
with the relative abundance of 7 compounds (2-furanmeth-
anol, palmitic acid (C16:0), caffeine, 𝛼-tocopherol, 𝛽-tocop-
herol, stigmasterol, and𝛽-sitosterol) extracted from the chro-
matograms allowed spotting one outlier that was removed
from further analysis.

The remaining 7 box-plots of Figure 1 display the distri-
bution in the concentrations of the 7 compounds detected
by GC-MS (2-furanmethanol, palmitic acid (C16:0), caffeine,
𝛼-tocopherol, 𝛽-tocopherol, stigmasterol, and 𝛽-sitosterol)
when comparing Colombian samples with other samples.
Two compounds presented significant differences according
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Figure 1: Continued.
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Figure 1: Box-plots for caffeine 𝛿13C ratios obtained by GC-C-IRMS and for the 7 compounds quantified by GC-MS. The 𝐹 values and
corresponding 𝑝 values were computed by ANOVA for each predictor. Although several predictors were found to be significantly different
for both groups, the overlap observed between the distributions already suggested that the accuracy of the classifier would depend on the
number of predictors included in the analysis.

to ANOVA (caffeine: 𝐹 = 61.4 and 𝛽-tocopherol: 𝐹 = 10.1
(degrees of freedom (dof) = 1 and 32)). Furthermore, though
caffeine distributions here present a larger gap than in the
case of GC-C-IRMS, they still overlap by a full quartile,
and the overlap is even larger for 𝛽-tocopherol. No single
GC-MS variable then provides a good enough classifier, but
multivariate analysis may still solve the task by combining
multiple predictors.

Figures 2(a) and 2(c) summarize the results of PLS-DA
on the set of GC-MS predictors. Models were built with 2
latent vectors (LVs), which allowed for the best results while
avoiding overfitting. The scores plot of a randomly selected
model (Figure 2(a)) shows how this method achieves some
success in discriminating Colombian coffee samples (𝑄2 =
0.702) but still presents overlap between the classes. On the
other hand, VIP analysis singles the predictors that weremost
relevant to the classification, which again turn to be caffeine
and 𝛼-tocopherol.

In the end, we conclude that GC-MS provides two useful
predictors of coffee origin but that they are still insufficient to
achieve a robust classification.

3.3. 1H-NMR. Figures 2(b) and 2(d) summarize the results
of PLS-DA on the NMR dataset. Models were built with 8
LVs. Simple visual inspection of the results reveals a much
better classification than the one obtained by GC-MS. This
is confirmed by the average classification quality factors
obtained, which were 𝑅2 = 0.69 compared to 0.66 from GC-
MS and 𝑄2 = 0.85 compared to 0.702.

Once more, VIP plots permit identifying some of the
relevant variables, in this case signals that can then be
attributed to relevant molecules. The results of this analysis

are presented in Figure 2(d). A total of 662 chemical shifts
located all across the spectra range were found to be of
significance for the classification.

4. Discussion

These results suggest that 1H-NMR’s success is not linked to
some key variables/compounds that it manages to detect (tar-
geted approach), but to the combined amount of information
observed simultaneously (nontargeted approach). Further-
more, this agrees with the overall progression observed for
the techniques evaluated here: only one GC-C-IRMS variable
is available, which though significatively discriminant, as
revealed by ANOVA, is clearly not enough to yield a good
classificator.Then, GC-MS targeted 7 compounds, 2 of which
turned to be significant for origin discrimination. These
predictors managed to allow for a PLS-DA classification that
though still unsuitable attained better class separation than
the sole GC-C-IRMS variable. Last, 1H-NMR achieved the
best results, not through some predictor with extraordinary
discriminant power, but by the conjunction of many signifi-
cant variables. In the hypothetical case where isotope ratios
could be measured simultaneously for several elements and
for a large set of compounds, IRMS would certainly provide
more robust classifiers, as would GC-MS if more compounds
could be quantified simultaneously.

Figure 3 presents the results of the analysis of the
“sensitivity” of the multivariate models towards resampling.
For this purpose, 100 models were built for GC-MS using 7
predictors and for NMR using either all the predictors (1610)
or only the 8 predictors with the highest VIP. Once more, the
number of predictors turned to be the key factor:𝑄2 values of
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Figure 2: Score plots of PLS-DA for classification by country of origin (Colombia versus Others) performed with GC-MS (2 LVs, (a)) and
1H-NMR (8 LVs, (b)). Red, green, and blue open circles are for Colombia, Peru, and Brazil, respectively. (c) VIP plots obtained for GC-MS
model. (d) NMR spectra colored according to the results of VIP analysis. The red color (VIP > 1) means that the variable contributes to
prediction, while the light blue color (VIP < 1) is for predictors that do not contribute. VIP scores obtained from NMR show that most of
the spectra (peaks) are contributing to the classification, highlighting that a large number of observable compounds are important for the
determination of origin of coffee beans. A total of 662 predictors were found with VIP > 1.

the full NMR model were much less sensitive to resampling
than those of themodels with fewer predictors, as revealed by
the width of the corresponding distributions.

These results fuel the hypothesis that origin determina-
tion cannot be reduced to a handful of compounds, regional
markers. Instead, geographical origin manifests itself in the
form of subtle modulations of the concentration of a large
variety of compounds. After all, coffee beans from the same
variety and species, harvested and processed in a similar
fashion, cannot be expected to differ drastically in their
chemical composition.

This also means that any attempts to combine data from
all three techniques will not lead to more accurate classifi-
cations due to the unbalanced number of variables. Indeed,
a bunch of isotope ratios and GC-MS intensities will be
marginalized by the overwhelming 662 predictors obtained
by NMR, obscuring any benefit of adding potentially relevant
predictors.

5. Conclusions

Theresults are reported for the classification of roasted coffees
from nearby countries, Colombia, versus Peru and Brazil
(Others), using three different analytical techniques that have
been previously shown to be promising for such task. Unlike
the reports the authors are aware of, where classification is
achieved between coffee samples of very distinct geographic
areas, the present work focuses on high profile coffees
produced in nearby countries, hence very similar samples, in
order to explore the limits of the abovementioned methods.
Commonly accepted statistical analyses were performed and
standard procedures were used to acquire the data in an
attempt to obtain a fair comparison of what could be achieved
in a laboratory in charge of quality control and at a reasonable
cost.

The results reported in this work show that when trying to
determine the origin of coffees the number of predictors that
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Figure 3: (a) and (b) show the behavior of 𝑄2 as a function of the number of latent vectors (LVs) for 100 models sampled randomly for
GC-MS (7 predictors, (c)) and NMR (1610 predictors, (b)). The thick red curve represents the average of all models and its turning point is
used to determine the best number of components for which the distributions are shown on (c). The green curve represents the distribution
of 𝑄2 for 2 LVs (GC-MS). The blue and black curves are for NMR using 2 and 8 LVs, respectively, and using either all the predictors (black)
or only the best 8 predictors (blue), selected according to their VIP.

can be observed is pivotal; hence NMR fingerprinting that
allows the simultaneous observation of a very large number
of compounds is found to perform best. This conclusion is
supported not only by the accuracy of the predictions that is
higher than for the other two methods, but also by the VIP
analysis showing thatmany regions of the spectra are relevant
to the classification. In other words, the origin of coffee is
encoded by subtle modulations of the concentration of many
different compounds.

This puts the cost-effectiveness of the techniques studied
under a different light: NMR demands complex logistics
associated with cryogenic magnets, an issue that was the
initial motivation of the present work; however, the result of
this investment is a very large amount of information (over
a thousand variables), most of which turned out to be not
only significant but also essential for reliably distinguishing
Colombian coffee from potential frauds. On the other hand,
a technique such as GC-C-IRMS, while less demanding in
terms of equipment, implies a time-expensive experimental
protocol that in the end leads to a single output variable,

far insufficient for the task at hand. In this regard, improved
results could be obtained by measuring other isotopic ratios,
but that would increase the experimental time and still fall
short of the vast amount of information that NMR brings to
the table.

These results encourage the exploration of techniques that
better balance low cost with high resolution fingerprinting.
Cheaper spectroscopic techniques such as IR thus appear
as attractive candidates to achieve the ideal of coffee fraud
detection at harbour. Further studies by our group exploring
this alternative will be published in the near future.
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Quı́mica Nova, vol. 29, no. 5, pp. 911–915, 2006.

[11] L. R. Cagliani, G. Pellegrino, G. Giugno, and R. Consonni,
“Quantification of Coffea arabica and Coffea canephora var.
robusta in roasted and ground coffee blends,” Talanta, vol. 106,
pp. 169–173, 2013.

[12] R. Consonni, L. R. Cagliani, and C. Cogliati, “NMR based
geographical characterization of roasted coffee,”Talanta, vol. 88,
pp. 420–426, 2012.

[13] F. Wei, K. Furihata, M. Koda et al., “13C NMR-based met-
abolomics for the classification of green coffee beans according
to variety and origin,” Journal of Agricultural and Food Chem-
istry, vol. 60, no. 40, pp. 10118–10125, 2012.

[14] S. Risticevic, E. Carasek, and J. Pawliszyn, “Headspace solid-
phase microextraction-gas chromatographic-time-of-flight
mass spectrometric methodology for geographical origin
verification of coffee,” Analytica Chimica Acta, vol. 617, no. 1-2,
pp. 72–84, 2008.

[15] M.-Y. Choi, W. Choi, J. H. Park, J. Lim, and S. W. Kwon, “Deter-
mination of coffee origins by integrated metabolomic approach
of combiningmultiple analytical data,” Food Chemistry, vol. 121,
no. 4, pp. 1260–1268, 2010.

[16] S. Kelly, K. Heaton, and J. Hoogewerff, “Tracing the geograph-
ical origin of food: the application of multi-element and multi-
isotope analysis,” Trends in Food Science and Technology, vol. 16,
no. 12, pp. 555–567, 2005.

[17] V. A. Arana, J. Medina, R. Alarcon et al., “Coffee’s country
of origin determined by NMR: the Colombian case,” Food
Chemistry, vol. 175, pp. 500–506, 2015.

[18] K. A. Anderson and B. W. Smith, “Chemical profiling to
differentiate geographic growing origins of coffee,” Journal of
Agricultural and Food Chemistry, vol. 50, no. 7, pp. 2068–2075,
2002.

[19] B. Weckerle, E. Richling, S. Heinrich, and P. Schreier, “Origin
assessment of green coffee (Coffea arabica) by multi-element
stable isotope analysis of caffeine,” Analytical and Bioanalytical
Chemistry, vol. 374, no. 5, pp. 886–890, 2002.

[20] A. Haiduc, C. Gancel, andV. Leloup, “NIR-based determination
of differences in green coffee chemical composition due to
geographical origin,” in Proceedings of the 21st International
Conference on Coffee Science, pp. 143–149, Montpellier, France,
2006.

[21] R. M. Alonso-Salces, F. Serra, F. Remero, and K. Heberger,
“Botanical and geographical characterization of green coffee
(Coffea arabica and Coffea canephora): chemometric evaluation
of phenolic and methylxanthine contents,” Journal of Agricul-
tural and Food Chemistry, vol. 57, no. 10, pp. 4224–4235, 2009.

[22] C. Rodrigues, M. Brunner, S. Steiman et al., “Isotopes as
tracers of the Hawaiian coffee-producing regions,” Journal of
Agricultural and Food Chemistry, vol. 59, no. 18, pp. 10239–
10246, 2011.
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