

Unicentre

CH-1015 Lausanne

http://serval.unil.ch

Year : 2020

MANAGING ADVANCED SYNCHRONIZATION ASPECTS IN

LOGISTICS SYSTEMS

Coindreau Marc-Antoine

Coindreau Marc-Antoine, 2020, MANAGING ADVANCED SYNCHRONIZATION ASPECTS IN
LOGISTICS SYSTEMS

Originally published at : Thesis, University of Lausanne

Posted at the University of Lausanne Open Archive http://serval.unil.ch
Document URN : urn:nbn:ch:serval-BIB_BCEA3723A9E77

Droits d’auteur
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette
loi. Nous déclinons toute responsabilité en la matière.

Copyright
The University of Lausanne expressly draws the attention of users to the fact that all documents
published in the SERVAL Archive are protected by copyright in accordance with federal law on
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the
author and/or publisher before any use of a work or part of a work for purposes other than
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/�

	
	

	
	
	

FACULTÉ DES HAUTES ÉTUDES COMMERCIALES

DÉPARTEMENT DES OPÉRATIONS

MANAGING ADVANCED SYNCHRONIZATION
ASPECTS IN LOGISTICS SYSTEMS

THÈSE DE DOCTORAT

présentée à la

Faculté des Hautes Études Commerciales
de l'Université de Lausanne

pour l’obtention du grade de
Docteur en Business Analytics

par

Marc-Antoine COINDREAU

Directeur de thèse
Prof. Olivier Gallay

Co-directeur de thèse
Prof. Nicolas Zufferey

Jury

Prof. Guido Palazzo, Président
Prof. Ann Van Ackere, experte interne
Prof. Frédéric Semet, expert externe
Dr. Eleni Pratsini, experte externe

LAUSANNE
2020

	

	
	

	
	
	

FACULTÉ DES HAUTES ÉTUDES COMMERCIALES

DÉPARTEMENT DES OPÉRATIONS

MANAGING ADVANCED SYNCHRONIZATION
ASPECTS IN LOGISTICS SYSTEMS

THÈSE DE DOCTORAT

présentée à la

Faculté des Hautes Études Commerciales
de l'Université de Lausanne

pour l’obtention du grade de
Docteur en Business Analytics

par

Marc-Antoine COINDREAU

Directeur de thèse
Prof. Olivier Gallay

Co-directeur de thèse
Prof. Nicolas Zufferey

Jury

Prof. Guido Palazzo, Président
Prof. Ann Van Ackere, experte interne
Prof. Frédéric Semet, expert externe
Dr. Eleni Pratsini, experte externe

LAUSANNE
2020

	
	

	
	

Members of the thesis committee

Prof. Olivier GALLAY

HEC Lausanne, Université de Lausanne

Thesis supervisor

Prof. Nicolas ZUFFEREY

GSEM, Université de Genève

Thesis co-supervisor

Prof. Guido PALAZZO

HEC Lausanne, Université de Lausanne

President of the jury

Prof. Ann van ACKERE

HEC Lausanne, Université de Lausanne

Internal member of the thesis committee

Dr. Eleni PRATSINI

Accenture, Zürich

External member of the thesis committee

Prof. Frédéric SEMET

CRIStAL, Centrale Lille

External member of the thesis committee

	

	

	

	

	

University of Lausanne
Faculty of Business and Economics

PhD in Business Analytics

I hereby certify that I have examined the doctoral thesis of

Marc-Antoine COINDREAU

and have found it to meet the requirements for a doctoral thesis.

All revisions that I or committee members
made during the doctoral colloquium

have been addressed to my entire satisfaction.

Signature: ____________________________ Date: _________________

Dr. Eleni PRATSINI
External member of the doctoral committee

30.11.2019

	

	

Acknowledgements

First of all, I would like to thank my thesis supervisor, Olivier Gallay. I had the privilege

to be your first PhD student. The trust you have placed in me allowed me to feel confident

during this PhD and to explore more than just science. I had a real pleasure to participate

to this fruitful collaboration. Next, I would like to thank Nicolas Zufferey, my thesis co-

supervisor. Thanks for giving to this thesis a relevant industrial context. I would also like

to thank Gilbert Laporte. It was a honor to collaborate with such an expert. Thanks for

welcoming me at the CIRRELT in Montréal. The summer 2019 was a great accelerator

for my thesis.

I want also to thank all the members of this thesis committee for the valuable comments

they made. More generally, I would also like to thank the unknown reviewers of some of

the chapters of this thesis. It allowed me to significantly improve my work.

I would also like to thank the industrial partners with whom I worked during these

four years. Alain Nguyen and Siham Essodaigui, thanks for sharing your data and your

industrial insights. Pascal Benchimol, Bayram Kadhour and Thomas Triboulet, thanks

for the discussion we had in Lausanne and at the EDF Lab in Saclay. It was moving for

me to come back to Saclay, this place where I finished my engineering studies.

Moreover, despite the fact that I was not at the office very often (that is an understate-

ment), I had a very good time at UNIL. I would like to thank the people who have

contributed to the friendly atmosphere in the department of operations. I wish I could

have shared more meals with you. More importantly, if some of you were not here, I

would still try to validate some ECTS at EPFL or at any other scientific institutions.

Obtaining these 18 ETCS was a tough task.

I would like to thank the people who made me grow from a more personal point of view.

I would like to thank my parents for giving me the opportunity to do long studies and

for giving me the taste for effort. I would like to conclude these acknowledgement with

a special thanks to the person with who I share my life. Laura, without you, I would

clearly not be here. You have been (and I am sure you will be) an unlimited support. You

reassured me when the idea of giving up was growing on my mind. You made me met

i

Anicet. This little boy is an infinite source of wellness. No matter the sleepless nights,

holding him in my arms gave me the strength to finish this thesis. For all the new horizons

you made me discover, I will never be enough thankful. I love you.

ii

Abstract

In this thesis, we model various complex logistics problems and develop appropriate tech-

niques to solve them. We improve industrial practices by introducing synchronized solu-

tions to problems that were previously solved independently. The first part of this thesis

focuses on cross-docks. We simultaneously optimize supplier orders and cross-docking

operations to either reduce the storage space required or evenly distribute workload over

the week. The second part of this thesis is devoted to transport problems in which two

types of vehicles are synchronized, one of which can be transported by the other. The

areas of application range from home services to parcel delivery to customers.

After analyzing the complexity associated with these synchronized solutions (i.e., large-

scale problems for which the decisions depend on each other), we design algorithms based

on the ‘destroy-and-repair’ principle to find efficient solutions. We also introduce mathe-

matical programs for all the considered problems.

The problems under study arose directly from collaborations with various industrial part-

ners. In this respect, our achieved solutions have been benchmarked with current indus-

trial practice. Depending on the problem, we have been able to reduce the environmental

impact generated by the industrial activities, the overall cost, or the social impact. The

achieved gains compared to current industrial practice range from 10 to 70%, depending

on the application.

Keywords: Logistics, Synchronization, Transportation, Vehicle Routing, Cross-Docking,

Mathematical Programming, Metaheuristics (Adaptive Large Neighborhood Search, Vari-

able Neighborhood Search), Matheuristics (Fix-and-Optimize), Real-Life Instances

iii

Résumé

Dans cette thèse, nous modélisons divers problèmes logistiques complexes et développons

des techniques appropriées pour les résoudre. Nous cherchons à améliorer certaines pra-

tiques industrielles en introduisant des solutions synchronisées à des problèmes qui étaient

auparavant résolus indépendamment. La première partie de cette thèse porte sur les cross-

docks. Nous optimisons simultanément les commandes fournisseurs et les opérations au

sein de la plateforme de logistique pour réduire l’espace de stockage requis ou répartir

uniformément la charge de travail sur la semaine. La deuxième partie de cette thèse est

consacrée aux problèmes de transport dans lesquels deux types de véhicules sont syn-

chronisés, l’un pouvant être transporté par l’autre. Les domaines d’application vont du

service à domicile à la livraison de colis chez des clients.

Après avoir analysé la complexité des solutions synchronisées (c’est-à-dire des problèmes

de grandes dimensions pour lesquels les décisions dépendent les unes des autres), nous

concevons des algorithmes basés sur le principe de ‘destruction / reconstruction’ pour

trouver des solutions efficaces. Nous modélisons également les problèmes considérés avec

la programmation mathématique.

Les problèmes à l’étude viennent de collaborations avec divers partenaires industriels. A

cet égard, les solutions que nous présentons sont comparées aux pratiques industrielles

actuelles. En fonction du problème, nous avons pu réduire l’impact environnemental

généré par les activités industrielles, le coût global, ou l’impact social des solutions. Les

gains obtenus par rapport aux pratiques industrielles actuelles varient de 10 à 70%, selon

l’application.

Mot-clefs: Logistique, Synchronisation, Problème de transport, Tournée de véhicules,

Plateforme de Cross-dock (transbordement), Programmation Mathématiques, Métaheuristiques,

Matheuristiques, Instances Réelles

iv

Contents

Acknowledgements i

Abstract ii

Résumé iii

1 Positioning of the Thesis 1

1.1 General Framework . 1

1.2 Specific situations under study . 3

1.3 Developed solution methods . 5

1.4 Outline . 9

2 Integrating workload smoothing and inventory reduction in three inter-

modal cross-docking platforms of a European car manufacturer 10

2.1 Introduction . 12

2.2 Literature review . 15

2.3 Mathematical formulation . 18

2.3.1 Complexity of the problem . 19

2.3.2 Sets, parameters and variables . 19

2.3.3 Quadratic linear programming formulation (Q) 21

2.3.4 (P): Mixed integer linear programming formulation 23

2.3.5 (Pt): decomposition of (P) for a given day t 24

2.3.6 (Px): decomposition of (P) for a given assignment x of products to

boxes in containers . 25

v

vi CONTENTS

2.3.7 (Pt,x): decomposition of (Px) for a given day t 26

2.4 Elimination of variables . 26

2.4.1 Fixing variables to 0 . 27

2.4.2 Single-value variables . 27

2.4.3 Impact of variable elimination on the ECM instances 28

2.5 Methodology . 31

2.5.1 Heuristic for formulation (Px) . 31

2.5.2 Heuristic for large instances . 31

2.5.3 Lower bound on f I . 33

2.6 Computational results . 34

2.6.1 Notation . 34

2.6.2 Comparison of the various optimization approaches 35

2.6.3 Optimal results for the V and G instances 36

2.6.4 Comparison with current practice 36

2.7 Conclusions . 40

3 Inbound and Outbound Flow Integration for Cross-Docking Operations 42

3.1 Introduction . 44

3.2 Literature Review . 47

3.3 Mathematical formulation . 49

3.3.1 Sets, parameters and variables . 49

3.3.2 Mixed integer linear programming formulation: Q(O(nf), I(nf)) . . . 52

3.3.3 Specific configurations of Q(O(nf), I(nf)) 54

3.4 Matheuristics . 56

3.4.1 Decomposition matheuristic (DM) 56

3.4.2 Fix-and-optimize matheuristic (FOM) 57

3.4.3 Combined matheuristic (DM-FOM) 60

3.4.4 Facilitated implementation of FOM 60

3.5 Computational experiments . 61

3.5.1 Test instances . 61

CONTENTS vii

3.5.2 Analysis of the performance of the proposed solution methods . . . 62

3.5.3 Managerial insights . 67

3.6 Conclusions . 71

4 Synchronizing Trucks and Drones for a Real-World Parcel Delivery

Problem with Time-Window Constraints 73

4.1 Introduction . 75

4.2 Literature Review . 77

4.3 Problem Formulation . 82

4.3.1 Practical Assumptions . 82

4.3.2 Truck-and-Drone Synchronization 83

4.3.3 Sets, Parameters, and Variables . 84

4.3.4 Mixed-Integer Linear Program . 86

4.4 Solution Methods for the MC-VRPTW-D 89

4.4.1 Adaptive Large Neighborhood Search (ALNS) 89

4.4.2 Route-First-Cluster-Second (RFCS) 93

4.4.3 Initial Solution . 94

4.5 Speed up the Insertion Mechanism . 95

4.5.1 Modeling Aspects and Notation . 95

4.5.2 Greedy Algorithm to Insert a Job at its Best Position 97

4.5.3 Insertion of a Job into a Drone’s Schedule 98

4.5.4 Inserting a Job into a Truck’s Schedule 101

4.5.5 Complexity of an Insertion . 101

4.6 Computational Experiments and Managerial Insights 103

4.6.1 Instances . 104

4.6.2 Results . 105

4.6.3 Sensitivity Analysis of the Percentage of Jobs Reachable by Drone . 109

4.6.4 Cost Structure of Truck-and-Drone Solutions 110

4.7 Conclusion . 114

viii CONTENTS

5 Vehicle Routing with Transportable Resources: Using Carpooling and

Walking for On-Site Services 116

5.1 Introduction . 118

5.1.1 Industrial context . 118

5.1.2 Problem description . 119

5.1.3 Contributions and outline . 120

5.2 Literature review . 122

5.3 Problem formulation . 126

5.3.1 Definition and assumptions . 126

5.3.2 Graph modeling and variables . 127

5.3.3 Mathematical formulation . 130

5.4 Methodology . 134

5.4.1 VNS: motivation and general principles 134

5.4.2 VNS: shaking phase . 136

5.4.3 Complexity of an insertion . 139

5.4.4 Accelerating up the insertion phase 139

5.5 Computational experiments . 142

5.5.1 Instances . 142

5.5.2 Notation and considered configurations 144

5.5.3 MILP results for the VRPTR . 145

5.5.4 Performance of VNS on the VRP configuration 145

5.5.5 VNS results for the VRPTR . 147

5.5.6 Execution time . 150

5.6 Managerial insights . 152

5.6.1 Comparison with existing practices 152

5.6.2 Instance characteristics that favor carpooling 156

5.6.3 Expected impact of random perturbations 158

5.7 Conclusion, perspectives, and future works 159

5.8 Acknowledgement . 160

6 General conclusion 161

6.1 Scientific contributions . 161

6.2 Future work . 164

Abbreviations 166

Bibliography 168

Appendices 182

A Appendix for chapter 5 182

A.1 Fastening the insertion heuristic . 182

A.1.1 Modeling: aggregated nodes . 182

A.1.2 Vehicle constraints . 184

A.1.3 Temporal constraints . 184

A.2 Detailed results for all instances . 187

ix

x

List of Tables

1.1 Overview of destory-and-repair solution methods used. 8

2.1 Characteristics of the instances. 29

2.2 Number of variables in (P). 30

2.3 Sizes of the formulations (P), (Pt) and (Px) after the elimination of variables. 30

2.4 Optimal results for the V and G instances, and performance of Algorithm 2. 37

2.5 Results for the V and G instances (i.e., focusing on fW). 38

2.6 Results for the M instances (i.e., focusing on f I). 39

3.1 Considered configurations of the ECM problem. 55

3.2 Characteristics of the test instances. 62

3.3 Results of Qz for TDM, FOM and TDM-FOM (M instances). 64

3.4 Results of Q for CPLEX, DM and FOM (V and G instances). 65

3.5 Results of Q for DM, FM and DM-FOM (M instances). 67

3.6 Results of Q for the V and G instances. 68

3.7 Results of Q for the M instances. 69

4.1 Comparison of related truck-and-drone formulations. 82

4.2 Complexity comparison for insertion procedures. 103

4.3 Comparison of ALNS and CPLEX for the smaller instances. 106

4.4 Comparison of ALNS and RFCS for the larger instances. 108

4.5 Result variation for different values of %A. 111

4.6 Cost structure of truck-and-drone solutions for different percentages of jobs

reachable by drone. 113

xi

5.1 Performance of VNS on configuration P
|W ?|
no walk. 147

5.2 Proportion of feasible instances for the different configurations involving

less cars than workers. 149

5.3 Detailed results for the representative instances. 150

5.4 Average execution time of the VNS (in seconds) for each instance and time

window size. 151

5.5 Aggregated results for the Park-and-Loop configuration
(
P
|W ?|
walk

)
. 153

5.6 Results for both the vehicle fleet and the total driving distance for all

scenarios. 154

A.1 Detailed results for instances involving 20 jobs. 187

A.2 Detailed results for instances involving 30 jobs. 188

A.3 Detailed results for instances involving 40 jobs. 188

A.4 Detailed results for instances involving 50 jobs. 189

xii

List of Figures

1.1 Generic flows in a company. 2

1.2 Comparison between a configuration involving direct flows between sup-

pliers and production plants (left side) with a configuration involving a

cross-docking platform to consolidate these flows (right side). 3

2.1 Product flows associated with an ILP. 12

2.2 Assignment of boxes to a container and assignment of products to a box. . 15

2.3 Comparison of the expected f I-gains of the various approaches. 35

2.4 Quantification of the expected f I-gains for various approaches (average

values for all M instances). 40

3.1 Product flow in an ILP. 44

3.2 Percentage of the maximum theoretical improvement potential achieved by

configurations Qz and Q. 70

4.1 Different types of truck-and-drone synchronizations allowed at a job location. 84

4.2 Path consistency for a drone. 87

4.3 Subgraph of the precedence graph after the insertion of job j into the

schedule of a drone launched at i and retrieved at k. 100

4.4 Truck-only (left side) versus truck-and-drone (right side) solutions. Plain

(resp. dashed) lines are truck (resp. drone) trips. 109

4.5 Aggregated cost structure for instances involving 50 and 100 jobs. 113

xiii

5.1 Comparison between a VRPTR solution and the corresponding VRP opti-

mal solution. 121

5.2 Different flow configurations for a WR performed by a motorized worker. . 129

5.3 Modeling of the VRPTR solution displayed in Figure 5.1 using the intro-

duced sets and variables . 130

5.4 An optimal solution to the VRPTR, with both carpooling and walking. . . 146

5.5 Potential driving distance of the solutions found feasible with less cars than

workers. 148

5.6 Illustration of a VRPTR solution for which one car is saved and the total

driving distance is reduced by 1.3%. The optimal VRP solution and a

VRPTR solution are presented for the same instance. 151

5.7 Distribution of the feasible instances and fdist-gains for configuration
(
P
|W ?|−1
walk

)
(i.e., one car is removed from the VRP optimal solution). 157

A.1 Precedence graph representing the VRPTR solution of Figure 5.1. Dot-

ted arcs represent time window constraints (for the sake of clarity, not

all time window constraints are drawn), dashed arcs represent precedence

constraints due to WRs, and both double and normal arcs represent prece-

dence constraints due to the routes. The order of the nodes in the route

must satisfy the constraints in Equations (A.1)–(A.3). 186

xiv

Chapter 1

Positioning of the Thesis

1.1 General Framework

This thesis aims at improving logistics operations to find competitive advantages. Lo-

gistics (or supply chain management) refer to the process of coordinating people and

materials within a company. It includes the purchase and delivery of raw materials, pro-

duction of goods, and packing, shipment or transportation of products to distributors, for

example. In recent decades, supply chain management has received considerable attention

in the literature. Continuing to work on existing problems could only lead to marginal

gains, as there are already very effective methods to solve these problems. A more promis-

ing avenue of research is to identify and solve new formulations related to logistics. In

this thesis, I propose to synchronize the solutions of problems that were previously solved

independently. More precisely, I focus on the flows existing within a company. Figure 1.1

displays some of these generic flows. In the first part of this thesis, I focus on the flows

entering a company (between the suppliers and a company). Next, in a second part, I

focus on the flows exiting a company (between the company and its customers). These

flows involve multiple actors (e.g., the suppliers and the company or the company and its

1

2 Chapter 1. Positioning of the Thesis

customers) and hence it makes sense to consider a high degree of synchronization between

them. Indeed, the more actors are synchronized, the better the performance is expected

to be.

Figure 1.1: Generic flows in a company.

First, I consider a transportation problem occurring in the early stages of the supply chain

between the suppliers and the company. More precisely, I consider the case of a company

for which there exists a large number of costly flows of raw material between the suppliers

and the company. In that case, logistics platforms, called cross-docks, can be introduced

in the supply chain to consolidate flows of products. Figure 1.2 shows how flows can be

consolidated with the use of cross-docking platforms. An overview of the cross-docking

literature can be found in [Ladier and Alpan, 2016]. Despite the fact that synchronization

is already the basis of cross-docking activities as the inbound flows of products must be

synchronized with the outbound flows. I propose to go one step further by synchronizing

supplier orders with operations happening in the cross-docks. The cross-docking platforms

considered in this thesis first optimize the supplier orders (i.e., the number of products

arriving each day) and then manage the remaining operations (i.e., build and schedule the

1.2. Specific situations under study 3

outbound flows). Simultaneously optimizing these two problems allows reducing storage

space and smoothing workloads during the week.

Figure 1.2: Comparison between a configuration involving direct flows between suppliers
and production plants (left side) with a configuration involving a cross-docking platform
to consolidate these flows (right side).

In the second part of this thesis, I consider the flows exiting a company, between a company

and its customers. I either consider home delivery of final products or on-site services

performed at customer locations. Synchronization is already part of such problems as

the delivery companies must be synchronized with their customers to avoid increased

wait times. I propose going one step further by synchronizing two resource types to keep

improving the operations. I envision a futuristic but realistic use of drones to transport

goods. I show that when synchronized with trucks (a truck can transport a drone and refill

it on the way), the delivery cost can be significantly reduced. I also consider the case of a

company that provides maintenance work or support at their customers’ locations. In that

case, I synchronize on-foot workers and motorized workers. As ride-sharing is allowed, I

evaluate how synchronization can reduce the environmental impact of the solution (e.g.,

fewer cars used and less pollution).

1.2 Specific situations under study

First, I consider the cross-docking platforms operated by a European car manufacturer

(ECM), where the products arrive by trucks from inland suppliers and are sent by con-

tainers to offshore production plants. The ECM manages complex loading constraints

for the trucks and containers. These constraints force the ECM to wait for the arrival of

4 Chapter 1. Positioning of the Thesis

several trucks before being able to send the first containers. It results in an increased need

for storage and in an unbalanced workload during the week (most of the loading is done

during the latter days of the week). I propose to integrate, within the same optimization

framework, decisions concerning container loading, truck loading, and container schedul-

ing. Integrating all these decisions creates a difficult optimization problem that has not

been addressed in the literature. Chapter 2 describes the optimization of cross-docks’

internal decisions (i.e., the suppliers orders are fixed and the remaining decisions focus

on the container content and container loading days). Next, Chapter 3 presents a greater

optimization problem where cross-dock internal decisions and supplier orders are made

simultaneously.

The second part of the thesis is devoted to transportation problems that are extensions of

the Vehicle Routing Problem (VRP) [Laporte, 2009]. The VRP aims to find optimal routes

(e.g., the shortest or cheapest) for a set of vehicles to visit a set of customers. When visit-

ing customers, several types of operations can happen: collect product, deliver parcels or

provide on-site services, for example. The applications of such a framework are numerous,

it ranges from garbage collection [Kim et al., 2006], mail distribution [Hollis et al., 2006],

home health care [Fikar and Hirsch, 2017] and parcel delivery [Cattaruzza et al., 2017].

In this thesis, I introduce an extension of the VRP named the Vehicle Routing Problem

with Transportable Resource (VRPTR), which designs routes for two types of transporta-

tion resources. One resource type, called the light one, can be embedded and transported

by the other one, called the heavy one. Depending on the application, each resource type

has its own strengths and weaknesses. Synchronizing these two types of resources allows

considering a new of solutions that takes advantage of a resource to compensate for the

drawbacks of another one.

Chapter 4 presents the case of parcel delivery. The light resources are drones and the

heavy resources are trucks. The drones’ strengths are their faster speed and lower costs,

but they suffer from limited autonomy and capacity. Trucks, however, can move large

1.3. Developed solution methods 5

amounts of goods but suffer from congestion in cities, cause pollution and noise, and are

slower than drones. I show that synchronizing trucks and drones helps reduce the global

cost of deliveries when compared to solutions where only trucks are used to transport

parcels. Chapter 5 presents the case of on-site services. The light resource is on-foot

workers, and the heavy resource is motorized workers. On-foot workers are efficient in

congested city centers; because they are not using motorized vehicles, they are not in-

creasing pollution levels and can travel in pedestrian zones, but they are slower than

workers who use motorized transportation. Compared with the case where all workers

are motorized, I identify configurations that allow reducing the environmental impact of

the solution. I show that both the number of vehicles and the driving distance can be

reduced to serve the same customers. In these two chapters, synchronization is crucial at

rendezvous points. Indeed, drones or non-motorized workers must wait for the vehicles

to be transported or to be reloaded in the drone case. Efficient solutions should produce

numerous synchronization nodes (where the light and the heavy resources meet) while

minimizing the wait times at these nodes.

1.3 Developed solution methods

Combinatorial optimization aims to find in a finite set of solutions the one that maximizes

or minimizes a given objective. Logistics problems can be modeled with this framework.

Indeed, a solution represents the values assigned to each decision. For example, in cross-

docking platforms, one can decide whether a container is loaded on a given day and if

product A is transported in container B. However, in a transportation problem, one can

decide whether a vehicle goes to customer B after visiting customer A. The solution space

denotes all possible values for any decision in the problem (e.g., is the path existing be-

tween two customers is selected in the solution?). Next, the objective can vary depending

on the goal: financial when minimizing the cost, environmental when minimizing pollu-

tion incurred by the activities at stake, or social when improving labour conditions. The

6 Chapter 1. Positioning of the Thesis

impact of all decisions can be evaluated according to the proposed objective function.

The combinatorial optimization problems are divided into two categories depending on

their complexity. An algorithm, for which the time required to return its output increases

polynomially with the size of the instance, is called a polynomial algorithm. The com-

binatorial optimization problems that can be solved (i.e., find the optimal solution) with

a polynomial algorithms (i.e., the execution time is a polynomial function of the size of

the instance) are assigned to class P . Conversely, class NP comprises the problems for

which there exists no polynomial algorithms to solve them. In the latter case, the best

algorithms that has been developed for NP-hard problems have a computation time that

grows exponentially with the size of the instance. More precisely, a problem is said to be

NP-hard if any other proven NP-hard problem can be transformed with a polynomial

algorithm into it. Then, if a NP-hard problem is solved with a polynomial algorithm, all

other NP-hard problem can be solved with a polynomial algorithm too. In other words,

for the time being, no polymonial algorithm exists to solve NP-hard problems, and solv-

ing optimally a NP-hard problem can only be done for instances of limited size. Last, it

should be noted that increasing synchronization in logistics significantly complicates the

problems. Indeed, it creates larger problems for which the solution space is more difficult

to explore.

To solve combinatorial optimization problems, several solution methods have been de-

veloped. An intuitive approach, called exhaustive search, consists in exploring the whole

solutions space to find the best one. Unfortunately, despite the constant progress achieved

in computer science, the size of the problems (and, hence, their solution spaces) consid-

ered in this thesis prevents such an approach from being feasible. For instance, there are

1
2
(n−1)! = (n−1)×(n−2)×· · ·×1 possible tours that connect n points on a map. There

are 6.1× 1016 different tours that connect twenty points. Assuming a computer can com-

pute one billion tours per second, it would need a few months to evaluate all the possible

tours. Operational research is a discipline that focuses on developing optimization tech-

1.3. Developed solution methods 7

niques to find optimal or good solutions to combinatorial optimization problems. Exact

methods (e.g., mathematical programming, column generation, or constraint generation)

can guarantee the quality of the solution returned (i.e., prove that it is optimal or at least

give a gap with the optimal solution). The main drawback of these approaches is the curse

of dimensionality (i.e., when the size of the problem is too large, exact methods might be

unable to find either a competitive solution within a given time budget or might even be

unable to find a feasible solution even after a long execution time). However, heuristics

use practical methods to build a solution. With these methods, there is no guarantee

that the optimal solution will be found, but good quality solutions can be found quickly.

Another method, called metaheuristics, orchestrates several heuristics within the same

framework to continue improving the solution. Matheuristics differ from metaheuristics

as they combine heuristics with mathematical programming to explore the solution space.

From a practical standpoint, mathematical programming is a good starting point to model

new problems. Generic solvers, either commercial or open source (e.g., CPLEX, Gurobi,

GLPK and COIN-OR), have been developed to solve mathematical programs. Despite

the constant progress made in the development of these solvers, they are unable to solve

large problems (as those encountered in this thesis). In this case, one can either develop

more refined exact methods (e.g., improve the modeling or decompose or strengthen the

problem) or build heuristic methods. To solve the problems under study, I developed

metaheuristics and a matheuristic.

Inspired by industrial partners, the problems presented in this thesis are all NP-hard.

I propose a Mixed Integer Linear Program (MILP) and metaheuristics or matheuristics

based on the destroy-and-repair principle to solve them. In the latter case, the solutions

are iteratively improved by repeating a procedure called destroy-and-repair cycle. A

destroy-and-repair cycle generates a new solution by working on a limited part of the

solution space (i.e., the part of the solution that is ‘destroyed’) instead of reconsidering the

whole solution space at a time. These smaller problems are easier to solve, and repeating

this procedure allows the algorithm to find competitive solutions. Table 1.1 displays

8 Chapter 1. Positioning of the Thesis

the differences between the three destroy-and-repair solution methods introduced in this

thesis. I differentiate these methods according to the solution methods used to destroy and

to repair a solution and according to the used acceptance criterion (“Accept. Crit.”). The

acceptance criterion refers the choice that is made each time a new solution is generated

after a destroy-and-repair cycle. When the new solution does not improve the current

solution, is it better to start working on the new generated solution or to continue working

on the previous solution? While a descent algorithm only accepts improving solutions,

the metropolis criterion accepts some deteriorating solutions with a probability which

depends on the deterioration and on the execution time. The metaheuristics proposed

in this thesis (the Adaptive Large Neighborhood Search in Chapter 4 and the Variable

Neighborhood Search in Chapter 5) use the large neighborhood search algorithm (LNS)

[Shaw, 1998] to destroy and to repair a solution, the proposed matheuristic (Fix-and-

Optimize Matheuristic detailed in Chapter 3) uses mathematical programming during the

repair phase. After highlighting the limited efficiency of a commercial solvers (CPLEX)

to find solution of the MILP, I demonstrate that this panel of destroy-and-repair solution

methods performs well.

Table 1.1: Overview of destory-and-repair solution methods used.

Accept. Crit.

Methods
MILP Solver LNS

Descent Fix-and-Optimize Variable Neighborhood

Matheuristic (Chapter 3) Search (Chapter 5)

Metropolis Adaptive Large Neighborhood

Search (Chapter 4)

Some of the introduced formulation involve multiple objectives. In some cases, the objec-

tives can be in conflict (see e.g., Chapter 5). In the latter case, optimizing an objective

might deteriorate the other one. In this thesis, I use lexicographic optimization to man-

age multiple objectives. In this framework, objectives are classified (e.g., the industrial

partners rank the objectives) and are solved independently. The primary objective (i.e.,

the most important one) is optimized first and then, the secondary objective is optimized

1.4. Outline 9

while keeping the primary objective at its best value. By doing so, I was able to reduce

the execution time (the simultaneous consideration of all objectives makes the problem

more complex).

1.4 Outline

The thesis is organised as follows. Chapters 2 and 3 discuss cross-docking. Chapters 4

and 5 focus on the VRPTR in two different contexts. All these chapters are independent

and some of them have been published in international journals. Chapter 2 has been

published in the journal Computers and Operations Research and Chapter 5 has been

published in the European Journal Of Operational Research. These chapters are followed

by a general conclusion that summarizes the common scientific contributions and opens

the door for future research.

Chapter 2

Integrating workload smoothing and
inventory reduction in three
intermodal cross-docking platforms
of a European car manufacturer

Marc-Antoine Coindreau - University of Lausanne, Switzerland

Olivier Gallay - University of Lausanne, Switzerland

Nicolas Zufferey - University of Geneva, Switzerland

Gilbert Laporte - HEC Montréal, Canada

Chapter published in Computers and Operations Research [Coindreau et al., 2019b]

10

11

Abstract

We consider the optimization of container loading at three intermodal logistics platforms

(ILP) of a large European car manufacturer (ECM). The decisions focus both on the

loading day of each container and on its filling with the products in inventory, which are

gradually received over the week from inland suppliers. The objective is either to reduce

the largest inventory level needed in the ILP, or to smooth the weekly workload. We

develop a solution methodology that allows the handling of complex loading constraints

related to dimensions and weight of the products. We model the problem as a mixed

integer linear program and we develop a decomposition heuristic to solve it. We perform

extensive computation tests on real instances provided by ECM. Compared with current

industrial practices, our solutions yield an average improvement of 46.8% for the inventory

reduction and of 25.8% for the smoothing of the workload. Our results highlight the

benefit of jointly optimizing container loading and operations scheduling.

Keywords: Logistics, intermodal logistics platforms, cross-docking, loading constraints,

MILP, decomposition heuristics.

12 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

2.1 Introduction

We consider the operational management of intermodal logistics platforms (ILP) of a

large European car manufacturer denoted by ECM because of a non-disclosure agreement.

We refer to this problem as the ECM problem. Over a given planning horizon (a week

in this work, excluding the weekend), each ILP consolidates product flows from inland

suppliers to offshore production plants, which are the ILP clients. Every day, products are

unloaded from trucks and are then loaded into containers. Once loaded, the containers

are transmitted to the shipping company that will ship them at the end of the week.

The products not shipped at the end of a day are stored and wait until the next day to

be loaded on a container. Figure 2.1 illustrates the sequence of operations at an ILP. It

shows a product flow from trucks to an ILP, to containers, ships to clients.

Figure 2.1: Product flows associated with an ILP.

The managers have to decide when to load each container in order to minimize the largest

weekly inventory space (f I) employed, or to smooth the workload activities (fW). Fo-

cusing on f I , it is preferable to load the containers as soon as possible. Minimizing fW

yield solutions with approximately the same number of containers filled each day. The

two objectives f I and fW are minimized lexicographically, and the priority of an objective

2.1. Introduction 13

on the other depends on the considered ILP: the ILPs with a loaded volume larger than

10,000 m3 per week focus on f I , whereas the smaller ILPs focus on fW .

We assume that the number of containers loaded per day is not constrained and the

sequence of container loadings has no impact on the objective function. Each client can

receive multiple containers, but each container can only be sent to its assigned client.

Products of the same type are interchangeable among clients. The daily workload is

measured as the volume of products unloaded from the trucks and the volume of products

loaded into containers (i.e., it is the sum of the two volumes). The objective f I is measured

as the largest volume, over the week, of products remaining in the inventory at the end of

a day. Regarding the inbound side, the trucks gradually deliver over the week all products

needed for the ILP clients. The truck arrival days and their contents are considered as

input data.

Concerning the outbound side, the client demand must be sent in containers by ship. A

container can only be loaded when its full content is available in the ILP inventory. A

first decision is to determine the loading day of each container, given that its content

is fixed. Minimizing the number of containers (by optimizing their contents) to ship all

the demand is a difficult problem due to the presence of complex loading requirements,

which involve 3D constraints (each box has a 3D shape and overlaying is forbidden in the

containers), a total weight limitation (the total weight of all boxes loaded in the same

container cannot exceed 22 tonnes), and the arrangement of boxes in stacks (the boxes

are loaded in stacks and the range of allowed weights is limited by the height of the boxes

in the stack). For an overview of common loading constraints, see [Toffolo et al., 2017].

The current practice at ECM consists of first optimizing the loading of the containers, and

next of computing a weekly schedule for the associated operations. In the present work,

the loading and the scheduling of the containers are optimized simultaneously through

the minimization of f I or fW .

14 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

As highlighted by [Toffolo et al., 2017], the loading problem itself is rather complicated

and cumbersome. ECM solves this problem by using a dedicated algorithm that minimizes

the number of containers (to ship the weekly demand) and satisfies the full set of 3D

loading constraints. Therefore, ECM provided us with a feasible initial assignment of

products to containers, where the products are packaged into boxes, and the boxes are

loaded into containers. There are several product types and different box types. Usually,

various product types are eligible to be loaded in a box. However, once loaded, a box can

only contain a single product type to be determined (whatever the product type loaded,

the boxes are always filled to the maximum capacity). Starting from the ECM box-to-

container assignments, we propose to revoke the decisions concerning the allocation of

products to boxes. More precisely, we can modify the full content of each box with a

tolerance of 10 kg (hence precluding any violation of the weight of a stack), but not its

dimensions. In other words, we allow some permutations between the content of the

boxes. Based on the employed real data, we have observed that 70% of the boxes can

contain different product types, which means that the proposed permutation search space

is likely to be large enough for the generation of very different solutions and for exhibiting

a significant optimization potential. This type of box-content permutations allows us to

keep tractable the high complexity related to container loading, this in order to integrate

it with container scheduling. This integration would be very cumbersome if we were to

consider the loading problem in its full complexity. The left part of Figure 2.2 depicts an

assignment of boxes to a container. In this example, there are three types of boxes: b1, b2

and b3. The container is loaded with two boxes of type b1, five boxes of type b2 and three

boxes of type b3. The right part of the figure shows that each box of type b1 can hold

either four products of type p1 (with a total weight of 74 kg) or two products of type p2

(with a total weight of 71 kg).

We make the following scientific contributions. We propose a mixed integer linear pro-

gramming (MILP) model and a decomposition heuristic to solve the ECM problem. Using

real data, we compare our results with the current practice for three different ILPs, and

2.2. Literature review 15

Figure 2.2: Assignment of boxes to a container and assignment of products to a box.

we assess the benefits of integrating container loading and container scheduling.

The remainder of the paper is organized as follows. Section 2.2 surveys the related lit-

erature. In Section 2.3, after determining the complexity of the problem, we present the

MILP, as well as three decomposition strategies. Section 2.4 proposes two ways of elim-

inating variables from the MILP formulation in order to reduce its size. The solution

method is described in Section 2.5, followed in Section 2.6 by computational experiments,

where the efficiency of the proposed heuristic is assessed by making comparison with

optimal solutions and with current industrial practices. Conclusions follow in Section 2.7.

2.2 Literature review

The ECM problem shares some similarities with cross-dock scheduling. As in cross-

docks, the ILPs act as consolidating points, the aim of which is to receive and unload an

incoming flow of products arriving by truck, and then to load these products into outbound

containers after a sorting process [Boysen and Fliedner, 2010]. Whereas in most of the

cross-dock literature, the incoming products are immediately reloaded, hence precluding

16 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

the use of storage, in the ILPs, products may have to be stored and wait at most until

the end of the current week before being loaded into the containers. This is due to the

fact that the totality of the content of a container must be available in order to launch

the loading process. However, at a weekly level, all products received in the ILPs are

sent (i.e., it is not possible to decide to hold any item in inventory for additional weeks)

and the final storage at the end of the week is expected to be be null (like in classical

cross-dock platforms at a daily level). The following paragraphs review the contributions

on cross-docking that are the most related to the ECM problem.

According to the survey of [Van Belle et al., 2012], most of the research on cross-docking

has been undertaken after 2004. Only the literature concerning operational decisions

is relevant to our study. Even though a number of papers that consider operational

decisions share some specificities with the ECM problem (e.g., scheduling outbound flows

when all the requested products are in inventory), their focus is usually on operational

modeling, such as internal activities in the cross-dock [Bellanger et al., 2013], truck-to-

door assignment (determining at which door a truck must be unloaded or loaded in order to

minimize the movements in the cross-dock) [Enderer et al., 2017, Maknoon et al., 2017],

or combining cross-dock and vehicle routing to minimize routing costs while satisfying

internal constraints [Maknoon and Laporte, 2017].

The ECM problem contains some features of the Truck Scheduling Cross-Dock (TSCD)

problem, for which a review can be found in [Boysen and Fliedner, 2010]. The TSCD

focuses on the synchronization of inbound and outbound trucks to maximize the number

of products that can directly be loaded in outbound trucks [Buijs et al., 2014], ideally

while avoiding storage [Boysen, 2010]. [Yu and Egbelu, 2008] similarly consider a TSCD

with storage considerations. As in the ECM problem, the products arrive at the inbound

doors from suppliers and are then sent by trucks to clients. The products are also inter-

changeable. The main difference between the work of [Yu and Egbelu, 2008] and ours lies

in the fact that these authors consider only scalar constraints for the loading of outbound

2.2. Literature review 17

trucks (i.e., the constraints only concern the total weight of the transported products, but

neither their size nor their position in the container is considered).

[Serrano et al., 2017] studied a similar cross-docking platform, where temporary storage

is allowed between truck arrival and container loading. However, in contrast to the ECM

problem, scalar loading constraints are considered. The goal of the authors is to delay the

minimum number of inbound trucks so that all internal constraints of the cross-docking

platform are satisfied (i.e., storage, repacking and sorting activities).

Smoothing the workload has already been considered as an objective by [Ladier et al., 2014].

However, the context of their paper differs significantly from ours since the decisions in-

volved concern the workforce dimensioning at a strategic level and the scheduling of spe-

cific activities during the day. As highlighted in [Merengo et al., 1999, Emde et al., 2010]

in the context of assembly line balancing, there exist various criteria for workload smooth-

ing (e.g., minimize either the sum of the divergences to the mean or the maximum diver-

gence to the mean). In our situation, the choice of minimizing the difference between the

day with the smallest workload and the day with the largest one results from discussions

with ECM. We could also have minimized the largest workload observed during the week,

but in the latter case, we could have observed a non-balanced workload for the less loaded

days. Since the number of container-loading stations is fixed at the ECM ILPs, any high

daily workload results in overtime, and any low daily workload creates idle times for some

workers. Ultimately, the solutions obtained when minimizing the above-proposed function

are likely to be similar to those that would be obtained when minimizing the maximum

divergence with respect to the mean daily workload.

As highlighted by [Toffolo et al., 2017], real-world multiple-container loading problems

generalize the 3D packing problem. Accordingly, the associated combinatorial optimiza-

tion problems are computationally complex due to the considered large set of specific

constraints. As mentioned in Section 2.1, these constraints do not only concern the weight

18 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

and size of the boxes to be loaded in the container, but also the specific way in which

these boxes can be arranged into stacks and layers. In general, the objective focuses on

minimizing the total number of containers required for packing the boxes. Container load-

ing problems are most often solved using approximate solution methods. In particular,

[Toffolo et al., 2017] propose a two-phase metaheuristic, the first phase of which consists of

quickly generating a feasible assignment of the boxes to containers, which is then improved

in a second phase through diversification and intensification mechanisms. Whereas loading

and routing decisions have already been considered jointly (e.g., [Gendreau et al., 2006]),

no study seems to have addressed the complex set of real-world loading constraints aris-

ing in our problem in the context of optimizing the container-scheduling operations of

a cross-dock. Here, we propose to integrate container loading and container scheduling

decisions in the following way: starting from a feasible assignment of boxes to containers,

we exploit the fact that some box types can transport different product types. As a result,

we are able to take advantage of the huge variety of feasible assignments of products to

containers while still satisfying the loading constraints.

2.3 Mathematical formulation

We discuss the complexity of the ECM problem in Section 2.3.1. In Section 2.3.2, we

introduce the sets, parameters and variables needed to describe the model. Next, we

present in Section 2.3.3 a quadratic formulation (Q) to accurately express the constraints

and objectives. This formulation is then linearized in Section 2.3.4. After discussing the

size of the linear formulation (P), we propose three decompositions, fixing either the day

in (Pt) (Section 2.3.5), the container contents in (Px) (Section 2.3.6), or both in (Pt,x)

(Section 2.3.7).

2.3. Mathematical formulation 19

2.3.1 Complexity of the problem

To determine the complexity of the problem, assume the following:

• The planning horizon is limited to one day. Then, fW is dropped and minimizing

f I is equivalent to maximizing the volume of the shipped products.

• The inbound trucks do not deliver all the demand during the limited planning

horizon (the remaining part of the demand will be delivered on the other days).

• The number of box types is equal to the number of product types (i.e., the content

of the containers and their volumes is an input data that cannot be modified).

The resulting subproblem consists of choosing which containers to load during the day

in order to maximize the shipped volume. The loading of a container is limited by the

products available in the ILP inventory. Moreover, not all containers can be loaded be-

cause the demand has only been partially delivered. If there is only one product type,

the subproblem is the Knapsack Problem, i.e., maximize a utility function while satis-

fying a volume constraint [Pisinger, 1997]. Since there is an inventory for each product

type, this special case actually corresponds to the Multidimensional Knapsack Problem

(MKP) [Puchinger et al., 2010], i.e., maximize a utility function (which is the shipped

volume here) under multiple volume constraints (which correspond to the product avail-

ability here). This subproblem is described in Section 2.3.7. Since the MKP is NP-hard

[Puchinger et al., 2010], the ECM problem is also NP-hard.

2.3.2 Sets, parameters and variables

We now introduce our notations:

20 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

Sets

• T : set of time periods (i.e., days),

• C: set of clients,

• O: set of outbound containers,

• Oc ⊆ O: subset of containers assigned to client c ∈ C,

• P : set of product types,

• B: set of box types.

Parameters

• dcp ∈ N: demand (in units) of client c ∈ C for product type p ∈ P ,

• rpt ∈ N: number of units of product type p ∈ P received on day t ∈ T ,

• nob ∈ N: number of units of boxes of type b ∈ B transported in container o ∈ O,

• qpb ∈ N: number of units of product type p ∈ P that can be transported in box

type b ∈ B,

• lpb ∈ R+: weight (in kg) of a box of type b ∈ B when filled with product type p ∈ P ,

• lM ∈ R+: maximum allowed weight (in kg) that can be transported by a container,

• ab ∈ R+: volume (in m3) of a box of type b ∈ B,

• hp = min
b∈B
{ab/qpb}: volume (in m3) of a product of type p ∈ P .

Decision variables

2.3. Mathematical formulation 21

• xobp ∈ N: number of boxes of type b ∈ B assigned to product type p ∈ P in

container o ∈ O,

• yot = 1 if outbound container o ∈ O is loaded on day t ∈ T ; yot = 0, otherwise,

• upt ∈ N: number of units of product type p ∈ P in stock on day t ∈ T before

loading the containers,

• vpt ∈ N: number of units of product type p ∈ P in stock on day t ∈ T after loading

the containers,,

• spt ∈ N: number of units of product type p ∈ P sent on day t ∈ T ,

• wt ∈ R+: workload on day t (in m3),

• f I ∈ R+: largest inventory value (in m3) encountered during the planning horizon,

• fW ∈ R+: largest workload imbalance (in m3), i.e., largest difference between the

most loaded day and the least loaded one.

2.3.3 Quadratic linear programming formulation (Q)

ECM considers two objectives f I and fW , as mentioned in Section 2.1. These objectives

are minimized in a lexicographic fashion (i.e., the higher-level objective is first minimized,

and the lower-level objective is then minimized while constraining the first one at its best

value). The priority of an objective depends on the considered ILP.

Objectives

minimize f I (2.1)

minimize fW (2.2)

22 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

Over the planning horizon, objective (2.1) aims at minimizing the largest storage space

used in the ILP (f I), whereas objective (2.2) focuses on minimizing the workload imbal-

ance (fW). Both objectives are measured in m3.

Constraints

∑
t∈T

yot = 1 ∀ o ∈ O (2.3)∑
o∈Oc

∑
b∈B

qpb · xobp ≥ dcp ∀ c ∈ C, p ∈ P (2.4)∑
b∈B

∑
p∈P

lpb · xobp ≤ lM ∀ o ∈ O (2.5)∑
p∈P

xobp ≤ nob ∀ o ∈ O, b ∈ B (2.6)

spt =
∑
o∈O

∑
b∈B

qpb · xobp · yot ∀ p ∈ P , t ∈ T (2.7)

upt = vp,t−1 + rpt ∀ p ∈ P , t ∈ T (2.8)

vpt = upt − spt ∀ p ∈ P , t ∈ T (2.9)

f I ≥
∑
p∈P

hp · vpt ∀ t ∈ T (2.10)

wt =
∑
p∈P

hp · rpt +
∑
o∈O

∑
b∈B

∑
p∈P

ab · xobp · yot ∀ t ∈ T (2.11)

fW ≥ wt1 − wt2 ∀ t1, t2 ∈ T. (2.12)

xobp, vpt, rpt, spt ∈ N (2.13)

yot ∈ {0, 1} (2.14)

wt, f
W , f I ∈ R (2.15)

Constraints (2.3) prevent a container from being loaded multiple times. Constraints (2.4)

impose that the demand of each client is satisfied. Constraints (2.5) ensure that the

weight of the transported products does not exceed the container capacity. Similarly,

constraints (2.6) ensure that the number of boxes transported in a container does not

exceed the allowed limit. Constraints (2.7) compute the amount of product type p ∈ P

sent on day t ∈ T . Constraints (2.8) (resp. (2.9)) update the available inventory in the

2.3. Mathematical formulation 23

ILP before (resp. after) loading containers on day t ∈ T . In constraints (2.9), vp0 ≥ 0 are

parameters that give the quantity of products of type p initially present in the ILP(some

products are not received during the week, but are in the inventory at the beginning of

the week). Constraints (2.10) compute the largest amount of storage space used in the

ILP. Constraints (2.11) compute the workload for day t ∈ T . Constraints (2.12) evaluate

the gap between the heaviest and lightest workloads over all days. Constraints (2.13 –

2.15) give the domain of the variables.

2.3.4 (P): Mixed integer linear programming formulation

We denote by (P) the linearized formulation of (Q) and by (P I) (resp. (PW)) formula-

tion (P) in which f I (resp. fW) is the objective. Additionally, (P I|W) (resp. (PW |I))

corresponds to formulation (P) where f I (resp. fW) is minimized and fW (resp. f I) is

constrained at its best-known value. The variables zobpt are introduced to linearize the

product xobp · yot. Formulation (P) keeps the constraints of (Q) that do not involve the

product xobp · yot (i.e., constraints (2.3–2.6, 2.8–2.10, 2.12)). In (P), constraints (2.7)

and (2.11) become constraints (2.16) and (2.17), respectively. In addition, constraints

(2.18–2.20) are added to fix zobpt at its appropriate value (i.e., zobpt = 0 if yot = 0, and

zobpt = xobp if yot = 1). The constraints of the linearized model are then:

spt =
∑
o∈O

∑
b∈B

qpb · zobpt ∀ p ∈ P , t ∈ T (2.16)

wt =
∑
p∈P

hp · rpt +
∑
o∈O

∑
b∈B

∑
p∈P

ab · zobpt ∀ t ∈ T (2.17)

zobpt ≤ nob · yot ∀ t ∈ T , o ∈ O, p ∈ P , b ∈ B (2.18)

zobpt ≤ xobp ∀ t ∈ T , o ∈ O, p ∈ P , b ∈ B (2.19)

zobpt + nob · (1− yot) ≥ xobp ∀ t ∈ T , o ∈ O, p ∈ P , b ∈ B. (2.20)

There are |O| · |P | · |B| · |T | variables zobpt in the linearization, i.e., more than 7 million

24 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

for the smallest instance and above 32 billion for the largest instance considered in this

study (the exact number of variables for the instances provided by ECM is given in Section

2.4.3). The size of the proposed MILP precludes commercial solvers from finding solutions

for the large instances, and even from inputting the data. We therefore introduce some

decompositions.

2.3.5 (Pt): decomposition of (P) for a given day t

Formulation (P) can be decomposed into subproblems (Pt) for each day t ∈ T . In (Pt), the

variables concerning the inventory (i.e., upt and vpt) are dropped and the other variables

remain the same (but the index related to day t ∈ T is removed). Some notations are also

modified: u
(t)
p represents the amount of product type p ∈ P available at the beginning of

day t; O(t) ⊆ O represents the subset of containers to load at day t ∈ T ; d
(t)
cp is the demand

(in units) of client c ∈ C for product p ∈ P not already loaded before day t ∈ T (since

other containers can be already shipped in previous days, and a part of the demand may

be already satisfied); it replaces dcp in constraints (2.4).

Regarding the objectives, fW is dropped when optimizing over a single day, and f I is

equivalent to maximizing the volume of products sent at the end of the day. At the end

of Section 2.5.2, we explain how (Pt) is used in the heuristic proposed to solve the ECM

problem, and how fW can be optimized a posteriori. The objective and constraints hence

2.3. Mathematical formulation 25

become:

maximize
∑
o∈O(t)

∑
p∈P

∑
b∈B

qpb · hp · zobp (2.21)

subject to
∑
o∈O(t)

∑
b∈B

qpb · zobp ≤ u(t)
p ∀ p ∈ P (2.22)

zobp ≤ nob · yo ∀ o ∈ O(t), p ∈ P , b ∈ B (2.23)

zobp ≤ xobp ∀ o ∈ O(t), p ∈ P , b ∈ B (2.24)

zobp + nob · (1− yo) ≥ xobp ∀ o ∈ O(t), p ∈ P , b ∈ B. (2.25)

Objective (2.21) maximizes the volume sent at the end of the day. Constraints (2.4–

2.6), on the assignment of products to containers are kept. The inventory constraints

(2.8, 2.9, 2.16) are replaced with (2.22) which impose that the amount of products sent

does not exceed the available inventory. Constraints (2.18–2.20) which are linked to the

linearization are modified into constraints (2.23–2.25).

2.3.6 (Px): decomposition of (P) for a given assignment x of

products to boxes in containers

If the assignment of products to containers is known, like in the ECM current solution,

the only decisions concern the loading day of each container. We call this problem the

Container Scheduling Problem. It is related to a problem proposed by [Larbi et al., 2011]

in which a TSCD is considered and the content of both inbound and outbound trucks

are known. A subproblem (Px) is derived from (P), where the decision variables xobp

are fixed (e.g., those taken in a feasible solution, for instance the solution used by ECM),

mop =
∑
b∈B

xobp ·qpb is an input that represents the number of units of product p in container

o ∈ O. The set B of boxes and the designation C of the clients are no longer needed.

As for formulation (P), the following problems can be considered:
(
P I
x

)
,
(
PW
x

)
,
(
P
I|W
x

)
,(

P
W |I
x

)
. With respect to formulation (P), the objectives remain the same. Constraints

26 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

(2.4–2.6), related to the assignment of products to boxes, become redundant. Constraints

(2.3, 2.8–2.10, 2.12) remain unchanged; constraints (2.7), which compute the amount of

shipped products, become constraints (2.26); constraints (2.11), which set the workload,

become constraints (2.27). The constraints then become:

spt =
∑
o∈O

mop · yot ∀ p ∈ P , t ∈ T (2.26)

wt =
∑
p∈P

hp · rpt +
∑
o∈O

∑
p∈P

mop · hp · yot ∀ t ∈ T. (2.27)

2.3.7 (Pt,x): decomposition of (Px) for a given day t

The model (Pt,x) uses the same formalism as (Pt) and (Px). For a given day t, (Pt,x)

maximizes the volume of containers loaded under the constraint of available inventory

(u
(t)
p), as formulated below. This model is equivalent to the MKP. Indeed, the objective

is to choose the appropriate containers to load in order to maximize the volume shipped

at the end of the day, while imposing a capacity constraint for each product type:

maximize
∑
o∈O(t)

(∑
p∈P

mop · hp

)
· yo (2.28)

subject to
∑
o∈O(t)

mop · yo ≤ u(t)
p ∀ p ∈ P. (2.29)

2.4 Elimination of variables

As already highlighted in Section 2.3.4, formulation (P) (as well as its decomposition

(Pt)) involves the variables xobp, the number of which increases with the cardinality of the

sets O, B and P , which yields a number of xobp variables so large that commercial solvers

cannot even read the model (an accurate evaluation of the number of variables is given in

Section 2.4.3). In this section, we present a technique to fix the variables that can only

2.4. Elimination of variables 27

take a single value at optimality, thus allowing their removal.

2.4.1 Fixing variables to 0

The variable xobp counts the number of boxes of type b loaded with product of type p

in container o. If container o does not transport a box of type b (i.e., if nob = 0), then

the value of xobp is forced to zero for each product type p ∈ P . Similarly, if box type b

cannot transport a product of type p (i.e., qpb = 0) because of non-matching sizes, weight

limitations or product requirements, then xobp is forced to zero for each container o ∈ O.

These fixed variables can therefore be dropped from (P), thus reducing the size of the

model. Let X = {xobp | nob · qpb > 0} be the set of variables that have not been fixed to 0.

2.4.2 Single-value variables

A further reduction of X is achieved as follows. Formulation (P) looks for an optimal

assignment of products to containers under the constraint that each box type b can only

transport a subset of product types and that the assignment of boxes to containers is

known (while satisfying complex loading constraints). We can count the maximum num-

ber of items of a given product type p that can be transported by the containers associated

with each client c (i.e.,
∑
o∈Oc

∑
b∈B

nob · qpb). If this number is equal to the demand of client

c, then the only way to satisfy this demand is to assign the products to the boxes that

can transport them. More formally, let X̃ = {xobp ∈ X |
∑

o′∈Oco

∑
b∈B

nob · qpb > dcp}, where

co is the client served by container o. The set of the non-fixed variables is X̃ ⊆ X.

28 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

2.4.3 Impact of variable elimination on the ECM instances

ECM operates three ILPs denoted by V, G and M. For each ILP, a representative set of

data was provided by ECM, which captures the essential characteristics and situations

observed over the past years. The V and G ILPs are not challenged by the storage space,

and hence the main objective at these locations is fW . In contrast, f I is the main objective

for the ILP M since its large quantity of transiting products requires an important storage

space, and the restricted available space must be used efficiently. Table 2.1 provides the

characteristics of the 17 ECM instances under study. Column |O| gives the number of

containers to load during the week. Column |B| (resp. |P |) indicates the number of

different box types (resp. product types). Column |C| gives the number of clients served

by the ILP. Column “Nb. Boxes” (resp. “Nb. Products”) gives the total number of

boxes transported by the containers (resp. the total number of products transiting in the

ILP). Column “% Boxes” displays the percentage of transported boxes that can receive a

product different from the one carried in the ECM solution (within a tolerance of 10 kg per

box). I(sent) represents the total inventory volume (in m3) sent during the week (relative

to all the products in column “Nb. Products”), and I(init) represents the inventory level of

the ILP at the beginning of the week. In our instances, the products are either delivered

during the week by inbound trucks, or are carried in the inventory from a previous week,

and are therefore already available at the beginning of the week.

Table 2.2 provides the value of the product |O| · |B| · |P | for each instance (i.e., the

number of variables xobp). Column “|X|” (resp. “|X̃|”) indicates the size of set X (resp.

X̃). Column “% non-fixed” gives the percentage of variables that are not fixed. After

the variables elimination process, the resulting numbers of variables and constraints are

presented in Table 2.3 for formulations (P), (Pt) and (Px). Column “Nb. Var.” (resp.

“Nb. Constr.”) indicates the number of variables (resp. constraints). From Table 2.3,

we can observe that there is a huge gap (in terms of number of variables and constraints)

between the G and the M instances (the number of variables in M1 (the smallest M

2.4. Elimination of variables 29

Table 2.1: Characteristics of the instances.

Instance |O| |B| |P | |C| Nb. Products Nb. Boxes % Boxes I(sent) I(init)

V1 28 166 326 17 377,211 1,323 70.7% 1,680 659

V2 51 192 358 20 417,207 2,175 72.3% 3,285 1,277

V3 49 210 424 21 613,650 2,147 63.4% 2,915 962

V4 59 222 453 20 751,305 2,967 77.0% 3,920 1,821

G1 67 429 1,181 8 1,491,701 5,080 78.0% 4,461 1,283

G2 71 445 1,199 7 1,578,173 5,668 77.2% 4,921 1,250

G3 68 447 1,343 8 1,585,825 6,703 84.0% 5,131 1,301

G4 88 495 1,401 8 1,956,969 6,517 78.3% 5,978 2,027

G5 80 499 1,548 8 2,333,344 8,477 85.2% 6,109 1,830

G6 85 507 1,676 7 2,370,924 8,656 83.6% 6,442 1,409

M1 383 799 6,564 17 20,476,895 51,230 97.3% 78,398 16,417

M2 543 893 7,890 23 21,644,192 58,210 97.2% 89,937 16,244

M3 644 864 7,865 22 24,671,883 68,764 97.0% 105,082 15,946

M4 699 862 7,529 23 21,090,036 68,806 96.8% 109,501 27,048

M5 623 895 8,349 23 24,078,054 67,561 97.0% 106,073 16,661

M6 789 896 8,546 21 30,928,572 84,073 97.2% 130,476 27,328

M7 829 905 8,649 22 35,282,299 93,403 97.0% 142,679 30,716

instance) is more than 10 times bigger than the number of variables in G6 (the largest G

instance). Experiments (see Section 4.6) show that for formulation (P), CPLEX is able

to solve (within one hour of execution time) all V and G instances but is unable to solve

any of the M instances.

30 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

Table 2.2: Number of variables in (P).

Instance |O| · |B| · |P | |X| |X̃| % non-fixed

V1 1,515,248 668 442 0.029%

V2 3,505,536 883 519 0.015%

V3 4,362,960 1,065 675 0.015%

V4 5,933,394 1,305 883 0.015%

G1 33,945,483 13,758 12,797 0.038%

G2 37,882,405 15,284 14,188 0.037%

G3 40,821,828 18,622 17,507 0.043%

G4 61,027,560 19,618 17,944 0.029%

G5 61,796,160 27,683 26,282 0.043%

G6 72,227,220 28,874 27,603 0.038%

M1 2,008,695,588 420,090 407,608 0.020%

M2 3,825,853,110 518,412 503,904 0.013%

M3 4,376,211,840 601,015 584,093 0.013%

M4 4,536,508,602 542,537 527,444 0.012%

M5 4,655,277,165 651,286 634,152 0.014%

M6 6,041,543,424 736,934 718,116 0.012%

M7 6,488,869,005 833,631 812,775 0.013%

Table 2.3: Sizes of the formulations (P), (Pt) and (Px) after the elimination of variables.

(P) (Pt) (Px)

Instance Nb. Var. Nb. Constr. Nb. Var. Nb. Constr. Nb. Var. Nb. Constr.

V1 7,683 22,122 913 11,870 5,030 5,274

V2 8,740 30,597 1,090 18,918 5,625 5,809

V3 10,656 36,231 1,400 21,692 6,605 6,863

V4 12,389 42,799 1,826 25,319 7,090 7,337

G1 94,833 249,206 25,662 77,830 18,050 18,993

G2 103,469 272,164 28,448 83,822 18,340 19,285

G3 125,528 325,399 35,083 95,072 20,485 21,586

G4 129,120 346,550 35,977 110,089 21,455 22,534

G5 181,313 471,492 52,645 132,778 23,620 24,878

G6 191,184 495,888 55,292 139,397 25,565 26,931

M1 2,546,024 6,637,545 815,600 1,647,376 100,375 105,437

M2 3,144,490 8,352,285 1,008,352 2,186,514 121,065 126,813

M3 3,625,754 9,617,999 1,168,831 2,490,234 121,195 126,514

M4 3,281,095 8,809,257 1,055,588 2,366,265 116,430 121,193

M5 3,933,263 10,396,752 1,268,928 2,661,040 128,350 134,237

M6 4,440,832 11,796,494 1,437,022 3,050,093 132,135 137,555

M7 5,010,531 13,272,220 1,626,380 3,388,326 133,880 139,243

2.5. Methodology 31

2.5 Methodology

We now describe two heuristics as well as the computation of lower bounds on f I . The first

heuristic is a greedy algorithm for the non-integrated version of the ECM problem (i.e.,

each container content is known and cannot be revoked). The second heuristic minimizes

f I or fW while making decisions on both the loading of containers and on their loading

day.

2.5.1 Heuristic for formulation (Px)

The current practice at ECM complies with the following streamlined Algorithm 1. It

starts from a given assignment of products to containers, which is the output of a first

optimization step at ECM, and works day by day according to the level of products in

inventory. Each day, containers are loaded as soon as the associated products are available,

and container loading stops when a workload target is reached. For the subset of containers

allowed to be loaded (i.e., for which the required products are in the inventory), various

rules for the selection of the first container to load can be applied, which range from

random selection to the consideration of specific characteristics of the ILP. Below, we

only evaluate random selection, but we discuss the interest of considering specific rules in

Section 2.6.4.

2.5.2 Heuristic for large instances

For those instances that are too large to be solved by commercial solvers, we describe

in Algorithm 2 a heuristic based on the decomposition (Pt). Each day, based on the

available inventory, the shipped volume is maximized. At the end of the day, the demand,

32 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

Algorithm 1 Greedy algorithm for (Px)

Input: Assignment of products to containers (xobp); initial inventory for each product p at the
beginning of the week (up0); inflow product delivery schedule (rpt).

For each day in the week, do

While there are containers allowed to be loaded and current workload is below average
workload, do

(1) Choose a container: select a container from the set of containers allowed to be loaded.

(2) Load the selected container: remove the selected container from the list of containers to
load and update the resulting inventory in the ILP.

(3) Update the set of allowed containers.

the available products, and the list of non-loaded containers are updated. The strength

of this heuristic lies in the fact that it allows decision makers to load containers based on

past and present information only, without using forecasts on future product arrivals. As

a result, the output of this algorithm is robust even though some suppliers do not deliver

some products on their expected day. The overall computation time is proportional to

the length of the planning horizon, since Algorithm 2 works day by day. Furthermore,

at each step (i.e., every day) of the algorithm, the number of variables and constraints

in (Pt) is smaller than the numbers reported in Table 2.3. Indeed, for the early steps,

the cardinality of P becomes smaller since only a subset of products have been received.

For the later steps, the cardinality of O also becomes smaller since many containers have

been already shipped.

Algorithm 2 focuses on f I , but it can easily be adapted to tackle fW . Indeed, in addition

to the loading day of each container, Algorithm 2 returns an assignment of products to

containers that aims at maximizing the volume of product sent at each step t (day). To

smooth the workload, the loading of some containers can simply be delayed. This can be

achieved by solving (PW
x), with the product-to-box assignment returned by Algorithm 2.

2.5. Methodology 33

Algorithm 2 Heuristic to minimize the largest inventory

Input: Assignment of boxes to containers (nob); initial inventory for each product p at the
beginning of the week (up0); inflow product delivery schedule (rpt); client demand (dcp).

For day t = 1 to 5, do

(1) Solve (Pt).

(2) Fix variables: move products from the inventory to the containers, with respect to (Pt).

(2) Update data: remove the loaded containers and update the available inventory and the
client demand.

2.5.3 Lower bound on f I

Considering a cumulative inventory for each day (i.e., the sum of all products received),

we can compute the largest volume that can be shipped at the end of day t ∈ T . This

yields an upper bound on the largest volume in inventory at the end of each day, and

therefore a lower bound LBI on f I . This bound is formally computed based on the

difference between the cumulative volume (I
(c)
t = I(init) +

∑
t′≤t

∑
p∈P

hp · rpt′) of products in

stock at the beginning of day t, and the largest volume f(Pt) that can be sent at the end

of day t. The value of LBI is then

LBI = max
t∈T
{I(c)

t − f(Pt)}. (2.30)

The bound LBI is used to evaluate – a posteriori – the quality of the solutions returned

by Algorithm 2. Unfortunately, the computing time required to compute LBI is of the

same order of magnitude as the computing time required to perform Algorithm 2. Indeed,

to compute LBI , we need to solve five times formulation (Pt), which is similar to what

is performed in Algorithm 2. If we first compute LBI , and we next perform Algorithm 2

tightened by LBI , this will not reduce the overall computing time.

34 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

2.6 Computational results

Section 2.6.1 introduces some notation needed to understand our numerical experiments.

Section 2.6.2 compares, qualitatively, the different optimization approaches that can be

applied to the ECM problem, which vary with respect to their degree of integration.

Section 2.6.3 details the values of the optimal solutions for the V and G instances, which

have a tractable size for CPLEX (see Table 2.3 for the size of the formulation after

eliminating variables). Moreover, the output of Algorithm 2 is compared to these optimal

values. Section 2.6.4 compares our results with the ECM current practice on all instances.

The formulations and all the heuristics were coded in C++. The solver is CPLEX 12.4

and is called with the concert technology. Computations were launched on a 2.2 GHz

Intel Core i7 with 16 Go 1600 MHz DDR3 of RAM memory.

2.6.1 Notation

We use the formalism f(ind)(Form). The index ind indicates the solution method. More

precisely, ind = h if our heuristic (i.e., Algorithm 2) is applied, whereas ind = g if

the current-practice greedy heuristic (i.e., Algorithm 1) is employed. Form indicates

the formulation (see Section 2.3.4), among (P), (P I), (P I|W), (PW |I), (P I
x) and (PW

x).

Regarding the formulation, the exponent gives the considered objective and the index

indicates the variables that are fixed. Hence, (P I
x) (resp. (PW

x)) denotes the formulation

in which the container content is fixed and for which f I (resp. fW) is the only objective

minimized. In both (P I
x) and (PW

x), the assignment of products to containers is fixed

as in the ECM current solution. f ?(Form) refers to the optimal solution of formulation

Form. Tables (2.4–2.6) provide the execution times in minutes. Gaps are expressed in

percent. The percentage gap between f(h)(P
I) and f ?(P I) is denoted as %f ?(P I), and is

computed as
f(h)(P

I)−f?(P I)

f?(P I)
· 100.

2.6. Computational results 35

2.6.2 Comparison of the various optimization approaches

For objective f I and for any instance, Figure 2.3 shows the expected ranking of the values

LBI , f ?(P I), f(h)(P
I), f ?(P I

x) and f(g)(P
I
x). We use a uniform step size between each pair

of values, since initially we have no quantitative insight. The grey and black rectangles

highlight the benefits of the main approaches. The rectangle “Non-integrated method”

indicates the range of values that can be obtained when the container content is fixed:

f ?(P I
x) is the value of the optimal non-integrated solution. The rectangle “Integrating

loading constraints” covers the solution values that can be reached in the case of a full,

accurate but cumbersome, integration of the loading constraints to the container schedul-

ing problem. The rectangle “Revoking products to boxes” shows where our results are

expected to lie: f(h)(P
I) sets for the best-known solution value. More precisely, the dif-

ference between f ?(P I
x) and f ?(P I) corresponds to the largest achievable gain ensuring

the non-violation of the loading constraints. Depending on the rule used to select the

containers to be loaded each day, Algorithm 1 can be more or less efficient. Because the

ECM practice of selecting the containers involves an experience-based understanding of

the ILP that is hard to replicate, we use a random container selection for an estimation

of the ECM results. Therefore, any current-practice solution value lies between f ?(P I
x)

and f(g)(P
I
x) (see the rectangle “Current practice”). The actual size of each rectangle of

Figure 2.3 will be discussed in Section 2.6.4, relying on Figure 2.4.

Integrating loading constraints

Revoking
products to boxes

Non-integrated method

Current
practice

I(sent)f(g)(P
I
x)f ?(P I

x)f(h)(P
I)f ?(P I)LBII(init)0

Figure 2.3: Comparison of the expected f I-gains of the various approaches.

36 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

2.6.3 Optimal results for the V and G instances

Table 2.1 indicates that instances V and G are at least 10 times smaller than instances M.

These much smaller sizes mean that these instances can be solved optimally by CPLEX

with formulation (P). While in these two cases fW is the main objective, Table 2.4 gives

the optimal values for both f I and fW , and presents a comparison with Algorithm 2 for

both objectives f I and fW . The value of the second objective is also provided in columns

“f ?
(
P I|W)” and “f ?

(
PW |I)”.

Algorithm 2 returns an optimal solution in 17 of the 20 cases. Considering f I , we obtain a

low gain when the loading of a container allowed to be loaded on a given day is postponed

by one day. In other words, it is preferable to load the containers as soon as possible.

In addition, the objectives f I and fW may conflict. It may indeed be preferable not to

load the containers early and to spread the work over the less busy following days. For

example, in instance G4, the optimal value f ?(PW) for the largest workload imbalance is

2,341 m3 and the associated required largest storage space is 3,827 m3. When decreasing

the storage space to its optimal value f ?(P I) (i.e., 3,745 m3), the difference between the

most and least busy days (f ?(PW |I)) increases to 2,699 m3. Since the workload also

takes into account the unloading of inbound trucks, if many of them are unloaded during

a specific day, it is preferable to delay some container loadings in order to smooth the

workload.

2.6.4 Comparison with current practice

In this section, we compare the best-known solution values for (PW) and (P I) with the

output of Algorithm 1 and with the optimal solution values of (PW
x) and (P I

x) (i.e., an

estimate of the values observed in practice). Only those results concerning the main ob-

jective are considered for the comparison (i.e., fW for instances V and G, f I for instances

2.6. Computational results 37

Table 2.4: Optimal results for the V and G instances, and performance of Algorithm 2.

Formulation (PW) Formulation (P I) Algorithm 2

Instance f?(PW) f?(P I|W) Time f?(P I) f?(PW |I) Time f(h)(P
W) Time %f?(PW) f(h)(P

I) %f?(P I)

V1 893 1,260 < 1 981 1,237 < 1 893 < 1 0.0% 982 0.1%

V2 1,579 1,922 < 1 1,246 1,960 < 1 1,579 < 1 0.0% 1,246 0.0%

V3 1,669 2,060 < 1 1,546 1,976 < 1 1,669 < 1 0.0% 1,546 0.0%

V4 2,233 2,715 < 1 1,894 2,690 < 1 2,233 < 1 0.0% 1,894 0.0%

G1 2,756 2,679 1 2,679 2,756 10 2,756 < 1 0.0% 2,679 0.0%

G2 1,508 3,182 13 3,076 1,718 6 1,508 < 1 0.0% 3,076 0.0%

G3 3,357 3,642 < 1 2,977 4,022 5 3,357 < 1 0.0% 2,977 0.0%

G4 2,341 3,827 14 3,745 2,699 12 2,479 < 1 5.8% 3,745 0.0%

G5 3,060 4,061 13 3,966 4,118 9 3,060 < 1 0.0% 3,968 0.1%

G6 3,204 4,603 13 4,065 3,345 1 3,204 < 1 0.0% 4,065 0.0%

M), since no additional insight can be gained from the conflict between the two objectives.

fW -values for instances V and G

Table 2.5 compares the optimal solution values f ?(PW) for formulation (PW), the optimal

solution values f ?
(
PW
x

)
for formulation (PW

x) (when the container contents are fixed by

ECM), and the output f(g)(P
W) of Algorithm 1 (which estimates the ECM results).

The gaps between the different formulations with respect to f ?(PW) and f ?
(
PW
x

)
are

expressed in the columns “% . . .”. We observe that even if Algorithm 1 is fast (it requires

less than a second of execution time), it delivers results on formulation (PW
x) for which

there is substantial room for further improvement. When the containers content is fixed,

the percentage gap between the values returned by Algorithm 1 and the optimal values

is on average of 16.8% for the V instances and of 12.6% for the G instances. Algorithm 1

could be further improved (with respect to f ?(PW
x)) with the use of more refined rules for

selecting the containers to load. This has not been investigated since the optimal solution

values for formulation PW
x are obtained within less than a minute with CPLEX. Table 2.5

also shows that a substantial gain can be achieved by integrating the loading decisions in

the container scheduling problem (see column “%f ?(PW)” under “Formulation (PW
x)”).

Indeed, the average percentage gap between (1) the optimal solution values of (PW
x) using

38 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

the ECM current assignment of products to containers, and (2) the optimal solution values

of (PW), is on average 6.1% for the V instances and 33.6% for the G instances. More

generally, we observe that the average gain becomes larger as the instance size increases.

Indeed, the G instances involve a volume of handled products that is on average five times

larger than for the V instances.

Table 2.5: Results for the V and G instances (i.e., focusing on fW).

Formulation (PW) Formulation (PWx) Current practice (Algorithm 1)

Instance f?(PW) Time f?(PWx) Time %f?(PW) f(g)(P
W
x) Time %f?(PWx) %f?(PW)

V1 893 < 1 893 < 1 0.0% 995 < 1 11.4% 11.4%

V2 1,579 < 1 1,671 < 1 5.8% 2,028 < 1 21.4% 28.4%

V3 1,669 < 1 1,758 < 1 5.3% 2,055 < 1 16.9% 23.1%

V4 2,233 < 1 2,445 < 1 9.5% 2,829 < 1 15.7% 26.7%

G1 2,756 1 3,407 < 1 23.6% 3,650 < 1 7.1% 32.4%

G2 1,508 13 2,122 < 1 40.7% 3,313 < 1 56.1% 119.7%

G3 3,357 < 1 4,397 < 1 31.0% 4,940 < 1 12.3% 47.2%

G4 2,341 14 3,125 < 1 33.5% 3,717 < 1 18.9% 58.8%

G5 3,060 13 4,152 < 1 35.7% 4,241 < 1 2.1% 38.6%

G6 3,204 13 4,469 < 1 39.5% 4,542 < 1 1.6% 41.8%

f I-values for instances M

Table 2.6 compares three approaches for minimizing f I , which is the main objective for

the M instances: the output f(h)(P
I) of Algorithm 2, the optimal results using the ECM

current assignment f ?(P I
x) of products to containers, and the output f(g)(P

I) of Algorithm

1. The lower bound LBI is also provided for each instance.

We observe from Table 2.6 that Algorithm 1 is very efficient for formulation (P I
x). Indeed,

its optimality gap never exceeds 2%. In other words, given a feasible assignment of

products to containers, only marginal gains can be achieved by using CPLEX to minimize

the storage in the ILP. As mentioned in Section 2.5.1, Algorithm 1 randomly selects

the next container to load (see step (1) of Algorithm 1). Therefore, using more refined

selecting rules at step (1) could only yield marginal gains (between 0.2% and 1.9%). We

observe that for (P I
x), which is a more difficult problem than MKP (see Section 2.3.6),

2.6. Computational results 39

both CPLEX with an execution time of less than a second, and Algorithm 1, with an

optimality gap below 2%, exhibit good performances. This can be explained by the fact

that the instances have a significant proportion (between 50% and 70%) of the product

types that can only be assigned to a single container. Therefore, the solution space of

these instances remains of tractable size.

As shown in Table 2.6, revoking the assignment of products to containers can lead to

substantial gains. Column “%f(h)(P
I)” under “Formulation (P I

x)” displays the gain found

by revoking the loading of containers (compared to the optimal solutions with the ECM

current assignment of products to containers). It lies between 26.6% and 72.5%. The

average gap between the best-known solution value and the best non-integrated solution

value is 46.8%. Additionally, the lower bounds presented in column “LBI” indicate that

the output of Algorithm 2 is close to optimality, except for one instance for which the

optimality gap is 18.8%. We conclude that an algorithm that would consider future

information to schedule the containers (i.e., the inbound flows during the next days)

could only yield a marginal gain.

Table 2.6: Results for the M instances (i.e., focusing on f I).

Algorithm 2 (P I) Formulation (P Ix) Current practice (Algorithm 1)

Instance LBI f(h)(P
I) Time %LBI f?(P Ix) Time %f(h)(P

I) f(g)(P
I
x) Time %f?(P Ix) %f(h)(P

I)

M1 33,653 36,162 16 6.9% 62,399 < 1 72.5% 62,829 < 1 0.7% 73.7%

M2 42,980 44,465 29 3.3% 59,049 < 1 32.8% 59,314 < 1 0.4% 33.4%

M3 54,897 55,386 30 0.9% 75,727 < 1 36.7% 75,875 < 1 0.2% 37.0%

M4 49,313 50,751 32 2.8% 72,109 < 1 42.1% 72,296 < 1 0.3% 42.5%

M5 56,605 57,889 35 2.2% 73,294 < 1 26.6% 73,461 < 1 0.2% 26.9%

M6 53,614 56,191 41 4.6% 93,335 < 1 66.1% 93,843 < 1 0.5% 67.0%

M7 51,415 63,293 45 18.8% 98,630 < 1 55.8% 100,540 < 1 1.9% 58.8%

Figure 2.4 quantifies the qualitative aspects displayed in Figure 2.3 with the average

values computed on all M instances. It illustrates that the current practice offers very

few improvement opportunities when considering the used non-integrated approach (the

rectangle “Current practice” is small compared with the rectangle “Revoking product to

boxes”). It also shows that the potential improvement on our heuristic is small since the

gap to the lower bound LBI is on average of 6.3% over all instances. Finally, among the

40 Chapter 2. Integrating workload smoothing and inventory reduction in cross-docks

97% of boxes for which a change of product assignment is possible (average over all M

instances, see Table 2.1), our solutions yield a box content that is different from the one

proposed by ECM for 64.8% of the boxes. In other words, our optimization results yield

very different container loading plans while satisfying all loading constraints.

I(sent)f(g)(P
I
x)

f ?(P I
x)

f(h)(P
I)

LBI

I(init)0

Integrating loading constraints Non-integrated
method

Revoking
product to boxes Current practiceOptimal solution f ?(P I)

Figure 2.4: Quantification of the expected f I-gains for various approaches (average values

for all M instances).

2.7 Conclusions

We have modeled and solved a scheduling of outbound flows in an ILP under complex

loading constraints. This problem was proposed by ECM and is encountered in three

of its ILPs. The aim was to compute an improved schedule for the loading day of each

container to either reduce the largest required inventory space or the weekly workload

imbalance.

To solve the problem, we have developed both an exact algorithm and a heuristic. Whereas

the exact approach is able to solve to optimality two thirds of the provided industrial

instances, the heuristic can efficiently tackle the remaining larger instances. Matching

the industrial requirements concerning the execution time (i.e., less than one hour), the

heuristic returns results with an optimality gap lower than 7% for 85% of the large in-

stances. Furthermore, the heuristic allows handling the uncertainty in the inbound flows.

Indeed, the heuristic solves independently the container loading and scheduling problems

2.7. Conclusions 41

for each day. Therefore, the decisions are based on product arrivals for a given day and

can be adapted to any delivery of products (e.g., if the suppliers did not deliver the exact

amount of products, the schedule can be easily adapted by relaunching the heuristic).

Last, the results show that compared with current practice, our heuristic yields a 26% to

73% improvement in the inventory level, with an average of 46.8%. Similarly, an average

improvement of 25.8% was found for the smoothing of the workload. In other words,

substantial gains can be achieved for both objectives.

From a managerial point of view, the efficiency gains for the ILPs are achievable without

involving third-parties, since neither the suppliers nor the clients of the ILP are impacted

by the considered decisions (i.e., each product arrival day at the ILP remains the same

and all the client demands are covered at the end of the week). We have shown that

optimizing only the container loading days yields marginal gains. Indeed, if the container

contents remain unchanged, a gain not exceeding 2% can be achieved on the largest

required inventory space. In contrast, adapting the container contents based on the in-

bound deliveries, while optimizing the loading day of the containers, helps to significantly

improve the objective value.

As a future avenue of research, we mention the integration of additional types of decisions.

For instance, one may also determine the arrival schedule of the inflow trucks and the

allocation of resources to the container loading platforms.

Acknowledgement

This work was partly supported by the Canadian Natural Sciences and Engineering Re-

search Council under grant 2015-06189. This support is gratefully acknowledged. Thanks

are due to the reviewers for their valuable comments.

Chapter 3

Inbound and Outbound Flow
Integration for Cross-Docking
Operations

Marc-Antoine Coindreau - University of Lausanne, Switzerland

Olivier Gallay - University of Lausanne, Switzerland

Nicolas Zufferey - University of Geneva, Switzerland

Gilbert Laporte - HEC Montréal, Canada

42

43

Abstract

We consider the optimization of the cross-docking operations at three intermodal logistics

platforms (ILPs) of a large European car manufacturer (ECM). The planning horizon is

a week and the time bucket is a day. An inbound flow of products is gradually received

over the week by truck from inland suppliers, and has to be loaded into containers which

are then shipped to offshore production plants. The full content of a container must be

available at the ILP to enable its loading operations to start, hence temporary storage

is needed. The objective is to minimize an inventory penalty, computed as the largest

daily volume of temporary product storage observed over the planning horizon. The

current practice at ECM is to first optimize the content of the inbound trucks and of the

outbound containers independently, and then determine the loading day of each container

to be shipped based on these fixed contents. We propose to integrate, within the same

optimization framework, the decisions on both truck and container contents, which involve

complex loading constraints related to the dimensions and weights of the products, with

those on the scheduling of container loading. We model the resulting problem as a mixed

integer linear program, and we develop a decomposition scheme for it, as well as a fix-and-

optimize matheuristic. We perform extensive computational experiments on real instances

provided by ECM. Results show that a combination of these two matheuristics is able to

generate solutions that reduce the average inventory penalty by 40%.

Keywords: Logistics, cross-dock scheduling, matheuristic, fix-and-optimize.

44 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

3.1 Introduction

We model and solve an operations management problem encountered by a large European

car manufacturer (denoted here as ECM as a result of a non-disclosure agreement) which

consolidates product flows from inland suppliers to offshore production plants at inter-

modal logistics platforms (ILPs). Over a given planning horizon (from Monday to Friday

in this work), the products, which are collected by trucks at different supplier locations,

are first unloaded and repacked at the ILP. The products are then immediately loaded

into containers, or temporarily stored until a full container content is available at the ILP,

hence allowing the loading operations to be launched. It is assumed that the necessary

products for all container contents are received by truck over the week, hence allowing all

planned container loading operations to take place. The containers are finally sent by ship

at the end of the week to offshore production plants, which are the ILP clients. We refer

to this problem as the ECM Problem. Figure 3.1 illustrates the sequence of operations

just described.

Figure 3.1: Product flow in an ILP.

Inbound truck transportation is subcontracted. As a consequence, the truck routes can-

not be modified, as they are contractually fixed for the long term. The complex rout-

ing subproblems associated with the inbound trucks have been previously and indepen-

dently solved by ECM. They can typically be modeled as a Traveling Purchaser Problem

[Boctor et al., 2003]. However, the ILP managers can still decide which products should

3.1. Introduction 45

be collected on the truck routes.

Regarding the outbound side, a container can only be loaded after its full content has

been delivered to the ILP. This entails temporary storage, which generates inventory

costs at the ILP. Furthermore, high inventory levels may lead to an imbalanced workload

since the stored products will ultimately have to be loaded into containers during the last

days of the week. Therefore, ECM aims at minimizing, over a one-week planning horizon

a penalty computed as the largest daily inventory volume required at the ILP. To this

end, three different types of decisions are inherent to the ECM problem: determining the

contents of the trucks, that of the containers, and the loading day of each container.

By the end of the week, the demand of each client, i.e., the requested quantity of each

product type, must be satisfied and loaded in its assigned containers. The products

arriving on the inbound side can be sent to any outbound client requesting them. Since

the containers are all sent by boat at the end of the week, the container loading sequence

is unconstrained. Additionally, the number of containers loaded per day is unlimited.

The truck and container loading problems are rather complicated since they involve three-

dimensional constraints (the three dimensions of the products are taken into account when

loading, and overlaying is forbidden), a total weight limitation (the total weight of all

products loaded in the same container cannot exceed 20 tonnes for the trucks and 22

tonnes for the containers), and specific arrangements of packaged products in stacks. In

the latter case, the weight of the product restricts its position in the stack (e.g., heavy

products cannot be loaded above lighter ones). For an overview of common loading

constraints, see [Toffolo et al., 2017].

Because of such complex loading constraints, reassigning a product from a truck or a

container to another one is not straightforward. Yet the problem is slightly simplified

since the products are packaged into standardized boxes, and the loading constraints

46 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

concern the box types only, irrespective of the products they contain. The complete

consideration of the set of loading constraints is extremely complex, hence we restrict

the solution space to product permutations between boxes of the same type. While this

simplification allows to control the size of the problem, it still gives rise to a rich solution

space to explore. Indeed, it has been observed that more than 70% of the boxes are filled

with different products but with a weight variation of less than 10 kg, which precludes any

violation of the weight of a stack. Hence, starting from a feasible assignment of boxes to

trucks or containers, numerous different assignments of products to boxes are possible. As

a consequence, product permutations between boxes can be applied to optimize the truck

or the container contents, while ensuring that the loading constraints will be satisfied.

The current practice at ECM is to determine the loading day of each container over

the planning horizon, without revoking previously made decisions. Indeed, in a first

phase, ECM uses standalone optimization tools to independently determine the truck

and container contents. These contents are taken as inputs to a second phase dedicated

to the scheduling of container loading operations. A particular case of the ECM problem

was investigated in [Coindreau et al., 2019b], in which the truck contents are fixed and

the decisions focus only on the loading day and the content of the containers. Even if

substantial reductions were already observed for the inventory penalty, our work aims at

extending the previous study by further integrating the decisions on the truck contents.

This paper makes the following scientific contributions. We introduce the ECM problem

which integrates the optimization of both inbound and outbound product flows with con-

tainer scheduling. To solve the ECM problem, we propose a mixed integer linear program-

ming (MILP) model as well as two matheuristics, namely a decomposition matheuristic

(DM) and a fix-and-optimize matheuristic (FOM). We perform extensive computational

tests on the instances provided by ECM and we quantify the inventory penalty reduction

resulting from our integrated approach.

3.2. Literature Review 47

The remainder of this paper is organized as follows. Section 3.2 provides a survey of the

related literature. Section 3.3 introduces the MILP formulation of the ECM problem.

Section 3.4 presents our two matheuristics. Section 3.5 compares the performance of the

proposed solution methods and quantifies the gain achieved by our integrated approach

with respect to the non-integrated current practice. This is followed by conclusions and

perspectives in Section 3.6.

3.2 Literature Review

We first review the cross-docking literature that shares some similarities with the ECM

problem. Next, we give an overview of matheuristics that are relevant for the present

case, and we focus in particular on FOMs.

A cross-docking facility aims at consolidating inbound and outbound flows (here, from

inland suppliers to offshore production plants) by making, as much as possible, direct

product transfers from trucks to containers [Van Belle et al., 2012]. More specifically, the

ECM problem shares some features of the truck scheduling in a cross-dock (TSCD), for

which a review can be found in [Boysen and Fliedner, 2010]. In the TSCD, the unload-

ing and loading operations of the trucks are viewed as a set of jobs, as defined in the

job scheduling literature. The aim of the TSCD is to determine a sequence of inbound

trucks arriving at the cross-docking platform and a sequence of outbound containers

that are then loaded, in order to minimize a given objective, e.g., the makespan, as in

[Chen and Lee, 2009] and [Ye et al., 2018]). Whereas in some cases, the product trans-

fers can be done without any need for temporary product storage [Boysen, 2010], other

situations require a temporary inventory (as for the ECM problem, momentary storage

is observed in [Yu and Egbelu, 2008]). Despite its similarities with cross-docking, the

ECM configuration precludes the use of the existing related methodologies. First, direct

transfers of products from trucks to containers cannot always take place in the ILP due

48 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

to the constraints imposed on the scheduling of operations related to container loading.

Indeed, it is required that the whole content of a container be available at the ILP before

proceeding to its loading. This creates an increased need for temporary storage that is

rarely observed in standard cross-docking configurations. Second, and in contrast with the

TSCD, the content of the trucks and that of the containers are modified during the opti-

mization of the operations, and hence jobs can no longer be defined by a set of products to

be unloaded and then loaded, as is done, for example, in [Bellanger et al., 2013]. Focusing

solely on the inbound side, [Serrano et al., 2017] consider the reassignment of the content

of inbound trucks in a container scheduling context. In contrast with the ECM problem,

a simplifying assumption is made by considering scalar loading constraints. To the best of

our knowledge, no existing work provides loading solutions that ensure the non-violation

of the complex loading constraints considered here and described in [Toffolo et al., 2017].

We refer to [Coindreau et al., 2019b] for a more extensive review of related cross-docking

problems.

In a recent paper, [Coindreau et al., 2019b] have proposed a decomposition matheuris-

tic for a subcase of the ECM problem. In a similar context of warehouse management,

[Cattaruzza et al., 2018] also show that a decomposition matheuristic is efficient, and

the problem is iteratively solved by fixing some variables. We present below suitable

types of matheuristics that can help tackle the further complexity brought by the inte-

gration of decisions for the truck content, in addition to considering those for the con-

tainer content and container scheduling. Matheuristics typically combine mathematical

programming and heuristics [Jourdan et al., 2009]. Among the wide existing range of

available matheuristics, FOMs (originally introduced by [Gintner et al., 2005]) consist

in iteratively fixing a subset of decision variables to create a smaller MILP that can

be solved with a generic solver. Repeatedly fixing some variables and optimizing some

others often allows to outperform the direct use of a solver applied to the full set of vari-

ables. In particular, FOM has been successfully applied to lot sizing [Sahling et al., 2009,

Helber and Sahling, 2010], timetabling [Dorneles et al., 2014], and location-routing prob-

3.3. Mathematical formulation 49

lems [Rieck et al., 2014]. Recently, FOM has been combined with generic metaheuristic

frameworks such as variable neighborhood search (VNS) in [Della Croce and Salassa, 2014]

and in [Chen, 2015], or variable neighborhood descent (VND) in [Dorneles et al., 2014].

These papers indicate that combining FOM with a metaheuristic outperforms the use of

FOM only.

3.3 Mathematical formulation

Section 3.3.1 introduces the variables and sets related to the ECM problem. Section 3.3.2

presents a MILP model for minimizing the proposed inventory penalty (i.e., the largest

temporary storage required over the week) by making decisions on the content of a given

subset of trucks and containers. Section 3.3.3 describes specific configurations of the

MILP that are relevant for the ECM problem.

3.3.1 Sets, parameters and variables

The superscripts “(in)” and “(out)” refer to inbound and outbound, respectively. Fur-

thermore, “(nf)” and “(f)” refer to the set of trucks or containers for which the content

is not fixed and fixed, respectively.

Sets:

• T : set of time periods (i.e., days),

• C: set of clients,

• P : set of product types,

50 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

• S: set of suppliers,

• B: set of box types,

• I: set of inbound trucks, which contains the following subsets:

– I(nf): subset of trucks for which the content is not fixed and can therefore be

optimized with the MILP,

– I(f): subset of trucks for which the content is fixed,

– It: subset of trucks that arrive on day t ∈ T ,

– I
(nf)
t : subset of trucks that arrive on day t ∈ T , for which the content is not

fixed,

– I
(f)
t : subset of trucks that arrive on day t ∈ T , for which the content is fixed,

• O: set of outbound containers, which contains the following subsets:

– O(nf): subset of containers for which the content is not fixed and can therefore

be optimized with the MILP,

– O(f): subset of containers for which the content is fixed,

– Oc: subset of containers assigned to client c ∈ C,

– O
(f)
c : subset of containers assigned to client c ∈ C, for which the content is

fixed,

– O
(nf)
c : subset of containers assigned to client c ∈ C, for which the content is

not fixed.

Parameters:

• dcp: demand (in units) of client c ∈ C for product type p ∈ P ,

• n(in)
ib : number of units of boxes of type b ∈ B transported in truck i ∈ I,

3.3. Mathematical formulation 51

• n(out)
ob : number of units of boxes of type b ∈ B transported in container o ∈ O,

• πpi = 1 if truck i ∈ I visits the supplier that can provide product type p ∈ P ,

πpi = 0 otherwise,

• qpb: number of units of product type p ∈ P that can be transported in box type

b ∈ B,

• q(out)
op : number of products of type p ∈ P sent by container o ∈ O(f),

• q(in)
ip : number of products of type p ∈ P delivered by truck i ∈ I(f),

• lpb: weight (in kg) of a box of type b ∈ B when filled with product type p ∈ P ,

• l(in): maximum allowed weight (in kg) that can be transported by a truck,

• l(out): maximum allowed weight (in kg) that can be transported by a container,

• hp: volume (in m3) of a product of type p ∈ P ,

• gp: number of units of product type p ∈ P available in the inventory at the beginning

of the week; due to various reasons (e.g., lot sizing or wrong orders), there is an

initial inventory in the ILP that cannot be determined in the optimization process

and is therefore taken as an input (the magnitude of this initial inventory is detailed

later),

• Mop: largest amount of products of type p ∈ P that can be transported in container

o ∈ O.

Decision variables:

• zibp: number of boxes of type b ∈ B assigned to product type p ∈ P in truck

i ∈ I(nf),

• xobp: number of boxes of type b ∈ B assigned to product type p ∈ P in container

o ∈ O(nf),

52 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

• yot = 1 if container o ∈ O is loaded on day t ∈ T ; yot = 0 otherwise,

• wopt: number of units of product type p ∈ P sent by container o ∈ O(nf) on day

t ∈ T ,

• upt: number of units of product type p ∈ P in stock on day t ∈ T before loading

the containers,

• vpt: number of units of product type p ∈ P in stock on day t ∈ T after loading the

containers,

• rpt: number of units of product type p ∈ P received on day t ∈ T ,

• spt: number of units of product type p ∈ P sent on day t ∈ T ,

• f : largest inventory-penalty value (in m3) encountered during the planning horizon.

3.3.2 Mixed integer linear programming formulation: Q(O(nf), I(nf))

We denote by Q(O(nf), I(nf)) the MILP formulation of the ECM problem for which the

content of the I(nf) trucks and the O(nf) containers can be revoked and optimized. The

problem is stated as follows:

minimize f (3.1)

3.3. Mathematical formulation 53

subject to

f ≥
∑
p∈P

hp · vpt t ∈ T (3.2)

vpt = upt − spt p ∈ P , t ∈ T (3.3)

vp0 = gp p ∈ P (3.4)

upt = vp,t−1 + rpt p ∈ P , t ∈ T (3.5)

rpt =
∑
b∈B

∑
(i∈I(nf)t |πpi>0)

qpb · zibp +
∑
i∈I(f)t

q
(in)
ip p ∈ P , t ∈ T (3.6)

spt =
∑

o∈O(nf)

wopt +
∑
o∈O(f)

q(out)
op · yot p ∈ P , t ∈ T (3.7)∑

t∈T

yot = 1 o ∈ O (3.8)

wopt ≤Mop · yot t ∈ T , o ∈ O, p ∈ P (3.9)

wopt ≤
∑
b∈B

qpb · xobp t ∈ T , o ∈ O, p ∈ P (3.10)∑
o∈O(nf)

c

∑
t∈T

wopt ≥ dcp −
∑
o∈O(f)

c

q(out)
op c ∈ C, p ∈ P (3.11)

∑
b∈B

∑
p∈P

lpb · xobp ≤ l(out) o ∈ O(nf) (3.12)∑
p∈P

xobp ≤ n
(out)
ob o ∈ O(nf), b ∈ B (3.13)∑

p∈P |πpi>0

zibp ≤ n
(in)
ib i ∈ I(nf), b ∈ B (3.14)

∑
b∈B

∑
p∈P

lpb · zibp ≤ l(in) i ∈ I. (3.15)

zibp, xobp, wopt, upt, vpt, rpt, spt ∈ N (3.16)

yot ∈ {0, 1} (3.17)

f ∈ R (3.18)

Constraints (3.2) compute the largest amount of storage space required in the ILP. Con-

straints (3.3) (resp. (3.5)) compute the available inventory in the ILP at the end (resp.

at the beginning) of the day. Constraints (3.4) fix the initial inventory in the ILP at

the beginning of the planning horizon (i.e., the products that are not received during the

54 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

week are assumed to be in inventory at the beginning of the week). Constraints (3.6)

compute the amount of products received on each day at the ILP. Constraints (3.7) com-

pute the number of units of each product type sent on each day. Constraints (3.8) prevent

a container from being loaded multiple times. Constraints (3.9) impose that products are

sent on the loading day of a container. Constraints (3.10) limit the amount of products

sent by containers. Constraints (3.11) impose that the demand of each client is satisfied.

Constraints (3.12) and (3.13) (resp. (3.14) and (3.15)) define the loading constraints of

the containers (resp. of the trucks). More precisely, constraints (3.12) (resp. (3.15))

ensure that the weight of the transported products does not exceed the container (resp.

truck) capacity, and constraints (3.13) (resp. (3.14)) ensure that the number of boxes

transported in a container (resp. truck) does not exceed the allowed limit. Constraints

(3.16 – 3.18) give the domain of the variables.

3.3.3 Specific configurations of Q(O(nf), I(nf))

The following specific configurations are introduced.

• Q: configuration where the full content of both containers and trucks is optimized

(i.e., O(nf) = O and I(nf) = I),

• Qz: configuration where only the content of all the containers is optimized (i.e., the

zibp variables are fixed: O(nf) = O and I(nf) = ∅),

• Qx: configuration where only the content of all the trucks is optimized (i.e., the xobp

variables are fixed: O(nf) = ∅ and I(nf) = I),

• Qz(O
(nf)): configuration where all truck contents are fixed (i.e., I(nf) = ∅) and the

content of a subset of containers (O(nf)) is optimized,

• Qx(I
(nf)): configuration where all container contents are fixed (i.e., O(nf) = ∅) and

the content of a subset of trucks (I(nf)) is optimized,

3.3. Mathematical formulation 55

• Qx,z: configuration where the decision making only focuses on the loading day of

the containers (i.e., O(nf) = ∅ and I(nf) = ∅); it corresponds to current practice at

ECM, according to which the content of the trucks and the containers is built in

a pre-processing phase using two independent optimization tools, and Qx,z is then

solved “by hand” (i.e., in a constructive fashion) by the decision maker.

Configurations Qz and Qx,z have been considered in [Coindreau et al., 2019b]. Further-

more, as considered in [Coindreau et al., 2019b], configuration Qz,t (resp. Qx,z,t) stands

for the decomposition of Qz (resp. Qx,z) that aims at maximizing the volume of products

sent at the end of day t when the content of the trucks (resp. the content of both trucks and

containers) is fixed. It has been shown in [Coindreau et al., 2019b] that Qx,z,t is equivalent

to the multiple knapsack problem, which is known to beNP-hard [Puchinger et al., 2010].

Table 3.1 summarizes the above configurations. For each configuration, the decision

sets and the fixed variables are given. “×” indicates that the corresponding decision

variables are taken into account. In the decompositions aimed at optimizing the volume

shipped when fixing the loading day of the containers, the decisions concerning the loading

operations of the containers are made on a subset of containers. Accordingly, “(×)” means

that the decision variables are partially taken into account. The first four configurations

have been studied in [Coindreau et al., 2019b] and correspond to the situations where the

content of the trucks is fixed.

Table 3.1: Considered configurations of the ECM problem.

Configuration Fixed variables Decision variables

Truck content Container content Loading day

Qz Truck content × ×

Qz,t Truck content, loading day × (×)

Qx,z Truck and container content ×

Qx,z,t Truck and container content, loading day (×)

Q - × × ×

Qx Container content × ×

56 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

3.4 Matheuristics

Since neither Q nor Qz cannot be solved with CPLEX for the largest instances provided by

ECM, we propose two matheuristics capable of handling large and complex cases. First,

we introduce DM to solve configuration Q in Section 3.4.1. Section 3.4.2 details FOM,

which aims at solving multiple times Q(O(nf), I(nf)) with different selections of trucks and

containers to be optimized. Section 3.4.3 proposes a matheuristic based on a combination

of DM and FOM. Finally, Section 3.4.4 highlights additional advantages for ECM to favor

FOM over alternative solution methods.

3.4.1 Decomposition matheuristic (DM)

As discussed by [Archetti and Speranza, 2014], the key idea behind a decomposition

matheuristic is to divide the main problem into smaller subproblems that are easier to

solve. Each subproblem is then solved by mathematical programming.

To solve Q, we propose to sequentially optimize the content of the containers and then the

content of the trucks (i.e., solve Qz and then Qx). [Coindreau et al., 2019b] introduced a

temporal decomposition matheuristic (called TDM) to solve Qz. Each day, the container

contents are reorganized so as to maximize the sent volume of products that is shipped.

In other words, the configuration Qz,t is solved from t = 1 to 5.

It turns out that Qx is easier to solve than Qz. Indeed, CPLEX is able to solve Qx for

all ECM instances within an hour. In contrast to Qx, Qz yields a much larger number of

variables, since decisions can be made on both the container contents and their loading day.

Whereas Qz involves the xobp variables for the container contents and the wopt variables

for the products sent on each day (the zibp variables being fixed), this configuration only

considers the zibp variables for the truck contents (the xobp variables being fixed and the

3.4. Matheuristics 57

wopt variables being deduced from the values of xobp).

The proposed DM for solving Q is straightforward. It first solves Qz with TDM. It then

solves Qx with CPLEX (i.e., by optimizing the truck contents and taking as input the

previously optimized container-loading schedule and contents).

3.4.2 Fix-and-optimize matheuristic (FOM)

The FOM aims at optimizing the content of both the trucks and the containers by suc-

cessively considering different subsets of trucks and containers to be optimized. The

pseudocode of FOM is given in Algorithm 3. At each step, |I(nf)| trucks and |O(nf)|

containers are randomly selected. Preliminary experiments (not reported here) show that

selecting in priority containers and trucks with a high potential for improvement (e.g.,

the containers and trucks that can transport the largest number of different products)

leads to subproblems Q(O(nf), I(nf)) that are harder to solve (as there are more permu-

tations allowed, the solution space is bigger). Selecting randomly the set of containers

and trucks allows to build problems Q(O(nf), I(nf)) of similar size at each step of the

FOM and to visit a sufficiently large number of solutions during the allowed execution

time. Q(O(nf), I(nf)) is then solved with CPLEX, and the provided solution is taken as

input for the next iteration (we propose to adaptively update the size of the I(nf) and

O(nf) sets with Algorithm 4 below). Algorithm 3 takes as input an initial feasible so-

lution s0, e.g., the one currently used by ECM. It stops after ηmax iterations without

improvement or after tmax minutes of execution time (see the ‘While” loop). (σ, tMILP)

are the MILP parameters used to solve Q(O(nf), I(nf)) in Step 2. More precisely, the

MILP stops when the gap to optimality is below σ% or after tMILP minutes of execu-

tion time. An initial pair of percentages (ρI1 < ρI2) (resp. (ρO1 < ρO2)) is also given as

input for the proportion of trucks (resp. containers) to be optimized in Q(O(nf), I(nf)).

Such proportions are updated each η iterations of Algorithm 3 (see Step 4). We con-

58 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

sider two different values to be able to determine, during the execution of Algorithm

3, whether smaller percentages (i.e., ρI1 and ρO1) or larger percentages (i.e., ρI2 and ρO2)

should be favored for the next iterations (see Algorithm 4 below). To evaluate the gain

associated with the percentage (ρIi , ρ
O
j) selected in Step 1, Step 3 computes the achieved

inventory penalty reduction ∆ij after η iterations and the associated required execution

time τij. Preliminary experiments (not reported here) have indicated that the tuning

(η = 12, σ = 2%, tMILP = 10 minutes, ρI1 = 15%, ρI2 = 17%, ρO1 = 5%, ρO2 = 6%) is

efficient.

Algorithm 3 Fix-and-optimize matheuristic (FOM)

Input: s0, (σ, tMILP), (ηmax, tmax), (ρI1, ρ
I
2), (ρO1 , ρ

O
2), η.

Initialization: set l = 1; set ∆ij = 0 and τij = 0 (∀ i, j ∈ {1, 2}).

While (execution time < tmax) or (a solution improvement has been made in the last η itera-
tions), do:

1. Select the set of trucks and the set of containers to optimize: choose randomly (i, j)
(where i, j ∈ {1, 2}), and select randomly |I(nf)| = dρIi · |I|e trucks and |O(nf)| = dρOj · |O|e
containers.

2. Solve Q(O(nf), I(nf)) with CPLEX and let sl be the resulting solution.

3. Evaluate the performance of the selected (ρIi , ρ
O
j): set ∆ij = f(sl) − f(sl−1) (where

f(sl) is the inventory penalty of sl) and add to τij the execution time required to solve
Q(O(nf), I(nf)).

4. Periodically update the truck/container percentages: if (l mod η) = 0, update (ρI1, ρ
I
2) and

(ρO1 , ρ
O
2) with Algorithm 4; re-initialize ∆ij = 0 and τij = 0, ∀ i, j ∈ {1, 2}.

5. Move to the next iteration: set l = l + 1.

Return: sl (i.e., the last generated solution).

3.4. Matheuristics 59

Algorithm 4 aims at choosing the pairs of percentages that will be used for the next

sequence of η iterations of Algorithm 3 (see its Step 4). It takes as input the values of the

percentages (ρI1, ρ
I
2) and (ρO1 , ρ

O
2) used during the previous η iterations, as well as their

associated inventory penalty reductions (∆ij) and execution times (τij).

For each couple (ρIi , ρ
O
j) (where i, j ∈ {1, 2}), Algorithm 4 first computes the improvement

score θij =
∆ij

τij
(in m3/minute) provided by Q(O(nf), I(nf)) (with I(nf) = dρIi · |I|e and

O(nf) = dρOj ·|O|e) during the last sequence of η iterations of Algorithm 3. If no percentage

configuration has improved the solution (i.e., if θij = 0 ∀ i, j ∈ {1, 2}, case 1), it can either

be due to the fact that the percentages (ρI2, ρ
O
2) are too small (hence the solution space

explored in Q(O(nf), I(nf)) is too narrow), or (ρI1, ρ
O
1) are too large (hence CPLEX cannot

explore the solution space of Q(O(nf), I(nf)) within tMILP minutes to find a better solution

than the current one). Therefore, in that case, we move the smaller percentage ρI1 (resp.

ρO1) of trucks (resp. containers) to an even smaller value, and the larger percentage ρI2

(resp. ρO2) to an even larger value.

When at least one percentage pair has allowed the MILP to improve the input solution, let

(i?, j?) = arg max
(i,j)∈{1,2}2

θij (break ties randomly). In case 2 (resp. case 4), corresponding to

i? = 1 (resp. j? = 1), as the smaller percentage ρI1 (resp. ρO1) of trucks (resp. containers)

to be optimized has yielded higher improvement score, we move the two percentages of

trucks (resp. containers) to even smaller values. Conversely, in case 3 (resp. case 5),

corresponding to i? = 2 (resp. j? = 2), the larger percentage ρI2 (resp. ρO2) of trucks (resp.

containers) to be optimized has yielded higher improvement score, and we thus move the

two percentages of trucks (resp. containers) to even larger values.

60 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

Algorithm 4 Update of the percentages of trucks and containers to be optimized in
Q(O(nf), I(nf))

Input: (ρIi , ρ
O
j), ∆ij , τij , ∀ i, j ∈ {1, 2}.

Initialization:

• Set δI = ρI2 − ρI1 and δO = ρO2 − ρO1 .

• Compute the improvement score for (ρIi , ρ
O
j): set θij =

∆ij

τij
, ∀ i, j ∈ {1, 2}.

If θij = 0 ∀ i, j ∈ {1, 2} (case 1), set: ρI1 = ρI1 − δI ; ρI2 = ρI2 + δI ; ρO1 = ρO1 − δO; ρO2 = ρO2 + δO.

Else Determine (i?, j?) = arg max
(i,j)∈{1,2}2

θij (break ties randomly).

If i? = 1 (case 2), set ρI2 = ρI1 and ρI1 = ρI1 − δI ;

If i? = 2 (case 3), set ρI1 = ρI2 and ρI2 = ρI1 + δI ;

If j? = 1 (case 4), set ρO2 = ρO1 and ρO1 = ρO1 − δO;

If j? = 2 (case 5), set ρO1 = ρO2 and ρO2 = ρO1 + δO.

Return: (ρIi , ρ
O
j),∀ i, j ∈ {1, 2}.

3.4.3 Combined matheuristic (DM-FOM)

When the available execution time is larger than the run time of DM, we propose the

following combined matheuristic, referred to as DM-FOM. In a first phase, we launch DM.

In a second phase, we use the remaining available execution time to run FOM, taking the

DM solution as an input and further improving it. Whereas DM-FOM aims at solving

configuration Q (i.e., both the truck and container contents are optimized), TDM-FOM

combines TDM and FOM in the same fashion to solve configuration Qz (where |Inf | = 0,

i.e., the truck contents are fixed).

3.4.4 Facilitated implementation of FOM

Additional advantages of FOMs were highlighted by [Papageorgiou et al., 2018]. In the

context of the ECM problem, FOM stands out from other matheuristics, and more gener-

ally from metaheuristics, by the fact that sustainability and simplified maintenance of the

3.5. Computational experiments 61

code is ensured by ECM, implying that it is easier for the optimization team to manage

one single MILP that relies on a general purpose solver rather than a low level code that

requires high maintenance. Furthermore, FOM is able to handily adapt to new business

settings since, it requires less effort to update one single MILP rather than customized

algorithms.

3.5 Computational experiments

The models were coded in C++ and CPLEX 12.4 was called to solve the induced MILPs.

Computations were launched on a 2.2 GHz Intel Core i7 with 16 Go 1600 MHz DDR3

of RAM memory. The ECM problem is solved once a week. In accordance with ECM,

it is therefore reasonable to consider an overall execution time of 10 hours. However, for

most of the experiments presented below, an execution time of one hour was sufficient to

obtain the presented solutions.

Section 3.5.1 describes the set of instances provided by ECM. We compare the solution

methods in Section 3.5.2; results for configurations Qz are given in Section 3.5.2 and

results for Q in Section 3.5.2. Configuration Qx is not treated here since it can be solved

directly with CPLEX. Finally, Section 3.5.3 presents managerial insights by comparing

the results of configuration Q with those of Qz and Qx.

3.5.1 Test instances

Table 3.2 gives the characteristics of the 17 instances provided by ECM. Three ILPs are

considered (V, G and M), denoting three different sites where ECM is operating. The first

column indicates the name of the instances, columns 2 to 7 indicate the size of the sets

62 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

introduced in Section 3.3.1. “V init” gives the volume of the boxes located in the inventory

at the beginning of the week. The last two columns describe the size of configuration Q

for each instance: “Nb. Var.” (resp. “Nb. Const.”) gives the number of variables

(resp. constraints). We have removed from the model the variables that can only take

a single value (e.g., for instance M7, there are |O| × |B| × |P | ≈ 1010 xobp variables, but

after variable elimination, configuration Q involves less than six millions variables (see

[Coindreau et al., 2019b] for more details on this variable elimination procedure).

Table 3.2: Characteristics of the test instances.

Instance |O| |I| |P | |B| |S| |C| V init Nb. Var. Nb. Const.

V1 28 48 326 206 151 17 634 12,031 14,107

V2 51 78 358 290 171 20 1,154 14,054 17,234

V3 49 67 424 315 190 21 898 16,554 20,492

V4 59 82 454 334 191 20 1,411 19,022 23,700

G1 67 98 1,181 616 544 8 1,098 119,238 166,937

G2 71 112 1,199 644 554 7 942 132,638 182,749

G3 68 89 1,353 575 572 8 1,341 161,969 218,955

G4 88 112 1,401 718 606 8 1,503 162,171 231,079

G5 80 122 1,548 605 646 8 18,92 243,688 315,456

G6 85 136 1,676 748 678 7 917 244,916 330,369

M1 383 677 6,564 999 542 17 15,392 3,283,199 4,382,861

M2 543 653 7,890 1,262 626 23 14,995 3,808,742 5,403,274

M3 644 903 7,865 1,226 568 22 14,933 4,372,938 6,234,108

M4 699 778 7,529 1,167 597 23 23,458 4,062,400 5,641,036

M5 623 741 8,349 1,159 608 23 14,211 4,923,679 6,754,536

M6 789 1,085 8,546 1,377 590 21 23,828 5,272,599 7,626,068

M7 829 1,104 8,649 1,387 597 22 26,115 5,883,213 8,577,182

3.5.2 Analysis of the performance of the proposed solution meth-

ods

We now proceed to the analysis of our matheuristics on the configurations Qz and Q.

3.5. Computational experiments 63

Results on configuration Qz

In this section, we focus on configuration Qz involving only the decisions on the con-

tents and on the loading days of the containers. We benchmark FOM and TDM-FOM

(both with |Inf | = 0, as the truck contents are fixed) with respect to TDM. For Qz,

[Coindreau et al., 2019b] showed that TDM is able to find optimal solutions on the smaller

instances V and G. For the larger instances M, TDM is able to find solutions exhibiting a

significant gain compared with the ECM current practice. We do not report the results for

the V and G instances as, starting from the ECM solutions, FOM is able to find optimal

solutions within five minutes. Recall that FOM and TDM-FOM are limited to 10 hours

of execution time (TDM always returns its solution within less than 62 minutes for the

larger instances M).

Table 3.3 compares the results of TDM, FOM and TDM-FOM for the M instances.

Columns “Obj.” give the value of the objective function. “Time” indicates the time

(in minutes) at which TDM returned its solution. “% best” provides the percentage

gap with respect the best found inventory penalty, which is always returned by TDM-

FOM. The percentage gap is computed as follows: 100 · fTDM−fTDM−FOM
fTDM−FOM

, where fTDM

(resp. fTDM−FOM) denotes the inventory penalty of the solution returned by TDM

(resp. TDM −FOM). The columns “% O(nf)” give the average percentage of containers

optimized at each iteration of FOM.

On the one hand, one can observe that the TDM solutions can be further improved

by FOM during the remaining available execution time. Indeed, FOM is only able to

improve the results of TDM in four out of the seven instances. On the other hand, TDM-

FOM is able to improve the results of TDM for all instances with an average percentage

gap of 1.1%. Such improvements could not be achieved without the use of FOM, as

different runs of TDM always return the same solution. Finally, the “% O(nf)” values

show that all instances do not require the same average percentage of containers to be

64 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

optimized at each iteration of FOM. For example, large values are not appropriate for M7

because of the complexity due to its size (on average 7.4% of the containers are optimized

for FOM). In contrast, for the smaller instances M3 and M5, much larger percentages

of the containers are optimized (more than 20% for FOM). These results highlight the

importance of dynamically updating, during the execution of FOM, the values of these

percentages (see Algorithm 4).

Table 3.3: Results of Qz for TDM, FOM and TDM-FOM (M instances).

TDM FOM TDM-FOM

Instance Obj. Time[min] % best Obj. % O(nf) % best Obj. % O(nf)

M1 43,947 11 1.1% 43,783 14.2% 0.7% 43,474 15.1%

M2 46,321 49 0.9% 46,215 13.5% 0.7% 45,897 12.2%

M3 53,416 23 0.3% 53,532 20.4% 0.5% 53,251 16.7%

M4 48,581 23 0.3% 48,987 14.0% 1.1% 48,435 12.0%

M5 51,501 24 0.6% 51,370 22.9% 0.3% 51,205 13.0%

M6 56,886 35 1.3% 56,687 11.9% 1.0% 56,144 12.3%

M7 60,212 62 2.9% 66,701 7.4% 14.0% 58,490 9.8%

Results on configuration Q

For the V and G instances, Table 3.4 compares the results of DM and FOM with the

optimal solutions proven by CPLEX in the eponymous columns. The columns “Obj.”

and “Time” are defined as above (but the time is given in seconds). For DM and FOM,

the column “% opt.” provides the gap with respect to the optimal solution. The columns

“% O(nf)” and “% I(nf)” give the average percentage of containers and trucks optimized

at each iteration of FOM, respectively (this will be commented later). We observe that

DM is faster than FOM, but the latter heuristic yields better solutions. Indeed, for FOM,

the average gap to optimality never exceeds 2% for each instance. Interestingly, FOM

requires on average 32% less execution time than CPLEX. The results of DM-FOM are not

reported for the V and G instances. Indeed, FOM already shows a good performance for

these smaller instances, and neither the objective nor the execution time are significantly

improved by DM-FOM.

3.5. Computational experiments 65

Table 3.4: Results of Q for CPLEX, DM and FOM (V and G instances).

CPLEX DM FOM

Instance Obj. Time[s] Obj. Time[s] % opt. Obj. Time[s] % O(nf) % I(nf) % opt.

V1 691 50 694 <1 0% 692 4 24.1% 34.4% 0%

V2 1,229 28 1,229 2 0% 1,229 1 8.3% 11.7% 0%

V3 1,481 1 1,481 3 0% 1,481 8 24.5% 37.1% 0%

V4 1,727 15 1,727 4 0% 1,727 9 22.4% 31.0% 0%

G1 2,489 104 2,643 26 6% 2,536 86 26.3% 39.9% 2%

G2 2,421 311 2,590 29 7% 2,450 129 26.4% 40.2% 1%

G3 2,621 56 2,632 31 0% 2,624 79 24.7% 31.1% 0%

G4 3,339 192 3,406 44 2% 3,346 85 23.0% 32.0% 0%

G5 2,651 1867 3,105 51 17% 2,705 338 26.1% 40.9% 2%

G6 3,246 691 3,404 65 5% 3,326 198 22.3% 35.0% 2%

Table 3.5 compares the results of DM, FOM and DM-FOM for the M instances. For

DM, we report the execution time (in minutes) in the column “Time”. The time is not

reported for FOM and DM-FOM since for these instances, the full 10-hour time budget

is used. The column “% best” provides the gap with respect to the solution value found

by DM-FOM (which is always the best solution). Finally, for both FOM and DM-FOM,

we report the average percentage of trucks and containers optimized at each iteration in

columns “% O(nf)” and “% I(nf)”, respectively.

Table 3.5 highlights that DM-FOM allows to efficiently use the available 10 hours of

execution time and outperforms both DM and FOM. The average gap between DM and

DM-FOM (resp. between FOM and DM-FOM) is 11.1% (resp. 5.3%). DM turns out

to be a powerful first phase for the ECM problem: it demonstrates the importance of

considering the problem characteristics to find appropriate decomposition techniques.

Here, maximizing the volume sent daily is particularly efficient and is one of the strengths

of DM. DM is able to quickly identify good solutions (within 18 minutes of execution

time for the smallest instance M1, and 153 minutes for the largest instance M7) and is

therefore recommended as a warm start for FOM, as opposed to initially feeding FOM

with the ECM solution. It is interesting to note that considering simultaneously the

optimization of the truck and of the container contents is necessary in order to be able to

further improve the results returned by DM.

66 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

Additional experiments (not reported here) indicate that letting 10 hours of execution for

DM only (i.e., iteratively solving Qz and Qx for 10 hours) does not improve the solution

found after one single iteration of DM (i.e., solve Qz then Qx once). Indeed, decomposing

the resolution with Qz followed by Qx is efficient to quickly find a rather good solution, but

cannot, in contrast to FOM, further improve it. In this case, as the truck (or container)

contents are always optimized to be suitable to the container (or truck) contents given as

input, reoptimizing always yields similar truck and container contents.

The average gap between DM and DM-FOM is larger when solving Q than when solving

Qz (on average, it moves from 1.1% for Qz to 14.1% for Q). This indicates that DM

is more efficient on configuration Qz than on Q. Hence, when integrating the decisions

on both the truck and container contents with those on the container scheduling (i.e.,

configuration Q), FOM becomes an essential tool. The average gap between FOM and

DM-FOM is equal to 4.56%, highlighting again the importance of considering the solution

of DM as a warm start for FOM.

Tables 3.4 and 3.5 show how the values of the percentages of trucks and containers to be

optimized at each iteration of FOM adapt to the characteristics of the instances. Typically,

the percentage of optimized trucks is larger than the percentage of optimized containers.

This stems from the increased complexity of Qz compared with Qx. Furthermore, we

observe that the larger is the instance, the smaller is the percentage of trucks or containers

to be optimized at each iteration of FOM. The strength of FOM lies more in the number

of performed iterations within the allowed time rather than on the magnitude of the

improvement achieved at each iteration.

3.5. Computational experiments 67

Table 3.5: Results of Q for DM, FM and DM-FOM (M instances).

DM FOM DM-FOM

Instance Obj. % best Time[min] Obj. % best % O(nf) % I(nf) Obj. % O(nf) % I(nf)

M1 25,492 26.1% 18 20,335 0.6% 11.5% 29.5% 20,209 15.6% 24.2%

M2 36,669 16.2% 31 32,443 2.8% 10.6% 30.3% 31,559 11.8% 25.1%

M3 36,909 24.3% 104 33,847 14.0% 10.9% 23.5% 29,693 11.7% 20.8%

M4 36,459 8.5% 37 34,350 2.2% 9.2% 26.7% 33,614 12.9% 17.0%

M5 34,421 16.2% 42 29,661 0.1% 12.5% 22.9% 29,627 13.3% 20.2%

M6 41,670 2.5% 127 43,301 6.5% 8.0% 20.8% 40,670 10.1% 15.9%

M7 42,256 5.0% 153 44,206 9.8% 8.5% 22.8% 40,249 10.0% 17.1%

3.5.3 Managerial insights

We now evaluate the potential gain in terms of inventory penalty offered to ECM when

simultaneously considering both the truck and container contents in the optimization,

together with the loading day of the containers. In particular, we compare the results

with those obtained in situations where only the decisions on the content of the trucks or

the containers, or neither (which sets for the current practice at ECM), are integrated with

those on the scheduling of container loading operations. We first compare the returned

optimal solutions for the V and G instances. Next, we compare the best found solutions

for the M instances. Last, we summarize the improvement potential achieved by our

integrated approach.

V and G instances

Table 3.6 compares the obtained solutions for configuration Q (i.e., both the contents of

the trucks and the containers are optimized) with those achieved when (1) the content of

the containers is fixed (column “Qx”); (2) the content of the trucks is fixed (column “Qz”);

(3) both the content of the trucks and that of the containers are fixed (column “ECM”

which corresponds to the configuration Qx,z). The columns “Obj.” report the value of the

optimal solution and the columns “Time” give the time (in minutes) at which CPLEX

68 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

returned the optimal solution. Columns “% (ECM)”, “% Qz” and “%(Qx)” give the

improvement percentage with respect to configuration ECM, Qz and Qx, respectively. For

example, the improvement achieved by configuration Q over configuration Qz is displayed

in column “% Qz” and is computed as f(Q)−f(Qz)
f(Qz)

, where f(Qz) (resp. f(Q)) designates

the obtained inventory penalty when considering configuration Qz (resp. Q).

As already discussed in [Coindreau et al., 2019b], reconsidering the content of the con-

tainers during the optimization of the container loading operations allows to significantly

improve the solution currently used at ECM (with an average improvement of 5% for the

V instances and of 15% for the G instances). The gain achieved is of the same magnitude

when integrating only the decisions on the content of the trucks in the optimization (with

an average improvement of 17% for the V instances and of 14% for the G instances). The

main improvement is achieved when we consider simultaneously the content of the trucks

and containers together with the loading day of the containers. Compared with the re-

sults obtained in [Coindreau et al., 2019b], the additional average improvement brought

by solving Q instead of Qz amounts to 16% for the V instances, and to 19% for the G in-

stances. Compared with the current practice at ECM, the average improvement achieved

by optimizing both on the truck and container contents is 20% for the V instances, and

31% for the G instances. For these V and G instances, we recall that the largest execution

time to find the optimal solutions with CPLEX is 31 minutes.

Table 3.6: Results of Q for the V and G instances.

ECM Qz Qx Q

Instance Obj. Time[min] Obj. Time[min] % (ECM) Obj. Time[min] % (ECM) Obj. Time[min] % (ECM) % Qz % Qx

V1 1,158 < 1 1,158 < 1 0% 695 < 1 -40% 691 1 -40% -40% -1%

V2 1,454 < 1 1,377 < 1 -5% 1,307 < 1 -10% 1,229 < 1 -15% -11% -6%

V3 1,710 < 1 1,631 1 -5% 1,484 < 1 -13% 1,481 1 -13% -9% 0%

V4 2,117 < 1 1,956 < 1 -8% 1,888 < 1 -11% 1,727 < 1 -18% -12% -9%

G1 3,292 < 1 2,801 1 -15% 3,144 1 -4% 2,489 2 -24% -11% -21%

G2 3,690 < 1 3,074 3 -17% 3,130 1 -15% 2,421 5 -34% -21% -23%

G3 3,517 < 1 2,943 1 -16% 3,141 1 -11% 2,621 1 -25% -11% -17%

G4 4,318 < 1 3,672 3 -15% 4,005 2 -7% 3,339 4 -23% -9% -17%

G5 4,843 < 1 4,172 5 -14% 3,450 4 -29% 2,651 31 -45% -36% -23%

G6 4,706 < 1 4,059 4 -14% 4,037 3 -14% 3,246 12 -31% -20% -20%

3.5. Computational experiments 69

M instances

Table 3.7 presents, for the M instances, the best solutions obtained. The columns of Table

3.7 correspond to those of Table 3.6. When the time is not reported, this means that

the algorithm used the entire allowed 10 hours of execution time to obtain the achieved

inventory penalty.

For these larger instances, and similarly to the smaller instances, Table 3.7 shows that

optimizing only the truck or the container contents leads to similar average improvement

when compared to the ECM current practice. The average improvement of Qz (resp.

Qx) over ECM is 34% (resp. 29%). The main improvement comes when considering all

the decisions simultaneously (both the truck, the container contents, and the container

loading day). The average inventory-penalty reduction when solving Q instead of Qz (as

done in [Coindreau et al., 2019b]) is 37%. Compared with the ECM current practice, the

gain is up to 72%, with an average of 58%. Such observations confirm the importance of

integrating decisions on both the inbound and outbound sides at ECM’s ILPs.

Table 3.7: Results of Q for the M instances.

ECM Qz Qx Q

Instance Obj. Time[min] Obj. % (ECM) Obj. Time[min] % (ECM) Obj. % (ECM) % Qz % Qx

M1 73,301 < 1 43,474 -41% 46,401 4 -37% 20,209 -72% -54% -56%

M2 56,547 < 1 45,897 -19% 44,144 3 -22% 31,559 -44% -31% -29%

M3 77,077 < 1 53,251 -31% 51,873 12 -33% 29,693 -61% -44% -43%

M4 71,518 < 1 48,435 -32% 52,942 5 -26% 33,614 -53% -31% -37%

M5 73,436 < 1 51,205 -30% 51,312 6 -30% 29,627 -60% -42% -42%

M6 93,518 < 1 56,144 -40% 72,663 16 -22% 40,670 -57% -28% -44%

M7 100,504 < 1 58,490 -42% 66,761 40 -34% 40,249 -60% -31% -40%

Improvement potential

For each instance, any achieved inventory penalty at the ILP lies between the inventory

penalty of the ECM solution and the inventory penalty observed at the beginning of the

70 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

week (see Table 3.2 for the values V init of the volume of products stored at the beginning

of the week). For instance M1, the initial inventory volume V init stored at the beginning

of the week is 15,392 m3 and the largest inventory volume f(Qx,z) observed in the current

ECM solution is 73,301 m3. Any improving solution lies within these two bounds and the

maximum theoretical improvement potential for this instance is 57,909 m3. Considering

Qz allows a reduction of the largest storage volume to 43,783 m3, and the savings for ECM

is 29,518 m3, which represents 51% of the maximum theoretical improvement potential

(when only direct product transfers would take place).

Figure 3.2 displays, for all instances and for both configurations Qz and Q, the achieved

percentage of the maximum theoretical improvement potential. Each bar represents an

instance, and the bold bar indicates the average for the V, G, and M instances. For each

ILP, Figure 3.2 highlights the significant additional gain achieved when considering Q over

Qz. It furthermore indicates that, on average and for both configurations Qz and Q, the

larger is the instance, the larger is the achieved improvement in terms of inventory penalty.

This shows that our solution methods can take advantage of the increased potential for

product exchange between trucks and containers in larger instances.

V init f(Qx,z)90% 80% 70% 60% 50% 40% 30% 20% 10%

M
G

VQ

M
G
VQz

Figure 3.2: Percentage of the maximum theoretical improvement potential achieved by

configurations Qz and Q.

3.6. Conclusions 71

3.6 Conclusions

We have modeled and solved an industrial problem that considers the scheduling and

the product assignment for both the inbound and outbound flows in a cross-docking

platform. Whereas [Coindreau et al., 2019b] integrated the decisions on the outbound

container content with the scheduling of their operations over the week, here we addi-

tionally included the decisions on the inbound truck contents in the same optimization

framework. Concerning the complex loading constraints that affect both trucks and con-

tainers, we proposed an efficient formulation capable of quickly capturing the feasibility of

different contents, as well as to evaluate their quality. We were able to realize the signif-

icant improvement potential offered by the proposed integrated optimization framework

for all instances provided by the involved company ECM.

We have developed and compared two heuristics, namely a decomposition matheuristic

(DM) and a fix-and-optimize matheuristic (FOM). DM is faster but less efficient than

FOM. The results are better when both methods are combined. Computational experi-

ments showed that, compared with current industrial practice, allowing product reassign-

ment from one container to another and from a truck to another, can reduce the average

required largest inventory volume by 58% for the large instances and by 27% for the small

ones. Moreover, compared with the situation where only the content of the containers is

included in the decision making, the integrated formulation allows an additional average

reduction of 37% for the large instances, and of 18% for the small ones. From a man-

agerial point of view, revoking the content of the trucks may be a more challenging task

than acting on those of the containers, as it involves third parties. However, this study

clearly shows that implementing such aspects has the potential of yielding a significant

improvement with respect to current practice and should therefore be considered.

72 Chapter 3. Inbound and Outbound Flow Integration for Cross-Docking Operations

Acknowledgement

This work was partly supported by the Canadian Natural Sciences and Engineering Re-

search Council under grant 2015-06189. This support is gratefully acknowledged. Thanks

are due to the reviewers for their valuable comments.

Chapter 4

Synchronizing Trucks and Drones for
a Real-World Parcel Delivery
Problem with Time-Window
Constraints

Marc-Antoine Coindreau - University of Lausanne, Switzerland

Olivier Gallay - University of Lausanne, Switzerland

Nicolas Zufferey - University of Geneva, Switzerland

73

74 Chapter 4. Synchronizing trucks and drones

Abstract

The negative impact of excessive traffic in urban areas requires innovative transportation

concepts. One solution relies on autonomous delivery drones embedded in delivery trucks.

We consider the case of a large European Logistics Provider (ELP) that aims to schedule

parcel deliveries with a fleet of truck-and-drone vehicles. The truck routes start from a

depot with a set of parcels to be delivered within given time windows. When appropriate,

the drones can be loaded with a parcel, launched directly from the truck, and sent to a

customer. Afterward, the drones autonomously return to the truck, where they will be

replenished and recharged. We propose a mixed-integer linear programming formulation

and an Adaptive Large Neighborhood Search (ALNS). Using the real cost structure of the

ELP and the traditional truck-only delivery as a benchmark, we analyze the gain offered

by this new transportation concept. The obtained bi-modal truck-and-drone solutions de-

termine the most efficient allocation of customers among drones and trucks, as well as the

locations at which the drones are launched and retrieved along the truck routes. Results

show that truck-and-drone solutions can reduce costs by up to 35% when compared to

traditional truck-only delivery. Managerial insights are also given: a minimum percentage

of customer locations must be reachable by drones to find competitive truck-and-drone

solutions (i.e., to allow the fixed costs of the drones to be compensated by the savings

achieved on the truck routes) and the cost structures of truck-and-drone and truck-only

solutions are compared.

Keywords: Vehicle Routing, Drones, Mixed-Integer Linear Program, Adaptive Large

Neighborhood Search.

4.1. Introduction 75

4.1 Introduction

Autonomous transportation, electric vehicles and multi-modality are often regarded as the

most promising ways to resolve congestion problems, as well as reduce the environmental

impact related to transportation activities [Speranza, 2018]. In particular, the use of

autonomous drones to transport goods has recently drawn considerable attention from

both industry (e.g., [DHL, 2014], [Amazon, 2016], [Daimler, 2017]) and scholars (e.g.,

[Otto et al., 2018] review more than 200 articles on optimization problems related to the

use of drones for operations planning). The introduction of such a novel transportation

mode provides managers with an alternative way to efficiently deliver parcels in large

urban areas that are difficult or costly to access by trucks. However, whereas drone

delivery turns out to be faster and cheaper than truck distribution [Wohlsen, 2014], a

straightforward replacement of trucks by drones cannot be envisioned as drones suffer

from limited flight range and restricted capacity.

We consider the case of a large European Logistics Provider (ELP) that cannot be named

because of a non-disclosure agreement. The ELP proposes to use a mixed fleet of ve-

hicles where drones are embedded into trucks. The mission of the trucks (and their

assigned drivers) is twofold: (1) deliver parcels to customer locations and (2) manage

(i.e., retrieve, transport, load, recharge, and launch) the drones along their routes. The

synchronization of such a truck-and-drone fleet enables benefiting from the specific ad-

vantages of both of these vehicle types. Other examples of such mixed fleets of vehicles

include trucks and autonomous robots [Boysen et al., 2018b], cars and non-motorized

workers [Coindreau et al., 2019a], and trucks and trailers [Chao, 2002, Lin et al., 2009]

(Truck and Trailer Routing Problem) or [Drexl, 2014] (the Vehicle Routing Problem with

Trailers and Transshipments). In the latter case, a truck may or may not tow a trailer

within the same solution).

Following the ELP requirements, we focus on the static day-ahead scheduling of parcel

76 Chapter 4. Synchronizing trucks and drones

deliveries, where all travel times are known in advance. As in the Vehicle Routing Problem

with Time Windows (VRPTW) [Laporte, 2009], in which only trucks are available to

deliver parcels, a time window (TW) is associated with each customer delivery. A fleet

of truck-and-drone vehicles is available to transport the given set of parcels. Both trucks

and drones have specific characteristics. Although trucks generate higher costs and travel

more slowly, they benefit from a larger capacity. Drones are cost-effective and fly faster,

but they suffer from a limited capacity and flight range. We formulate this problem as

the Minimum Cost Vehicle Routing Problem with Time Windows and Drones, denoted

as MC-VRPTW-D. Multiple trucks are considered, that can embed a drone or not. The

drone’s flight endurance, which is due to its battery size, and the maximal working-

day duration for the drivers are both taken into account. The global cost function to be

minimized is motivated by the ELP. It includes fixed costs (daily vehicle use) and variable

costs (workforce wage, traveled distance, and driving and flying time) generated by the

delivery operations of the truck-and-drone fleet.

The present work yields the following contributions.

1. We extend the Vehicle Routing Problem with Drones (VRP-D) by introducing the

MC-VRPTW-D formulation, which aims to minimize the global cost function and

considers TWs.

2. We propose a Mixed-Integer Linear Program (MILP) for the MC-VRPTW-D.

3. We design an insertion-based metaheuristic, namely an Adaptive Large Neighborhood

Search (ALNS), to solve the MC-VRPTW-D. Our ALNS includes an algorithm to

speed up the insertion phase. We compare the obtained ALNS solutions with those

resulting from the commonly used Route-First-Cluster-Second (RFCS) procedures.

4. We solve an instance set that captures the various real situations encountered by

the ELP.

5. Managerial insights are given for the efficient use of truck-and-drone fleets. We

4.2. Literature Review 77

quantify the achieved cost reduction and compare it to truck-only delivery. We

identify instance characteristics that allow the use of drones to be competitive. We

depict the cost structure of the obtained truck-and-drone solutions. The provided

results and insights open the door for a novel management technique for delivery

operations, where practitioners can optimize their costs efficiently using the specific

characteristics of the two considered transportation modes.

The paper is organized as follows. A literature review is conducted in Section 4.2, with

a focus on the operational aspects associated with mixed fleets of trucks and drones. In

Section 4.3, a formal description of the MC-VRPTW-D is provided, and we introduce the

corresponding MILP. The ALNS is presented in Section 4.4. It can efficiently handle the

required synchronization of the two vehicle types. Section 4.5 proposes an algorithm that

formulates the ALNS insertion procedure specifically for the considered truck-and-drone

context. Computational experiments are presented in Section 4.6, where the potential

gain offered by truck-and-drone fleets is quantified. Conclusions and extensions are given

in Section 4.7.

4.2 Literature Review

Managing vehicle fleets composed of both trucks and drones has recently atracted sub-

stantial interest from the research community. Among the papers that consider trucks

and drones for parcel delivery, we only review, here, those involving en-route synchro-

nization (i.e., the situations where the drones meet the trucks on their way in order to

refill their load and recharge their battery). [Drexl, 2012] identifies the different synchro-

nization types that can take place in a routing context. Accordingly, papers considering

cases where the drones deliver parcels directly from the depot without any en-route syn-

chronization with trucks are not mentioned below (e.g., [Ham, 2018]). We have identified

78 Chapter 4. Synchronizing trucks and drones

16 papers, published between 2015 and 2019, that specifically address the en-route syn-

chronization of truck-and-drone fleets. These contributions are compared in Table 4.1

according to the following seven operational characteristics.

1. Configuration (column ‘Config.’) synthesizes the considered number of trucks (‘Nb.

Trucks’) and drones (‘Nb. Drones’). It also specifies the largest number of drones

that can be carried by a truck (‘Max. Drones per Truck’). This information is

listed as follows: ‘Nb. Trucks/Nb. Drones/Max. Drones per Truck’. For example

‘N/N/m’ denotes a configuration involving more than one truck and more than one

drone, and where each truck can embed more than one drone.

2. Objective (column ‘Obj.’) denotes the considered objective. We have found three

different types of objectives. ‘Makespan’ identifies configurations that minimize the

time at which the last truck returns to the depot (frequently denoted as makespan

in the associated literature), ‘Op. Cost’ (resp. ‘Gl. Cost’) refers to formulations

that minimize the variable operational costs (resp. the global costs, which include

both variable and fixed costs). Operational costs include the expenses linked to

operating trucks and drones and, for some configurations, the drivers salaries. The

global costs take into account, in addition to the operational costs described above,

the fixed costs incurred by engaging trucks and drones. In the present work, the

number of trucks and drones are minimized while ensuring that all customer deliv-

eries are performed within their associated TWs. The global costs turn out to be a

generalization of the other objective functions. Indeed, driver salaries are propor-

tional to the makespan. For specific values of the model’s parameters, the variable

operational costs are found by removing the fixed costs from the objective function,

and the makespan corresponds to cases where only drivers salaries remain in the

objective function.

3. Vehicle Routing Problem (VRP) Constraints (column ‘VRP Cst.’) indicates which

VRP constraints are taken into account. ‘Capa.’ stands for the capacity constraint

4.2. Literature Review 79

restricting the total parcel weight carried by each truck. ‘TW’ refers to time window

constraints. ‘T-max’, which stands for the truck maximal day duration, limits the

number of daily working hours for each truck driver.

4. Synchronization Type (column ‘Synch.’) specifies how drones synchronize with

trucks to be refilled. All papers listed in Table 4.1 address the situation where

a drone can be launched and retrieved at different locations, referred to as acyclic

configuration. We identify the configurations that, in addition to the acyclic case,

consider a ‘Cyclic’ configuration where the drones can be launched and retrieved at

the same location. ‘Switch’ indicates formulations allowing a drone to be managed

by different trucks (i.e., launched by one truck and retrieved by another).

5. Transfer Point (column ‘Transfer’) indicates at which locations drones can be launched

and retrieved. ‘Cust.’ refers to situations where drones can be launched and re-

trieved at any customer location. ‘Dock’ denotes cases where drones can be oper-

ated from specifically defined docking nodes. ‘Wherever’ indicates that drones can

be launched and retrieved everywhere.

6. Drone Constraints (column ‘Drone Cst.’) indicate the specific drone constraints.

We have identified two types of constraints associated with limited battery size:

‘Endu.’ when the drone’s endurance is taken into account (i.e., the time difference

between the launch and the retrieval of the drone is upper-bounded); ‘Dist.’ when

the drone’s flying distance is constrained. In the latter, it is assumed that drones

can wait indefinitely for the retrieving truck to arrive. Note that all papers but

[Wang and Sheu, 2019] consider that drones can only transport one parcel at a time.

7. Solution Methods (column ‘Method’) lists the considered solution methods. Several

papers propose exact approaches to tackle truck-and-drone problems. Exact meth-

ods are classified with the following acronyms ‘MILP’, ‘BP’ (Branch and Price),

‘BB’ (Branch and Bound), and ‘DP’ (Dynamic Programming). These exact meth-

ods do not allow for solving instances larger than 20 customer deliveries. For larger

instance sizes, heuristics have been proposed. ‘RFCS’ stands for the Route-First-

80 Chapter 4. Synchronizing trucks and drones

Cluster-Second heuristic. It starts from optimized routes obtained for a fleet made

of trucks only. Next, it creates clusters for the drones by assigning customers to

drones until no more saving can be achieved. Local search (LS) metaheuristics

have also been extensively used to tackle larger instances of truck-and-drone prob-

lems: ‘GRASP’ (Greedy Randomized Adaptive Search Procedure); ‘SA’ (Simulated

Annealing); ‘VNS’ (Variable Neighborhood Search); ‘ALNS’ (Adaptive Large Neigh-

borhood Search). The last three metaheuristics iteratively improve one single solu-

tion during the execution of the algorithm. In SA, the generated neighbor solution

replaces the current one according to an acceptance mechanism that allows for

some deterioration at early stages of the metaheuristic. VNS and ALNS differ from

SA by the fact that they consider large neighborhood search (e.g., LNS, proposed

by [Shaw, 1998]), which means that large neighborhood structures are used in the

search process (i.e., more significant modifications of the current solution structure

can be performed to generate a neighbor solution). Whereas VNS only accepts im-

proving solutions, ALNS uses the SA acceptance criteria to decide whether to move

the search to the newly generated neighbor solution. At the intersection of exact

methods and metaheuristics, ‘MH’ stands for matheuristic. Matheuristics combine

the use of metaheuristics and of exact algorithms. ‘Cont Opt.’ indicates that contin-

uous optimization is considered. Denoted by ‘Worst Case’, [Wang et al., 2017] and

[Poikonen et al., 2017] compute theoretical bounds for various problems involving

the synchronization of multiple trucks and multiple drones, but they do not propose

a related solution method.

8. Size (column ‘Size’) specifies the largest number of customers handled by the dif-

ferent formulations.

Regarding the considered problem, Table 4.1 shows that no paper explicitly considers the

specific characteristics addressed in the present work. More precisely, we integrate a global

cost function that includes fixed and operational costs, TWs, and complex synchronization

constraints between multiple trucks and drones (i.e., a truck can either wait at a customer’s

4.2. Literature Review 81

location to refill a drone multiple times or move on to the next customer’s location while

the drone is flying). Additionally, our formulation allows removing trucks and replacing

them with drones. Moreover, no paper explicitly considers the trade-off between the

numbers of trucks and drones employed.

Regarding the solution methods, Table 4.1 indicates that exact approaches can solve in-

stances with up to 20 customers. Metaheuristics can tackle larger instances (i.e., involving

more than 100 customers). In particular, ALNS has recently been used to efficiently solve

even larger truck-and-drone problems [Sacramento et al., 2019] and has proven to be a

powerful method for solving problems involving the synchronization of different types

of vehicles (e.g., [Masson et al., 2014], [Grangier et al., 2016]). Heuristics based on the

RFCS principle have been extensively used to solve truck-and-drone problems. These

methods rely on an initial phase of efficient and well-established algorithms to solve the

associated VRP with trucks only. The resulting solutions are then improved in the second

phase by introducing drone sub-tours. Although RFCS can efficiently use VRP solutions

created in the first phase, it suffers from being easily trapped in local minima. Indeed, the

truck routes cannot be completely reshaped in the second phase of the procedure. More-

over, RFCS cannot find solutions involving fewer trucks than in the initial VRP solution.

When optimizing a global cost function, it appears crucial to address the existing poten-

tial of replacing some trucks by drones with respect to the corresponding VRP solution.

In this paper, we propose both a MILP and a dedicated ALNS for the MC-VRPTW-D,

and we compare them with a standard RFCS procedure.

82 Chapter 4. Synchronizing trucks and drones

Paper Config. Obj. VRP Cst. Synch. Transfer Drone Cst. Method Size

[Murray and Chu, 2015] 1/1/1 Makespan - - Cust. Endu. MILP, RFCS 20

[Ponza, 2016] 1/1/1 Makespan - - Cust. Endu. SA 200

[Carlsson and Song, 2017] 1/1/1 Makespan - - Wherever - Cont. Opt. 100

[Wang et al., 2017], N/N/m Makespan - Cyclic Cust. Endu. Worst Case -

[Poikonen et al., 2017]

[Pugliese and Guerriero, 2017] N/N/m Op. Cost TW - Cust. Endu. MILP 10

[Ha et al., 2018] 1/1/1 Op. Cost - - Cust. Endu. MILP, GRASP 100

[Yurek and Ozmutlu, 2018] 1/1/1 Makespan - - Cust. - RFCS 20

[Agatz et al., 2018], 1/1/1 Gl. Cost - - Cust. Endu. RFCS, DP 10

[Bouman et al., 2018]

[Boysen et al., 2018a] 1/N/m Makespan - Cyclic Cust. - MILP, SA 100

[Poikonen et al., 2019] 1/1/1 Makespan - Cyclic Cust. Endu. BB 10

[Sacramento et al., 2019] N/N/1 Op. Cost Capa., - Cust. Endu. MILP, ALNS 250

T-max

[Wang and Sheu, 2019] N/N/m Gl. Cost Capa. Switch Dock Endu. BP 15

[Schermer et al., 2019a] N/N/m Makespan - - Cust., Dock Dist. MILP, 50

VNS

[Schermer et al., 2019b] N/N/m Makespan - Cyclic Cust. Dist. MILP, MH 100

This work N/N/1 Gl. Cost TW Cyclic Cust. Endu. MILP, RFCS, 100

T-max ALNS

Table 4.1: Comparison of related truck-and-drone formulations.

4.3 Problem Formulation

The ELP’s practical assumptions are presented in Section 4.3.1. The considered type of

synchronization of trucks and drones is described in Section 4.3.2. The considered sets,

parameters, and variables are defined in Section 4.3.3. Finally, Section 4.3.4 proposes the

MILP model for the MC-VRPTW-D.

4.3.1 Practical Assumptions

We consider the following assumptions associated with the ELP context.

• Each job (i.e., customer delivery) is served, exactly once, by either a truck or by a

4.3. Problem Formulation 83

drone.

• Some jobs are not eligible to be served by drones (e.g., parcels that are too heavy

to be transported by a drone or customer locations at which drone landing is im-

possible).

• A truck can embed one drone.

• Each drone is assigned to a truck and returns to its assigned truck after each flight.

To avoid robustness issues, the ELP does not consider the case where a drone can

be retrieved by another truck.

• The drones can deliver a single parcel during each flight.

• The drones cannot accept jobs directly from the depot.

• The maximum working-day duration is fixed, and the drivers are paid for the whole

duration spent outside the depot. When workers come back earlier at the depot,

they can be employed for other tasks (e.g., prepare the parcels for the next day, do

some maintenance work). Hence, we only pay for the time spent outside the depot.

• The endurance of the drone is limited and depends on its battery life.

• The drone launching and retrieving times are ignored as they are negligible, the

batteries are supposed to be instantaneously swapped between flights.

• The delivery time depends on the vehicle involved (i.e., either a truck or a drone).

4.3.2 Truck-and-Drone Synchronization

Figure 4.1 displays the different types of truck-and-drone synchronization that are allowed

at a node (i.e., the job location). Plain (resp. dashed) arcs represent truck (resp. drone)

routes. The operations allowed at a node are as follows.

84 Chapter 4. Synchronizing trucks and drones

(1) Drone Retrieval: after arriving at node j3, the truck retrieves the drone that has

just delivered a parcel at j2.

(2) Drone Launch and Retrieval: the truck launches the drone from j3, serves the

corresponding job, and waits until the drone comes back to the same node.

(3) Drone Launch, then Leave: the truck launches the drone from j3 and continues on

its route to j6.

At any node, a truck can perform one or more of these operations or none of them. To

prevent the driver from experiencing an excessive waiting time at a node, the ELP forbids

a truck from performing more than one type (2) operation at the same node.

j1

j2

j3

j4

j5

j6

Figure 4.1: Different types of truck-and-drone synchronizations allowed at a job location.

4.3.3 Sets, Parameters, and Variables

Let J = {1, . . . , n} be the set of jobs (i.e., delivery locations) and H the set of trucks.

T ∈ N denotes the time horizon (in minutes). Drivers can start their working day at time

eh and must return to the depot before lh (hence, T = lh − eh). From this point, the use

of ·̃ differentiates parameters related to trucks and drones. For job j ∈ J : pj ∈ N (resp.

p̃j ∈ N) is its processing time (in minutes) when served by a truck (resp. by a drone);

(ej, lj) ∈ [0, T] is its TW (the service must start within it); aj = 1 indicates that the job

can be served by a drone (aj = 0 otherwise). Between two jobs (i, j), the travelling (resp.

4.3. Problem Formulation 85

flying) distance is given by dij ∈ R (resp. d̃ij ∈ R), and the driving (resp. flying) time is

denoted by τij ∈ R (resp. τ̃ij ∈ R). The drone’s endurance is given by E .

The cost parameters are as follows. cf ∈ R (resp. c̃f ∈ R) is the truck’s (resp. drone’s)

daily fixed cost (in e). cdij ∈ R is the cost of driving from i ∈ J to j ∈ J (in e). ct ∈ R

is the driver’s wage (in e/h), and c̃t ∈ R is the flying cost (in e/h). For drones, the

flying time is the only variable cost, whereas for trucks and their assigned drivers, the

variable costs include both the truck’s fuel consumption, which is proportional to the

driving distance, and the driver wage, which is proportional to the time spent outside the

depot.

To handle the synchronization of trucks and drones, we create virtual nodes for each job

to distinguish the time at which the drone is launched, the time at which it is retrieved,

and the time at which the job is served. Accordingly, drones are launched and retrieved

at virtual nodes. Indeed, considering the example displayed in Figure 4.1, the time at

which the parcel is delivered by the truck at j3 differs from the times at which the drone

is retrieved from j2 and relaunched towards j5. We introduce the following extended

sets and variables. J− = {n + 1, . . . , 2 · n} is the set of virtual entry nodes, whereas

J+ = {2 · n + 1, . . . , 3 · n} is a set of virtual exit nodes. In our modeling, a truck

that serves job j first visits j + n (a drone can be launched and/or retrieved at this

node), then visits j (to set the time at which the parcel is delivered at j) and finally

visits j + 2 · n (a drone can be launched and/or retrieved at this node). Moreover,

{0} is the node representing the starting depot, and {3 · n + 1} represents the terminal

depot. We introduce V = J− ∪ J+, the set of virtual nodes, and V − = V ∪ {0} and

V + = V ∪ {3 · n + 1}. A1 = {(i, j) ∈ (V ∪ {0})× (V ∪ {3 · n + 1}), such as i 6= j, if i =

0 then j ∈ J−, if i ∈ J− then j = i + n, if i ∈ J+ then j ∈ J− ∪ {3 · n + 1}} is set of

arcs that can be used by the trucks, it gathers all paths between virtual nodes except

those that cannot be used in any solution (e.g., between two nodes in J+). Respectively,

A2 = {(i, j, k) ∈ V −×J×V +, such as i 6= j+n, k 6= j+2·n, aj = 1, and τ̃ij+τ̃jk+p̃j ≤ E}

86 Chapter 4. Synchronizing trucks and drones

is the set of all possible flying tours for drones (we removed some tours, e.g., a drone

starting from a node in J+ cannot be retrieved by the associated node in J−).

We define the decision and the intermediate variables :

• xhij ∈ {0, 1} is equal to 1 if truck h ∈ H travels from i ∈ V − to j ∈ V +, 0 otherwise,

• yhijk ∈ {0, 1} is equal to 1 if the drone assigned to truck h ∈ H visits j ∈ J in a

sub-route starting from i ∈ V − and arriving at k ∈ V +, 0 otherwise,

• zhij ∈ {0, 1} is equal to 1 if truck h ∈ H transports a drone from i ∈ V − to j ∈ V +,

0 otherwise,

• uhj ∈ R: time at which truck h ∈ H leaves j ∈ V ,

• sj ∈ R: the service time of job j ∈ J ,

• w̃ijk ∈ R: flying time corresponding to the flight where the drone is launched at

i ∈ V −, serves customer j ∈ J , and is retrieved at k ∈ V + (w̃ijk = 0 if such a flight

does not exist),

• rh ∈ {0, 1} is equal to 1 if a drone is assigned to truck h ∈ H, 0 otherwise.

4.3.4 Mixed-Integer Linear Program

The MILP is solved for a fixed number of trucks. To minimize the number of trucks, the

MILP is launched iteratively, reducing the number of trucks by one each time. For a given

number of trucks, Objective (4.1) minimizes the number of drones, the distance traveled

by trucks, the driver’s completion times (i.e., salaries), and the drones’ flying times.

min
∑
h∈H

c̃f · rh +
∑
h∈H

∑
(i,j)∈A1

cdij · xhij +
∑
h∈H

ct · (uh3·n+1) +
∑

(i,j,k)∈A2

c̃t · w̃ijk (4.1)

4.3. Problem Formulation 87

Constraints (4.2) ensure that each job is completed exactly once by either a truck or a

drone. The left component indicates that if a truck enters a virtual entry node (j+n ∈ J−),

it serves the corresponding job. The right component checks whether the considered job

belongs to a drone’s flight route.

∑
h∈H

 ∑
(i,j+n)∈A1

xhi,j+n +
∑

(i,j,k)∈A2

yhijk

 = 1 j ∈ J (4.2)

Various vehicle-flow constraints must be satisfied. Figure 4.2 illustrates the paths that

can be followed by a drone. If a drone is retrieved or launched at node i ∈ V , a truck

route must pass by i. Constraints (4.3) ensure that a drone arriving at i ∈ V by flying or

being transported in a truck must then exit the node by either flying or being transported.

Similarly, Constraints (4.4) and (4.5) prevent a drone from arriving at (or exiting from)

a node i ∈ V by two different paths. Constraints (4.6) force a truck arriving at a virtual

node to ultimately leave this node. Constraints (4.7) force a truck that leaves the depot

to return to the depot at the end of its tour. Constraints (4.8) state that a truck can

only exit the depot by one arc. Constraints (4.9) ensure the en-route synchronization of

drones and trucks. Constraints (4.10) indicate whether the drone assigned to truck h ∈ H

is engaged.

i ∈ V
∑

(i,k)∈A1

zhik

∑
(i,j,k)∈A2

yhijk∑
(k,i)∈A1

zhki

∑
(k,j,i)∈A2

yhkji

Figure 4.2: Path consistency for a drone.

88 Chapter 4. Synchronizing trucks and drones

∑
(k,i)∈A1

zhki +
∑

(k,j,i)∈A2

yhkji =
∑

(i,j,k)∈A2

yhijk +
∑

(i,k)∈A1

zhik i ∈ V , h ∈ H (4.3)

∑
(k,i)∈A1

zhki +
∑

(k,j,i)∈A2

yhkji ≤ 1 i ∈ V , h ∈ H (4.4)

∑
(i,j,k)∈A2

yhijk +
∑

(i,k)∈A1

zhik ≤ 1 i ∈ V ∪ {0}, h ∈ H (4.5)

∑
(j,i)∈A1

xhji =
∑

(i,j)∈A1

xhij i ∈ V , h ∈ H (4.6)

∑
(0,i)∈A1

xh0i =
∑

(i,3·n+1)∈A1

xhi,3·n+1 h ∈ H (4.7)

∑
(0,i)∈A1

xh0i ≤ 1 h ∈ H (4.8)

zhij ≤ xhij (i, j) ∈ A1, h ∈ H (4.9)

r̃h ≥
∑

(i,j,k)∈A2

yi,j,k j ∈ J , h ∈ H (4.10)

Various temporal constraints must be satisfied. At a node in J− ∪ J+, a truck can

retrieve or launch a drone, perform both of these tasks, or do nothing. Furthermore, a

truck must leave the corresponding node after all these operations take place. We set

M1 = τmax + lmax, M2 = τ̃max + lmax, and M3 = τ̃max + p̃max + lmax. Constraints (4.11)

require truck h ∈ H to leave node j ∈ V after its arrival. Constraints (4.12) (resp. (4.13))

ensure that service occurs after the truck’s (resp. the drone) arrival. Constraints (4.14)

force truck h ∈ H to leave the node after completing the associated service. Constraints

(4.15) allow truck h ∈ H to leave the node after its assigned drone arrives. Constraints

(4.16) compute the drone’s flying time, i.e., the time length between the launch and the

retrieval. Constraints (4.17) forbid any flight from having a longer duration than the

drone’s endurance. Constraints (4.18) require that the service times correspond to their

4.4. Solution Methods for the MC-VRPTW-D 89

associated TWs.

uhj ≥ uhi + τij −M1 · (1− xhij) (i, j) ∈ A1, h ∈ H (4.11)

sj ≥ uhj+n j ∈ J , h ∈ H (4.12)

sj ≥ uhi + τ̃ij −M2 · (1−
∑

(i,j,k)∈A1

yhijk) j ∈ J , i ∈ V − (4.13)

uhj+2·n ≥ sj + pj j ∈ J , h ∈ H (4.14)

uhk ≥ sj + p̃j + τ̃jk −M3 · (1−
∑

(i,j,k)∈A2

yhijk) j ∈ J , k ∈ V +, h ∈ H (4.15)

w̃ijk ≥ uhk − uhi − lmax · (1−
∑
h∈H

yhijk) i ∈ V −, j ∈ J , k ∈ V + (4.16)

w̃ijk ≤ E i ∈ V −, k ∈ V +, j ∈ J (4.17)

ej ≤ sj ≤ lj j ∈ J (4.18)

4.4 Solution Methods for the MC-VRPTW-D

No papers have proposed a solution method for the MC-VRPTW-D in its full complexity

(i.e., multiple trucks with embedded drones, parcel delivery under TW constraints, and a

global cost function to be minimized). The ALNS is introduced in Section 4.4.1. Next, a

RFCS heuristic is proposed in Section 4.4.2. Finally, Section 4.4.3 presents the algorithm

used to build an initial solution.

4.4.1 Adaptive Large Neighborhood Search (ALNS)

The ALNS proposed for the MC-VRPTW-D is given in Algorithm 5. Starting from a

feasible solution, at each iteration, a neighbor solution s′ is generated from the current

solution s by removing and re-inserting several jobs (LNS, [Shaw, 1998]). The search

moves from s to s′ if s′ improves s, or with a probability e−(c(s′)−c(s))/T that depends on

90 Chapter 4. Synchronizing trucks and drones

the deterioration of solution s′ when compared to s: c(s) is the cost of solution s, and

T is an exogenous parameter, called the temperature, that decreases with the execution

time. Step (5) of Algorithm 5 describes the mechanism used to update the temperature,

where T0 (resp. Tf) is a parameter that specifies the initial (resp. final) temperature. This

corresponds to the well-known Metropolis criterion employed in Simulated Annealing (SA)

[Kirkpatrick et al., 1983].

ALNS combines multiple LNS heuristics by considering a pool R (resp. I) of removal

(resp. insertion) heuristics. For each heuristic i ∈ I ∪ R, πi denotes the score obtained

during the last η iterations (the score increases each time the heuristic has been used

to find a solution accepted by the metropolis criteria); ωi is the weight assigned to the

heuristic, the greater this weight is, the higher the probability for the heuristic to be

selected for the next step of Algorithm 5. The weight ωi of a heuristic is updated each

η iterations according to the formula: ωi = (1 − r) · ωi + r · πi, where r ∈ [0, 1] is a

parameter called the learning rate. At each iteration, the probability of selecting the

insertion heuristic i ∈ I (resp. i ∈ R) is given by: ωi/
∑

i′∈I ωi′ (resp. ωi/
∑

i′∈R ωi′).

At each step of ALNS, the number q of jobs to be removed and reinserted is randomly

chosen. ALNS stops after a given maximum execution time tmax.

Algorithm 5 takes as input the largest execution time tmax, the initial and final tempera-

ture T0 and Tf , the learning rate r, the size of a segment η (i.e., the number of iterations

before updating the heuristics’ weights), the largest absolute number of jobs (resp. per-

centage of jobs) qmax (resp. pmax) that can be removed at each iteration, and the reward

attributed to successful heuristics σ. Preliminary experiments have led to the following

parameter setting: (qmax = 35, η = 20, r = 0.3, σ = 100); T0 (resp. Tf) is chosen so

that at the beginning of ALNS, a deterioration of 10% (resp. 0.01%) is accepted with a

probability of 50% (resp. 0.01%).

4.4. Solution Methods for the MC-VRPTW-D 91

Algorithm 5 Adaptive Large Neighborhood Search (ALNS)

Input: initial solution s, tmax, (T0, Tf), r, η, qmax, pmax, σ.

Initialization: set qm = min{pmax · |J |, qmax}; set πi = 0, ∀i ∈ I ∪ R; set ωi = σ, ∀i ∈ I ∪ R;
set T = T0;

While the execution time is lower than tmax, do:

(1) Select one removal heuristic and one insertion heuristic. The heuristic i ∈ R has a
probability ωi/

∑
i′∈R ωi′ of being selected, similarly, heuristic i ∈ I has a probability

ωi/
∑

i′∈I ωi′ of being selected.

(2) Select randomly the number q ∈ [2, qm] of jobs to be removed.

(3) Generate s′ from s according to the selected removal and insertion heuristics (LNS pro-
cedure).

(4) Move or not the search from s to s′ with respect to the Metropolis criterion.

(5) Update the search parameters:

• update the score πi of the heuristic used, set πi = πi + σ if heuristic i ∈ I ∪ R has
been used and if solution s′ is accepted;

• update the temperature: set T = Tf + (T0−Tf) · (te−tmaxtmax
)10, where te is the current

execution time;

• update the score of each heuristic: each η iterations, update the weight ωi of each
heuristic i, set ωi = (1− r) · ωi + r · πi Set πi = 0, ∀i ∈ I ∪R.

92 Chapter 4. Synchronizing trucks and drones

Removal Heuristics

The following removal heuristics are proposed.

(1) Random Removal. The jobs to be removed are randomly selected.

(2) Related Removal. As stated in [Shaw, 1998], it is likely to be easier to reinsert jobs

that are somehow related to each other. Accordingly, the jobs being removed are

sequentially selected, and the probability of the next job to be removed directly

depends on its relatedness to one of the already removed jobs. Equation (4.19)

describes the function R(j, j′) used to define the relatedness of two jobs, j and

j′. As R(j, j′) decreases, the jobs become more closely related. R(j, j′) takes into

account geographical aspects (i.e., distance), temporal dimensions (i.e., service time

and TW), and the current solution dispatch (1jj′ = 1, if j and j′ are served by the

same vehicle, 0 otherwise). At each step, the Related Removal heuristic randomly

selects one of the already removed jobs, say jrm. All the jobs still belonging to

the solution are then ranked in a list, L, from the most to the least related to jrm.

Finally, we select the job at position L[yρ · |L|], where y is randomly chosen in [0, 1],

and ρ is a parameter. Preliminary experiments have led to the following parameter

tuning: (α, β, γ, δ, ρ) =

(
1/max

(j,j′)
djj′ , 1/(lh − eh), 1/(lh − eh), 1, 0.89

)
.

R(j, j′) = α · djj′ + β · |sj − sj′ |+ γ · |lj − lj′|+ δ · 1jj′ (4.19)

(3) Worst Removal. The jobs that have the largest contribution to the global cost

function have a higher probability of being removed. As for the Related Removal

heuristic, the jobs are ranked according to their contribution in the global cost

function and selected accordingly.

4.4. Solution Methods for the MC-VRPTW-D 93

Insertion Heuristics

Let Jout be the set of jobs to be reinserted into a truck-and-drone solution. Let cHjh (resp.

cLjh) be the cost of inserting j ∈ Jout at its cheapest position in the route of truck h ∈ H

(resp. in the schedule of the drone assigned to truck h ∈ H). cjh = min{cHjh, cLjh} is,

hence, the cheapest option when inserting j into the solution; we set cjh = ∞ if no

feasible insertion position can be found. c̄jl designates the lth lowest cost for the insertion

of job j ∈ Jout on a route. We consider the following insertion heuristics.

(1) Best Insertion. Jobs that minimize the insertion cost (i.e., have the lowest c̄j,1) are

inserted first.

(2) k-Regret Insertion. This heuristic minimizes the regret of not inserting a job in the

early stages of the procedure by first inserting jobs with the highest k-regret. The

k-regret of job j ∈ Jout is the difference between the kth smallest insertion cost (c̄jk)

and the smallest insertion cost (c̄j1). We have used k ∈ {1, 2} in our experiments.

(3) Drone-First Insertion. This heuristic is similar to the Best Insertion heuristic, but

we only consider the drone insertion cost. More precisely, we only compute cLjh for

each j ∈ J and h ∈ H, and we select the best insertion based on these values. We

compute cHjh for jobs that could be inserted into a drone schedule and select the best

insertion as in the Best Insertion heuristic.

4.4.2 Route-First-Cluster-Second (RFCS)

The pseudocode of RFCS is given in Algorithm 6. It acts as a decomposition algorithm

that first builds truck routes and then assigns jobs to drones. We investigate this pro-

cedure as it has been extensively used in the related literature [Murray and Chu, 2015,

Agatz et al., 2018, Ham, 2018]. The proposed RFCS builds a VRP solution with an ALNS

94 Chapter 4. Synchronizing trucks and drones

relying on [Pisinger and Ropke, 2007]. For VRP, ALNS has been acknowledged to be one

of the most efficient algorithms. In the second phase, RFCS attempts to improve the solu-

tion by sequentially assigning some jobs to drones within a descent local search framework

(i.e., a modification is accepted only if it can reduce the costs). The solution is modified

by removing one job and reinserting it at its best position (i.e., best insertion heuristic

for one single job). Using the most efficient VRP algorithms to build the initial truck

routes, the RFCS procedure is, hence, able to quickly deliver competitive solutions that

are at least as good as the solutions involving trucks only. The algorithm stops when no

further savings can be achieved by reassigning a job in the solution.

Algorithm 6 Route-First-Cluster-Second (RFCS) algorithm

Input: set J of jobs, considered network.

(1) Route First: use ALNS to serve all customers with trucks only. Let s be the resulting
VRP solution.

(2) Cluster Second: assign customers to drones if the objective function can be improved.
For each truck h ∈ H of solution s that does not transport a drone, do:

(a) Assign a drone D to truck h, and let sh denote the resulting solution.

(b) While a saving is encountered thanks to the use of D, do:
perform the best reassignment move, where a reassignment move consists in relocat-
ing a job j ∈ J at its best position in sh (either using a drone or a truck).

(c) If all the savings achieved thanks to D are larger than the fixed cost of the drone,
set s = sh.

Return s

4.4.3 Initial Solution

Starting from an empty solution where no job is performed, the initial solution is generated

in two steps. First, the Best Insertion heuristic is used until all the jobs have been inserted.

At each iteration, if a job cannot be inserted into existing routes, a new truck and drone

tandem is added. To reduce the number of trucks used in the obtained VRP solution s0,

a modified version of ALNS is launched starting from s0. In this version of ALNS, a drone

or truck is removed from the solution each time a feasible solution is found. All the jobs

4.5. Speed up the Insertion Mechanism 95

performed by the removed vehicles are stored in a request pool. A solution is said to be

feasible when the request pool is empty (i.e., all jobs are served). Conversely, when the

request pool is not empty, the solution is said to be unfeasible. The insertion mechanism

aims to reinsert the jobs stored in the request pool at the same time as those removed in

the ALNS process.

4.5 Speed up the Insertion Mechanism

As described in Section 4.4, ALNS strongly relies on the insertion mechanisms to iter-

atively improve the solution. In the context of MC-VRPTW-D, insertion mechanisms

exhibit much greater complexity than standard VRP situations. To tackle realistic in-

stances, ALNS must employ fast procedures to evaluate the feasibility and cost of a so-

lution obtained after an insertion. This section proposes heuristics to significantly speed

up the insertion mechanisms.

4.5.1 Modeling Aspects and Notation

Let Rh be a truck-and-drone route. Rh is an ordered set of nodes in J ∪V ∪{0, 3 ·n+ 1}.

With each node i ∈ Rh, we associate the time Xi at which the truck or the drone visits

it. A solution is feasible if Constraints (4.20 – 4.29) are satisfied. Constraints (4.20)

frame the traveling time from one node to another in Rh. Constraints (4.21 – 4.22) create

dependencies between node j and its assigned virtual nodes when it is served by a truck.

Constraints (4.23) refer to the time constraints related to drone endurance. Constraints

(4.24 – 4.25) are active when a drone serves j, accounting for the travel and job processing

time. Constraints (4.26 – 4.27) refer to the job’s TW satisfaction. Constraints (4.28 –

96 Chapter 4. Synchronizing trucks and drones

4.29) refer to the worker’s longest duration spent outside of the depot.

Xj −Xi ≥ τij, if the truck goes from i ∈ V − to j ∈ V + in Rh, (4.20)

Xj −Xj+n ≥ 0, if the truck serves j ∈ J , (4.21)

Xj+2·n −Xj ≥ pj, if the truck visits j ∈ J , (4.22)

Xi −Xk ≥ −E, if the drone is launched at i ∈ V − and retrieved at k ∈ V +,(4.23)

Xi −Xj ≥ τ̃ij, if the drone is launched at i ∈ V − to visit j ∈ J , (4.24)

Xk −Xi ≥ pj + τ̃jk, if the drone is retrieved at k ∈ V + after serving j ∈ J , (4.25)

Xj − 0 ≥ ej, ∀j ∈ J, (4.26)

0−Xj ≥ −lj, ∀j ∈ J, (4.27)

0−X0 ≥ eh, ∀j ∈ J, (4.28)

0−X3·n+1 ≥ −lh, ∀j ∈ J. (4.29)

To efficiently tackle these temporal constraints, we model Rh with a precedence graph

G = (V , E). V = J ∪V ∪{0, 3 ·n+ 1}∪O designates all the physical and virtual nodes. O

denotes the origin node required to model TW in Constraints (4.26 – 4.29). E represents

all the temporal constraints detailed in Constraints (4.20 – 4.29). More precisely, for any

constraint of type Xj − Xi ≥ tij, where tij ∈ R, an arc from i to j with a weight tij is

added to E .

In the context involving the synchronization of transportation resources when passenger

transfers can occur on the routes, [Masson et al., 2013] has shown that determining the

feasibility of a solution is equivalent to checking for the presence of a cycle of positive

length in the precedence graph. To do so, the Bellman-Ford-Tarjan algorithm (BFCT)

[Cherkassky et al., 2009] is acknowledged to be the most efficient. In our context, it has

a computational complexity of O(n2).

For a feasible truck-and-drone route Rh, εi and λi denote the bounds for Xi (i.e., Xi ∈

4.5. Speed up the Insertion Mechanism 97

[εi, λi]). Specifically, i cannot be visited before εi, and leaving later than λi leads to the

violation of a future TW. wik denotes the waiting time for the truck between two nodes

i ∈ V and k ∈ V in the precedence graph. Relying on [Masson et al., 2013], computing

εi, λi and wik is done in O(n2).

4.5.2 Greedy Algorithm to Insert a Job at its Best Position

Algorithm 7 describes the greedy algorithm used to compute the best insertion position

for job j on a truck-and-drone route Rh. For all insertion positions in a truck or drone

schedule, it first checks if the resulting solution is feasible (steps (1b) and (2b)), then

it computes the additional costs associated with the generated solution (steps (1c) and

(2c)).

In the context of MC-VRPTW-D, checking the feasibility of an updated solution is rather

complicated as it requires checking that the drone’s endurance constraint is satisfied, in

addition to the non-violation of TW constraints. For example, the drone’s retrieval could

be delayed after its insertion into a truck route. Such a delay could violate the drone

endurance constraint. In this case, the drone’s launch might be delayed to ensure the

feasibility of the endurance constraint, but this delay precludes the constants of the graph

(ε, λ, w) being used further. This results in heavier computational requirements to check

the feasibility of an updated solution and evaluate its cost. Moreover, compared with

standard VRP situations, the number of insertions to be tested increases in the MC-

VRPTW-D case. Indeed, in addition to insertions into truck schedules, we also have to

consider insertions into drone schedules (step (2)).

Recomputing the whole solution for all insertion positions precludes ALNS from visiting

a sufficiently large number of neighbor solutions per iteration. To avoid this drawback,

Section 4.5.3 (resp. Section 4.5.4) proposes an algorithm that: (1) checks in constant time

98 Chapter 4. Synchronizing trucks and drones

whether an insertion in a drone (resp. a truck) schedule is feasible and (2) evaluates the

resulting costs.

Algorithm 7 Finding the best insertion position for job j in truck-and-drone route Rh

Input: feasible truck-and-drone route Rh; job j ∈ J that is not served in Rh.

Initialization: set cHjh =∞; set cLjh =∞.

(1) Compute the cost cHjh of assigning j to the truck.

For each node i ∈ J+ ∪ {O} visited in Rh, do the following:

(a) Insert j after i in Rh.

(b) Check the feasibility of the generated route.

(c) Compute the cost ∆H
ih of the generated route (set ∆H

ih =∞ if the solution is not feasible).

(d) Set cHjh = min{cHjh,∆H
ih}.

(2) If aj = 1, compute the cost cLjh of assigning j to the drone.

For each node (i, k) ∈ (V ∪ {O}) × (V ∪ {3 · n + 1})) such that (i is visited before k in Rh)
and (the drone is on-board from i to k), do the following:

(a) Insert j into the drone’s scheduling such that the drone is launched from i and retrieved
at k in Rh.

(b) Check the feasibility of the generated route.

(c) Compute the cost ∆L
ikh of the generated route (set ∆L

ikh =∞ if the solution is not feasible).

(d) Set cLjh = min{cLjh,∆L
ikh}.

Return cjh = min{cHjh, cLjh} and the corresponding position in Rh.

4.5.3 Insertion of a Job into a Drone’s Schedule

Algorithm 8 allows avoiding the systematic use of BFCT at step (2b) of Algorithm 7. It

evaluates whether launching a drone from node i and then retrieving it at node k after

serving client j results in a feasible solution. Furthermore, it computes the cost difference

of the associated solution. Note that the number of pairs (i, k) to test grows in O(n2).

The precedence graph is used to check the feasibility of the insertion (step (1)). More

precisely, we check whether the arcs added when launching a drone at node i and retrieving

4.5. Speed up the Insertion Mechanism 99

it at node k induce a cycle of positive length in the precedence graph. Figure 4.3 shows a

subgraph extracted from the precedence graph after inserting job j into the solution when

a drone is launched at node i ∈ V − and retrieved at node k ∈ V +. The plain arcs with

weight εi and λi (resp. εk and λk) denote the earliest and latest arrival times at node i

(resp. at node k) and show the paths existing in the solution before the insertion. Dashed

lines represent the arcs added in the precedence graph after proceeding to the insertion

of client j between nodes i and k. Figure 4.3 is helpful to understanding where a cycle of

positive length could appear in the precedence graph after the insertion.

Algorithm 8 also computes the service time εj at client j, and the induced delay δi (resp.

δk) at node i (resp. k). Steps (1a) and (1b) are initialization steps. Step (1b) verifies

whether i is already a retrieval point for the drone. In this case, the delay at i must

be bounded so that the endurance of the drone arriving at i is not violated (step (1d)).

The service time at j and the delay at k are computed in steps (1c) and (1d), respec-

tively. These computations are similar to the Forward Time Slack (FTS) presented in

[Savelsbergh, 1992]. The remaining part of step (1d) focuses on the drone flight endurance

constraint. If the delay at k forces the drone to remain in flight longer than endurance

allows, we delay its launch time (δi). If this delay does not lead to a constraint violation,

we return to step (1c) to recompute the service time at j and the delay at k.

Next, if an insertion is found feasible (i.e., if there exists εj ≥ 0, δi ≥ 0 and δk ≥ 0),

Algorithm 8 computes the increased cost associated with the newly generated solution.

There are two sources of additional costs: costs related to powering the drone (step (2b))

and costs associated with the driver salary in the case the driver arrives later at the depot

(step (2c)) (when inserting a job in a drone schedule, the driver’s route does not change,

hence the fuel expenses do not change neither). In this case, we compare the delay induced

at k with the total waiting time for the driver between k and the depot.

100 Chapter 4. Synchronizing trucks and drones

i j′ k

O

τ̃i,j′

−λi
εi

τ̃j′k + p̃j′

−E

−λk
εk

ej−lj

Figure 4.3: Subgraph of the precedence graph after the insertion of job j into the schedule
of a drone launched at i and retrieved at k.

Algorithm 8 Check the feasibility and evaluate the cost of serving a client with a drone.

Input: truck-and-drone route Rh; job j ∈ J ; launch and retrieval points for the drone: (i, k) ∈
Rh.

(1) Check the feasibility:

(a) Set δi = 0 (delay at node i);

(b) If a drone flight arrives at node i (let σs ∈ Rh be the launch node corresponding to this
flight), set εσs to be the launching time at σs; Else: set εσs =∞, if no drone flight arrives
at i.

(c) Set the service time at j: εj = max{εi + δi + τ̃ij , ej}; return ‘infeasibility’ if εj > lj .

(d) Set the delay at k: δk = max{0, εj + pj + τ̃jk − εk}.
If εk + δk > λk, return ‘infeasibility’.
If εk + δk − (εi + δi) > E, do the following:

If δi = 0, set δi = εk + δk − E − εi.
If (εi + δi > λi) or (εi + δi − εσs > E), return ‘infeasibility’.

Else, go to step (1c).

Else return ‘infeasibility’.

(2) Evaluate the cost using the obtained values (εi, δi, δk):

(a) Compute the flying cost: ∆flying = (εk + δk − (εi + δi)) · c̃t.

(b) Compute the required augmentation of the driver’s salary: ∆salary = max(0, δk−wk,3·n+1)·
ct.

(c) Return ∆L
ikh = ∆flying + ∆salary.

4.5. Speed up the Insertion Mechanism 101

4.5.4 Inserting a Job into a Truck’s Schedule

Algorithm 9 checks the feasibility of the solution after inserting job j into a truck’s route

and computes the associated additional costs. Step (1a) checks whether a drone is in

flight when the insertion is performed. Let σs and σe be the launch and retrieval points of

a such flight on the route, respectively. Step (1d) verifies whether the drone’s endurance

constraint is violated. Note that we are considering a conservative case here. Indeed,

a delay may have to be introduced at σs to ensure the drone’s endurance constraint is

satisfied (from σs to σe). In this situation, we would need to further propagate the delay

through the previous drone flights as σs could be the retrieval node of a previous drone

flight. Considering such cases could lead to having to update the whole solution, which

would drastically slow down the insertion mechanisms and decrease the overall efficiency

of the ALNS. Preliminary experiments have shown that precluding these situations is

overcompensated by the increased number of iterations achieved by the ALNS.

In step (2), Algorithm 9 computes the additional costs associated with the newly generated

solution. It takes into account the increased driving distance (step (2a)), the increased

time en-route for the driver (step (2b)), and the increased flight time for the drone (step

(2c)) when it is also affected by the performed insertion.

4.5.5 Complexity of an Insertion

Table 4.2 compares the complexity associated with finding the best insertion position

for a job in a VRP solution and in a truck-and-drone solution. ‘Nb. Insertions’ counts

the total number of insertions to be tested and ‘Complexity’ gives the computational

complexity resulting from checking the feasibility of an insertion and evaluating the as-

sociated solution cost. n denotes the number of jobs in the solution. ‘BFCT’ stands for

the previously mentioned straightforward approach that recomputes the whole solution

102 Chapter 4. Synchronizing trucks and drones

Algorithm 9 Check the feasibility and evaluate the cost of serving a client with a truck.

Input: truck-and-drone route Rh; job j ∈ J ; launch and retrieval points for the drone: (i, k) ∈
Rh.

(1) Check the feasibility:

(a) Identify if a drone on flight: let (σs, σe) ∈ Rh the launch and retrieve points of a drone
such that: σs is visited before i, σe is visited after i in Rh.

Set the launch time εσs of the drone in Rh; Set εσs =∞ if such a flight does not exist.

Set the retrieval εσe time of the drone in Rh; Set εσe = 0 if such a flight does not exist.

Set the wait time wi+1,σe between i+ 1 and σe in Rh; Set wi+1,σe =∞ if such flight does
not exist.

(b) Set the service time at j: εj = max{εi + δi + τij , ej}; return ‘infeasibility’ if εj > lj .

(c) Set the delay at i + 1: δi+1 = max{0, εj + pj + τ̃j,i+1 − εi+1}; return ‘infeasibility’ if
εi+1 + δi+1 > λi+1.

(d) Set delay at σe: δσe = max{0, δi+1−wi+1,σe}; return ‘infeasibility’ if εσe + δσe − εσs > E.

(2) Evaluate the cost with the obtained values (εi, δi, δi+1, δe):

(a) Compute the driving cost: ∆driving = (cdi,j + cdj,i+1 − cdi,i+1).

(b) Compute the increased driver salary: ∆salary = max(0, δi+1 − wi+1,3·n+1) · ct.

(b) Compute the flying cost: ∆flying = δσe · c̃t.

(d) Return ∆H
ih = ∆driving + ∆salary + ∆flying.

4.6. Computational Experiments and Managerial Insights 103

to check its feasibility. When inserting a job into a truck route, the number of insertions

to be tested grows linearly with the number of jobs served by the truck. The number of

possible insertions into a drone schedule grows with the square of the number of jobs to

be inserted as we need to test all pairs (i, k) (i served before k) in the truck routes. In the

VRP case, checking the feasibility can be done in constant time due to the FTS principle.

Table 4.2 shows that in the VRP case, the computational complexity required to find

the best insertion position for a job grows with O(n). In the truck-and-drone case, our

heuristics allow decreasing the computational complexity from O(n4) (i.e., the straight-

forward approach that recomputes the whole solution for each tested insertion) to O(n2).

However, whereas our heuristics also allow evaluating the feasibility and the cost of an

insertion in constant time, the number of insertion positions to be tested is larger in the

truck-and-drone case than in the VRP case. As a result, for the same execution time,

ALNS will be able to visit fewer neighbor solutions than in the VRP case.

Truck-only Truck-and-drone

Vehicle Nb. Insertions Comp. Complexity Nb. Insertions Complexity BFCT Complexity our algorithms

Truck O(n) O(1) O(n) O(n2) O(1)

Drone - - O(n2) O(n2) O(1)

Table 4.2: Complexity comparison for insertion procedures.

4.6 Computational Experiments and Managerial In-

sights

The MILP and all algorithms have been coded in C++. The MILP is solved with CPLEX

12.4 (called using the Concert Technology). Computations were performed on a 2.2 GHz

Intel Core i7 with 16 GB 1600 MHz DDR3 RAM. For the considered static day-ahead

problem, the ELP limits the total execution time to 5 hours.

104 Chapter 4. Synchronizing trucks and drones

4.6.1 Instances

The instance set was built based on input from the ELP, with the aim of covering the

various situations occurring in practice (i.e., situations involving urban and suburban ter-

ritories). The jobs are randomly generated in a 25×25km squared grid. In the considered

transportation network, the Manhattan (resp. Euclidean) distance is considered for the

trucks (resp. drones). The depot is located at the center of the grid. The working day

begins at 8am and must end before 5pm. Expenses related to the drivers’ salaries are

proportional to the amount of time they spend away from the depot. The possible 2-hour

TWs for the parcel deliveries are [8am, 10am], [9am, 11am], . . . , [3pm, 5pm]). Each truck

(resp. drone) travels at an average speed of 30km/h (resp. 60km/h). When reaching the

involved node, the parcel delivery has a duration of 3 (resp. 5) minutes when processed

by a driver (resp. drone). More time is needed for the drone case as the customer has

to unlock the parcel. All jobs cannot be performed by a drone. Hence, we consider the

accessibility of the jobs by drone, which acknowledges the fact that some parcels are too

heavy to be transported by a drone, or some customers are not eligible to receive a parcel

by drone. For each instance, 5 configurations of job accessibility by drone are generated:

0% (i.e., when no job can be reached by drone, which corresponds to the VRP case), 25%,

50%, 75%, and 100% (i.e., when all the jobs can be performed by a drone).

We have generated several instances from n = 10 to n = 100 jobs. The smallest instances

are used to compare the results of ALNS with those of the MILP, whereas the larger

instances better capture real situations. Each instance is denoted as follows: Nn Apa i,

where n is the number of jobs, pa indicates the percentage of customers that can be

served by drones, and i discriminates between the instances that share the same number

of customers and the same percentage of jobs reachable by drones. Following this notation,

N50 A75 1 is the first instance involving 50 customers, 75% of which can be served by

drone. We have generated 71 instances: 21 small instances with n ∈ [10, 25], 25 medium-

sized instances with n = 50, and 25 larger instances with n = 100. TWs are only employed

4.6. Computational Experiments and Managerial Insights 105

for the realistic instances, involving 50 or 100 customers.

We consider the real cost structure provided by the ELP. While the absolute values of

the various costs (i.e., fixed and variable; see Section 4.3.3) cannot be given because of

confidentiality issues, we indicate the ratio of these costs between trucks and drones: the

daily fixed cost for a truck is 5.6 times larger than the fixed cost for a drone; employing a

driver for one hour is 9.2 times more expensive than using a drone for one hour; the cost

per km driven per truck is 4.3 times cheaper than the cost of powering a drone for one

hour.

4.6.2 Results

In this section, we first compare ALNS with CPLEX on the smallest instances, and we

then compare ALNS with RFCS on the larger but realistic instances.

ALNS versus CPLEX (smaller instances)

Table 4.3 compares the performance of ALNS and CPLEX for the instances involving

up to 25 jobs (without TWs). Columns ‘Obj.’ (resp. ‘Time [s]’) gives the value of the

objective function in e (resp. the execution time, in seconds). The execution time is

bounded to one hour for CPLEX. It is not reported in Table 4.3 as CPLEX was, for all

instances, never able to prove the optimal solution within this time limit. For the MILP,

column ‘LB’ indicates the value of the lower bound returned by CPLEX when optimality

was not proven. We can observe that CPLEX turns out to be competitive for instances

involving up to n = 20 jobs. Indeed, for instances with n ∈ [10, 20] jobs, CPLEX (resp.

ALNS) finds the best solution for 8 (resp. 15) instances over 18. However, for all 18

instances with n ∈ [10, 20], the ALNS produced solutions with an average improvement

106 Chapter 4. Synchronizing trucks and drones

of 0.8% compared to CPLEX. Furthermore, the ALNS finds its best solution in less than

10 minutes for these instances, whereas CPLEX uses the entire one hour time budget. For

larger instances (n > 20), ALNS significantly outperforms CPLEX on both the solution

quality and speed. For instances involving n = 25 jobs, the ALNS improves CPLEX

results on average by 11%. It is interesting to note that the more jobs are eligible to be

served by drone, the less efficient is CPLEX (i.e., the gap between the solution returned

by CPLEX and the lower bound increases with the percentage of jobs reachable by drone).

Note that we have tested CPLEX for the 50-job instances, but no feasible solution was

found.

CPLEX ALNS

Instance Obj. LB Obj Time [s]

N10 A50 1 118.6 115.6 118.6 30

N10 A75 1 118.6 95.9 118.6 30

N10 A100 1 101.5 84.3 101.7 20

N10 A50 2 117.3 114.8 117.3 10

N10 A75 2 112.4 91.3 112.2 15

N10 A100 2 112.4 85.6 112.1 25

N15 A50 1 136.0 84.9 136.0 12

N15 A75 1 128.8 76.8 128.2 30

N15 A100 1 114.4 68.2 117.0 47

N15 A50 2 130.3 80.9 131.6 55

N15 A75 2 119.2 72.6 118.8 165

N15 A100 2 119.2 70.1 117.1 180

N20 A50 1 148.4 83.3 147.5 365

N20 A75 1 131.7 75.1 132.1 182

N20 A100 1 133.9 65.8 132.1 242

N20 A50 2 134.3 79.0 132.9 235

N20 A75 2 130.6 72.13 128.6 156

N20 A100 2 140.6 67.2 127.7 370

N25 A50 1 162.7 87.1 161.8 401

N25 A75 1 154.0 74.1 140.2 750

N25 A100 1 169.2 65 139.5 559

Table 4.3: Comparison of ALNS and CPLEX for the smaller instances.

4.6. Computational Experiments and Managerial Insights 107

ALNS versus RFCS (larger instances)

Table 4.4 compares the results of RFCS and ALNS. ‘Obj.’ refer to the cost found by the

corresponding method. ‘Time [h]’ indicates the average time (in hours) at which the best

solution was found. Finally, column ‘% (RFCS)’ indicates the average percentage gap

of the ALNS solution with respect to the RFCS solution. It is computed as (fRFCS −

fALNS)/fRFCS, where fRFCS (resp. fALNS) denotes the cost of the solution returned by

RFCS (resp. ALNS). The stopping criterion for the ALNS is when the execution time

reaches 5 hours, and for the RFCS is when no more improvements can be made. Whereas

the RFCS acts as a decomposition solution method that first builds the truck routes

and then incorporates drone subtours into these routes, the ALNS acts as an integrated

method that simultaneously builds trucks and drones’ routes. One can observe that

although RFCS generates its best solutions more rapidly, its results can be significantly

improved by ALNS as the average percentage gap is 8.8%.

Visualization of a Truck-and-Drone Solution

For instance N10 A100 1 involving 10 customers, Figure 4.4 compares a truck-and-drone

solution (right side) with the optimal truck-only solution (left side). To simplify the

visualization, the truck route is denoted by a straight line from one customer to another,

whereas it uses the Manhattan grid in reality. The right side of Figure 4.4 displays all

types of synchronization that can happen between a truck and its assigned drone. In

the truck-and-drone solution, the drone leaves the truck when it is located at the depot

and flies to drop a parcel at job 9 before being refilled by the truck at job 2. Next, the

truck transports the drone to job 0. At jobs 1 and 4, the truck acts as a delocalized

depot. Indeed, at these nodes, all operations described in Section 4.3.2 take place: ‘Drone

Retrieval’, ‘Drone Launch and Retrieval’, and ‘Drone Launch, then Leave’.

108 Chapter 4. Synchronizing trucks and drones

Instance RFCS ALNS

Obj. Time [h] Obj. Time [h] % (RFCS)

N50 A25 1 420.8 1.1 420.8 3.2 0.0%

N50 A25 2 423.5 1.4 423.5 1.8 0.0%

N50 A25 3 418.9 1.5 412.8 2.4 -1.5%

N50 A25 4 433.6 1.9 392.3 3.0 -9.5%

N50 A25 5 427.2 1.3 427.2 2.9 0.0%

N50 A50 1 406.1 1.2 380.8 3.4 -6.2%

N50 A50 2 423.5 1.5 408.5 2.1 -3.5%

N50 A50 3 420.9 1.7 400.6 2.5 -4.8%

N50 A50 4 433.6 2.0 371.0 3.1 -14.4%

N50 A50 5 424.3 1.4 407.5 3.4 -4.0%

N50 A75 1 385.1 1.4 344.3 3.0 -10.6%

N50 A75 2 387.8 1.5 345.7 3.5 -10.9%

N50 A75 3 396.6 1.7 359.2 3.4 -9.4%

N50 A75 4 381.3 2.2 357.2 3.8 -6.3%

N50 A75 5 374.8 1.5 339.6 5.2 -9.4%

N50 A100 1 354.0 1.4 310.8 3.9 -12.2%

N50 A100 2 346.7 1.6 319.7 4.6 -7.8%

N50 A100 3 369.4 1.8 327.8 3.8 -11.3%

N50 A100 4 343.6 2.3 312.9 3.9 -8.9%

N50 A100 5 342.2 1.6 302.9 4.9 -11.5%

N100 A25 1 627.2 3.3 622.3 3.8 -0.8%

N100 A25 2 650.6 3.0 643.1 3.0 -1.2%

N100 A25 3 623.9 3.8 622.9 4.0 -0.2%

N100 A25 4 646.7 2.9 633.2 3.5 -2.1%

N100 A25 5 633.3 2.8 625.3 2.2 -1.3%

N100 A50 1 627.2 3.4 586.5 4.4 -6.5%

N100 A50 2 647.4 3.2 586.6 4.4 -9.4%

N100 A50 3 623.9 3.9 594.4 4.6 -4.7%

N100 A50 4 645.2 3.2 583.7 4.3 -9.5%

N100 A50 5 633.3 2.9 597.3 4.6 -5.7%

N100 A75 1 582.3 3.7 537.4 4.4 -7.7%

N100 A75 2 548.3 3.3 446.0 5.0 -18.7%

N100 A75 3 530.3 4.1 436.6 5.0 -17.7%

N100 A75 4 602.5 3.3 558.2 4.8 -7.3%

N100 A75 5 577.9 3.0 522.5 4.8 -9.6%

N100 A100 1 520.6 3.8 409.6 3.8 -21.3%

N100 A100 2 520.5 3.6 413.5 4.5 -20.6%

N100 A100 3 530.3 4.2 385.7 5.0 -27.3%

N100 A100 4 543.2 3.5 429.7 2.9 -20.9%

N100 A100 5 500.3 3.1 411.5 4.3 -17.8%

Table 4.4: Comparison of ALNS and RFCS for the larger instances.

4.6. Computational Experiments and Managerial Insights 109

Figure 4.4: Truck-only (left side) versus truck-and-drone (right side) solutions. Plain
(resp. dashed) lines are truck (resp. drone) trips.

4.6.3 Sensitivity Analysis of the Percentage of Jobs Reachable

by Drone

Table 4.5 compares the best truck-and-drone solution found by ALNS for all instances

involving 50 jobs or more and for different percentages of jobs reachable by drone (%A). If

no job can be reached by drone, we present a VRP solution. Column ‘Cost’ gives the cost

of the solution. Column ‘%(VRP)’ quantifies the percentage cost improvement achieved

by the truck-and-drone solutions with respect to the associated truck-only solutions. This

percentage gap is computed as (cd − cV RP)/cV RP , where cd (resp. cV RP) is the total cost

of the truck-and-drone (resp. truck-only) solution. Column ‘T-Nb.’ (resp. ‘D-Nb.’)

indicates the number of trucks (resp. drones) employed in the solutions. Column ‘T-

Dist.’ (resp. ‘D-Dist.’) indicates the distance (in km) traveled by trucks (resp. drones).

‘T-Time’ (resp. ‘D-Time’) gives the time (in minutes) traveled by trucks (resp. drones).

Finally, column ‘%J ’ provides the percentage of jobs that are actually served by drone.

First, we can measure the significant cost reduction achieved when drones are eligible to

serve jobs. Moreover, the gain increases with %A: it grows from 1.1% when %A = 25% to

35.6% when %A = 100%. Interestingly, for instances involving 100 jobs, some trucks can

be replaced by drones when more than 75% of the jobs can be reached by drone. Such

110 Chapter 4. Synchronizing trucks and drones

replacement has a positive impact on the overall cost of the solution. As an example, for

the instances N100 A75 2 and N100 A100 2, one truck is replaced by two drones.

However, there is a critical threshold for %A below which the use of drones is not cost

effective. When %A = 25%, allowing the use of drones does not lead to better solutions

for 60% of the considered instances. The returned solution by ALNS is, therefore, the

VRP solution (see lines with %J = 0%). In such cases, the fixed costs associated with the

drone use cannot be compensated by either the savings achieved for the truck’s traveling

distance or the driver’s working hours. Interestingly, following the ELP’s cost structure,

the drone’s fixed costs start to be compensated with %J = 5%. In line with our results,

for n ∈ {5, 10}, [Pugliese and Guerriero, 2017] also show that truck-and-drone solutions

are efficient for some instance characteristics (i.e., when drone flying costs are at least 9

times cheaper than truck driving costs). This work extends their findings as we consider

instances involving up to n = 100 jobs, and we account for the drone’s and the truck’s

fixed costs, as well as driver wages.

We can also observe that it is not always beneficial to assign a drone to each truck. Indeed,

for N50 A25 3 and N50 A50 3, the solution uses 2 trucks but only 1 drone. In such a

case, the fixed costs incurred by using a second drone would not be overcompensated by

the cost reduction for the trucks (fixed and variable costs). In contrast with the literature

(e.g., [Sacramento et al., 2019] consider that either each truck is equipped with one drone

or none), our findings highlight the importance of considering a flexible fleet of vehicles,

where trucks only and trucks equipped with drones coexist in the solution.

4.6.4 Cost Structure of Truck-and-Drone Solutions

Figure 4.5 displays the different aggregated costs for n ∈ {50, 100}. From the bottom to

the top of each bar, the first two values are the fixed costs associated with the use of trucks

4.6. Computational Experiments and Managerial Insights 111

Instance Cost %(VRP) T-Nb. D-Nb. T-Dist. D-Dist. T-Time D-Time %J

N50 A0 1 420.8 0.0% 2 0 349.7 0.0 15.9 0.0 0%

N50 A25 1 420.8 0.0% 2 0 349.7 0.0 15.9 0.0 0%

N50 A50 1 380.8 -9.5% 2 2 245.8 188.4 14.3 3.4 26%

N50 A75 1 344.3 -18.2% 2 2 199.3 286.9 12.6 5.6 42%

N50 A100 1 310.8 -26.1% 2 2 148.2 525.6 11.0 9.3 64%

N50 A0 2 423.5 0.0% 2 0 347.5 0.0 16.2 0.0 0%

N50 A25 2 423.5 0.0% 2 0 347.5 0.0 16.2 0.0 0%

N50 A50 2 408.5 -3.5% 2 1 276.9 112.5 16.2 1.8 10%

N50 A75 2 345.7 -18.4% 2 2 158.8 438.1 13.4 7.8 46%

N50 A100 2 319.7 -24.5% 2 2 161.8 403.1 11.5 8.1 58%

N50 A0 3 424.2 0.0% 2 0 341.6 0.0 16.4 0.0 0%

N50 A25 3 412.8 -2.7% 2 1 311.3 31.3 15.7 1.0 4%

N50 A50 3 400.6 -5.6% 2 1 294.0 90.2 15.2 1.5 12%

N50 A75 3 359.2 -15.3% 2 2 218.4 217.1 13.2 4.8 32%

N50 A100 3 327.8 -22.7% 2 2 166.9 339.6 12.1 6.8 52%

N50 A0 4 433.6 0.0% 2 0 312.8 0.0 17.8 0.0 0%

N50 A25 4 392.3 -9.5% 2 1 294.0 63.1 14.6 1.3 6%

N50 A50 4 371.0 -14.4% 2 2 212.7 229.8 14.3 3.9 28%

N50 A75 4 357.2 -17.6% 2 2 188.6 338.3 13.6 6.9 40%

N50 A100 4 312.9 -27.8% 2 2 156.6 340.2 11.3 6.0 54%

N50 A0 5 427.2 0.0% 2 0 339.8 0.0 16.6 0.0 0%

N50 A25 5 427.2 0.0% 2 0 339.8 0.0 16.6 0.0 0%

N50 A50 5 407.5 -4.6% 2 1 298.8 105.7 15.5 2.2 14%

N50 A75 5 339.6 -20.5% 2 1 221.2 310.6 12.2 5.5 38%

N50 A100 5 302.9 -29.1% 2 2 144.6 496.9 10.5 9.5 60%

N100 A0 1 627.2 0.0% 3 0 486.2 0.0 24.5 0.0 0%

N100 A25 1 622.3 -0.8% 3 1 468.7 122.6 23.8 2.6 7%

N100 A50 1 586.5 -6.5% 3 2 401.5 279.6 22.1 6.0 21%

N100 A75 1 537.4 -14.3% 3 2 356.8 391.4 19.5 7.0 33%

N100 A100 1 409.6 -34.7% 2 2 220.4 768.7 15.9 13.5 61%

N100 A0 2 650.6 0.0% 3 0 526.0 0.0 25.2 0.0 0%

N100 A25 2 643.1 -1.2% 3 0 518.9 0.0 24.9 0.0 0%

N100 A50 2 586.6 -9.8% 3 3 387.1 308.9 22.0 5.2 24%

N100 A75 2 446.0 -31.4% 2 2 309.1 490.6 16.9 8.2 40%

N100 A100 2 413.5 -36.4% 2 2 207.9 813.8 16.5 13.5 59%

N100 A0 3 623.9 0.0% 3 0 498.5 0.0 24.0 0.0 0%

N100 A25 3 622.9 -0.2% 3 0 472.5 0.0 24.6 0.0 0%

N100 A50 3 594.4 -4.7% 3 3 388.5 217.4 22.6 4.9 24%

N100 A75 3 436.6 -30.0% 2 2 305.1 525.5 16.2 9.3 47%

N100 A100 3 385.7 -38.2% 2 2 190.8 673.5 15.0 12.6 58%

N100 A0 4 646.7 0.0% 3 0 485.4 0.0 26.0 0.0 0%

N100 A25 4 633.2 -2.1% 3 1 460.5 118.5 24.8 2.6 8%

N100 A50 4 583.7 -9.7% 3 2 383.3 195.9 22.6 3.6 15%

N100 A75 4 558.2 -13.7% 3 3 303.3 389.9 21.7 8.4 40%

N100 A100 4 429.7 -33.6% 2 2 246.5 683.2 16.8 12.1 60%

N100 A0 5 633.3 0.0% 3 0 513.4 0.0 24.3 0.0 0%

N100 A25 5 625.3 -1.3% 3 1 508.3 91.0 23.1 2.1 5%

N100 A50 5 597.3 -5.7% 3 2 428.7 291.0 22.3 5.1 22%

N100 A75 5 522.5 -17.5% 3 3 305.8 517.3 18.9 10.3 42%

N100 A100 5 411.5 -35.0% 2 2 228.9 695.3 15.9 12.3 58%

Table 4.5: Result variation for different values of %A.

112 Chapter 4. Synchronizing trucks and drones

(‘T-fixed’) and drones (‘D-fixed’). Next, the variable costs are plotted: ‘Wage’ and ‘Fuel’

refer to the variable costs associated with the use of trucks or, more precisely, to the drivers

salaries, and to fuel cost, respectively. Finally, ‘Elect.’ refers to the drone’s variable costs,

which correspond to the electricity needed to power the drones while in flight. One can

see that a major portion of the cost reduction comes from savings in fuel consumption.

For instances involving 50 jobs, on average, fuel consumption is reduced by 2.4%, 21.5%,

41.7%, and 54.0% for %A = 25%, %A = 50%, %A = 75% and %A = 100%, respectively.

Correspondingly, when n = 100, fuel consumption is reduced by 3.2%, 20.7%, 37.0%, and

56.4%. Next, for %A = 25%, %A = 50%, %A = 75%, and %A = 100%, drone use reduces

the driver en-route time by 4.8%, 8.9%, 21.5%, and 31.9% when n = 50, and by 2.3%,

10.1%, 24.0%, and 35.4% when n = 100. This is important as at the depot, the drivers

can be employed for other tasks, and hence, the cost of delivering parcels can be reduced if

workers are available earlier. Although not reported in Figure 4.5, the distance traveled by

trucks and drones in truck-and-drone solutions turns out to be greater than the distance

traveled by trucks in truck-only solutions. Indeed, drones frequently have to go back and

forth from the trucks to load parcels and recharge their battery. However, in terms of

costs, this augmentation of the overall traveled distance is clearly overcompensated by the

increased efficiency offered by using drones as the drones’ operational costs are almost 10

times smaller than those of the trucks.

Table 4.6 summarizes the total costs incurred by using trucks (‘T-cost’) and drones (‘D-

cost’). T-cost/n (resp. D-cost/n) represents the average cost of serving one customer

via truck (resp. with a drone). Finally, column ‘JD’ gives the average number of jobs

served by a drone. One can see that for instances with a sufficiently high percentage

of jobs reachable by drone, the cost of delivering to one customer via drone is below

1e/customer, which is almost ten times smaller than the cost of serving one customer via

truck (between 6.4e and 8.5eper customer).

4.6. Computational Experiments and Managerial Insights 113

Figure 4.5: Aggregated cost structure for instances involving 50 and 100 jobs.

Instance %A T-cost D-cost Total Cost T-cost/n D-cost/n JD

50 Jobs VRP 425.9 0.0 425.9 8.5 - 0

25% 412.0 3.5 415.5 8.4 3.6 1

50% 380.1 13.6 393.7 9.3 1.6 9

75% 327.4 21.7 349.2 10.9 1.1 19.8

100% 289.0 25.8 314.8 13.7 0.9 28.8

100 Jobs VRP 636.4 0.0 636.4 6.4 - 0

25% 623.0 6.4 629.4 6.5 1.8 4

50% 565.5 24.2 589.7 7.2 1.2 21.2

75% 470.4 29.7 500.1 7.9 0.7 40.4

100% 376.8 33.2 410.0 9.2 0.6 59.2

Table 4.6: Cost structure of truck-and-drone solutions for different percentages of jobs
reachable by drone.

114 Chapter 4. Synchronizing trucks and drones

4.7 Conclusion

Motivated by an industrial partner, this study considers the synchronization of trucks

and drones to deliver parcels to customers while accounting for time-windows and drone

constraints (i.e., endurance and capacity). The drones are seen as transportable resources

that can be carried by trucks along their route. Combining trucks and drones allow for

refilling and recharging the drones at the truck. A cost function has to be minimized,

capturing both the truck’s and the drone’s features.

We propose a customized ALNS to solve the problem under study. This ALNS out-

performs standard route-first cluster-second algorithms, which is an approach commonly

used to solve truck-and-drone problems. Furthermore, we show the limitation of using

a MILP approach to solve realistic instances. Compared with truck-only configurations

(i.e., corresponding to the classic Vehicle Routing Problem with Time Windows), we high-

light the significant cost reduction that can be achieved when customers can be served

by drones. For instances involving 50 and 100 customers, and when all customers can be

served by drones, the cost reduction lies between 20% and 35%. We show that a minimum

percentage of customers reachable by drone is required to overcompensate the fixed costs

associated with drone use. When the percentage of customers reachable by drone is above

50%, expenses related to fuel consumption can be reduced by 20%, and this reduction

grows to 56% when all customers can be served by drone. Hence, truck-and-drone fleets

possess great potential for reducing greenhouse gas emissions.

As future research directions, it would be interesting to evaluate the robustness of the

proposed truck-and-drone solutions in a data-changing context. In practice, it is likely

that some parameters are uncertain (e.g., delays on the road due to unexpected events

[Heilporn et al., 2011, Respen et al., 2019]. Indeed, as trucks are synchronized with drones,

an unexpected event on a truck route could lead to violating the drone’s endurance con-

straint. Moreover, we plan to evaluate how truck-and-drone solutions could be improved

4.7. Conclusion 115

if the drones could fly from one truck to another or transport multiple parcels at a time,

as well as if a truck could transport multiple drones.

Chapter 5

Vehicle Routing with Transportable
Resources: Using Carpooling and
Walking for On-Site Services

Marc-Antoine Coindreau - University of Lausanne, Switzerland

Olivier Gallay - University of Lausanne, Switzerland

Nicolas Zufferey - University of Geneva, Switzerland

Chapter published in European Journal of Operational Research [Coindreau et al., 2019a]

116

117

Abstract

In the classical Vehicle Routing Problem (VRP), it is assumed that each worker moves

using an individually assigned vehicle. Removing this core hypothesis opens the door

for new solutions, where workers are seen as transportable resources that can also move

without the help of a vehicle. In this context, motivated by a major European energy

provider, we consider a situation where workers can either walk or drive to reach a job and

where carpooling is enabled. In order to quantify the potential benefits offered by this new

framework, a dedicated Variable Neighborhood Search is proposed to efficiently tackle the

underlying synchronization and precedence constraints that arise in this extension of the

VRP. Considering a set of instances in an urban context, extensive computational exper-

iments show that, despite conservative scenarios favoring car mobility, significant savings

are achieved when compared to the solutions currently used by the involved company.

This innovative formulation allows managers to reduce the size of the vehicle fleet while

keeping the number of workers stable and, surprisingly, decreasing the overall driving

distance simultaneously.

Keywords: Routing, On-Site Services, Synchronization, Carpooling, Variable Neighbor-

hood Search.

118 Chapter 5. VRPTR: Carpooling and Walking

5.1 Introduction

5.1.1 Industrial context

Transportation in urban areas is increasingly facing new challenges. On the one hand,

the systematic use of cars produces hazardous impacts on the environment, such as noise,

toxic emissions, and the effects induced by greenhouse gases [Knörr, 2008]. On the other

hand, as highlighted by [Jabali et al., 2012], city centers suffer from congestion and lim-

ited parking space. These phenomena, which are magnified by low vehicle occupancy

rates, decrease the intrinsic efficiency of car-based transportation. Consequently, current

legislation tends to constrain the use of cars within city centers either by limiting the

number of authorized vehicles or completely banning vehicles in specific areas, such as

pedestrian zones, as highlighted by [Parragh and Cordeau, 2017]. For all these reasons,

reducing the systematic use of cars in urban areas is becoming increasingly important.

Firms that provide on-site services or parcel deliveries are directly concerned by these

issues, as a substantial part of their activities takes place in metropolitan areas.

We focus on the case of a large European energy provider, denoted by EEP (it cannot be

named because of a non-disclosure agreement), that routes technicians to provide on-site

services (e.g., small maintenance work, consumption evaluations, and consumer-setting

upgrades). Every day, technicians who are not assigned to clients are employed for heavy

works on the electricity network. However, once assigned to on-site services, the workers

cannot be re-assigned thereafter to heavy works, even if they terminate their working

day earlier. Indeed, for the heavy works, teams of technicians are selected for the full

day’s work, and the jobs are frequently located outside of the cities. As a result, idle

time arises in the workers’ planning, either at the depot or on their route, due to the

presence of time windows to serve the jobs. As each worker assigned to on-site services

must be employed for the whole working day, EEP’s current practice is to first minimize

5.1. Introduction 119

the number of technicians necessary to serve all jobs. In a second phase, EEP minimizes

the remaining costs implied by the technicians’ routes (i.e., vehicle fixed costs and total

driving distance).

EEP manages thousands of workers in urban areas, who drive more than a million kilo-

meters every year. In that respect, EEP aims to evaluate the savings potential generated

by the use of walking to reduce the total costs of its routes while also meeting the work-

ers’ expectations. EEP observed that its technicians often leave their vehicles to perform

clustered jobs on foot, even if their planning would indicate driving to the next job. EEP

also wants to go one step further by evaluating the savings potential of carpooling (i.e.,

using the same car to transport multiple workers), to scale down the size of its fleet and

to possibly further reduce the overall driving costs.

Introducing these alternative transportation options obviously presents significant chal-

lenges. It is necessary to build and manage routes that are highly synchronized. Possible

waiting times must be efficiently managed, as drivers might have to wait for workers to

be picked up, and non-motorized workers might have to wait for drivers to be trans-

ported. Competitive solutions must also ensure that the workers’ productivity remains

stable, which could be decreased by the slower walking speed and the detours imposed by

carpooling to drop off and pick up non-motorized technicians.

5.1.2 Problem description

We consider the problem of routing a set of workers through different client locations

in order to provide on-site jobs. Each job has a given duration and must be performed

in a specific time window that is agreed upon with the involved client. This problem

has garnered considerable interest in the research community in recent decades and is

referred to as the Vehicle Routing Problem (VRP), or more specifically, as the Vehicle

120 Chapter 5. VRPTR: Carpooling and Walking

Routing Problem with Time Windows (VRPTW). In the VRPTW, each worker moves

from one job to another by driving an individually assigned car. We propose a modeling

framework that relaxes this assumption, and we consider an extension of the VRPTW in

which workers are allowed to share a vehicle and to choose between walking or driving

to reach their next job. The technicians can be separated from their vehicles and are

seen as transportable resources that can move autonomously. We refer to this extension

as the Vehicle Routing Problem with Transportable Resources (VRPTR), for which a full

description of the considered assumptions is given in Section 5.3.1. While keeping the

number of workers stable compared with EEP’s current practice (i.e., VRP solutions),

we aim at reducing the size of the vehicle fleet and/or the total driving distance. We

allow for the modeling of every situation in which workers have to visit clients without

any delivery or transportation of heavy equipment, making walking a viable option. This

particularly occurs with various types of home services, such as health and elder care, IT

support, household appliance repairs, and security checks.

A toy example is given in Figure 5.1, which illustrates how a VRPTR solution works. The

characteristics of the instance are given in the left part of the figure. Compared with the

VRP solution (middle part of the figure), the VRPTR solution (right part of the figure)

provides improved efficiency: the same number of workers, one car saved, and the total

driving distance is reduced by 22.6%.

5.1.3 Contributions and outline

We develop both a mixed integer linear program (MILP) and a metaheuristic to solve the

VRPTR. The latter uses a dedicated neighborhood structure and a fast insertion mech-

anism to tackle the increased complexity resulting from the introduction of walking and

carpooling. Whereas the MILP is able to tackle instances up to 18 customers, the meta-

heuristic can solve all other instances, which involve up to 50 jobs. Compared with EEP’s

5.1. Introduction 121

j1

j2 j3

j4

depot

30

30 30

30

10

1

1010 10

(a) Instance characteristics

j1

j2 j3

j4

depot

w1 w3

w2 w2

w1 w3

w2

(b) VRP optimal solution

j1

j2 j3

j4

depot

w1

w1

w2

w2
w3

w1, w3 w2, w3

(c) A VRPTR solution

(a) Values on the arcs denote the driving time (in minutes); walking is 10 times slower than
driving; the planing horizon is 130 minutes; job durations are 60 minutes for j1 and j4, and 30
minutes for j2 and j3.
(b) and (c) The vehicle path is drawn with a specific line style; walking is represented with a
dashed line; the label of an arc specifies which workers are using it.
(c) Worker w3 is dropped off at j2 by w1 and then walks to j3, where s/he is picked up by w2.
w1 (resp w2) works on j1 (resp. j4) after (resp. before) dropping off (resp. picking up) w3.

Figure 5.1: Comparison between a VRPTR solution and the corresponding VRP optimal
solution.

current practice (i.e., one vehicle assigned to each worker, no walking) on a representative

set of instances capturing urban characteristics, the computational experiments yield an

average improvement of 6.5% for the driving distance and 18.4% for the reduction of the

vehicle fleet. We show that the introduction of carpooling and walking is able to generate

a simultaneous gain, both in terms of fleet size and total driving distance, in 25% of the

considered instances. We highlight and quantify the trade-off that might arise between

removing cars and the resulting total driving distance. Finally, we study the existing

relationship between the achieved gain and the specific instance characteristics.

The remainder of the paper is organized as follows. A literature review is presented in

Section 5.2. We formally describe the VRPTR and develop the associated MILP formu-

lation in Section 5.3. In Section 5.4, we describe the proposed metaheuristic. Section 5.5

presents the computational experiments and the results. Section 5.6 proposes managerial

insights (e.g., quantifying the gains compared with current practice and understanding the

promising configurations for carpooling). Finally, concluding remarks and future research

122 Chapter 5. VRPTR: Carpooling and Walking

opportunities are presented in Section 5.7.

5.2 Literature review

The literature review is structured as follows. We first position the VRPTR with respect

to the existing VRP formulations that also synchronize different resources (a formal review

of VRP with synchronization constraints can be found in [Drexl, 2012]). Next, we describe

the solution methodologies that have proven to be efficient for such related problems.

Several studies consider the situation in which drivers and vehicles are allowed to disas-

semble along their route. [Domı́nguez-Mart́ın et al., 2018] examine a case where vehicles

must start and terminate their route at different depots, whereas drivers have to come

back to their starting depot. As a consequence, drivers must change vehicles during their

route. Similarly, in the Vehicle and Crew Routing Problem [Lam et al., 2015], a vehicle

is driven by different drivers to maximize its use. Although these contributions explicitly

consider the synchronization between vehicles and workers, they do not address aspects

related to carpooling and walking.

[Levy and Bodin, 1989] originally introduced the combined used of walking and driving

for mail delivery purposes. It is referred to as Park-and-Loop and was generalized by

[Ghiani and Laporte, 2001] as the Location-Arc Routing Problem. The postman parks

her/his car, visits a subset of jobs, comes back to the car, and drives to the next customers.

In the related contributions, the modeling differs from ours, as an arc-oriented approach

is considered (i.e., workers must visit arcs and not nodes). A node-oriented approach was

later considered by [Gussmagg-Pfliegl et al., 2011] for a similar mail delivery application.

Whereas these works acknowledge the advantages of combining walking and driving to

serve on-site jobs, they do not address a potential reduction of the fleet size through the

use of carpooling.

5.2. Literature review 123

Other extensions of the VRP share a similar structure as Park-and-Loop, in particu-

lar when trucks and trailers can uncouple at specific locations to serve clients that

cannot receive a truck paired with a trailer (thus, a lone truck stands for an on-foot

worker, and a truck paired with a trailer stands for a worker equipped with a vehicle).

Such problems have been introduced as the Partially Accessible Constrained VRP by

[Rochat and Semet, 1994] and [Semet, 1995], [Semet and Taillard, 1993]. More recently,

this research axis has received substantial attention under the Truck and Trailer Routing

Problem (TTRP) [Chao, 2002, Lin et al., 2009] or the Vehicle Routing Problem with Trail-

ers and Transshipments (VRPTT) [Drexl, 2014] formulations. As our contribution is not

limited to the introduction of Park-and-Loop sub-tours in vehicle routes but also involves

carpooling, these works cannot be directly applied to the present situation. Additionally,

these formulations differ from ours since the motivation for Park-and-Loop sub-tours dif-

fers. In our case, this is due to customer restrictions in the TTRP and cost reductions

in our case. Whereas the locations where the uncoupling of trailers can take place are

limited to specific areas, a car can be parked at any client location in the present case.

In addition to Park-and-Loop aspects, the VRPTR involves the transportation of on-foot

workers. Among these, [Lin, 2008] considers the synchronization of on-foot couriers with

vans to deliver mail. However, and contrary to our formulation, [Lin, 2008] does not

consider a complete synchronization of the resources, as on-foot couriers can only walk

from the depot to a van or from a van to the depot. [Fikar and Hirsch, 2015], in a problem

referred to as Home Health Care Staff Scheduling, addressed the situation where nurses

have to visit patients in their homes. Nurses are allowed to walk but cannot drive a

car. When walking is not possible, drivers, who are not permitted to visit patients, are

employed to transport nurses by cars. Hence, the total number of workers (namely, nurses

and drivers) is strictly greater than in the situation where nurses would drive their own

cars (n.b., in the VRPTR, the technicians are both able to drive and perform jobs; hence,

a reduction in the size of the vehicle fleet is achieved without increasing the number of

employed workers).

124 Chapter 5. VRPTR: Carpooling and Walking

In the context of parcel delivery (more generally, when the on-site presence of techni-

cians is not mandatory), unmanned vehicles, such as drones [Wohlsen, 2014] or robots

[Daimler, 2017], can be synchronized with vans to decrease the routing costs. Whereas,

in the present case, unmanned vehicles would not be eligible to perform on-site ser-

vices, the associated formulations share some similarities with the VRPTR. Indeed, both

situations yield a similar modeling framework, where autonomous and transportable re-

sources are dropped off and retrieved at different locations along the van routes. Al-

though several recent contributions (e.g., [Murray and Chu, 2015, Ferrandez et al., 2016,

Poikonen et al., 2017, Agatz et al., 2018, Boysen et al., 2018b]) have considered such types

of synchronization, various limitations and specific constraints prevent adapting the as-

sociated solution approaches to the present case. [Murray and Chu, 2015] introduced a

formulation called Flying Sidekick Traveling Salesman Problem, in which drones can be

transported by vans to deliver parcels at client locations for some parts of their routes. In

this situation and typically for contributions in this specific research domain, several ma-

jor discrepancies with the present formulation can be underlined. First, only one location

can be visited by the drone between its drop-off and its pick-up. Second, a single van is

considered; hence, the global synchronization aspects that follow from the possibility of

a drone being dropped off and picked up by different vans is not addressed. Third, the

objective differs as its focus is on minimizing the completion time (i.e., time windows are

not considered). Finally, [Boysen et al., 2018b] assume that robots can wait indefinitely

at the depot or at client locations. Such an assumption precludes its application in the

present context, since the number of workers is limited and their employment is costly.

In the Active Passive Vehicle Routing Problem (APVRP) (see [Meisel and Kopfer, 2014]

or [Tilk et al., 2017]) as well as in the Rollon-Rolloff Vehicle Routing Problem (see e.g.,

[Bodin et al., 2000]), a set of trailers has to be transported with trucks from loading to

unloading locations (i.e., pick-up and delivery requests). The duration of these operations

is long enough to allow the trucks (i.e., the active transportation resources) to move other

trailers (i.e., the passive transportation resources) in the meantime. Moreover, trailers

5.2. Literature review 125

can be carried by different vehicles (see [Smilowitz, 2006] for an example of such a practice

in drayage operations in the Chicago region). Creating bridges with the present study,

a trailer can be seen as a non-motorized worker that requires transportation between

different locations. However, the complexity is increased in our problem because the

passenger transportation requests are not fixed a priori and are part of the decision-

making process.

Most of the above-cited papers propose an exact formulation for the problem under

study, which is able to solve instances of limited size (e.g., the MILP developed in

[Murray and Chu, 2015] is able to tackle instances involving up to 10 customers in a

10-square-mile region). The exact approaches are often complemented with a two-stage

heuristic to find solutions for larger instances, either in a cluster-first-route-second or in

a route-first-cluster-second fashion. The first alternative is aimed at initially building

job clusters that will be visited by the transportable resources alone and then creating

routes for the carrying vehicles to connect the clusters together [Levy and Bodin, 1989,

Fikar and Hirsch, 2015]. The second alternative proposes to first build routes for the car-

rying vehicles and then to assign some clients to the transportable resources (see e.g.,

[Ghiani and Laporte, 2001], [Gussmagg-Pfliegl et al., 2011], [Murray and Chu, 2015]).

Even though these two approaches are able to efficiently improve the quality of the ini-

tially generated solutions, they suffer from being easily trapped in a local minimum since

the decision at the first stage strongly impacts the quality of the decisions in the second

one.

General metaheuristics based on the ruin and recreate principle have proven to be suc-

cessful for various related VRP formulations [Schrimpf et al., 2000]. These solution ap-

proaches do not suffer from the drawbacks of a two-stage methodology, as the deci-

sions on the job clusters and the routing are made simultaneously. In a routing con-

text, the ruin and recreate principle aims to improve a solution by iteratively remov-

ing and reinserting some jobs (one of the numerous fruitful implemtations is presented

126 Chapter 5. VRPTR: Carpooling and Walking

in [Pisinger and Ropke, 2007]). Known as Large Neighborhood Search (LNS) and intro-

duced by [Shaw, 1997], this principle has been the basis of multiple successful contri-

butions in various domains. In particular, two related metaheuristics are developed in

[Derigs et al., 2013] for the TTRP. They both combine the strength of a descent algo-

rithm for the intensification with the exploration ability of LNS for the diversification.

The authors highlight the benefit of combining a local search and a collection of neigh-

borhood structures of different amplitudes, as in LNS.

5.3 Problem formulation

As the VRPTW is a special case of the VRPTR (where walking is forbidden and the

number of vehicles is equal to the number of workers), the VRPTR can be classified

as an NP-Hard problem (see [Cordeau et al., 2007] for overviews of the various VRP

characteristics, their associated models, and their efficient solution approaches).

5.3.1 Definition and assumptions

A walking path between a set of jobs is called a walking route (WR). Idle time is the

total time that a worker waits in a solution (either en route or at the depot). Returning

to the depot earlier at the end of the day is considered idle time, as workers are employed

for the whole day, and they cannot be assigned to other tasks once they are back at the

depot. For the EEP context, the following features are taken into account:

• The planning horizon is a day (i.e., the daily working time is upper bounded), for

which all the jobs and travel information are accurately known (static data).

• For each worker, the walking limitations are the maximum daily walking distance

5.3. Problem formulation 127

(dfM) and the maximum allowed walking time between two jobs (τ fM).

• Vehicles and workers can disassemble and reassemble at any job location (the dura-

tion of this operation is assumed to be null).

• Each vehicle has a single assigned worker, meaning that the workers are separated

into two categories: the drivers and the passengers (drivers have to perform their

assigned jobs and to fulfill the transportation requests of passengers).

• Workers and vehicles start and end their routes at the depot.

• Both driver and passenger workers can walk to reach the next job on their routes.

In the driver case, the return path to her/his car is mandatory (i.e., departure and

arrival points of a WR must coincide), whereas a in the passenger case, departure

and arrival points of a WR can be different.

• Idling is allowed for both the drivers and the passengers at job locations.

5.3.2 Graph modeling and variables

Let J = {1, . . . , n} be the set of jobs, K the set of motorized workers (i.e., drivers), and

L the set of non-motorized workers (i.e., passengers). W = K ∪ L denotes the set of all

workers. For job j ∈ J , pj ∈ R+ is its processing time, and (ej, lj) ∈ R+2 is its time

window, consisting of the earliest and latest possible service times. Between two jobs

(i, j) ∈ J2, the distance (in km) is given by dij ∈ R+, and the driving (resp. walking)

time (in minutes) is denoted by τij ∈ R+ (resp. τ̃ij ∈ R+). c ∈ N indicates the maximum

number of non-motorized workers allowed in a car (in addition to the motorized worker).

Finally, M1 = max
j∈J

lj + max
i∈J,j∈J

τij and M2 = max
j∈J

lj + max
j∈J

pj + max
i∈J,j∈J

τ̃ij are sufficiently

large numbers, which are required for the MILP.

The node set J is duplicated using J+ = {n + 1, . . . , 2n}, where i ∈ J and i + n ∈

J+ represent the same physical location, with i ∈ {1, · · · , n}. These two sets allow

128 Chapter 5. VRPTR: Carpooling and Walking

distinguishing the different operations taking place at the same physical node (e.g., a

motorized worker parks her/his car, starts a WR, and retrieves her/his car). J (resp.

J+) stands for the set of starting and intermediate points (resp. terminating points)

of a WR. As a result, in the optimization model, a motorized worker starts a WR at

j ∈ J and finishes it at j + n ∈ J+ (three different times are thus managed: arrival

time, service time, and departure time). V = J ∪ J+ ∪ {0, 2n + 1} is the set of all

nodes, where 0 represents the starting depot and 2n+ 1 the ending depot. Based on this

notation, A1 = {(i, j) ∈ V \{2n+ 1} × V \{0}, such that i 6= j and j 6= i− n for i ∈ J+}

is the driving arc set and A2 =
{

(i, j) ∈ J × (J ∪ J+), such that i 6= j and τ̃ij < τ̃ fM

}
is

the walking arc set.

We define the variables:

• xkij ∈ {0, 1} is equal to 1 if motorized worker k ∈ K uses arc (i, j) ∈ A1; xkij = 0,

otherwise,

• yklij ∈ {0, 1} is equal to 1 if non-motorized worker l ∈ L is transported by the vehicle

associated to motorized worker k ∈ K on arc (i, j) ∈ A1; yklij = 0, otherwise,

• zwij ∈ {0, 1}1 is equal to 1 if a worker w ∈ W walks on arc (i, j) ∈ A2; zwij = 0,

otherwise,

• twi ∈ R denotes the time at which worker w ∈ W leaves node i ∈ V ,

• si ∈ R stands for the time at which the service starts at node i ∈ J .

Figure 5.2 illustrates the flow of a motorized worker when walking is involved. It is

helpful to understand the coordination between a motorized worker and her/his vehicle

as detailed in the constraints below.

Due to carpooling, and contrary to the standard VRP formulations, a worker can visit

a node without performing the associated job. In standard VRP formulations, when

a worker visits a node, s/he performs the associated job. When carpooling is allowed,

5.3. Problem formulation 129

i ∈ J

xki,i+n

∑
(j,i)∈A1

xkji

∑
(i,j)∈A2

zkij

(a) Start WR

i ∈ J

∑
(j,i)∈A2

zkji

∑
(i,j)∈A2

zkij

(b) Intermediate

i ∈ J+

∑
(j,i)∈A2

zkji

xki−n,i

∑
(i,j)∈A1

xkij

(c) End WR

Dashed (resp. plain) lines denote an edge traveled on foot (resp. with a car).
(a) Shows the arcs activated if motorized worker k ∈ K starts a WR in i ∈ J .
(b) Shows the arcs activated if i ∈ J is an intermediary point of a WR performed by a motorized
worker k ∈ K.
(c) Shows the arcs activated if motorized worker k ∈ K terminates a WR in i ∈ J+.

Figure 5.2: Different flow configurations for a WR performed by a motorized worker.

several workers can stop at a node but only the dropped worker performs the associated

job. Indeed, when a non-motorized worker is dropped off at a node i ∈ J , the motorized

worker (and potentially other non-motorized workers on-board) also stops at the node i,

but s/he continues her/his route and does not perform the associated job. Consequently,

with the introduced notation, a worker w ∈ W completes the job at i ∈ J if and only

if w exits the node on foot (i.e.,
∑

(i,j)∈A2
zwij = 1). Figure 5.3 illustrates the different

node sets and variables for the VRPTR solution displayed in Figure 5.1. In this example,

J = {1, 2, 3, 4} and J+ = {5, 6, 7, 8} (e.g., nodes 1 and 5 represent the same physical node

j1), and node 0 (resp. node 9) represents the starting (resp. ending) depot.

130 Chapter 5. VRPTR: Carpooling and Walking

1 5

2 6 3 7

4 8

0

9

x1
0,2 y1,3

0,2

z3
2,3

z3
3,7

x1
2,1

x1
1,5

z1
1,5

x1
5,9 x2

0,4

x2
4,8

z2
4,8

x2
4,8

x2
7,9 y2,3

7,9

Figure 5.3: Modeling of the VRPTR solution displayed in Figure 5.1 using the introduced
sets and variables

.

5.3.3 Mathematical formulation

We propose a MILP model for the VRPTR, where the numbers of both the involved

workers and vehicles are given as inputs. More precisely, we fix the number of workers to

the optimal value found when all workers are motorized. The costs associated with worker

daily wages hence remain the same in the VRPTR solutions and in the corresponding

optimal VRP solutions. To reduce the number of vehicles, the MILP is then launched

sequentially, every time with one vehicle less, until no feasible solution can be found (i.e.,

a sequence of instances is thus generated in this way). The trade-off that appears between

the size of the employed vehicle fleet and the total driving distance is discussed in Section

5.6.1.

For a fixed number of workers and a given vehicle fleet, Objective (5.1) minimizes the

total driving distance (which constitutes the remaining transportation costs):

minimize
∑

(i,j)∈A1

∑
k∈K

dij · xkij (5.1)

5.3. Problem formulation 131

Constraints for workers and vehicles flows.

∑
(i,j)∈A2

∑
w∈W

zwij = 1, i ∈ J (5.2)

∑
(i,j)∈A2

dij · zwij ≤ dfM , w ∈ W (5.3)

∑
(j,i)∈A1

xkji =
∑

(i,j)∈A1

xkij, i ∈ J ∪ J+, k ∈ K (5.4)

∑
(i,j)∈A2

zkij ≤
∑

(j,i)∈A2

zkji +
1

2

 ∑
(j,i)∈A1

xkji + xki,i+n

 , i ∈ J , k ∈ K (5.5)

∑
(j,i)∈A2

zkji +
∑

(j,i)∈A1

xkji ≤ 1, i ∈ J , k ∈ K (5.6)

∑
(j,i)∈A2

zkji = xki−n,i, i ∈ J+, k ∈ K (5.7)

∑
(i,j)∈A1

xkij ≤ 1, i ∈ V , k ∈ K (5.8)

∑
(i,j)∈A2

zwij ≤ 1, i ∈ J , w ∈ W (5.9)

∑
i∈V

xk0i =
∑
i∈V

xki,2n+1, k ∈ K (5.10)

Constraints (5.2) ensure that all the jobs are processed. Note that some nodes in J+

might not be visited, as all jobs do not terminate a WR (e.g., see node 6 in Figure

5.3). Constraints (5.3) define an upper bound on the total daily walking distance of a

worker (valid for both motorized and non-motorized workers). Constraints (5.4) ensure

that vehicles arriving at a node ultimately exit the node. Constraints (5.5) impose that

a motorized worker leaving i ∈ J by walking must formerly arrive at this node either

by walking or by car (see Figure 5.2 (a, b)). When a motorized worker performs a job

i ∈ J , s/he exits this node by walking (according to the assumptions detailed above).

Ultimately, s/he moves from i to i + n (the end of the walking route) without his/her

car, therefore, we allow in our model that his/her assigned car moves from i to i + n

without the driver on-board, by doing so, the car flow coincides with the worker flow.

132 Chapter 5. VRPTR: Carpooling and Walking

Constraints (5.6) forbid a motorized worker from arriving both by car and by walking at

i ∈ J . Constraints (5.7) state that a motorized worker walking to i ∈ J+ has her/his car

waiting for her/him at i (see Figure 5.2 (c)). Constraints (5.8) and (5.9) forbid a worker

(motorized or non-motorized) from using two different arcs simultaneously. Constraints

(5.10) state that every motorized worker who leaves the depot has to come back to it in

a single trip.

Specific constraints for non-motorized workers:

∑
k∈K

∑
(j,i)∈A1

yklji +
∑

(j,i)∈A2

zlji =
∑
k∈K

∑
(i,j)∈A1

yklij +
∑

(i,j)∈A2

zlij, i ∈ J , l ∈ L (5.11)

∑
k∈K

∑
(i,j)∈A1

yklij +
∑

(i,j)∈A2

zlij ≤ 1, i ∈ J , l ∈ L (5.12)

∑
k∈K

∑
(j,i)∈A1

yklji +
∑

(j,i)∈A2

zlji =
∑
k∈J

∑
(i,j)∈A1

yklij , i ∈ J+, l ∈ L (5.13)

∑
k∈K

∑
i∈V

ykl0i =
∑
k∈K

∑
i∈V

ykli,2n+1, l ∈ L (5.14)∑
(j,i)∈A2

zwji ≤
∑

(i,j)∈A2

zwij , i ∈ J , w ∈ W (5.15)

∑
l∈L

yklij ≤ c · xkij, (i, j) ∈ A1, k ∈ K (5.16)∑
(j,i)∈A1

yklji ≤ 1, i ∈ V , l ∈ L, k ∈ K(5.17)

Constraints (5.11) ensure that a non-motorized worker arriving at node i ∈ J (either

by walking or by car) ultimately exits the node. Constraints (5.12) state that a non-

motorized worker cannot use the two different transportation modes (i.e., walking and

driving) to leave a node. Constraints (5.13) force any non-motorized worker arriving at

a node i ∈ J+ to exit the node by car. Constraints (5.14) state that every non-motorized

worker who leaves the depot has to come back to it in a single trip. Constraints (5.15)

ensure that a worker arriving by walking at i ∈ J exits by walking. Constraints (5.16)

couple non-motorized worker transportation and motorized worker routes, it also limits

the total number of workers that can be transported in the same car. Such constraints are

also considered in the APVRP (see [Meisel and Kopfer, 2014]). Constraints (5.17) forbid

5.3. Problem formulation 133

a worker from using two different arcs arriving at the same node.

Time constraints :

tlj ≥ tki + τij −M1 · (1− yklij), (i, j) ∈ A1, k ∈ K, l ∈ L (5.18)

tkj ≥ tki + τij −M1 · (1− xkij), (i, j) ∈ A1, k ∈ K (5.19)

twj ≥ si + pi + τ̃ij −M2 · (1− zwij), (i, j) ∈ A2, w ∈ W (5.20)

si ≥ twi −M3 · (1−
∑

(i,j)∈A2

zwij), i ∈ J , w ∈ W (5.21)

tki ≥ tli −M3 · (1−
∑

(i,j)∈A1

yklij), i ∈ J+, k ∈ K, l ∈ L (5.22)

li ≥ si ≥ ei, i ∈ J (5.23)

l0 ≥ tw0 ≥ e0, w ∈ W (5.24)

For each non-motorized worker l ∈ L, constraints (5.18) set the arrival time at j ∈ V

after being transported by motorized worker k ∈ K using arc (i, j) ∈ A1. Constraints

(5.19) define the arrival time at j ∈ V of motorized worker k ∈ K using arc (i, j) ∈ A1.

Constraints (5.20) set the arrival time at j ∈ J∪J+ for worker w ∈ W after processing job

i ∈ J and walking thereafter. Constraints (5.21) impose that the service time of job i ∈ J

takes place after the arrival time of the worker at that node. Constraints (5.22) impose

that a motorized worker can only leave node i ∈ J+ if all the non-motorized workers to

be transported by her/him have arrived at the node. Constraints (5.23) impose that the

service time of each job must belong to the associated time window. Constraints (5.24)

impose that all workers leave and come back to the depot within the regulatory hours.

134 Chapter 5. VRPTR: Carpooling and Walking

5.4 Methodology

This section starts by describing the general principles of the proposed Variable Neigh-

borhood Search (VNS) and the reasons why it is expected to provide good results for the

VRPTR. Next, we present a dedicated insertion heuristic that helps to specifically man-

age walking and carpooling. Finally, after highlighting the complexity associated with

searching for the best insertion position for a job in a VRPTR solution, we introduce an

algorithm to speed up this procedure, which is then employed as a key procedure of our

VNS.

5.4.1 VNS: motivation and general principles

To tackle the considered problem, we propose a VNS [Mladenović and Hansen, 1997] that

combines a large neighborhood structure Nq (it first removes q > 1 jobs from the solution

and then reinserts them sequentially) and a local search (LS). On the one hand, the role of

the LNS component is to diversify the search (i.e., explore new parts of the solution space).

For this purpose, it is mandatory to consider large neighborhoods to tackle the VRPTR, as

the presence of WRs is responsible for trapping the search in local minima. More precisely,

a WR synchronizes multiple workers (i.e., the one that is dropped, the driver that brings

her/him at the beginning of the WR, and the driver that picks her/him up at the end of it).

Unless all the jobs composing such a WR are removed from the solution, the removed jobs

tend to be reinserted at the same position in the same WR. The exploration capability

of Nq would thus be poor for small values of q. On the other hand, and in contrast

with the LNS component of VNS, the role of LS is to intensify the search in promising

regions of the solution space. For this purpose, small (in terms of the modification of the

solution structure) but efficient (i.e., it should be able to favorably modify the solution

value) moves should be performed iteratively on the incumbent solution. Unsurprisingly,

[Derigs et al., 2013] (for the TTRP) and [Meisel and Kopfer, 2014] (for the APVRP) have

5.4. Methodology 135

shown that combining a LNS and a LS outperforms the use of a LNS only. We have

confirmed this observation by performing preliminary experiments on our instances.

A generic version of the VNS is given in Algorithm 10. It starts from an initial solution

s and considers a collection of neighborhood structures N = {N1, . . . ,Nqmax} that are

ranked according to their strength for modifying a solution (i.e., Nq modifies the structure

of the involved solution more than Nq−1). Section 5.4.2 details the dedicated algorithm

that is used to explore the neighborhood Nq.

The implemented LS is a descent algorithm based on relocate moves. Formally, at each

step, a job is removed from the solution and reinserted at the best possible location,

with or without involving additional walking. As long as the generated neighbor solution

sneighbor outperforms the current solution s, the new current solution immediately becomes

sneighbor. The process stops when the current solution cannot be improved further (i.e.,

all jobs of s have been tested). More refined LS algorithms (e.g., a tabu search for which

it is forbidden to insert a job in some positions) were tested, but they did not yield better

results.

In order to facilitate the exploration of the solution space associated with the VRPTR,

constraints (5.2), which guarantee that all jobs are visited, are relaxed (i.e., removed

from the constraints and penalized in the objective function with a penalty parameter

ψ). Following this, for each solution s = {x, y, z}, d(s) =
∑
k∈K

∑
(i,j)∈A1

dij · xkij is the

overall driving distance. J in(s) = {j ∈ J |
∑

(j,i)∈A2

zji = 1} is the set of jobs that are

served in s, and Jout(s) = J\J in(s) is the set of unserved jobs in s. As done in other

VRP contributions (see e.g., [Pisinger and Ropke, 2007]), Objective (5.1) thus becomes

as shown below, where ψ is chosen sufficiently large to ensure that for the two solutions

s and s′, if |Jout(s)| < |Jout(s′)|, then c(s) < c(s′), with:

c(s) = d(s) + ψ · | Jout(s) | (5.25)

136 Chapter 5. VRPTR: Carpooling and Walking

Algorithm 10 Variable Neighborhood Search (VNS)

Input: nL, qmax, K, W .

Generate an initial solution s with |K| vehicles and |W | workers.
Set q = 1.

While no stopping condition is met, do

(1) Shaking: randomly generate nL (parameter) solutions in Nq(s), and let s′ be the best of
these solutions.

(2) Local search (LS): apply the local search on s′, and let s′′ be the resulting solution.

(3) Move or not: if s′′ is better than s, move there (i.e., set s = s′′), and continue the search
with N1 (i.e., set q = 1); otherwise set q = q + 1, but if q > qmax, set q = 1 (i.e., start a
new research cycle).

5.4.2 VNS: shaking phase

Neighborhood Nq is explored by means of an LNS-type procedure, based on the sequen-

tial use of a removal heuristic and an insertion heuristic. These heuristics are detailed

hereafter.

Removal heuristic

The removal heuristic aims at dropping jobs that currently block the search process in

a local minimum. We consider here the related removal heuristic (RRH) proposed by

[Shaw, 1998] and adapt it for the VRPTR. The general idea is that it is likely to be easier

to reinsert removed jobs that share some similarities. The relatedness function R(i, j)

indicates how two jobs i and j are similar. To that aim, some parameters are introduced.

(α, β, γ, δ, ε) are positive weights, and wr(i, j) = 1 if i and j are served in the same WR;

wr(i, j) = 0 otherwise. 1ki=kj = 1 if i and j are served in the same route; 1ki=kj = 0

otherwise. This relatedness function takes into account the geographical proximity (α·dij),

the similarity in service time (β · |hi − hj|), the similarity in time windows (γ · |li − lj|),

and the presence in common WRs (δ · (1−wr(i, j))) and common routes (ε · (1−1ki=kj)).

5.4. Methodology 137

The smaller R(i, j) is, the greater i and j are related:

R(i, j) = α · dij + β · |hi − hj|+ γ · |li − lj|+ δ · (1−wr(i, j)) + ε · (1− 1ki=kj) (5.26)

The first removed job is randomly selected in J in(s). Then, LNR designates the ranked list

of non-removed jobs. The relatedness of a non-removed job i is computed according to one

of the removed jobs j (that is randomly selected, as proposed in other studies considering

related removal, e.g., [Ropke and Pisinger, 2006]). Next, as long as q removals have not

been performed, the job LNR[byρ · |J in(s)|c] is removed from the solution. y is randomly

generated in [0, 1], and ρ ∈ [0, 1] is a parameter that calibrates the degree of randomness

of the removal heuristic (ρ = 1, jobs are randomly removed; ρ = 0, the most related job

is removed at each step).

Insertion heuristic

Before introducing the proposed insertion heuristic, we start by describing the draw-

backs that best-insertion heuristics (BIHs), which is one of the most frequently used

insertion components of the LNS (e.g., [Ropke and Pisinger, 2006, Masson et al., 2014,

Grangier et al., 2016]), have in the present situation. The BIH inserts first the job that

minimizes the insertion cost (i.e., the additional driving distance in the present case). The

BIH is inefficient in the VRPTR context because it either favors (a) insertions involving

walking only or (b) insertions in a driver’s planning. For (a), it follows from the fact that

walking does not increase the driving distance. For (b), moving a driver to a job only

requires one detour with her/his assigned car, whereas assigning this job to a passenger

requires two detours: one for the drop-off and one for the pick-up. First, these drawbacks

limit the diversification ability of the insertion heuristic. Second, unbalanced schedules

are created for the workers because more jobs are assigned to drivers than to passengers,

which finally results in assigning the latest considered jobs to the passengers (which are

138 Chapter 5. VRPTR: Carpooling and Walking

the most difficult resources to move). For all these reasons, we propose below an insertion

heuristic capable of removing these two drawbacks due to carpooling and walking.

We propose a Random Worker Best-Insertion (RWBI) heuristic, the pseudo-code of which

is given in Algorithm 11. At each step of the RWBI, a worker is first randomly chosen, and

then a non-dominated insertion is performed. An insertion is said to be non-dominated if

no other insertion has a better performance, according to both the walking distance and

the insertion cost. Randomly selecting the worker that will serve the next job helps in

overcoming the problem of over-insertions in drivers’ planning. Furthermore, choosing a

non-dominated insertion position allows for efficiently managing the amount of walking

time in the solution. On the one hand, walking seems favorable, as it does not contribute

cost-wise to the objective function. Additionally, the more the passengers are walking,

the less the drivers are used for transporting the passengers, and the more time they can

allocate to perform jobs themselves. However, on the other hand, walking directly reduces

the workers’ availability and thus augments the likelihood of having unserved jobs that

will remain at the end of the shaking phase. During the RWBI, the jobs are inserted

without walking in the drivers’ routes. This maximizes the likelihood of getting a feasible

and non-saturated solution at the end of the diversification step. Walking is added to the

drivers’ planning during the intensification step (i.e., LS).

Algorithm 11 Random Worker Best Insertion heuristic (RWBI)

Input: s

Set Jout(s) as the set of unserved jobs in s.

While Jout(s) 6= ∅, do

(1) Compute the set W av of available workers.

(2) Select a worker w ∈W av randomly.

(3) Randomly choose a non-dominated insertion from Jout in w.

If no feasible insertion is found, change w or stop RWBI if all workers have been tested.

Else: proceed the insertion and update Jout(s).

5.4. Methodology 139

5.4.3 Complexity of an insertion

The best-insertion move is the core component of both RWBI and LS. This section shows

that finding the best insertion position for a job in a solution involving carpooling requires

O(n5) feasibility tests. For the VRP, it only requires O(n) of such tests.

To find the cheapest insertion position (i.e., the one that least increases the driving dis-

tance), all the insertion positions are greedily tested. We consider the insertion of job

j ∈ Jout(s) to a non-motorized worker route (n jobs are inserted in the solution). In

this case, we need to transport this worker from its previous WR to j, and from j to

its next WR (after the job has been processed). This leads to the creation of two new

transportation requests (each one composed of a pick-up and a delivery) that have to be

inserted in the driver routes. As a result, four nodes must be inserted into the solution,

and accordingly, the number of feasibility tests is in O(n4). The number of insertion po-

sitions (between two WRs) for this non-motorized worker is proportional to the number

of jobs in the solution, and therefore the total number of required tests grows to O(n5).

Note that removing a job from the route of a non-motorized worker is also a complex

task, as a transportation request from her/his previous WR to her/his next WR has to

be created.

5.4.4 Accelerating up the insertion phase

In addition to the significantly larger number of tests to be performed, proving the fea-

sibility of an insertion is a more complex task for the VRPTR than for the VRP. First,

we need to check that the induced delay after the insertion does not violate future time

windows. As all routes can be interconnected, it is not sufficient to only recompute the

concerned route; rather the whole solution may have to be updated. Second, when as-

signing a job to a non-motorized worker, four nodes must be inserted into the solution

140 Chapter 5. VRPTR: Carpooling and Walking

(see Section 5.4.3). Therefore, the solution must be correctly updated four times (once

after each node insertion) when checking the overall feasibility of the insertion.

To avoid having to recompute the whole solution after each of the four insertions, we

propose a fast insertion algorithm based on a precedence graph that captures all the

temporal constraints. [Masson et al., 2014] introduced the same type of graph structure

for a vehicle routing problem in which transfers are allowed to transport persons. Each

physical node in the real network has its associated node in the precedence graph. For each

node v in this graph, it is possible to compute the earliest arrival time hv and the latest

departure time λv (i.e., leaving v after this time would lead to a violation of a future time

window) and the waiting time matrix Φ between all pair of nodes. For a driver, waiting

at a node is either due to an early arrival before the start of a time window or to the later

arrival of a non-motorized worker that needs to be transported further. The computation

of these values is done in O(n2). A.1 shows the construction of the precedence graph and

provides details on the computation of hv, λv and Φ [Cherkassky et al., 2009].

i1 + 1 denotes the successor node of i1 in route k1. eD1 (resp. lD1) is the earliest start

time of the WR starting at node D1 (resp. latest arrival time at the WR starting at D1

to serve all jobs of the WR on time). pD1 is the processing time of the WR starting at

D1. After proceeding with an insertion in the graph, for node v in the precedence graph,

h̄v is the new arrival time and δv = max{h̄v − hv, 0} denotes the delay induced in v.

Based on these notations, Algorithm 12 tests in constant time whether assigning a job to

a non-motorized worker at a given position is feasible. More precisely, the proposed algo-

rithm contains a specific feasibility check that corresponds to the precedence constraints

arising between the WRs performed by a same worker. Algorithm 12 details the most

complex situation when four nodes (namely (P1, D1) and (P2, D2), corresponding to the

two new transportation requests created for the non-motorized worker) are inserted into

positions (i1, j1) (resp. (i2, j2)) in route k1 (resp. k2). After inserting any of the four

5.4. Methodology 141

nodes, the induced delay at any other node is computed in constant time. For this pur-

pose, the delay after each insertion is reduced by the smallest waiting time between the

predecessor and successor nodes. If the delay does not exceed the latest departure time

of the successor node, all other jobs will still be served within their time window, and the

four nodes remaining to be inserted are tested. If this is not so, the insertion position

is determined to be unfeasible. Experiments have shown that using this fast feasibility

check procedure can reduce the computation time of the proposed VNS by 95%.

Algorithm 12 Algorithm for testing the feasibility of the insertion of (P1, D1) and
(P2, D2) after i1, j1, i2, j2, respectively.

Evaluate the insertion of P1:

• set h̄P1 = max{eP1 , hi1 + τi1,P1} , if h̄P1 > lP1 return FALSE.

• set h̄i1+1 = hP1 + τdP1,i1+1 , if h̄i1+1 > λi1+1 return FALSE.

Evaluate the insertion of D1:

• set h̄j1 = hj1 +max{δi1+1−STi1+1,j1 , 0}, set h̄D1 = max{hj1 +τj1,D1 , eD1}, , if h̄D1 > lD1

return FALSE.

• set h̄j1+1 = h̄D1 + τD1,j1+1 , if h̄j1+1 > λj1+1 return FALSE.

Evaluate the insertion of P2:

• set h̄i2 = hi2 + max{δi1+1 − STi1+1,i2 , δj1+1 − STj1+1,i2 , 0} and set h̄P2 = max{hi2 +
τi2,P2 , hD1 + pD1} .

• set h̄σ(i2) = hP2 + τP1,i2+1 , if h̄σ(i2) > λσ(i2) return FALSE.

Evaluate the insertion of D2:

• set h̄j2 = hj2 + max{δi1+1 − STi1+1,j2 , δj1+1 − STj1+1,j2 , δi2+1 − STi2+1,j2 , 0}, set h̄D2 =
h̄j2 + τdj2,D2

, if h̄D2 > lD2 return FALSE.

• set P3 as the pick-up at the end of WR D2, if max{h̄D2 , eD2} + pD2 > λP3 return
FALSE.

return TRUE.

142 Chapter 5. VRPTR: Carpooling and Walking

5.5 Computational experiments

We start by describing the considered set of benchmark instances in Section 5.5.1. Section

5.5.2 introduces some notation needed to present the numerical experiments as well as the

considered routing configurations. Section 5.5.3 presents the results of the MILP, whereas

Section 5.5.4 analyzes the performance of the proposed VNS. Finally, Section 5.5.5 gives

the results of the VNS for the introduced set of instances.

The MILP and the VNS have been coded in C++. The MILP is solved with CPLEX 12.4

(called with the Concert Technology). Computations were performed on a 2.2 GHz Intel

Core i7 with 16 Go 1600 MHz DDR3 RAM. In Algorithm 1, the parameters qmax and nL

were tuned to 30% and 10 respectively. In preliminary experiments, values were tested in

[10%, 50%] for qmax and in [1, 15] for nL.

5.5.1 Instances

The VRPTR is a new problem proposed by company EEP for which no benchmark in-

stance exists in the literature. Focusing on urban contexts, a set of instances has been

generated according to the real parameter distributions provided by EEP. The job loca-

tions are uniformly distributed in a square grid of 10 km by 10 km. The Euclidean metric

is used to compute the distance between the jobs. As highlighted by [Boysen et al., 2018b],

using Euclidean distances ensures that the triangle inequality is satisfied for both walking

and driving. The driving speed is 30 km/h and the walking speed is 4 km/h. The job

duration ranges between 20 and 35 minutes (uniformly distributed). The maximum walk-

ing time τ fM to reach a job on foot is 15 minutes (i.e., 1 km), and the maximum walking

distance dfM per day and per worker is 8 km (i.e., 2 hours). The duration of the working

day is 7 hours, from 8 am to 3 pm. The depot is located at the center of the considered

5.5. Computational experiments 143

urban area.

Instances with n ∈ {20, 30, 40, 50} are considered. Such instance sizes allow for comparing

our results with VRP optimal solutions and are in line with the existing literature consid-

ering the en route synchronization of transportable resources (e.g., [Boysen et al., 2018b]

solve real-world instances for up to 40 customers). In the present study, the same dis-

tance matrix is used for both walking and driving. This yields the obtained results to be

a lower bound on the ones that would be obtained when walking implies shorter distances

than driving (e.g., when vehicles would be constrained by one-way streets or in the pres-

ence of pedestrian walkways). Although other distance matrices could be alternatively

considered, preliminary experiments have shown that similar results are found when the

Manhattan metric is used, but for a slightly reduced grid size compared to the Euclidean

case considered here. While the Manhattan distance could decrease the walking potential

of the instances (as the distances between the jobs would increase by a factor lying in

[1,
√

2]), the walking potential (as introduced in Section 5.6.2) of the considered instances

is in line with EEP’s field observations when using the Euclidean metric.

Three service levels are envisioned by EEP. The smaller the time window, the shorter

the mandatory availability for the involved client and, hence, the better the service level.

Three types of time window are considered: all day (i.e., each job can be served in the [8

am, 3 pm] time window), half day (i.e., each job is associated to either the [8 am, 11:30

am] or the [11:30 am, 3 pm] time windows), and quarter day (i.e., each job is associated

with one of the following time windows: [8 am, 9:45 am], [9:45 am, 11:30 am], [11:30

am, 1:15 pm], [1:15 pm, 3 pm]). We consider three types of instances, each of them

representing one single envisioned service level. The time window assigned with each job

is uniformly chosen among the possible alternatives, describing the clients’ preferences.

An instance is referred to as “n TW i”, where n stands for the number of jobs, TW

represents the size of the used time window (A, H, and Q correspond, respectively, to

144 Chapter 5. VRPTR: Carpooling and Walking

all day, half day, and quarter day), i characterizes the instance identifier, and n TW

denotes the set of all instances of size n and time window size TW . 10 instances have

been generated for each n and each TW , leading to a total of 120 instances.

5.5.2 Notation and considered configurations

All of the 120 instances have been solved to optimality for the VRP configuration.

For this purpose, we have used the algorithm proposed by [Desaulniers et al., 2008],

which is acknowledged to be one of the most efficient algorithms for solving the VRP

[Baldacci et al., 2012]. By assigning appropriate weights to the number of workers used

in the solution, [Desaulniers et al., 2008] first minimize the number of employed work-

ers and then minimize the total traveled distance. Accordingly, we know the associated

smallest number of workers |W ?| required to serve all jobs. In the following, we con-

sider different configurations
(
P
|K|
a

)
, where |K| designates the number of used vehicles

and a ∈ {walk, no walk} indicates whether or not walking is allowed. d
(
P
|K|
a

)
(resp.

d?
(
P
|K|
a

)
) gives the total driving distance for configuration (P

|K|
a) found by VNS (resp.

the total driving distance for the optimal solution). All configurations are solved with

|W ?| workers (fixed by the VRP optimal solution).

The following five
(
P
|K|
a

)
are considered:

•
(
P
|W ?|
no walk

)
: all workers are motorized, but they are not allowed to walk (i.e., VRP);

•
(
P
|W ?|
walk

)
: all workers are motorized, and they are allowed to walk (i.e., Park-and-

Loop);

•
(
P
|W ?|−1
no walk

)
: carpooling is allowed, one worker is not motorized, but walking is for-

bidden;

5.5. Computational experiments 145

•
(
P
|W ?|−1
walk

)
: both carpooling and walking are allowed, and one worker is not motor-

ized;

•
(
P
|W ?|−2
walk

)
: both carpooling and walking are allowed, and two workers are not

motorized.

For the considered instances and when walking was not permitted, it was never possible

to remove more than one car with respect to the optimal VRP solution. When walking

was allowed, it was never possible to remove more than two cars.

5.5.3 MILP results for the VRPTR

As already mentioned, a time limit of 10 hours is used. When only walking is allowed

(but no carpooling), the MILP can find solutions for instances involving 20 jobs. However,

when both walking and carpooling are considered, the MILP can only find solutions for

instances with up to n = 18 jobs. A solution obtained by the MILP is shown in Figure 5.4.

It exhibits both carpooling and walking, and points out the efficient synchronization that

arises between a driver and a passenger. Considering the instances for which the MILP

can be used to find optimal solutions, the proposed VNS finds results with a percentage

gap never exceeding 1%.

5.5.4 Performance of VNS on the VRP configuration

Focusing on configuration P
|W ?|
no walk (i.e., VRP), for all generated instance types (number

of jobs and time window sizes), Table 5.1 gives the average percentage of unserved jobs

in the solutions found by the VNS (column “% unserved.”), the average percentage gap

of VNS with respect to the optimal values (column “% gap?”) and the percentage of

146 Chapter 5. VRPTR: Carpooling and Walking

0 2 4 6 8 10

0

2

4

6

8

10 j0

j1

j2

j3

j12
j4

j5

j13

j6

j7

j8

j10 j9

j11

j14
j15

Two workers (the driver w0 and the passenger w1) and one vehicle are required to visit the n = 16
jobs. Dashed (resp. plain) lines represent walking (resp. driving); light gray (resp. black) lines
represent the movement of w0 (resp. w1). w0 and w1 initially move from the central depot to
job j3, where w1 is dropped off. After serving j3, w1 walks to j12 and serves it. Meanwhile,
using the car, w0 serves j7 and j5 before picking up w1 at j12. w1 is then dropped off at j13,
serves it, and walks to j6 before coming back to j13. During this period of time, w0 uses the car
to serve j8, and then comes back to pick up w1. Both workers then move together to j10, where
w1 is dropped off. Then, the tour continues with the same logic. Note that this solution does
not include walking by the driver (that would have been denoted as dashed grey lines).

Figure 5.4: An optimal solution to the VRPTR, with both carpooling and walking.

5.5. Computational experiments 147

instances that could be solved to optimality (column “% opt”). “% gap?” is computed as

follows:
d
(
P
|W?|
no walk

)
−d?

(
P
|W?|
no walk

)
d?
(
P
|W?|
no walk

) ·100. Columns “All Day”, “Half Day”, and “Quarter Day”

refer to the size of the considered time window, and each line considers the 10 instances

for a given value of n. Table 5.1 shows that the VNS finds optimal solutions for 95% of the

instances. For the remaining 5%, either the VNS did not find a feasible solution (i.e., some

jobs remain unserved) with a number of vehicles fixed at its optimal value (see column “%

unserved”), or a small gap is observed with respect to the optimal driving distance (see

column “% gap?”). When some jobs are not inserted (see column “% unserved, Quarter

Day”), this indicates that the VNS returned a solution with a greater number of cars

used than in the VRP optimal solution. We indicate in this column the number of jobs

that are not inserted when the number of cars used is constrained at its optimal value.

Although the proposed VNS has been specifically designed for the VRPTR, these results

contribute to validating its efficiency and consistency.

Table 5.1: Performance of VNS on configuration P
|W ?|
no walk.

Time Window Size All Day Half Day Quarter Day

n % unserved % gap? % opt % unserved % gap? % opt % unserved % gap? % opt

20 0% 0% 100% 0% 0% 100% 0% 0% 100%

30 0% 0% 100% 0% 0% 100% 0.3% 0% 90%

40 0% 0% 100% 0% 0.04% 90% 0.2% 0.08% 90%

50 0% 0% 100% 0% 1.34% 90% 0.4% 0.82% 80%

5.5.5 VNS results for the VRPTR

Proportion of feasible instances for configurations involving less cars than

workers.

Contrary to the Park-and-Loop configuration for which a VRP solution can be initially

built and then improved through the introduction of walking sub-tours, the configu-

rations involving carpooling (i.e., less cars than workers:
(
P
|W ?|−1
walk

)
,
(
P
|W ?|−1
no walk

)
, and

148 Chapter 5. VRPTR: Carpooling and Walking

(
P
|W ?|−2
walk

)
) are structurally more complex. Finding a feasible solution cannot be taken

for granted. Indeed, both walking (slower than driving) and carpooling (need for de-

tours to drop off and pick up non-motorized workers) involve potential inefficiencies, and

it is therefore not surprising that some instances end up unfeasible when some workers

are non-motorized. While [Fikar and Hirsch, 2015] generate solutions involving less cars

than workers, it comes at the price of increasing the total number of employed workers

(compared with the VRP optimal solution). Here, we keep this total number of workers

stable.

Figure 5.5 qualitatively highlights the potential values associated with the feasible so-

lutions of the configurations involving less cars than workers. More precisely, three sit-

uations might arise, ranging from an improvement with respect to the Park-and-Loop

configuration, an amelioration of the VRP solution, to not improving the one-man-one-

car models (VRP and Park-and-Loop). Indeed, reducing the driving distance poses an

additional challenge since detours to transport non-motorized workers must be efficiently

compensated by merging the right paths with carpooling.

Improving
Park-and-Loop Improving VRP Non-improving

d?
(
P
|W ?|
no walk

)
d?
(
P
|W ?|
walk

)
Driving
distance

Figure 5.5: Potential driving distance of the solutions found feasible with less cars than
workers.

For the three configurations involving carpooling, Table 5.2 gives the number of instances

(and the associated percentage), over the 120 considered instances, that belong to each

category identified in Figure 5.5. It indicates that for 55% of the instances, the VNS is

able to reduce the fleet size when only carpooling is allowed (configuration
(
P
|W ?|−1
no walk

)
).

Moreover, the VNS finds smaller total driving distances than in the VRP solution for

6.7% of the instances, meaning that the need for detours generated by carpooling can be

overcompensated by efficiently merging worker journeys. When walking is permitted in

addition to the implementation of carpooling (configuration
(
P
|W ?|−1
walk

)
), the number of

5.5. Computational experiments 149

feasible instances found by the VNS grows from 55% to 56.7%, the number of instances

for which VRPTR dominates VRP increases from 6.7% to 19.2%, and the proportion of

instances for which VRPTR is able to improve the Park-and-Loop configuration
(
P
|W ?|
walk

)
increases from 0% to 6.7%. When two cars are removed with respect to the VRP optimal

solution, the VNS finds feasible solution for 7.5% of the instances. This relatively low

number can be explained by the fact that the generated instances require a maximum of 5

workers (with an average of 3.3 workers) to be solved. Thus, removing two cars represents

a drastic reduction of the vehicle fleet.

Table 5.2: Proportion of feasible instances for the different configurations involving less
cars than workers.

Solution characteristics
(
P
|W?|−1
no walk

) (
P
|W?|−1
walk

) (
P
|W?|−2
walk

)
% Inst. Nb. Inst. % Inst. Nb. Inst. % Inst. Nb. Inst.

Improving Park-and-Loop 0.0% (0 / 120) 6.7% (8 / 120) 0.0% (0 / 120)

Improving VRP 6.7% (8 / 120) 19.2% (23 / 120) 0.0% (0 / 120)

Non-improving 48.3% (58 / 120) 30.8% (37 / 120) 7.5% (7 / 120)

Total feasible 55.0% (66 / 120) 56.7% (68 / 120) 7.5% (7 / 120)

Detailed results

A.2 details the results found by VNS for all instances and all configurations. An extract of

three representative instances (corresponding to the three boxes displayed in Figure 5.5)

is given in Table 5.3. The “VRP” columns reflect the characteristics of the optimal VRP

solutions: the number of workers required (|W ?|), the total driving distance (d?), and

the corresponding idle time (either en route or at the depot). The “Park-and-Loop” col-

umn gives the total driving distance found for configuration
(
P
|W ?|
walk

)
. The “Carpooling”

columns denote the associated driving distance (d) and the number of jobs that cannot be

served in the solution (|Jout|) for all configurations involving carpooling (n.b., the driving

distance is not displayed for unfeasible solutions). Focusing on configuration
(
P
|W |?−1
walk

)
,

it shows that for instance 40 H 2, it improves the Park-and-Loop solution (driving dis-

tance reduced by 2.8%), which itself already improves the optimal VRP solution. The

solution of instance 50 A 6 improves the VRP optimal solution (driving distance reduced

150 Chapter 5. VRPTR: Carpooling and Walking

by 1.8%) but exhibits a driving distance 7.2% greater than in the Park-and-Loop solution.

Instance 50 Q 5 is found feasible, but its solution returns a driving distance larger than

in the optimal VRP solution.

Table 5.3: Detailed results for the representative instances.

Instance VRP
(
P
|W?|
no walk

)
Park-and-Loop Carpooling

Idle Time
(
P
|W?|
walk

) (
P
|W?|−1
no walk

) (
P
|W?|−1
walk

) (
P
|W?|−2
walk

)
|W ?| d? Route Depot d d |Jout| d |Jout| d |Jout|

40 H 2 4 73.1 0.0% 25.8% 63.9 75.1 0 62.1 0 94.6 0

50 A 6 4 71.8 0.0% 11.7% 66.1 78.7 0 70.9 0 - 4

50 Q 5 5 113.2 17.9% 2.7% 104.4 130.7 0 117.0 0 - 2

Figure 5.6 exemplifies a VRPTR solution (right part of the figure) for configuration(
P
|W ?|−1
walk

)
in instance 50 A 6 and compares it with the optimal VRP solution (left part of

the figure). In this example, carpooling and walking allow for improving the optimal VRP

solution, as for the same number of employed workers, the driving distance is reduced by

1.3% and one car is saved. In this VRPTR solution, the non-motorized worker walks for

71 minutes. Note that for all performed experiments, walking never exceeds 90 minutes

per worker.

5.5.6 Execution time

The stopping criterion of the VNS has been set to 10 hours (i.e., one night of computation,

from 8 pm to 6 am), which follows EEP’s requirements in the present one-day-ahead

optimization context. Table 5.4 gives the average execution times (for each n and TW

values) to obtain the best found solutions. It highlights the fact that solving (P
|W ?|−1
walk)

is more complex than solving (P
|W ?|
walk). Indeed, the additional complexity of finding the

best insertion position for a job when carpooling is allowed (as shown in Section 5.4.3) is

reflected in these execution times. Interestingly, Table 5.4 furthermore indicates that the

time window size only has a marginal impact on the execution time.

5.5. Computational experiments 151

0 2 4 6 8 10
0

2

4

6

8

10

(a) VRP optimal solution of
(
P
|W?|
no walk

) 0 2 4 6 8 10
0

2

4

6

8

10

j16

j37

j44j18j1

j24

j19j36

j43

j39

j8

j9

j17

j30

j45

j42

(b) VRPTR solution of
(
P
|W?|−1
walk

)
Plain (resp. dashed) lines represent the vehicle paths (resp. the walking routes). Each line type
corresponds to a worker: double line for worker w1, light gray for w2, gray for w3, and black
for w4 (non-motorized worker in (b)). The jobs explicitly labeled are those included in a WR.
In (b), w4 is dropped off at j16 and walks to j42. w2 fulfills j36 and j43 in a WR before picking
up w4 at j42. Before being dropped off at j37, w4 works on j1 while w2 serves j24. The tours
continue as described, and w4 returns to the depot with w3.

Figure 5.6: Illustration of a VRPTR solution for which one car is saved and the total
driving distance is reduced by 1.3%. The optimal VRP solution and a VRPTR solution
are presented for the same instance.

Table 5.4: Average execution time of the VNS (in seconds) for each instance and time
window size.

(P
|W?|
walk) (P

|W?|−1
walk)

n All day Half day Quarter day All day Half day Quarter day

20 71 62 30 1,133 1,470 611

30 381 860 1,174 4,552 5,498 3,834

40 1,993 1,988 3,747 10,939 10,030 9,825

50 6,779 8,143 11,219 24,454 18,972 21,856

152 Chapter 5. VRPTR: Carpooling and Walking

5.6 Managerial insights

In Section 5.6.1, we position the obtained VRPTR solutions with respect to the existing

industrial practices. Next, in Section 5.6.2, we highlight the instance characteristics that

influence the gain obtained with the VRPTR formulation. Finally, in Section 5.6.3, we

discuss how the obtained static solutions would be expected to react when unforeseen

events occur, and we propose some associated research avenues.

5.6.1 Comparison with existing practices

In Section 5.6.1, we discuss how classical VRP solutions can be improved with the intro-

duction of walking only (i.e., results of the Park-and-Loop). Next, in Section 5.6.1, we

show how also allowing carpooling competes with respect to the one-man-one-car models

(i.e., results of the VRP and of the Park-and-Loop).

Benefits of the Park-and-Loop

Table 5.5 quantifies the aggregated gains provided by the Park-and-Loop formulation

over the 120 considered instances. Each line corresponds to a specific time window and

instance size (i.e., it covers 10 instances). The “VRP” columns characterizes the optimal

VRP solutions (idle time, |W ?| and driving distance). The “Park-and-Loop” columns

display the average total driving distance (in km) found by VNS in column “d
(
P
|W ?|
walk

)
”

and the corresponding percentage gap with respect to the optimal VRP solution values

in column “% gap” (computed as:
f
(
P
|W?|
no walk

)
−f
(
P
|W?|
walk

)
f
(
P
|W?|
no walk

) · 100).

Table 5.5 shows that a significant reduction in the driving distance is achieved when

walking is allowed (average gain of 6.4% over the 120 instances). The gain remains stable

5.6. Managerial insights 153

with the instance size, and no systematic effect can be observed from the time window

size. The explanation of such an output will be discussed in Section 5.6.2. This driving

distance gain is the consequence of transferring parts of the journeys traveled by car

to walking, resulting in an efficient use of the available idle time present in the VRP

optimal solutions. This aspect will be further discussed in Section 5.6.2. We also observe

from Table 5.5 that a threshold effect on the achieved gains might appear depending

on the number of involved jobs and the considered time window size. This is due to

the fact that depending on the considered configuration (n, TW), the worker plannings

can be more or less saturated in the optimal VRP solutions. For example, configuration

(n = 40, TW = all day) yields optimal VRP solutions that contain little idle time for the

involved workers. As explained later in Section 5.6.2, where the instance characteristics

associated with efficient VRPTR solutions are discussed, this leads to less potential gain

when walking and/or carpooling is implemented.

Table 5.5: Aggregated results for the Park-and-Loop configuration
(
P
|W ?|
walk

)
.

Instance VRP Park-and-Loop

Idle time |W ?| d?
(
P
|W?|
no walk

)
d
(
P
|W?|
walk

)
%gap

20 A 24.8% 2.0 42.1 38.2 9.2%

20 H 22.5% 2.2 56.3 48.6 13.7%

20 Q 30.2% 2.4 64.7 62.5 3.4%

30 A 26.5% 3.0 53.4 46.8 12.4%

30 H 24.6% 3.0 65.3 59.5 8.9%

30 Q 27.2% 3.3 85.9 82.8 3.7%

40 A 8.4% 3.2 60.8 57.5 5.5%

40 H 18.4% 3.7 76.6 69.5 9.3%

40 Q 22.0% 4.0 98.6 93.2 5.5%

50 A 10.5% 4.0 69.3 63.1 9.0%

50 H 8.3% 4.0 87.8 83.9 4.5%

50 Q 16.8% 4.6 112.4 108.0 3.9%

Benefits of joint walking and carpooling

In their decision-making processes, managers have the choice of favoring one configuration

over another to either reduce the driving distance (objective denoted as fdist, in km) or

the size of the vehicle fleet (objective denoted as fcar). Three different scenarios are

154 Chapter 5. VRPTR: Carpooling and Walking

envisioned by EEP.
(
S(dist)

)
focuses on the minimization of fdist (vehicles are removed as

long as the incurred detours are compensated);
(
S(car)

)
targets fcar (vehicles are removed

as long as all jobs can be served on time); and
(
S

(car)
(dist?)

)
represents the balanced scenario

where both fdist and fcar are simultaneously considered (vehicles are removed as long as

the driving distance is below the driving distance from the optimal VRP solution).

Table 5.6 presents the results for all of the above-mentioned scenarios and provides a

comparison with the one-man-one-car models. The reported values are averaged over all

instances sharing the same time window size. Instances are aggregated per time window

size in order to avoid any misleading interpretation due to the threshold effect that might

appear for some configurations (n, TW) (as observed in Section 5.6.1) and hence obtain

a general understanding of the average gain that follows from the introduction of walking

and carpooling. The “KPI” (Key Performance Indicator) column indicates the considered

value |K| (resp. d) for the size of the vehicle fleet (resp. the total driving distance). The

“VRP” and “Park-and-Loop” columns reflect some of the values presented in Table 5.5.

Column “%VRP” (resp. “%P&L”) gives the percentage gap with respect to the VRP

solution (resp. with the Park-and-Loop solution).

Table 5.6: Results for both the vehicle fleet and the total driving distance for all scenarios.

Time Window KPI VRP Park-and-Loop S(dist) S(car) S
(car)
(dist?)

Size Value %VRP Value %VRP %P&L Value %VRP %P&L Value %VRP %P&L

All day |K| 3.1 3.1 0.0% 2.9 4.1% 4.1% 2.4 23.0% 23.0% 2.7 13.1% 13.1%

d 56.4 51.4 8.9% 51.2 9.3% 0.5% 55.3 1.9% -7.7% 52.0 7.8% -1.2%

Half day |K| 3.2 3.2 0.0% 3.1 1.6% 1.6% 2.6 17.3% 17.3% 2.9 7.1% 7.1%

d 70.4 65.4 7.2% 65.3 7.3% 0.1% 71.3 -1.2% -9.1% 66.4 5.8% -1.5%

Quarter day |K| 3.6 3.6 0.0% 3.5 0.7% 0.7% 3.0 15.4% 15.4% 3.4 4.9% 4.9%

d 90.4 86.6 4.2% 86.6 4.3% 0.0% 92.2 -2.0% -6.5% 87.0 3.7% -0.5%

Total |K| 3.3 3.3 0.0% 3.2 2.0% 2.0% 2.7 18.4% 18.4% 3.0 8.2% 8.2%

d 72.4 67.8 6.4% 67.7 6.5% 0.1% 73.0 -0.7% -7.6% 68.5 5.4% -1.0%

Table 5.6 shows that, while keeping the number of workers stable with respect to the

optimal VRP solution, the size of the vehicle fleet can be significantly reduced (scenario

S(car)). This reduction is up to 23% for instances with all day time windows and averages

18.4% for all instances. Carpooling allows for a further improvement of the total driving

5.6. Managerial insights 155

distance compared with the one-man-one-car models (scenario S(dist)). The improvement

with respect to the VRP averages 6.5% for all instances, and it increases to 9.3% for

instances with all day time windows. A small average gain still exists in terms of total

driving distance compared to the Park-and-Loop, which shows that the vehicle fleet is

more efficiently used. Whereas Table 5.6 indicates that the presence of Park-and-Loop

sub-tours is responsible for most of the reduction of the driving distance, scenario S
(car)
(dist?)

highlights that with an average increase of 1% of the driving distance with respect to

Park-and-Loop solutions, savings in the number of used cars are as high as 8%.

From Table 5.6, we observe that a conflict exists between objectives fcar and fdist as

well as between the achieved gain and the implemented level of service (i.e., the time

window size). Reducing fcar yields an increase of fdist for 45.7% of the feasible instances

with fewer cars. Indeed, reducing the number of cars might create a need for detours

in the drivers’ planning (to pick up and drop off non-motorized workers) that cannot

be compensated by merging paths. However, we observe that the introduction of both

carpooling and walking is able to generate a simultaneous gain, both in terms of fleet size

and total driving distance, for 25% of the considered instances. Increasing the service

level (i.e., shrinking the time window size) decreases the achieved gain for both fcar and

fdist. With a smaller time window size, the number of jobs that can be reached on foot

decreases, which ultimately leads to an increased need for detours to drop off and pick

up non-motorized workers. This will be further analyzed in Section 5.6.2. However, a

reduction of 15.4% in terms of the size of the vehicle fleet is still achieved for instances

with quarter day time windows.

To go beyond these average results with respect to the associated optimal VRP solutions,

the following observations can be made. For all day time windows, the largest obtained

reduction in terms of driving distance is 16.6% (for instance 40 A 8). For half day time

windows, the largest achieved gain is 19% (for instance 40 H 9). Finally, for quarter day

time windows, the largest observed reduction in driving distance is 8.3% (for instance

156 Chapter 5. VRPTR: Carpooling and Walking

50 Q 1). Regarding the reduction of the fleet size, the largest gain is 50% (e.g., for

instances 20 A 1, 20 H 5, and 30 Q 10). As several instances (e.g., 20 Q 3, 40 A 3) do

not exhibit any gain (over the ten runs) either in terms of driving distance or with respect

to the size of the vehicle fleet, the smallest achieved gain is therefore 0%. Detailed results

for the 120 considered instances can be found in A.2.

5.6.2 Instance characteristics that favor carpooling

In the previous section, we analyzed the gain offered by the VRPTR formulations over

the 120 considered instances. In this section, we focus on understanding which instance

characteristics can be linked to the magnitude of the achieved gain.

Idle time and walking potential

Two indicators, gwalk and gidle, are discussed. First, the walkability gwalk characterizes the

walking potential of an instance. It represents the average number of jobs reachable on

foot from a given job. A job j is said to be reachable on foot from job i if the walking time

from i to j (τ fij) is less than τ fM (15 minutes in our experiments) and, if leaving job i as early

as possible, the worker arrives on time at job j. More precisely, let JRi be the set of jobs

reachable from job i ∈ J . Formally, we have JRi =
{
j ∈ J | τ fij ≤ τ fM ; ei + pi · τij ≤ lj

}
.

Hence, gwalk =
∑
i∈J |JRi |
|J | . Depending on the instance, gwalk lies between 0 and 1.5 (which

is in line with EEP’s field observations). Second, the idle time, denoted by gidle, is the

percentage of time during which the workers are idle in the corresponding optimal VRP

solutions. On the one hand, tightening the time window reduces gwalk (fewer jobs can

be reached on foot without time window violations) but increases gidle (waiting appears

en route for the start of a job). On the other hand, gwalk increases with n. Indeed, the

density of jobs increases, and hence, on average, more jobs can be reached on foot from

5.6. Managerial insights 157

a given position. Figure 5.7 focuses on the results of
(
P
|W ?|−1
walk

)
according to gidle and

gwalk. Each instance is positioned on the x-axis and y-axis according to gidle and to gwalk.

More specifically, for each instance, Figure 5.7(a) gives the number of jobs that cannot be

served in
(
P
|W ?|−1
walk

)
. Figure 5.7(b) plots the gap found with the optimal VRP solution

(i.e.,
d?(P

|W?|
no walk)−d(P

|W?|−1
walk)

d?(P
|W?|
no walk)

) for the 58 feasible instances for configuration
(
P
|W ?|−1
walk

)
.

Figure 5.7(a) indicates that for instances with gidle < 10%, no feasible solution can be

found for
(
P
|W ?|−1
walk

)
. To put that number into perspective, gidle = 10% represents an idle

time of 45 minutes per worker. Figure 5.7(b) highlights that the gain increases with the

walking potential gwalk of the instance. Moreover, for an idle time between 15% and 30%,

it is necessary, from a given job, to have on average more than 0.5 jobs reachable on foot

to find competitive solutions regarding the driving distance.

0 10 20 30 40 50

0

0.5

1

1.5

gidle (%)

g w
a
lk

(#
jo

b
s)

0
1
{2; 3}
{4; 5}

(a) Distribution of unserved jobs

0 10 20 30 40 50

0

0.5

1

1.5

gidle (%)

g w
a
lk

(#
jo

b
s)

Gap < 0%

Gap∈[0; 5%]

Gain∈[5; 10%]

Gap > 10%

(b) Distribution of fdist-gain

Each point corresponds to an instance defined by its indicators gidle (x-axis) and gwalk (y-axis)
(a) The number of unserved jobs is denoted by the color code given in the upper right corner.
(b) For the feasible instances, the fdist-gain range is denoted by the color code given in the
upper right corner.

Figure 5.7: Distribution of the feasible instances and fdist-gains for configuration(
P
|W ?|−1
walk

)
(i.e., one car is removed from the VRP optimal solution).

158 Chapter 5. VRPTR: Carpooling and Walking

Geographical characteristics

To keep the recommendations as general as possible, some instance characteristics that

favored walking and carpooling were not explicitly taken into account in the preceding

sections. Denser urban configurations are likely to appear in practice, as the considered

instances have a job density between 0.2 and 0.5 jobs per km2. Ultimately, only 3% of the

arcs are actually eligible for traveling on foot. A greater density of jobs per km2 would

increase gwalk and, hence, the efficiency of the VRPTR formulation, as discussed in Section

5.6.2. Considering congestion or parking time explicitly would also substantially reduce

the gap between walking time and driving time for some arcs. Additionally, walking would

sometimes becomes a mandatory option in pedestrian zones.

Other experiments (not reported here) have shown that for the 40 instances with all day

time windows, considering a non-centered depot (located at one of the corners of the

10 km by 10 km square grid) increases the efficiency of scenario S(car), as the fcar-gain

goes up from 23% to 29.2% on average, whereas the fdist-gain jumps from 1.9% to 8.8%.

Indeed, in such a situation, the optimal VRP solutions are likely to route workers through

close paths from the depot to the customer locations at the beginning of the working day

and back to the depot at the end of it. A consolidation of these travels to and from the

depot is hence expected to arise.

5.6.3 Expected impact of random perturbations

In this paper, we considered a static case where all the service times and travel data are

assumed to be known. The aim of this study is to measure the benefits of walking and

carpooling. However, in practice, the actual service and travel times are likely to differ

from the forecasted ones. In the following, we discuss the expected impacts resulting from

such perturbations and what mechanisms could be envisioned to overcome such issues.

5.7. Conclusion, perspectives, and future works 159

Compared with VRP solutions, the routes involving carpooling are interdependent. As

a consequence, an unexpected event on one route can potentially modify the schedule of

all the interconnected routes. For example, considering the VRPTR solution displayed in

Figure 5.6, if worker w3 is delayed on her/his route (gray line) because of longer service or

travel times, s/he will only be able to pick up the non-motorized worker w4 behind sched-

ule, which would ultimately lead to a late arrival at the depot for both workers. Robust

approaches, such as those derived in the VRP context (e.g., [Lu and Gzara, 2019]), could

be extended to the VRPTR case. In the context of online VRP (see [Pillac et al., 2013] for

a recent review), [Lorini et al., 2011] and [Respen et al., 2019] propose a solution method

to rebuild – in real-time – solutions that have been modified by unexpected events. Their

methods rely on fast moves, including the reassignment of a limited number of jobs or

vehicle diversion (i.e., modify the current destination of the vehicle). In the VRPTR

situation, taxi services [Zufferey et al., 2016] could also be envisioned as an urgency back-

up. Removing future WRs in driver routes would also be an appropriate technique for

overcoming delays in their routes.

5.7 Conclusion, perspectives, and future works

This study considers a new type of VRP called the Vehicle Routing Problem with Trans-

portable Resources (VRPTR), where vehicles and walking workers coexist and must be

synchronized to satisfy a given set of jobs spread over a territory. Such a formulation has

not yet been introduced in the literature, and it opens up new perspectives in decision-

making processes for routing problems. The proposed modeling framework is suitable for

each situation in which two distinct transportation resources are available: the transporter

ones (e.g., cars, trucks, or buses), which move autonomously, and the transportable ones

(e.g., pedestrians, scooters, bicycles, or drones), which can either move autonomously or

be transported by a transporter one for parts of their route.

160 Chapter 5. VRPTR: Carpooling and Walking

In this contribution, we treat an application of the VRPTR that comes from an industrial

case. It involves cars, walking, and carpooling. Coordinating all these transportation

options allows managers to generate a brand new set of solutions in a routing context.

Considering an urban context, we evaluate the potential of such a novel formulation, as

simultaneous savings can be achieved both in the total driving distance and in the number

of vehicles, even with tight time windows. Obviously, when focusing on these two objec-

tives, the gains obtained depend on the instance characteristics. We have identified some

conditions under which a significant gain can be expected. For instances involving idle

times (inside the routes due to time window constraints or at the end of the routes), the

new formulation is able to invest them efficiently in carpooling and walking. Further works

could explore in detail the trade-off that arises between decreasing the need for resources

and the total en route time, as done in a Green VRP context in [Demir et al., 2014].

5.8 Acknowledgement

The authors would like to thank Professor Guy Desaulniers (Polytechnique Montreal

and GERAD, Canada) for proving the optimality of the VRP solutions with GENCOL.

Thanks are due to the reviewers for their valuable comments. This research did not

receive any specific grant from funding agencies in the public, commercial, or not-for-

profit sectors.

Chapter 6

General conclusion

This thesis presents four independent chapters that are inspired by different industrial

partners. This chapter discusses common conclusions from the different projects. First, I

review the scientific contributions. Next, I sketch out the future works envisioned.

6.1 Scientific contributions

First, I introduced new and relevant problems, directly derived from industry. These prob-

lems occur at different echelons of the supply chain and are related to the transportation

of goods or persons.

In the first part of this thesis (Chapters 2 and 3), I focus on cross-docking platforms used

to consolidate flows of products. More precisely, I integrate three NP-hard problems

(i.e., the traveling purchaser problem [Manerba et al., 2017], container loading problems

[Toffolo et al., 2017], and container scheduling [Boysen et al., 2018b]), such an integration

has never been addressed.

161

162 Chapter 6. General conclusion

In the second part of this thesis, I introduce an extension of the Vehicle Routing Prob-

lem, called Vehicle Routing Problem with Transportable Resources (VRPTR). It allows

integrating drone flights into traditional deliveries by trucks (Chapter 4). The trucks-

and-drones problems have received considerable attention from researchers in the past

five years, but I consider specific characteristics that have not been addressed in the lit-

erature. The VRPTR also allows integrating walking and carpooling into vehicle routing

(Chapter 5). Walking and carpooling have never been integrated into a routing context,

and doing so has great potential in the context of growing urbanization with limited access

to city center. In the context of major concern regarding human activities and pollution,

these two extensions have a great potential for greenhouse gas reduction.

I show the practical relevance of these new problems by conducting extensive computa-

tional experiments and sensitivity analyses on real or realistic instances. I identify that

significant savings can be achieved when compared to current industrial practices. I show

that it is possible to improve the performance of several indicators of the supply chain.

There is room for reducing not only costs but also the supply chain’s environmental

impact. It is also possible to find solutions that also improve working conditions. For

instance, in Chapters 2 and 3, I describe how multiple problems can be integrated and

solved simultaneously to reduce the storage required and the gap between the most and

least loaded day in cross-docking platforms. Compared with the case where all problems

are solved individually in a sequential manner, which is the current industrial practice, I

have been able to identify gains of more than 50% on the real instances provided by the

industrial partners. In Chapter 4, by using drones in tandem with trucks, I identify a

potential cost reduction of up to 35% in cases where all the jobs can be served by drones.

Finally, in Chapter 5, compared with a case where all workers operate their own vehicle,

carpooling and walking allow decreasing the size of the vehicle fleet by 8% and the total

driving distance by 5%.

I also propose several methodological contributions. First, I point out the efficiency of

6.1. Scientific contributions 163

using heuristics based on the destroy-and-repair principle to solve problems of various

types. These methods require an insertion heuristic able to reconstruct a solution from

a partial solution and a removal heuristic able to build a partial solution from a feasible

solution. A partial solution denotes a solution in which only a subset of variables can

be changed (the other variables are fixed). Using the insertion and removal heuristics

iteratively allows finding effective solutions in very different contexts (as shown in the

results displayed above). This thesis presents several ways to implement a destroy-and-

repair solution method. I present a Fix-and-Optimize Metaheuristic (FOM) (Chapters 2

and 3). The FOM acknowledges the interest of using mathematical programming during

the reconstruction phase. I also present an Adaptive Large Neighborhood Search (ALNS)

(Chapter 4) and a Variable Neighborhood Search (VNS) (Chapter 5). The strengths of

the latter methods rely on the diversity of the insertion heuristics used to repair the

solution. From a general viewpoint, considering as many possible specific features of the

problem as possible and adapting the solution method to these features improves the

output. In Chapters 4 and 5 (i.e., in the routing context), I detail algorithms (called the

fast feasibility check and fast cost evaluation) used to speed up the insertion heuristics.

Without this speed-up phase, I would not have been able to solve realistic instances within

the allowed execution time.

Moreover, heuristics based on the destroy-and-repair principle act as integrated solution

methods; they can make decisions on the several parts of the solution simultaneously.

I compare such integrated solution methods with decomposition solution methods that

decompose the main problem into smaller sub-problems. The sub-problems are solved

successively, and the output of a sub-problem becomes the input of the next one. I

show that integrated solution methods that can revoke decisions on several parts of the

solution simultaneously significantly improves the results of the decomposition approach.

However, it comes at the price of an increased execution time. For instance, Chapter

3 indicates that the decomposition method that independently solves the truck-loading

problems and then the containers-loading problem produces results (e.g., require storage

164 Chapter 6. General conclusion

space) that can be improved by 10% by the FOM regarding the objective function. FOM

can make decisions on the content of trucks and containers simultaneously. In Chapter 4,

similarly, for the truck-and-drone problem, a decomposition method that first builds truck

routes and then assigns the jobs to drones provides solutions that the ALNS improves by

8% on average.

6.2 Future work

I expect to use the proposed solution methods on other complex logistics problems. The

modeling framework used to integrate the complex loading constraints with the container

scheduling problem (i.e., how and when to load containers, see Chapters 2 and 3) is

generic. It is based on product permutation and allows significantly decreasing the com-

plexity of the problem while keeping a rather important number of solutions. It can be

applied in any case where several products can be transported by the same box-type.

The methods developed allow testing a huge number of feasible loading assignments by

moving products from one box to another. Other industrial contexts also propose inte-

grating loading constraints with another optimization problem (e.g., the routing with 3D

loading constraint [Bortfeldt et al., 2015]). These contributions do not use the abovemen-

tioned simplification to address the loading problem. Based on the good results found

with the proposed modeling framework, I expect to find competitive algorithms in those

cases with the proposed simplification. Moreover, the FOM is not frequently used (a

few papers directly refer to fix-and-optimize procedures). Because of its advantages (e.g.,

efficient solutions are provided, only one mathematical model needs to be maintained,

and it allows new features to be easily introduced into the problem), I expect to use this

methodology in several other contexts to assess its performance more precisely.

Also, in the situations considered in this thesis, I focus on building efficient solutions in

a static case (i.e., the information is known in advance). In future work, I expect to

6.2. Future work 165

examine how a dynamic context impacts the proposed solution. As these solutions are

of considerable interest to industry, a natural next step is to evaluate their robustness.

Indeed, managing highly synchronized solutions raises the question of robustness (e.g.,

the routes proposed in Chapters 4 and 5 are interconnected, and the container scheduling

strongly depends on products received in Chapters 2 and 3). What would be the impact

of an unexpected event on the proposed solutions? For instance, if a truck is delayed, a

drone or non-motorized worker might not be picked up on time, and hence, the remaining

part of the solution might turn out to be infeasible. I see two potential axes for future

works. First, I could propose robust solutions. Robust solutions are built so that the

deviation in the objective function is minimized given a total level of hazard in the data.

Another research axis is to propose real-time algorithms that recompute a feasible solution

each time an unexpected event precludes continuing to use the current solution.

Both problems described in Chapters 4 and 5 can be generalized as the VRPTR. In this

thesis, because of the specific constraints found in Chapter 4 and in Chapter 5, I proposed

two different solution methods for each problem. Indeed, by splitting the modeling, I could

make some assumptions on each problem that speed up the insertion phase of the destroy-

and-repair procedure. As future work, it would be interesting to propose a common and

generic model for the VRPTR that can solve the two problems. Indeed, unifying the

modeling framework could have several advantages. First of all, improving an algorithm

would be beneficial for both versions of the problem. Also, integrating walking and drones

in the same solution could lead to very effective solutions.

Finally, the problems proposed in this thesis can be extended, and the proposed solution

methods could be tested on these extended problems. Among the potential extensions,

I envision to consider the customer priority in the cross-docking platforms described in

Chapters 2 and 3, (i.e., sent as soon as possible the products concerning customers with

high priority). In the same context, I could also integrate the design of truck routes to the

cross-docking operations. Regarding the second part of the thesis, myriad of extensions

166 Chapter 6. General conclusion

can be proposed: increase the drone’s loading capacity in Chapter 4, consider multiple

transportation means for walking workers in Chapter 5 (e.g., public transport or bike).

All these extensions are relevant for the industry.

6.2. Future work 167

Abbreviations

• ALNS: Adaptive Large Neighborhood Search

• APVRP: Active Passive Vehicle Routing Problem

• BP: Branch and Price

• DM: Decomposition Matheuristic

• DP: Dynamic Programming

• ECM: European Car Manufacturer

• EEP: European Energy Provider

• ELP: Eurpean Logistics Provider

• FOM: Fix-and-Optimize Matheuristic

• GRASP: Greedy Randomized Adaptive Search Procedure

• ILP: Intermodal Logistics Platform

• LB: Lower Bound

• LNS: Large Neiborhood Search

• MC-VRPTW-D: Minimum Cost Vehicle Routing Problem with Time Windows and

Drones

• MH: Matheuristic

• MILP: Mixed Integer Linear Programming

• MKP: Multidimensional Knapsack Problem

• RFCS: Route First Cluster Second

• SA: Simulated Annealing

168 Chapter 6. General conclusion

• TSCD: Truck Scheduling Cross-Dock

• TDM: Temporal Decomposition Matheuristic

• VNS: Variable Neighborhood Search

• VND: Variable Neighborhood Descent

• VRP: Vehicle Routing Problem

• VRPTR: Vehicle Routing Problem with Transportable Resources

• VRPTT: Vehicle Routing Problem with Trailer and Transhipment

• VRPTW: Vehicle Routing Problem with Time Windows

• TW: Tiwe Window

• WR: Walking Route

Bibliography

[Agatz et al., 2018] Agatz, N., Bouman, P., and Schmidt, M. (2018). Optimization

approaches for the traveling salesman problem with drone. Transportation Science,

52(4):965–981.

[Amazon, 2016] Amazon (2016). Unmanned aerial vehicles in logistics.

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011.

[Archetti and Speranza, 2014] Archetti, C. and Speranza, M. G. (2014). A survey on

matheuristics for routing problems. EURO Journal on Computational Optimization,

2(4):223–246.

[Baldacci et al., 2012] Baldacci, R., Mingozzi, A., and Roberti, R. (2012). Recent exact

algorithms for solving the vehicle routing problem under capacity and time window

constraints. European Journal of Operational Research, 218(1):1–6.

[Bellanger et al., 2013] Bellanger, A., Hanafi, S., and Wilbaut, C. (2013). Three-stage

hybrid-flowshop model for cross-docking. Computers & Operations Research, 40:1109–

1121.

[Boctor et al., 2003] Boctor, F. F., Laporte, G., and Renaud, J. (2003). Heuristics for

the traveling purchaser problem. Computers & Operations Research, 30(4):491–504.

[Bodin et al., 2000] Bodin, L., Mingozzi, A., Baldacci, R., and Ball, M. (2000). The

rollon–rolloff vehicle routing problem. Transportation Science, 34(3):271–288.

169

170 BIBLIOGRAPHY

[Bortfeldt et al., 2015] Bortfeldt, A., Hahn, T., Männel, D., and Mönch, L. (2015). Hy-

brid algorithms for the vehicle routing problem with clustered backhauls and 3d loading

constraints. European Journal of Operational Research, 243(1):82–96.

[Bouman et al., 2018] Bouman, P., Agatz, N., and Schmidt, M. (2018). Dynamic pro-

gramming approaches for the traveling salesman problem with drone. Networks,

72(4):528–542.

[Boysen, 2010] Boysen, N. (2010). Truck scheduling at zero-inventory cross docking ter-

minals. Computers & Operations Research, 37(1):32–41.

[Boysen et al., 2018a] Boysen, N., Briskorn, D., Fedtke, S., and Schwerdfeger, S. (2018a).

Drone delivery from trucks: Drone scheduling for given truck routes. Networks,

72(4):506–527.

[Boysen and Fliedner, 2010] Boysen, N. and Fliedner, M. (2010). Cross dock scheduling:

Classification, literature review and research agenda. Omega, 38(6):413–422.

[Boysen et al., 2018b] Boysen, N., Schwerdfeger, S., and Weidinger, F. (2018b). Schedul-

ing last-mile deliveries with truck-based autonomous robots. European Journal of Op-

erational Research, 271(3):1085–1099.

[Buijs et al., 2014] Buijs, P., Vis, I. F., and Carlo, H. J. (2014). Synchronization in

cross-docking networks: A research classification and framework. European Journal of

Operational Research, 239(3):593–608.

[Carlsson and Song, 2017] Carlsson, J. G. and Song, S. (2017). Coordinated logistics with

a truck and a drone. Manag Science (to appear), 0(0):null.

[Cattaruzza et al., 2017] Cattaruzza, D., Absi, N., Feillet, D., and González-Feliu, J.

(2017). Vehicle routing problems for city logistics. EURO Journal on Transportation

and Logistics, 6(1):51–79.

BIBLIOGRAPHY 171

[Cattaruzza et al., 2018] Cattaruzza, D., Brotcorne, L., Semet, F., and Tounsi, B. (2018).

A three-phase matheuristic for the packaging and shipping problem. Applied Mathe-

matical Modelling, 64:713–732.

[Chao, 2002] Chao, I.-M. (2002). A tabu search method for the truck and trailer routing

problem. Computers & Operations Research, 29(1):33–51.

[Chen and Lee, 2009] Chen, F. and Lee, C.-Y. (2009). Minimizing the makespan in a two-

machine cross-docking flow shop problem. European Journal of Operational Research,

193(1):59–72.

[Chen, 2015] Chen, H. (2015). Fix-and-optimize and variable neighborhood search ap-

proaches for multi-level capacitated lot sizing problems. Omega, 56:25–36.

[Cherkassky et al., 2009] Cherkassky, B. V., Georgiadis, L., Goldberg, A. V., Tarjan,

R. E., and Werneck, R. F. (2009). Shortest-path feasibility algorithms: An experi-

mental evaluation. Journal of Experimental Algorithmics, 14:7.

[Coindreau et al., 2019a] Coindreau, M.-A., Gallay, O., and Zufferey, N. (2019a). Vehicle

routing with transportable resources: Using carpooling and walking for on-site services.

European Journal of Operational Research, 279(3):996–1010.

[Coindreau et al., 2019b] Coindreau, M.-A., Gallay, O., Zufferey, N., and Laporte, G.

(2019b). Integrating workload smoothing and inventory reduction in three intermodal

cross-docking platforms of a European car manufacturer. Computers & Operations

Research, 112:104762.

[Cordeau et al., 2007] Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., and Vigo, D.

(2007). Vehicle routing. Handbooks in Operations Research and Management Science,

14:367–428.

[Daimler, 2017] Daimler (2017). Vans & robots paketbote 2.0.

https://www.daimler.com/innovation/specials/future-transportation-vans/paketbote-2-

0.html.

172 BIBLIOGRAPHY

[Dechter et al., 1991] Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal constraint

networks. Artificial Intelligence, 49(1-3):61–95.

[Della Croce and Salassa, 2014] Della Croce, F. and Salassa, F. (2014). A variable neigh-

borhood search based matheuristic for nurse rostering problems. Annals of Operations

Research, 218(1):185–199.

[Demir et al., 2014] Demir, E., Bektaş, T., and Laporte, G. (2014). The bi-objective

pollution-routing problem. European Journal of Operational Research, 232(3):464–478.

[Derigs et al., 2013] Derigs, U., Pullmann, M., and Vogel, U. (2013). Truck and trailer

routing problems, heuristics and computational experience. Computers & Operations

Research, 40(2):536–546.

[Desaulniers et al., 2008] Desaulniers, G., Lessard, F., and Hadjar, A. (2008). Tabu

search, partial elementarity, and generalized k-path inequalities for the vehicle rout-

ing problem with time windows. Transportation Science, 42(3):387–404.

[DHL, 2014] DHL (2014). First prime air delivery.

www.logistics.dhl/content/dam/dhl/global/core/docu ments/pdf/glo-logistics-insights-

uav-trend-report.pdf.

[Domı́nguez-Mart́ın et al., 2018] Domı́nguez-Mart́ın, B., Rodŕıguez-Mart́ın, I., and

Salazar-González, J.-J. (2018). The driver and vehicle routing problem. Computers

& Operations Research, 92:56–64.

[Dorneles et al., 2014] Dorneles, Á. P., de Araújo, O. C., and Buriol, L. S. (2014). A

fix-and-optimize heuristic for the high school timetabling problem. Computers & Op-

erations Research, 52:29–38.

[Drexl, 2012] Drexl, M. (2012). Synchronization in vehicle routing: a survey of VRPs

with multiple synchronization constraints. Transportation Science, 46(3):297–316.

[Drexl, 2014] Drexl, M. (2014). Branch-and-cut algorithms for the vehicle routing problem

with trailers and transshipments. Networks, 63(1):119–133.

BIBLIOGRAPHY 173

[Emde et al., 2010] Emde, S., Boysen, N., and Armin, S. (2010). Balancing mixed-model

assembly lines: a computational evaluation of objectives to smoothen workload. Inter-

national Journal of Production Research, 48(11):3173–3191.

[Enderer et al., 2017] Enderer, F., Contardo, C., and Contreras, I. (2017). Integrating

dock-door assignment and vehicle routing with cross-docking. Computers & Operations

Research, 88:30–43.

[Ferrandez et al., 2016] Ferrandez, S. M., Harbison, T., Weber, T., Sturges, R., and Rich,

R. (2016). Optimization of a truck-drone in tandem delivery network using k-means

and genetic algorithm. Journal of Industrial Engineering and Management, 9(2):374.

[Fikar and Hirsch, 2015] Fikar, C. and Hirsch, P. (2015). A matheuristic for routing

real-world home service transport systems facilitating walking. Journal of Cleaner

Production, 105:300–310.

[Fikar and Hirsch, 2017] Fikar, C. and Hirsch, P. (2017). Home health care routing and

scheduling: A review. Computers & Operations Research, 77:86–95.

[Gendreau et al., 2006] Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). A

tabu search algorithm for a routing and container loading problem. Transportation

Science, 40(3):342–350.

[Ghiani and Laporte, 2001] Ghiani, G. and Laporte, G. (2001). Location-arc routing

problems. Opsearch, 38(2):151–159.

[Gintner et al., 2005] Gintner, V., Kliewer, N., and Suhl, L. (2005). Solving large

multiple-depot multiple-vehicle-type bus scheduling problems in practice. OR Spec-

trum, 27(4):507–523.

[Grangier et al., 2016] Grangier, P., Gendreau, M., Lehuédé, F., and Rousseau, L.-M.

(2016). An adaptive large neighborhood search for the two-echelon multiple-trip ve-

hicle routing problem with satellite synchronization. European Journal of Operational

Research, 254(1):80 – 91.

174 BIBLIOGRAPHY

[Gussmagg-Pfliegl et al., 2011] Gussmagg-Pfliegl, E., Tricoire, F., Doerner, K., and Hartl,

R. (Cadiz, 2011). Mail-delivery problems with park-and-loop tours: a heuristic ap-

proach. In Proceedings of the ORP3 Meeting.

[Ha et al., 2018] Ha, Q. M., Deville, Y., Pham, Q. D., and Hà, M. H. (2018). On the min-

cost traveling salesman problem with drone. Transportation Research Part C: Emerging

Technologies, 86:597–621.

[Ham, 2018] Ham, A. M. (2018). Integrated scheduling of m-truck, m-drone, and m-depot

constrained by time-window, drop-pickup, and m-visit using constraint programming.

Transportation Research Part C: Emerging Technologies, 91:1–14.

[Heilporn et al., 2011] Heilporn, G., Cordeau, J.-F., and Laporte, G. (2011). An integer L-

shaped algorithm for the Dial-a-Ride Problem with stochastic customer delays. Discrete

Applied Mathematics, 159 (9):883 – 895.

[Helber and Sahling, 2010] Helber, S. and Sahling, F. (2010). A fix-and-optimize ap-

proach for the multi-level capacitated lot sizing problem. International Journal of

Production Economics, 123(2):247–256.

[Hollis et al., 2006] Hollis, B., Forbes, M., and Douglas, B. (2006). Vehicle routing and

crew scheduling for metropolitan mail distribution at australia post. European Journal

of Operational Research, 173(1):133–150.

[Jabali et al., 2012] Jabali, O., Woensel, T., and de Kok, A. (2012). Analysis of travel

times and CO2 emissions in time-dependent vehicle routing. Production and Operations

Management, 21(6):1060–1074.

[Jourdan et al., 2009] Jourdan, L., Basseur, M., and Talbi, E.-G. (2009). Hybridizing

exact methods and metaheuristics: A taxonomy. European Journal of Operational

Research, 199(3):620–629.

[Kim et al., 2006] Kim, B.-I., Kim, S., and Sahoo, S. (2006). Waste collection vehicle

routing problem with time windows. Computers & Operations Research, 33(12):3624–

3642.

BIBLIOGRAPHY 175

[Kirkpatrick et al., 1983] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Opti-

mization by simulated annealing. Science, 220(4598):671–680.

[Knörr, 2008] Knörr, W. (2008). Ecotransit: ecological transport in-

formation tool, environmental methodology and data. Technical re-

port, Institut für Energie (ifeu) und Umweldforschung Heidelberg GmbH,

http://www.ecotransit.org/download/ecotransit background report.pdf.

[Ladier and Alpan, 2016] Ladier, A.-L. and Alpan, G. (2016). Cross-docking operations:

Current research versus industry practice. Omega, 62:145–162.

[Ladier et al., 2014] Ladier, A.-L., Alpan, G., and Penz, B. (2014). Joint employee weekly

timetabling and daily rostering: A decision-support tool for a logistics platform. Euro-

pean Journal of Operational Research, 234(1):278–291.

[Lam et al., 2015] Lam, E., Van Hentenryck, P., and Kilby, P. (2015). Joint vehicle and

crew routing and scheduling. In International Conference on Principles and Practice

of Constraint Programming, pages 654–670. Springer.

[Laporte, 2009] Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science,

43(4):408–416.

[Larbi et al., 2011] Larbi, R., Alpan, G., Baptiste, P., and Penz, B. (2011). Scheduling

cross docking operations under full, partial and no information on inbound arrivals.

Computers & Operations Research, 38(6):889–900.

[Levy and Bodin, 1989] Levy, L. and Bodin, L. (1989). The arc oriented location routing

problem. INFOR: Information Systems and Operational Research, 27(1):74–94.

[Lin, 2008] Lin, C. (2008). A cooperative strategy for a vehicle routing problem with

pickup and delivery time windows. Computers & Industrial Engineering, 55(4):766–

782.

176 BIBLIOGRAPHY

[Lin et al., 2009] Lin, S.-W., Vincent, F. Y., and Chou, S.-Y. (2009). Solving the truck

and trailer routing problem based on a simulated annealing heuristic. Computers &

Operations Research, 36(5):1683–1692.

[Lorini et al., 2011] Lorini, S., Potvin, J.-Y., and Zufferey, N. (2011). Online vehicle

routing and scheduling with dynamic travel times. Computers & Operations Research,

38(7):1086–1090.

[Lu and Gzara, 2019] Lu, D. and Gzara, F. (2019). The robust vehicle routing prob-

lem with time windows: Solution by branch and price and cut. European Journal of

Operational Research, 275(3):925–938.

[Maknoon and Laporte, 2017] Maknoon, Y. and Laporte, G. (2017). Vehicle routing with

cross-dock selection. Computers & Operations Research, 77:254–266.

[Maknoon et al., 2017] Maknoon, Y., Soumis, F., and Baptiste, P. (2017). An integer

programming approach to scheduling the transshipment of products at cross-docks in

less-than-truckload industries. Computers & Operations Research, 82:167–179.

[Manerba et al., 2017] Manerba, D., Mansini, R., and Riera-Ledesma, J. (2017). The

traveling purchaser problem and its variants. European Journal of Operational Research,

259(1):1–18.

[Masson et al., 2013] Masson, R., Lehuédé, F., and Péton, O. (2013). Efficient feasibility

testing for request insertion in the pickup and delivery problem with transfers. Opera-

tions Research Letters, 41(3):211–215.

[Masson et al., 2014] Masson, R., Lehuédé, F., and Péton, O. (2014). The dial-a-ride

problem with transfers. Computers & Operations Research, 41:12–23.

[Meisel and Kopfer, 2014] Meisel, F. and Kopfer, H. (2014). Synchronized routing of

active and passive means of transport. OR spectrum, 36(2):297–322.

BIBLIOGRAPHY 177

[Merengo et al., 1999] Merengo, C., Nava, F., and Pozetti, A. (1999). Balancing and

sequencing manual mixed-model assembly lines. International Journal of Production

Research, 37:2835–2860.

[Mladenović and Hansen, 1997] Mladenović, N. and Hansen, P. (1997). Variable neigh-

borhood search. Computers & Operations Research, 24(11):1097–1100.

[Murray and Chu, 2015] Murray, C. C. and Chu, A. G. (2015). The flying sidekick trav-

eling salesman problem: Optimization of drone-assisted parcel delivery. Transportation

Research Part C: Emerging Technologies, 54:86–109.

[Otto et al., 2018] Otto, A., Agatz, N., Campbell, J., Golden, B., and Pesch, E. (2018).

Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or

aerial drones: A survey. Networks, 72(4):411–458.

[Papageorgiou et al., 2018] Papageorgiou, D. J., Cheon, M.-S., Harwood, S., Trespalacios,

F., and Nemhauser, G. L. (2018). Recent progress using matheuristics for strategic

maritime inventory routing. In Konstantopoulos, C., Pantziou, G. (eds) Modeling,

Computing and Data Handling Methodologies for Maritime Transportation, volume 131,

pages 59–94. Intelligent Systems Reference Library, Springer, Cham.

[Parragh and Cordeau, 2017] Parragh, S. and Cordeau, J.-F. (2017). Branch-and-price

and adaptive large neighborhood search for the truck and trailer routing problem with

time windows. Computer & Operations Research, 83:28–44.

[Pillac et al., 2013] Pillac, V., Gendreau, M., Guéret, C., and Medaglia, A. L. (2013). A

review of dynamic vehicle routing problems. European Journal of Operational Research,

225(1):1–11.

[Pisinger, 1997] Pisinger, D. (1997). A minimal algorithm for the 0-1 knapsack problem.

Operations Research, 45(5):758–767.

[Pisinger and Ropke, 2007] Pisinger, D. and Ropke, S. (2007). A general heuristic for

vehicle routing problems. Computers & Operations Research, 34(8):2403–2435.

178 BIBLIOGRAPHY

[Poikonen et al., 2019] Poikonen, S., Golden, B., and Wasil, E. A. (2019). A branch-and-

bound approach to the traveling salesman problem with a drone. INFORMS Journal

on Computing, 31(2):335–346.

[Poikonen et al., 2017] Poikonen, S., Wang, X., and Golden, B. (2017). The vehicle rout-

ing problem with drones: Extended models and connections. Networks.

[Ponza, 2016] Ponza, A. (2016). Optimization of drone-assisted parcel delivery. Master’s

thesis, University of Padova, Italy.

[Puchinger et al., 2010] Puchinger, J., Raidl, G. R., and Pferschy, U. (2010). The mul-

tidimensional knapsack problem: Structure and algorithms. INFORMS Journal on

Computing, 22(2):250–265.

[Pugliese and Guerriero, 2017] Pugliese, L. D. P. and Guerriero, F. (2017). Last-mile

deliveries by using drones and classical vehicles. In International Conference on Opti-

mization and Decision Science, pages 557–565. Springer.

[Respen et al., 2019] Respen, J., Zufferey, N., and Potvin, J.-Y. (2019). Impact of On-

line Tracking on a Vehicle Routing Problem with Dynamic Travel Times. RAIRO-

Operations Research, 53:401 – 414.

[Rieck et al., 2014] Rieck, J., Ehrenberg, C., and Zimmermann, J. (2014). Many-to-many

location-routing with inter-hub transport and multi-commodity pickup-and-delivery.

European Journal of Operational Research, 236(3):863–878.

[Rochat and Semet, 1994] Rochat, Y. and Semet, F. (1994). A tabu search approach

for delivering pet food and flour in switzerland. Journal of the Operational Research

Society, 45(11):1233–1246.

[Ropke and Pisinger, 2006] Ropke, S. and Pisinger, D. (2006). An adaptive large neigh-

borhood search heuristic for the pickup and delivery problem with time windows. Trans-

portation Science, 40(4):455–472.

BIBLIOGRAPHY 179

[Sacramento et al., 2019] Sacramento, D., Pisinger, D., and Ropke, S. (2019). An adap-

tive large neighborhood search metaheuristic for the vehicle routing problem with

drones. Transportation Research Part C: Emerging Technologies, 102:289–315.

[Sahling et al., 2009] Sahling, F., Buschkühl, L., Tempelmeier, H., and Helber, S. (2009).

Solving a multi-level capacitated lot sizing problem with multi-period setup carry-over

via a fix-and-optimize heuristic. Computers & Operations Research, 36(9):2546–2553.

[Savelsbergh, 1992] Savelsbergh, M. W. (1992). The vehicle routing problem with time

windows: minimizing route duration. ORSA Journal On Computing, 4(2):146–154.

[Schermer et al., 2019a] Schermer, D., Moeini, M., and Wendt, O. (2019a). A hybrid

vns/tabu search algorithm for solving the vehicle routing problem with drones and en

route operations. Computers & Operations Research, 109:134–158.

[Schermer et al., 2019b] Schermer, D., Moeini, M., and Wendt, O. (2019b). A matheuris-

tic for the vehicle routing problem with drones and its variants. Transportation Research

Part C: Emerging Technologies, 106:166–204.

[Schrimpf et al., 2000] Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., and Dueck, G.

(2000). Record breaking optimization results using the ruin and recreate principle.

Journal of Computational Physics, 159(2):139–171.

[Semet, 1995] Semet, F. (1995). A two-phase algorithm for the partial accessibility con-

strained vehicle routing problem. Annals of Operations Research, 61(1):45–65.

[Semet and Taillard, 1993] Semet, F. and Taillard, E. (1993). Solving real-life vehi-

cle routing problems efficiently using tabu search. Annals of Operations research,

41(4):469–488.

[Serrano et al., 2017] Serrano, C., Delorme, X., and Dolgui, A. (2017). Scheduling of truck

arrivals, truck departures and shop-floor operation in a cross-dock platform, based on

trucks loading plans. International Journal of Production Economics, 194:102–112.

180 BIBLIOGRAPHY

[Shaw, 1997] Shaw, P. (1997). A new local search algorithm providing high quality solu-

tions to vehicle routing problems. Technical report, Department of Computer Science,

University of Strathclyde, Scotland.

[Shaw, 1998] Shaw, P. (1998). Using constraint programming and local search methods

to solve vehicle routing problems. Lecture Notes in Computer Science, 1520:417–431.

[Smilowitz, 2006] Smilowitz, K. (2006). Multi-resource routing with flexible tasks: an

application in drayage operations. Iie Transactions, 38(7):577–590.

[Speranza, 2018] Speranza, M. G. (2018). Trends in transportation and logistics. Euro-

pean Journal of Operational Research, 264:830–836.

[Tilk et al., 2017] Tilk, C., Bianchessi, N., Drexl, M., Irnich, S., and Meisel, F. (2017).

Branch-and-price-and-cut for the active-passive vehicle-routing problem. Transporta-

tion Science, 52(2):300–319.

[Toffolo et al., 2017] Toffolo, T. A., Esprit, E., Wauters, T., and Vanden Berghe, G.

(2017). A two-dimensional heuristic decomposition approach to a three-dimensional

multiple container loading problem. European Journal of Operational Research,

257(2):526–538.

[Van Belle et al., 2012] Van Belle, J., Valckenaers, P., and Cattrysse, D. (2012). Cross-

docking: State of the art. Omega, 40(6):827–846.

[Wang et al., 2017] Wang, X., Poikonen, S., and Golden, B. (2017). The vehicle routing

problem with drones: Several worst-case results. Optimization Letters, 11(4):679–697.

[Wang and Sheu, 2019] Wang, Z. and Sheu, J.-B. (2019). Vehicle routing problem with

drones. Transportation research part B: methodological, 122:350–364.

[Wohlsen, 2014] Wohlsen, M. (2014). The next big thing you missed: Amazon?s

delivery drones could work–they just need trucks. Wired. com.[http://www. wired.

com/2014/06/the-nextbig-thing-you-missed-delivery-drones-launched-from-trucks-are-

the-future-ofshipping/. Accessed 10/15/2014.].

BIBLIOGRAPHY 181

[Ye et al., 2018] Ye, Y., Li, J., Li, K., and Fu, H. (2018). Cross-docking truck scheduling

with product unloading/loading constraints based on an improved particle swarm op-

timisation algorithm. International Journal of Production Research, 56(16):5365–5385.

[Yu and Egbelu, 2008] Yu, W. and Egbelu, P. J. (2008). Scheduling of inbound and

outbound trucks in cross docking systems with temporary storage. European Journal

of Operational Research, 184(1):377–396.

[Yurek and Ozmutlu, 2018] Yurek, E. E. and Ozmutlu, H. C. (2018). A decomposition-

based iterative optimization algorithm for traveling salesman problem with drone.

Transportation Research Part C: Emerging Technologies, 91:249–262.

[Zufferey et al., 2016] Zufferey, N., Cho, B. Y., and Glardon, R. (2016). Dynamic multi-

trip vehicle routing with unusual time-windows for the pick-up of blood samples and

delivery of medical material. In Proceedings of the 5th International Conference on

Operations Research and Enterprise Systems, ICORES 2016, Rome, Italy, February

23–25.

Appendix A

Appendix for chapter 5

A.1 Fastening the insertion heuristic

[Masson et al., 2013] proposed a fast feasibility check (FFC) procedure for interdependent

routes. It extends the forward slack time procedure introduced by [Savelsbergh, 1992].

In the VRPTR case, an additional modeling effort is required to take into account that

all WRs depend on each other (as the same worker can be transported through multiple

WRs).

A.1.1 Modeling: aggregated nodes

For the vehicle routes, only the entry and exit points of a WR are relevant (as all inter-

mediate nodes are not visited by the vehicles). Accordingly, we introduce two aggregated

nodes for a WR: one for the drop-off (at the beginning of the WR) and one for the pick-up

(at the end of the WR). These nodes are visited by the vehicles and gather consolidated

182

A.1. Fastening the insertion heuristic 183

information about the WR (total duration and resulting time window).

Let Ω =
⋃
w∈W Ωw be the set of all WRs, where Ωw represents the ordered set of WRs

performed by worker w ∈ W in her/his schedule (κi+1 ∈ Ωw is directly performed after

WR κi in the schedule of worker w, ∀i < |Ωw|). w(κ) is the worker associated with κ, and

i(κ) is the position of WR κ in the worker’s planning. Furthermore, ρ(κ) (resp. σ(κ))

represents the predecessor (resp. successor) of κ in the corresponding worker planning.

ρ(κ) (resp. σ(κ)) is ∅ if κ is the first (resp. the last) WR done. [eκ, lκ] and pκ denotes the

time window of κ (to serve all jobs of κ on time) and the total processing time (i.e., all

processing times, walking times, and waiting times along κ).

D (resp. P) is the set of all drop-off (resp. pick-up) points. Dκ ∈ D (resp. Pκ ∈ P) is the

drop-off (resp. pick-up) point of κ. OW ⊂ P (resp. O′W ⊂ D) represents the set of worker

pick-up (resp. drop-off) points at the depot. Moreover, OK (resp. O′K) denotes the set of

the first (resp. the last) nodes visited by the vehicles. Finally, M = P ∪ D ∪ OK ∪ O′K

denotes the set of all aggregated nodes for a given solution.

A transportation request arises between the end of a WR κ and the beginning of the next

WR σ(κ), denoted by (Pκ, Dσ(κ)). Furthermore, transportation requests are required

between the pick-up at the depot and the drop-off at the beginning of the first WR as

well as between the pick-up in the last WR (of any worker’s planning) and the final drop-

off at the depot: (POw , Dκ1) (resp. (Pκ|ωw| , D0′w)) for the transportation between the depot

(resp. last WR κ|ωw|) and the first WR κ1 (resp. the depot).

For each v ∈M, k(v) is the route that visits v, and i(v) is the position of v in the route.

ρ(v) (resp. σ(v)) denotes the predecessor (resp. successor) of v in the route. Finally, for

each v ∈ D ∪ P , κ(v) denotes the WR that contains v. Workers’ pick-up and drop-off

times are set to be null. Each v ∈M can be characterized by an associated time window

[ev, lv], which corresponds to the time a car must drop off a worker to have an on-time

184 Chapter A. Appendix for chapter 5

arrival for the jobs composing κ(v). For each v ∈ D, we have ev = eκ(v) and lv = lκ(v),

whereas for each v ∈ P , we have lv =∞, and ev depends on the drop-off time at D(v).

A.1.2 Vehicle constraints

A vehicle route is an ordered set of aggregated nodes that must satisfy the following

constraints, where D(v)v∈P∪OW (resp. P (v)v∈D∪0′W
) designates the drop-off (resp. pick-

up) in the pick-up and drop-off couple. More precisely, D(v) = Pρ(κ(v)), ∀v ∈ P , and

D(v) = P0,w(κ(v)), ∀v ∈ OW . 1i=P = 1 (resp. 1i=D = 1) if i is a pick-up (resp. drop-off)

aggregated node, and 0 otherwise. Constraints (A.1) ensure that the nodes of a pick-up

and drop-off couple are managed by the same vehicle, and the pick-up must occur before

the drop-off. Constraints (A.2) ensure that a vehicle cannot move without its associated

driver by scheduling the driver’s pick-up directly after her/his drop-off in the vehicle route.

Constraints (A.3) ensure that the vehicle capacity q is never exceeded. A set of routes

is feasible if the above constraints are satisfied and if it fulfills the temporal constraints

that are detailed in the next subsection.

k(v) = k(D(v)) and i(v) < i(D(v)), ∀v ∈ OW ∪ P (A.1)

k(Dκ(v)) = k(Pκ(v)) and i(Pκ(v)) = i(Dκ(v)) + 1, ∀v ∈ D/ w(κ(v)) is a driver(A.2)∑
v∈k

(1v=P − 1v=D) ≤ q, ∀k ∈ K (A.3)

A.1.3 Temporal constraints

A solution to the VRPTW is feasible if and only if each of its routes satisfies temporal

feasibility. The temporal constraints are modeled using a Simple Temporal Problem (as

described by [Dechter et al., 1991]), for which efficient algorithms and representations

exist in the literature. Temporal constraints are expressed as follows in Equations (A.4)–

A.1. Fastening the insertion heuristic 185

(A.6), where hv represents the service time at the aggregated node v ∈M:

hσ(v) ≥ hv + τ dv,σ(v), ∀v ∈M\O′K (A.4)

hPκ ≥ max{hDκ , eDκ}+ pκ, ∀κ ∈ Ω (A.5)

hv ≤ lv, ∀v ∈M (A.6)

Equations (A.4) set the temporal constraints in a route, for which the arrival time at a

node depends on the departure time at the previous node. Equations (A.5) specify the

time at which a worker is available to be picked up after completing a WR. The time

at which a worker starts working on a WR depends on both the drop-off time hDκ and

on the time window eDκ of the WR. Finally, Equations (A.6) state that the service time

cannot start after the end of the corresponding time window.

This set of equations can be modeled with a precedence graph, calledGp, where constraints

of type hu − hv ≥ auv (auv is a real number) represent an arc from u to v with a cost of

auv. Node o is introduced to represent the beginning of the planning horizon, and, for

every drop-off point D ∈ D, a virtual node D(dup) is introduced to get rid of the max

function in Equations (A.5). D(dup) is the set of duplicated nodes. Equations (A.4) to

(A.6) can therefore be rewritten as follows:

hσ(v) − hv ≥ τ dv,σ(v), ∀v ∈M\O′K (A.7)

hPκ − hD(dup)
κ
≥ pκ, ∀κ ∈ Ω (A.8)

h
D

(dup)
κ
− hDκ ≥ 0, ∀κ ∈ Ω (A.9)

h
D

(dup)
κ
− ho ≥ ev, ∀κ ∈ Ω (A.10)

ho − hv ≥ −lv, ∀v ∈M (A.11)

hv ≥ 0, ∀κ ∈ Ω (A.12)

ho = 0 (A.13)

Checking the feasibility of the VRPTR set of temporal constraints is equivalent to show-

186 Chapter A. Appendix for chapter 5

ing that there is no cycle of negative length in the precedence graph. This can be

done using the so-called BFCT algorithm, which has a complexity of O(|M| × |A′|)

[Cherkassky et al., 2009]. For any solution satisfying the temporal constraints, the prece-

dence graph is a direct acyclic graph.

Figure A.1 presents the precedence graph associated with Figure 5.1 using the above-

introduced notation. In Figure 5.1, the solution with carpooling and walking contains

three WRs, which can be denoted as Ω = {κ1 = {j1}, κ2 = {j2, j3}, κ3 = {j4}}. It

involves six pick-up and drop-off couples denoted as (POw1
, Dκ1), (Pκ1 , D0′w1

), (POw2
, Dκ2),

(Pκ2 , D0′w2
), (POw3

, Dκ3), and (Pκ3 , D0′w3
).

o

O1

0′1

POw1
POw2

Dκ2

D
dup
0

Dκ1Pκ1

Ddupκ1

D0′w1

0′2

O2
POw3

Dκ3

Ddupκ3

Pκ3

Pκ2
D0′w2

D0′w3

eO1

eκ2

−lκ2

−l0′1

eO2

−l0′2

0
τdPOw1

,POw2

τdPOw2
,Dκ2

τdDκ2 ,Dκ1

0

τdPκ1 ,D0′w10

0 τdPOw3
,Dκ3

0

τdPκ3 ,Pκ2

τdPκ2 ,D0′w2

τdD
0′w2

,D
0′w30

0pκ1

0

pκ2

0 pκ3

eκ3

eκ1

Figure A.1: Precedence graph representing the VRPTR solution of Figure 5.1. Dotted arcs
represent time window constraints (for the sake of clarity, not all time window constraints
are drawn), dashed arcs represent precedence constraints due to WRs, and both double
and normal arcs represent precedence constraints due to the routes. The order of the
nodes in the route must satisfy the constraints in Equations (A.1)–(A.3).

The FFC procedure pre-computes, for each aggregated node v ∈ M, the earliest service

time (hv), the latest departure time (λv), and the matrix of waiting times between all

aggregated nodes ((Φuv)u,v∈M). As the precedence graph Gp represents a feasible solution,

it does not contain any cycle of positive weight; therefore, the longest path is the shortest

A.2. Detailed results for all instances 187

path in −Gp, where the arcs of −Gp have the opposite weight of the arcs in Gp. The

precedence graph is a direct acyclic graph, where the shortest paths can be computed

in linear time. (Φuv)u,v∈M is computed as the shortest paths in the precedence graph,

where the arcs are weighted with the waiting time in the solution at the terminal node

of the arc (i.e., the waiting time at node v is equal to max{0, ev − hv}), and it can be

computed in O(n2). All these shortest paths are computed once, and then the O(n4)

insertion positions are tested in constant time.

A.2 Detailed results for all instances

Tables A.1 to A.4 detail the results found by VNS for all VRPTR configurations over the

120 generated instances. The table contents correspond to those of Table 5.3, a description

of which can be found in Section 5.5.5.

Table A.1: Detailed results for instances involving 20 jobs.

Instance VRP
(
P
|W?|
no walk

)
Park-and-Loop Carpooling

Idle Time
(
P
|W?|
walk

) (
P
|W?|−1
no walk

) (
P
|W?|−1
walk

) (
P
|W?|−2
walk

)
|W ?| d? Route Depot d d |Jout| d |Jout| d |Jout|

20 A 1 2 37.8 0.0% 26.1% 32.4 47.2 0 40.3 0 0 6
20 A 2 2 46.2 0.0% 24.1% 41.6 59.0 0 50.0 0 0 6
20 A 3 2 43.2 0.0% 29.6% 39.4 48.8 0 45.6 0 0 6
20 A 4 2 42.0 0.0% 26.3% 39.1 48.7 0 46.6 0 0 6
20 A 5 2 41.5 0.0% 25.2% 35.3 48.4 0 49.6 0 0 7
20 A 6 2 46.0 0.0% 23.0% 43.8 64.9 0 69.0 0 0 8
20 A 7 2 44.3 0.0% 24.0% 40.1 66.1 0 66.1 0 0 7
20 A 8 2 42.3 0.0% 19.7% 39.1 55.4 0 55.4 0 0 7
20 A 9 2 33.6 0.0% 25.3% 29.9 40.0 0 38.0 0 0 6
20 A 10 2 43.8 0.0% 24.7% 41.2 49.0 0 48.2 0 0 6

20 H 1 2 49.0 16.0% 7.5% 41.4 - 1 - 1 0 7
20 H 2 2 53.6 5.0% 17.4% 52.2 - 1 - 1 0 7
20 H 3 2 52.1 14.8% 12.7% 51.4 77.8 0 66.7 0 0 8
20 H 4 2 51.1 13.5% 10.7% 49.4 - 1 - 1 0 9
20 H 5 2 52.6 8.4% 14.2% 47.6 80.1 0 80.1 0 0 7
20 H 6 2 51.1 16.4% 5.4% 50.3 - 1 - 1 0 9
20 H 7 2 59.4 11.4% 9.0% 55.3 - 2 - 2 0 8
20 H 8 2 51.7 3.5% 13.9% 46.6 - 2 - 1 0 8
20 H 9 2 44.2 13.0% 9.8% 39.8 - 1 - 1 0 7
20 H 10 2 54.6 14.6% 7.5% 52.0 - 1 - 1 0 7

20 Q 1 2 61.2 15.0% 5.5% 60.1 - 3 - 2 0 9
20 Q 2 2 59.4 6.1% 14.9% 58.0 - 3 - 3 0 7
20 Q 3 2 63.9 23.3% 1.3% 63.9 - 2 - 2 0 9
20 Q 4 2 68.6 15.9% 4.1% 67.0 - 3 3 0 11
20 Q 5 2 74.9 14.4% 2.9% 71.0 - 2 - 2 0 10
20 Q 6 3 72.1 40.6% 3.9% 70.5 - 1 - 1 - 1
20 Q 7 3 65.4 38.0% 8.0% 60.8 70.6 0 64.9 0 - 1
20 Q 8 2 66.4 3.5% 10.5% 63.1 - 3 - 2 - 9
20 Q 9 3 54.6 40.5% 6.4% 50.7 66.0 0 54.8 0 - 1
20 Q 10 3 60.7 37.5% 9.6% 59.8 61.6 0 60.3 0 - 0

188 Chapter A. Appendix for chapter 5

Table A.2: Detailed results for instances involving 30 jobs.

Instance VRP
(
P
|W?|
no walk

)
Park-and-Loop Carpooling

Idle Time
(
P
|W?|
walk

) (
P
|W?|−1
no walk

) (
P
|W?|−1
walk

) (
P
|W?|−2
walk

)
|W ?| d? Route Depot d d |Jout| d |Jout| d |Jout|

30 A 1 3 48.8 0.0% 25.6% 41.3 49.5 0 43.0 0 - 2
30 A 2 3 53.0 0.0% 26.5% 46.6 53.4 0 46.8 0 - 1
30 A 3 3 57.1 0.0% 27.4% 51.0 54.3 0 54.3 0 - 2
30 A 4 3 52.8 0.0% 30.5% 46.3 49.8 0 45.8 0 - 1
30 A 5 3 55.9 0.0% 24.9% 48.4 54.3 0 44.8 0 - 2
30 A 6 3 57.3 0.0% 23.8% 51.7 54.0 0 49.5 0 - 2
30 A 7 3 54.7 0.0% 29.4% 45.5 53.3 0 46.7 0 - 1
30 A 8 3 50.6 0.0% 22.5% 45.4 52.9 0 44.6 0 - 3
30 A 9 3 49.5 0.0% 26.3% 41.9 48.1 0 43.0 0 - 1
30 A 10 3 53.8 0.0% 27.6% 49.5 54.5 0 49.9 0 - 1

30 H 1 3 62.5 20.2% 3.3% 57.6 - 2 - 2 - -
30 H 2 3 61.5 4.4% 20.8% 57.2 78.3 0 65.3 0 - 1
30 H 3 3 74.3 14.0% 10.8% 67.6 84.5 0 75.5 0 - 4
30 H 4 3 68.2 19.8% 8.3% 63.7 88.0 0 71.2 0 - 4
30 H 5 3 68.0 5.2% 17.8% 61.1 79.4 0 67.9 0 - 3
30 H 6 3 71.1 9.3% 12.3% 65.0 80.6 0 70.1 0 - 3
30 H 7 3 66.5 12.1% 15.4% 58.1 72.6 0 64.7 0 - 3
30 H 8 3 59.2 8.1% 13.1% 52.7 76.3 0 65.0 0 - 4
30 H 9 3 56.5 10.0% 15.2% 50.7 64.3 0 59.5 0 - 3
30 H 10 3 65.2 14.9% 10.8% 61.3 75.1 0 67.8 0 - 3

30 Q 1 3 88.6 18.5% 0.7% 87.9 - 3 - 3 - -
30 Q 2 3 73.8 8.3% 14.9% 68.7 - 1 - 1 - -
30 Q 3 3 85.4 18.1% 4.9% 81.6 115.4 0 115.4 0 - 7
30 Q 4 3 89.9 18.9% 5.8% 86.3 - 1 - 1 - -
30 Q 5 3 94.9 14.1% 4.6% 90.6 - 2 - 1 - -
30 Q 6 4 102.9 35.5% 2.0% 97.7 - 1 - 1 - -
30 Q 7 3 94.3 19.8% 3.3% 94.3 - 3 - 3 - -
30 Q 8 3 78.6 13.1% 5.0% 77.7 110.4 0 104.7 0 - 4
30 Q 9 4 74.1 32.2% 9.6% 68.6 77.1 0 67.9 0 78.5 0
30 Q 10 4 77.5 37.1% 5.8% 74.3 78.6 0 74.8 0 89.1 0

Table A.3: Detailed results for instances involving 40 jobs.

Instance VRP
(
P
|W?|
no walk

)
Park-and-Loop Carpooling

Idle Time
(
P
|W?|
walk

) (
P
|W?|−1
no walk

) (
P
|W?|−1
walk

) (
P
|W?|−2
walk

)
|W ?| d? Route Depot d d |Jout| d |Jout| d |Jout|

40 A 1 3 60.0 0.0% 2.4% 59.2 - 4 - 4 - -
40 A 2 3 59.9 0.0% 3.2% 58.5 - 4 - 4 - -
40 A 3 3 63.8 0.0% 2.6% 63.2 - 3 - 3 - -
40 A 4 3 56.9 0.0% 10.0% 50.4 - 2 - 1 - -
40 A 5 4 63.3 0.0% 24.9% 52.8 61.0 0 53.3 0 60.3 0
40 A 6 3 62.7 0.0% 3.5% 62.7 - 4 - 3 - -
40 A 7 3 58.6 0.0% 7.0% 57.8 - 2 - 2 - -
40 A 8 4 66.2 0.0% 21.9% 56.4 65.0 0 53.8 0 68 0
40 A 9 3 57.5 0.0% 3.2% 56.5 - 3 - 3 - -
40 A 10 3 59.3 0.0% 4.9% 57.7 - 3 - 3 - -

40 H 1 4 75.5 19.6% 5.3% 68.4 90.3 0 81.1 0 - 3
40 H 2 4 73.1 0.0% 25.8% 63.9 75.1 0 62.1 0 94.6 0
40 H 3 4 82.6 14.1% 10.6% 71.5 85.3 0 76.0 0 - 1
40 H 4 3 80.2 3.1% 3.2% 78.1 - 4 - 4 - -
40 H 5 4 75.4 8.9% 14.5% 65.9 81.0 0 72.3 0 98.7 0
40 H 6 4 73.1 13.7% 12.7% 63.6 75.4 0 63.5 0 87.9 0
40 H 7 3 76.3 2.8% 1.3% 76.3 - 4 - 4 - -
40 H 8 4 78.3 5.2% 15.3% 69.1 85.6 0 75.2 0 - 3
40 H 9 4 71.5 11.3% 14.4% 57.9 72.0 0 64.1 0 84.1 0
40 H 10 3 79.8 0.0% 1.6% 79.8 - 5 - 5 - -

40 Q 1 4 96.5 21.1% 1.3% 90.8 109.0 1 108.8 1 - -
40 Q 2 4 85.6 4.0% 20.3% 80.2 98.2 1 88.6 0 101.7 3
40 Q 3 4 101.7 15.1% 7.3% 97.9 116.4 0 106.3 0 114.1 3
40 Q 4 3 117.4 0.0% 0.4% 117.4 103.6 6 98.5 5 - -
40 Q 5 4 104.8 15.7% 4.3% 96.5 123.0 0 106.3 0 114.9 3
40 Q 6 5 100.3 33.7% 4.9% 92.0 103.9 0 94.1 0 103 0
40 Q 7 4 91.0 23.2% 3.2% 84.4 108.8 0 97.9 0 93.8 3
40 Q 8 4 98.9 14.6% 3.3% 96.9 114.8 0 104.4 0 71.9 3
40 Q 9 4 92.8 16.8% 6.4% 87.1 90.3 2 87.7 1 - -
40 Q 10 4 97.1 19.5% 4.7% 88.6 106.5 0 98.6 0 101.3 3

A.2. Detailed results for all instances 189

Table A.4: Detailed results for instances involving 50 jobs.

Instance VRP
(
P
|W?|
no walk

)
Park-and-Loop Carpooling

Idle Time
(
P
|W?|
walk

) (
P
|W?|−1
no walk

) (
P
|W?|−1
walk

) (
P
|W?|−2
walk

)
|W ?| d? Route Depot d d |Jout| d |Jout| d |Jout|

50 A 1 4 65.4 0.0% 10.4% 60.5 74.4 0 74.4 0 - -
50 A 2 4 69.0 0.0% 11.7% 62.5 87.9 0 72.1 0 - 4
50 A 3 4 71.4 0.0% 9.7% 65.9 - 1 - 1 - -
50 A 4 4 68.1 0.0% 13.3% 58.2 85.8 0 68.0 0 - 4
50 A 5 4 68.3 0.0% 6.2% 64.2 - 1 - 1 - -
50 A 6 4 71.8 0.0% 11.7% 66.1 78.7 0 70.9 0 - 4
50 A 7 4 71.9 0.0% 12.6% 63.7 78.5 0 74.7 0 - 3
50 A 8 4 71.7 0.0% 5.7% 70.9 - 2 - 2 - -
50 A 9 4 67.4 0.0% 11.6% 58.2 76.4 0 70.4 0 - 4
50 A 10 4 68.3 0.0% 12.4% 60.8 76.3 0 66.1 0 - 5

50 H 1 4 92.5 6.4% 0.8% 92.5 - 3 - 3 - -
50 H 2 4 81.1 0.0% 10.3% 75.4 - 2 - 1 - -
50 H 3 4 89.4 2.0% 5.5% 84.8 - 2 - 1 - -
50 H 4 4 86.9 2.4% 8.7% 82.3 106.8 0 106.8 0 - 5
50 H 5 4 88.4 0.0% 3.7% 87.9 - 3 - 3 - -
50 H 6 4 90.9 8.2% 1.2% 88.4 - 2 - 2 - -
50 H 7 4 88.5 4.5% 6.1% 82.6 - 1 97.5 0 - 6
50 H 8 4 88.8 1.7% 2.0% 85.9 - 4 - 4 - -
50 H 9 4 82.4 3.2% 6.7% 74.2 - 1 - 1 - -
50 H 10 4 89.3 7.8% 2.1% 84.8 - 2 - 2 - -

50 Q 1 5 104.1 19.6% 5.0% 95.5 117.5 0 107.4 0 109.7 1
50 Q 2 4 110.2 1.3% 5.5% 110.2 - 4 - 3 - -
50 Q 3 4 124.9 1.0% 2.3% 124.9 - 5 - 4 - -
50 Q 4 4 121.7 3.2% 3.7% 121.7 - 4 - 2 - -
50 Q 5 5 113.2 17.9% 2.7% 104.4 130.7 0 117.0 0 116.4 2
50 Q 6 5 110.7 23.1% 2.5% 106.4 - 1 - 1 - -
50 Q 7 5 104.3 22.1% 4.9% 96.1 111.0 0 101.4 0 106.5 2
50 Q 8 5 113.5 18.7% 1.9% 111.5 132.0 0 117.3 0 147.1 1
50 Q 9 4 113.9 3.3% 2.8% 111.6 - 3 - 3 - -
50 Q 10 5 107.6 21.3% 4.9% 97.5 112.3 0 103.3 0 126.2 1

