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Abstract 22	
  
Ecological conditions can influence not only the expression of a phenotype, but also the 23	
  
heritability of a trait. As such, heritable variation for a trait needs to be studied across 24	
  
environments. We have investigated how pathogen challenge affects the expression of MHC 25	
  
genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate 26	
  
paternal (i.e. genetic) from maternal and environmental effects, and determine whether and 27	
  
how stress affects the heritable variation for MHC expression, embryos were produced in 28	
  
full-factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late-eyed 29	
  
stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence 30	
  
characteristics (one increased mortality, while both delayed hatching time). Gene expression 31	
  
was assessed 48 hours post-inoculation, and virulence effects of the bacterial infection were 32	
  
monitored until hatching. We found no evidence of MHC class II expression at this stage of 33	
  
development. MHC class I expression was markedly down-regulated in reaction to both 34	
  
pseudomonads. While MHC expression could not be linked to embryo survival, the less the 35	
  
gene was expressed, the earlier the embryos hatched within each treatment groups, possibly 36	
  
due to trade-offs between immune function and developmental rate or further factors that 37	
  
affect both hatching timing and MHC expression. We found significant additive genetic 38	
  
variance for MHC class I expression in some treatments, i.e. changes in pathogen pressures 39	
  
could induce rapid evolution in MHC class I expression. However, we found no additive 40	
  
genetic variance in reaction norms in our study population. 41	
  

42	
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Introduction 43	
  
The quantity of mRNA transcribed for a particular gene is one of the earliest observable 44	
  
phenotypes (Aubin-Horth & Renn 2009; Hodgins-Davis & Townsend 2009), and, like many 45	
  
other phenotypes, can be heavily influenced by environmental conditions (Picard & Schulte 46	
  
2004; Nath et al. 2006; Fisher & Oleksiak 2007; Larsen et al. 2007; Croisetiere et al. 2010; 47	
  
Debes et al. 2012), by genotype (Cavalieri et al. 2000; Townsend et al. 2003; Debes et al. 48	
  
2012; Runcie et al. 2012), and by their interactions (e.g. Landry et al. 2006; Li et al. 2006; 49	
  
Côté et al. 2007; McCairns & Bernatchez 2010; Hodgins-Davis et al. 2012). In cases where 50	
  
variation in gene expression has a genetic component, the trait has the potential to quickly 51	
  
evolve in response to changing selection pressures (Schlichting & Pigliucci 1998) if genetic 52	
  
covariance between traits and selection acting on correlated traits do not inhibit the expected 53	
  
evolutionary changes (Merilä et al. 2001).  54	
  

The heritability of a trait is typically not constant but varies across environments 55	
  
(Wilson et al. 2006). There appears to be a lack in consistency in the immediate effects that 56	
  
different types of environmental conditions have on the amount of genetic variation that can 57	
  
be observed at a given moment (Hoffmann & Merilä 1999). Unfavorable conditions, i.e. 58	
  
situations leading to an immediate reduction in fitness, can either (i) decrease heritable 59	
  
variation, for example, by changing the environmental variance component (Charmantier & 60	
  
Garant 2005) or by preventing an organism from reaching its genetic potential (Merilä & 61	
  
Sheldon 1999); (ii) increase heritable variation (Agrawal et al. 2002; Relyea 2005), for 62	
  
example, by amplifying phenotypic differences between genotypes or by lowering the 63	
  
threshold for trait expression and releasing cryptic genetic variation (Gibson & Dworkin 64	
  
2004; McGuigan & Sgro 2009); or (iii) may have no detectable effect on heritable variation 65	
  
(Pakkasmaa et al. 2003; Merilä et al. 2004; Clark et al. 2013). If the impact of environmental 66	
  
change on trait heritability is likely dependent on both the stressor and trait at hand, and 67	
  
perhaps even varies among types of genes, evaluation on a case-by-case basis seems 68	
  
necessary. For genes of the immune system, whose expression can be strongly dependent on 69	
  
the biotic environment (Frost 1999), understanding the impact of ecological stressors on 70	
  
heritable variation for trait means and the norms of reaction (i.e. the function that relates the 71	
  
phenotypes that can be produced by one genotype across environments; Pigliucci 2001) is 72	
  
important, as it would indicate a population’s ability to evolve in response to parasites and 73	
  
infectious diseases. Parasites and pathogens are ubiquitous (Windsor 1998), but pressures 74	
  
from microbial organisms are often expected to increase in wild populations, due to pollution, 75	
  
habitat degradation, and climate change (Harvell et al. 1999; Daszak 2000; Dobson & 76	
  
Foufopoulos 2001). 77	
  
 We have studied the effects of pathogen treatment on the expression of a major 78	
  
histocompatibility complex (MHC) gene, i.e. of a key component of the adaptive immune 79	
  
system of vertebrates. As a vertebrate model we chose a wild population of the lake whitefish 80	
  
Coregonus palaea (Salmonidae) (Kottelat & Freyhof 2007). C. palaea is an iteroparous, fast-81	
  
growing, lake-dwelling Alpine whitefish that feeds mainly on zooplankton and insect larvae, 82	
  
and spawns once a year during a few days in early winter. Average body length of mature 83	
  
fish at the spawning place is 383 mm (SD = 27) as determined from a random sample of 30 84	
  
fish. Like all Alpine whitefish, C. palaea has external fertilization and shows no parental care. 85	
  
Fertilized eggs simply cascade onto the lake floor where embryo development takes place 86	
  
over a period of approximately 300 degree days i.e. embryos are, over several weeks, 87	
  
exposed to microbes and further environmental stressors. Whitefish are excellent models for 88	
  
ecological and quantitative genetic studies because individuals produce large amounts of 89	
  
gametes that can be collected for experimental in vitro fertilization, including large-scale full-90	
  
factorial breeding designs. Embryos can be reared singly or in groups under very controlled 91	
  
conditions and monitored until hatching (Wedekind et al. 2001; Wedekind & Müller 2005; 92	
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Wedekind et al. 2008; Clark & Wedekind 2011). Salmonid embryos usually show high 93	
  
survivorship under benign laboratory conditions (e.g. von Siebenthal et al. 2009; Clark et al. 94	
  
2013), but mortality rates in the wild can be high (Stelkens et al. 2012). While a number of 95	
  
factors including pollution (Heintz et al. 1999), predation (Phillips & Claire 2011), 96	
  
temperature (Tang et al. 1987), and oxygen deprivation (Silver et al. 2011) can contribute to 97	
  
this mortality, pathogens likely exert strong selection pressures (Schreck et al. 2001; Arkush 98	
  
et al. 2002), and seemingly benign microbial symbiotic communities can quickly turn 99	
  
virulent under altered environmental conditions (Jacob et al. 2010; Wedekind et al. 2010). 100	
  
The ecological relevance of microbial pathogens is corroborated by the observations that 101	
  
salmonid embryos have evolved early immunological defense mechanisms (see below). They 102	
  
are also able to perceive water-borne cues from microbial infections and to switch life-history 103	
  
strategies accordingly (Wedekind 2002; Pompini et al. 2013).  104	
  

We chose to use two isolates of the opportunistic fish pathogen Pseudomonas 105	
  
fluorescens (Austin & Ausin 1999) as microbial stressors. This bacterium is found widely in 106	
  
the aquatic environment (Austin & Ausin 1999; Spiers et al. 2000) and has been associated 107	
  
with disease pathologies not only in adult fish (Zhang et al. 2009), but also in embryos of 108	
  
whitefish (Wedekind et al. 2001; von Siebenthal et al., 2009) and brown trout (Clark et al. 109	
  
2013; Pompini et al. 2013). Moreover, previous studies suggest that this bacterium has strain-110	
  
dependent virulence effects on salmonid embryos, with certain isolates directly increasing 111	
  
embryonic mortality (von Siebenthal et al. 2009; Pompini et al. 2013), and other isolates 112	
  
causing sub-lethal effects, i.e. delayed hatching and reduced growth (Clark et al. 2013). We 113	
  
assessed whether challenge with both “high” (i.e. induced mortality) and “low” (i.e. delayed 114	
  
hatching) virulence strains resulted in similar MHC expression patterns.  115	
  

The extent to which embryos can mount an immune response against pathogens at this 116	
  
developmental stage is not clear yet. The immune system of teleost fish is generally thought 117	
  
to only become completely functional after hatching (Fischer et al. 2005; Zapata et al. 2006). 118	
  
However, the timing of maturation may vary between species (Magnadottir 2006; Mulero et 119	
  
al. 2007). Fischer et al. (2005) found that MHC class I transcription begins shortly after 120	
  
fertilization in rainbow trout (Oncorhynchus mykiss). Mortality of salmonid embryos has 121	
  
been demonstrated to be both MHC-allele specific (Pitcher & Neff 2006) and dependent on 122	
  
nucleotide diversity at the MHC loci (Evans et al. 2010a), and mortality during an epidemic 123	
  
of a non-specified strain of P. fluorescens has led to a significant shift of MHC allele 124	
  
frequencies within one of seven families of another lake whitefish (Wedekind et al. 2004). 125	
  
Hence, the MHC can already play a role in determining the susceptibility of salmonids to 126	
  
pathogens at late embryogenesis, either through direct pathogen-binding action or via 127	
  
pleiotropic interactions and/or linkages with other viability genes. Notably, both classes of 128	
  
the MHC are not necessarily ideal candidates for an expression study during embryonic 129	
  
development. In teleost fish, class I and class II genes are in separate linkage groups (Sato et 130	
  
al. 2000), and the beginning of transcription is not always synchronous (Rodrigues et al. 131	
  
1998). We, therefore, first examined whether transcripts of both MHC classes were 132	
  
detectable in the whitefish embryos in an effort to identify a suitable locus for our study. We 133	
  
then assessed whether bacterial infection changed MHC expression patterns. As we 134	
  
employed a full-factorial breeding design, we were able to provide first estimates of the 135	
  
heritable variation for gene expression and examine whether this varied according to 136	
  
environmental conditions. Finally, we determined whether there was heritable variation for 137	
  
gene expression reaction norms and assessed whether there was a relationship between MHC 138	
  
gene expression and embryo mortality or time to hatching. 139	
  

 140	
  
Materials and Methods 141	
  
Whitefish sampling and rearing of embryos 142	
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Large-type adult whitefish were caught from their spawning grounds in Lake Geneva with 143	
  
gill nets and stripped of their gametes. These gametes were subsequently used for full-144	
  
factorial in vitro fertilizations following the methods described in von Siebenthal et al. (2009). 145	
  
Embryos were distributed singly into 24-well plates (Falcon, Becton Dickinson) in a block-146	
  
wise design and from then on stored in a 6.5oC climate chamber. Without additional 147	
  
challenge, this method for rearing embryos typically results in survival rates close to 100% 148	
  
(e.g. von Siebenthal et al. 2009; Clark et al. 2013; Pompini et al. 2013). Embryos were 149	
  
monitored weekly with a light table (Hama professional, LP 555) and a stereo zoom 150	
  
microscope (Olympus SZX9) until the start of hatching, at which point they were monitored 151	
  
daily. Thirteen offspring of 16 different sibships (resulting from a 4 x 4 cross) for each of the 152	
  
four treatments were randomly selected for subsequent work (Ntotal = 13 x 16 x 4 singly 153	
  
reared embryos). 154	
  
 155	
  
Identification of pseudomonad sequence differences 156	
  
The two P. fluorescens isolates used were the “high virulence strain” DSM 50090 (“PF1”) 157	
  
that had been linked to mortality in whitefish embryos (von Siebenthal et al. 2009) and a 158	
  
“low virulence strain” (“PF2”) that had been isolated from whitefish gills and had been 159	
  
observed to cause little embryonic mortality, but to delay hatching of smaller larvae in both 160	
  
brown trout (Clark et al. 2013) and whitefish (E. Clark, unpublished data). PF2 had been 161	
  
collected by swabbing gills with Amies agar gel transport swabs, followed by elution of 162	
  
bacteria into phosphate buffered saline. A 10-2 dilution had been plated onto King’s B agar to 163	
  
facilitate isolation of fluorescent pseudomonads. After incubation for 48 hours, a colony was 164	
  
randomly selected and restreaked three times to obtain a pure culture. To compare sequences 165	
  
of the two pseudomonads (and to confirm successful identification), DNA was first isolated 166	
  
from both using the GenEluteTM Bacterial Genomic DNA Kit, according to the 167	
  
manufacturer’s instructions (Sigma-Aldrich). PCR was performed with a P. fluorescens-168	
  
specific primer set, 16SPSEfluF and 16SPSER (Scarpellini et al. 2004), which amplifies a 169	
  
850 bp fragment of the 16S rRNA. The PCR was performed in a total volume of 25 µl and 170	
  
contained 50 ng bacterial genomic DNA, 2.5 µl of 10X PCR buffer, 400 µM of each dNTP, 171	
  
2.5 mM of MgCl2, 0.6 µM of each primer, and 0.625 U of Taq polymerase (Invitrogen). The 172	
  
thermal profile was modified from Scarpellini et al. (2004): 3 min at 94oC; 35 cycles of 94oC 173	
  
for 30 s, 50oC for 30 s, 72oC for 1 min; and a final extension at 72oC for 10 min. Following 174	
  
the PCR, the amplified products were purified with the Wizard® SV Gel and PCR Clean-Up 175	
  
System (Invitrogen) and sequenced in the forward and reverse directions with 176	
  
16SPSEfluF/16SPSER on a ABI Prism 3100 genetic analyzer (Applied Biosystems). 177	
  
Sequences were edited and aligned with Geneious ProTM version 5.3.4 (Biomatters). 178	
  
Alignment of PF1 and PF2 showed a base pair difference (A-G) at position 733, relative to a 179	
  
reference strain (strain CCM 2115; GenBank: DQ207731.2). To confirm the one base pair 180	
  
difference in the 16S rRNA fragment between the two pseudomonads, two further PCR’s 181	
  
were performed as described above, and the resulting fragments were sequenced. 182	
  
 183	
  
Preparation of bacterial inocula and treatment of embryos 184	
  
Once embryos had reached the late-eyed stage (208 degree days), two flasks, each containing 185	
  
100 ml of nutrient broth (3 g meat extract, 5 g bactopeptone, 1 L distilled H2O), were 186	
  
inoculated with either PF1 or PF2. As the two strains were observed to have different optimal 187	
  
growth temperatures, they were incubated at 30 oC or 22 oC, respectively, for 36 hours on 188	
  
shakers until reaching the exponential growth phase. The bacteria were transferred to 50 ml 189	
  
conicals and spun at 4000 rpm for 15 minutes. The resulting pellet was washed three times 190	
  
and resuspended in sterile water, standardized according to OECD guidelines (OECD 1992). 191	
  
A Helber counting chamber was used to assess bacterial concentrations (see: Bast 2001, p. 192	
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280-285). The suspension was then diluted such that inoculation with 100 µl would achieve a 193	
  
concentration of 108 bacterial cells/ml in the wells. Prior to inoculation, nutrient broth was 194	
  
added to the suspension to encourage bacterial growth, resulting in a 1:1000 concentration in 195	
  
the wells. Thirteen replicates of every parental combination received PF1 and 13 received 196	
  
PF2. The remaining plates served as controls and were either sham-treated with sterile 197	
  
standardized water (N = 13) or were inoculated with nutrient broth (N = 13; 1:1000 dilution 198	
  
per well).  199	
  
 200	
  
RNA preservation and extraction from embryos 201	
  
Three embryos per sibship were sampled from each treatment group at 48 hours post- 202	
  
inoculation, and the remaining ten embryos per sibship and treatment group were monitored 203	
  
for survival and time until hatching. All samples were placed in RNAlaterâ (Ambion, Austin, 204	
  
TX), stored overnight at 6.5oC, and then at -20oC for long-term storage. Embryos were 205	
  
individually homogenized with a mixer mill (MM300; Retsch, Düsseldorf, Germany) using 206	
  
six tungsten beads (3 mm), five silica beads (1.5 mm) and 0.4 g silica powder (0.2 mm) 207	
  
(Qiagen, Valencia, CA). Total RNA was extracted using the RNeasy Mini Kit (Qiagen, 208	
  
Valencia, CA) according to the manufacturer’s instructions. RNA was eluted with 40 µl of 209	
  
RNase-free water and an additional DNase treatment was performed in which the following 210	
  
was added to each sample: 40 u/µl RNasin® (Promega, Madison, WI, USA), Tris-HCl (pH 211	
  
7.5, 1 M), MgCl2 (100 mM), KCl (2.5 M), DTT (100 mM), and DNase I (10 u/µl) (Roche, 212	
  
Mannheim, Germany). Each sample was incubated for 15 minutes at 37°C, followed by a 213	
  
phenol-chloroform extraction and ethanol precipitation. The resulting pellet was resuspended 214	
  
in 10 µl of RNase-free water. RNA integrity was verified by measuring absorbance at 260-215	
  
280 nm, and a random set of 12 extractions was analyzed on an Agilent 2100 Bioanalyzer 216	
  
(Agilent Technologies, Waldbronn, Germany) to confirm that the ratio of 28s/18s rRNA was 217	
  
close to two.  218	
  
 219	
  
Reverse transcription, PCR of cDNA, and real-time quantitative PCR 220	
  
Total extracted RNA was reverse-transcribed using the SuperScriptTM III First-Strand 221	
  
Synthesis System (Invitrogen, Carlsbad, CA) and random hexamers in a 25 µl reaction 222	
  
according to the manufacturer’s protocol. To assess whether MHC class I and class II 223	
  
transcripts were detectable in the whitefish embryos, a PCR was conducted to amplify the 224	
  
two different genes from cDNA of whole embryos (N = 16) and, as a positive control, from 225	
  
spleens of adult whitefish (N = 8; RNA preserved and extracted as described above). The 226	
  
PCR was performed in a total volume of 25 µl and contained 10-100 ng of cDNA, 2.5 µl of 227	
  
10X PCR buffer, 400 µM of each dNTP, 2.5 mM of MgCl2, 0.6 µM of each primer (Table 1), 228	
  
and 0.625 U of Taq polymerase (Invitrogen). As a negative control, water was added instead 229	
  
of cDNA. As an additional control, the two genes were verified to successfully amplify from 230	
  
genomic DNA of whole embryos (N=8) and also from fin clips of adult whitefish (N=8). 231	
  
DNA had been extracted using the DNeasy Blood and Tissue Kit (Qiagen) (according to the 232	
  
manufacturer’s instructions). The thermal profile for both cDNA and DNA PCR consisted of: 233	
  
3 min at 94°C; 32 cycles of 94°C for 30 s, 56°C for 30 s, 72°C for 30 s, and a final extension 234	
  
at 72°C for 10 min. Amplified products were subsequently run on a 2% agarose gel, stained 235	
  
with ethidium bromide, and visualized under UV light. 236	
  
 Expression of MHC class I, along with four housekeeping genes (G6PD, GAPDH, b-237	
  
actin, NADH), was analyzed with real-time qPCR using primers developed for salmonids 238	
  
(Table 1). Primer efficiencies were verified for each pair with four-fold serial dilutions of 239	
  
cDNA. Each 10 µl reaction contained: 2 x SYBRâ Green PCR Mastermix (Roche 240	
  
Diagnostics, Mannheim, Germany), 0.3 µM of each primer, and 1 µl of cDNA. Three 241	
  
technical triplicates of each reaction were run on a 7900HT Fast Real-Time PCR Sequence 242	
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Detection System (Applied Biosystems) with the following conditions: 94°C for 3 min, 243	
  
followed by 40 cycles of 94°C for 10 s, 60°C for 25 s, and 72°C for 30 s. No enzyme controls 244	
  
(NEC) and no template controls (NTC) from the cDNA reaction were run concurrently to test 245	
  
for genomic DNA contamination, and melting curve analysis was used to confirm primer 246	
  
specificity.  247	
  

The stability of the four candidate reference genes was examined with the method by 248	
  
Vandesompele et al. (2002), using the “ReadqPCR” (Perkins 2011) and the “NormqPCR” 249	
  
packages (Perkins & Kohl 2011). All four candidate reference genes had been shown to be 250	
  
reliable housekeeping genes in previous expression studies in salmonids (Brzuzan et al. 2005; 251	
  
Olsvik et al. 2005; Brzuzan et al. 2007; Brzuzan et al. 2009; Benedetto et al. 2011). 252	
  
Expression of G6PD and GAPDH, but not b-actin or NADH, was confirmed to remain 253	
  
constant across our treatments, therefore meeting the stability criteria for reference genes. All 254	
  
samples were subsequently normalized to the geometric mean of G6PD and GAPDH, and 255	
  
relative expression of mRNA was determined using the 2-DDCt method (Livak & Schmittgen 256	
  
2001; Schmittgen & Livak 2008).  257	
  
 258	
  
Cloning and sequencing of parental genotypes 259	
  
The gene of interest from each parent was cloned (Table 2) to confirm amplification of the 260	
  
desired products in the qPCR reactions and the presence of two co-amplified loci in the MHC 261	
  
class I sequences (Binz et al. 2001). Cloning was performed with the TOPO TA CloningÒ 262	
  
Kit (Invitrogen) using the pCR®2.1-TOPO vector and One Shot ®TOP10 chemically 263	
  
competent cells. Between seven and 14 positive clones per individual were selected and 264	
  
amplified with M13 forward (5’-GTA AAA CGA CGA CCA G-3’) and reverse (5’-CAG 265	
  
GAA ACA GCT ATG AC-3’) primers with the following amplification profile: 94°C for 2 266	
  
min, followed by 33 cycles of 94°C for 15 s, 54°C for 15 s, and 72°C 15 s, and a final 10 min 267	
  
extension at 72°C. Reactions were performed in a total volume of 15 µl and contained: 10 268	
  
µM of each primer, 1.5 µl of 10X PCR buffer, 0.5 µM of each dNTP, 0.08 µl Taq™ DNA 269	
  
polymerase, 10 ng of cloned DNA, and water. Blank PCR reactions were included as controls. 270	
  
Amplified products were purified with the Wizard® SV Gel and PCR Clean-Up System 271	
  
(Invitrogen) and sequenced in the forward direction with M13 on an ABI Prism 3100 genetic 272	
  
analyzer (Applied Biosystems). Each allele was confirmed to be present in at least three 273	
  
clones to avoid cloning artifacts (Lenz & Becker 2008).  274	
  
 275	
  
Statistical analysis  276	
  

Mortality was analyzed as a binomial response variable in general linear mixed effect 277	
  
models (GLMM), while hatching time and MHC class I expression were analyzed as 278	
  
continuous response variables in linear mixed effect models (LMM). Prior to analysis, gene 279	
  
expression values, normalized to the housekeeping genes (i.e. DCt), were converted to the 280	
  
linear form with the 2 -DCt calculation (Livak & Schmittgen 2001; Schmittgen & Livak 2008) 281	
  
and were log transformed to avoid deviations from normality. Treatment was entered as a 282	
  
fixed effect, while sire and dam were entered as random effects. While dam effects 283	
  
encompass both genetic and maternal environmental effects, sire effects represent one-quarter 284	
  
of the additive genetic variance, assuming that epistatic effects are negligible (Lynch & 285	
  
Walsh 1998). Due to the fact that we had low replicate numbers (i.e. three) per fullsib family 286	
  
for the expression analysis (see Table S1 for mean expression levels per fullsib family and 287	
  
their associated variances), we did not include the sire x dam interaction as a random effect in 288	
  
the models. In the case of mortality and hatching time, the interaction term was also not 289	
  
included in the reference models, as it was not found to improve model fit to the data in any 290	
  
treatment. For the analysis, the nutrient broth treatment was used as the baseline control, as 291	
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both bacterial treatments received the same concentration of supplemental nutrients. While 292	
  
the addition of nutrients did not significantly elevate mortality in comparison to untreated 293	
  
embryos (1.8% increase; GLMM: Z = 0.96, p = 0.34), it did result in embryos hatching, on 294	
  
average, one day later (LMM: T = 2.04, p = 0.04). 295	
  

To assess the importance of each effect, a reference model incorporating all relevant 296	
  
terms was compared to a model lacking the effect of interest. To examine the importance of 297	
  
interaction terms, a model incorporating the interaction was compared to the reference model. 298	
  
Akaike’s information criteria (AIC), which provide a measure of model fit and model 299	
  
complexity (lower values indicate a better fit to the data) and likelihood ratio tests (LRT) 300	
  
were used to compare model fits. For models examining the importance of interaction terms 301	
  
(i.e. treatment x dam and treatment x sire), two models were run, one comparing the control 302	
  
to PF1, and one comparing it to PF2. As the two isolates differed in their virulence 303	
  
characteristics, we assessed for each pseudomonad separately whether a random slope-304	
  
intercept term improved model fit.  305	
  

To test for an effect of gene expression and treatment x gene expression on time until 306	
  
hatching, an analysis of covariance (ANCOVA) was performed. Average hatching time per 307	
  
fullsib family (by treatment) was entered as the dependent variable, with treatment and mean 308	
  
expression per fullsib family entered as independent variables. To examine the effect of gene 309	
  
expression on embryonic mortality, a general linear model (GLM) with a binomial 310	
  
distribution was used, with the proportion of dead embryos (out of the 10 initial replicates) 311	
  
per fullsib family entered as the response variable, and mean expression per fullsib family 312	
  
entered again as the independent variable. For this GLM on embryo mortality, we only 313	
  
looked within PF1, as survival in the control and in PF2 was close to 100%.  314	
  

All analyses were done in the R environment (R Development Core Team 2011), 315	
  
using mainly the lme4 package (Bates et al. 2011). The MCMCglmm package (Hadfield 316	
  
2010) was used as a means of verifying the significance of the treatments and the random 317	
  
effects in explaining variation in offspring phenotypes, as well as obtaining highest posterior 318	
  
density confidence intervals for the treatments and the random terms (see Supplementary 319	
  
Materials for details). 320	
  
 321	
  
Results 322	
  
Transcripts of MHC class I were detected in all whitefish embryos (N = 16) and all adults (N 323	
  
= 8), while MHC class II transcripts were only found in the tissue samples of the 8 adults (see 324	
  
Fig. S1 for amplification on agarose gels). Treatment with both P. fluorescens isolates 325	
  
resulted in decreased MHC class I gene expression (Fig. 1; Table 3; Table S2). While 326	
  
mortality was only significantly higher in PF1-treated embryos, hatching time was 327	
  
significantly delayed in both PF1 and PF2 (Fig. 2; Table 3; Table S2). Hatching time in PF1 328	
  
was still significantly delayed after controlling for the likely confounding effects of potential 329	
  
non-random mortality in this treatment (Fig. S2).  330	
  

We found significant additive genetic variance for MHC class I expression in the 331	
  
control and the PF1-treated groups, but not in the PF2-treated embryos (Table 4A; see Table 332	
  
S3 for the alternative MCMCglmm model). Analogous patterns could be observed with 333	
  
respect to the dam effects (Table 4A). Significant sire and dam effects on embryonic 334	
  
mortality were found after treatment with the virulent pseudomonad (PF1), but not in the 335	
  
PF2-treated embryos or the control group (Table 4B, Table S3). In contrast, we observed 336	
  
significant sire effects on hatching time in the control and PF2, but not in PF1-treated 337	
  
embryos (Table 4C, Table S3). Dam effects on hatching time was significant in PF2, but in 338	
  
neither of the other two treatments. 339	
  
 While we found evidence of additive genetic variance for MHC class I expression, 340	
  
embryonic mortality, and hatching time in certain environments, we found no indications of 341	
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heritable variance for their reaction norms, as indicated by the lack of sire x treatment 342	
  
interaction effects (Fig. 3; Table 3, see Table S4 for the alternative MCMCglmm model). In 343	
  
contrast, we did find evidence that the virulence of a given pseudomonad was modulated by 344	
  
dam effects, as suggested by the significant dam x treatment effects on embryo mortality in 345	
  
response to PF1 (Table 3A; Table S4) and hatching time in response to PF2 (Table 3B; Table 346	
  
S4). 347	
  

We found no relationship between mean MHC gene expression and survival per full 348	
  
sibship in PF1, i.e. in the one bacterial strain that increased embryo mortality (GLM: T = 0.72, 349	
  
p = 0.47). However, there was an overall effect of gene expression on hatching time 350	
  
(ANCOVA: F1, 41 = 5.0, p = 0.03), with faster hatching embryos expressing less MHC (Fig. 351	
  
4). No interaction between treatment and gene expression was found (ANCOVA: F2, 41 = 0.90, 352	
  
p = 0.41), i.e. the link between MHC expression and hatching time was similar in all 353	
  
treatment groups. 354	
  
 355	
  
Discussion 356	
  
We have described the experimental infection of whitefish embryos with two isolates of the 357	
  
opportunistic pathogen, P. fluorescens, and resultant effects on MHC expression, embryo 358	
  
mortality, and hatching time. A full-factorial experimental design was used to disentangle 359	
  
treatment from sire and dam effects on embryo traits, to assess whether and how 360	
  
environmental stress affects heritable variation for these traits, and to test for parental effects 361	
  
on embryo reaction norms. In addition, comparisons of full-sib families allowed testing 362	
  
whether MHC expression was linked to embryo survival or timing of hatching.  363	
  
 364	
  
MHC expression in whitefish embryos and the effects of pathogen challenge 365	
  
Transcripts of MHC class I, but not II, were detectable in the whitefish embryos under our 366	
  
experimental conditions. While our observations do not entirely exclude the possibility that 367	
  
MHC class II is expressed in the embryos at this point in development, as biases can be 368	
  
introduced during reverse transcription (Bustin & Nolan 2004), they nevertheless suggest that 369	
  
class I expression perhaps begins before class II. A study by Evans et al. (2010a) similarly 370	
  
suggested that the MHC class I pathway plays a significant role in survival before the MHC 371	
  
class II pathway, as their results provide strong support for a nucleotide diversity advantage 372	
  
at the MHC class I during the embryonic stage in another salmonid, i.e. the Chinook salmon 373	
  
(O. tshawytscha). Notably, Wedekind et al. (2004) found the allelic specificity on an MHC 374	
  
class II locus to influence survival until hatching in another whitefish during an epidemic 375	
  
with P. fluorescens. Pitcher and Neff (2006) also found evidence of MHC class IIB allele- 376	
  
and genotype-dependent survivorship during early developmental stages (i.e. through 377	
  
endogenous feeding) in the Chinook salmon. These findings, combined with the present ones, 378	
  
suggest that genes of MHC class I and class II can both be expressed prior to hatching, but 379	
  
that during the course of embryogenesis, class I genes are actively transcribed before class II. 380	
  
 Traditionally, MHC class I has been associated with the presentation of endogenous 381	
  
antigens (i.e. viruses and obligate intracellular bacteria), with class II binding proteins of 382	
  
exogenous origins. However, it is now well established that a significant amount of cross-383	
  
over occurs between the two pathways (Kovacsovics-Bankowski & Rock 1995; Norbury et al. 384	
  
1995; Yewdell et al. 1999; Ackerman & Cresswell 2004). Moreover, recent studies in both 385	
  
Atlantic cod (Gadus morhua) (Star et al. 2011) and pipefish (Syngnathus typhle) (Haase et al. 386	
  
2013) have demonstrated a complete absence of MHC class II, suggesting that MHC class I 387	
  
can play an integral role in teleost adaptive immunity.  388	
  

We found expression of MHC class I in whitefish embryos to vary according to 389	
  
environmental conditions. Specifically, treatment with the two different pseudomonads 390	
  
resulted in an average decrease in expression 48 hours post-inoculation. A very similar 391	
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expression phenotype was elicited, despite the fact that the two isolates showed different 392	
  
virulence characteristics (i.e. one induced mortality, as in von Siebenthal et al. 2009, while 393	
  
the other only delayed hatching, as in Clark et al. 2013). It is possible that a different pattern 394	
  
may have emerged had we sampled embryos at other time points post-inoculation, because 395	
  
gene expression can be very dynamic. However, the observed down-regulation of MHC 396	
  
expression confirms a number of previous observations in other fish: Koppang et al. (1999) 397	
  
found down-regulation of MHC class I following immuno-stimulation with 398	
  
lipopolysaccharide in Atlantic salmon (Salmo salar), and Reyes-Becceril et al. (2011) 399	
  
reported a reduction in MHC class II expression in gilthead seabream (Sparus autata) after 400	
  
infection with Aeromonas hydrophila. While these studies did not specifically investigate the 401	
  
reasons for this down-regulation, one explanation could involve pathogen-mediated 402	
  
suppression of transcription. Specifically, a number of bacteria and viruses seem capable of 403	
  
inhibiting expression of MHC as a means of immune evasion (e.g. Finlay & McFadden 2006; 404	
  
Antoniou & Powis 2008; Lapaque et al. 2009).  405	
  
  Another possible explanation for the observed down-regulation of MHC in our 406	
  
experiment is that a trade-off exists with other metabolic functions or immune pathways 407	
  
(Lochmiller & Deerenberg 2000). Life-history theory predicts that the immune response is a 408	
  
trait whose expression exacts an important cost on the organism (Moret & Schmid-Hempel 409	
  
2000). Consequently, resource investment in this response will come at the expense of other 410	
  
traits (e.g. growth or reproduction) (Norris & Evans 2000; Schmid-Hempel 2003). In the 411	
  
context of our experiments, we found an overall positive relationship between MHC gene 412	
  
expression and hatching date. While fish, among other vertebrates, can alter hatching age to 413	
  
mitigate the fitness consequences of environmental stressors (e.g. pathogens and predators) 414	
  
(Warkentin 2011), late hatching is typically selected against in salmonids (Koho et al. 1991; 415	
  
Einum & Fleming 2000; Skoglund et al. 2012), and has been shown to be associated with 416	
  
reduced larval survival in another coregonid (C. albula) (Koho et al. 1991). Decreased 417	
  
transcription of MHC could, therefore, potentially reflect a strategic decision to invest 418	
  
resources into growth and an earlier life-history transition. Somewhat paradoxically, embryos 419	
  
raised in benign experimental conditions still managed to hatch earlier and express the most 420	
  
MHC. However, as they were not subjected to the burden of a pathogen challenge, they 421	
  
perhaps were in a better position to attain optimal phenotypes with respect to both traits. A 422	
  
comprehensive examination of the transcriptional changes of a wider array of genes, involved 423	
  
in both immunity and development, could help clarify the mechanisms behind this possible 424	
  
trade-off. Such an examination could also help shed light on whether MHC class I expression 425	
  
and developmental time are both affected by further factors that explain the somewhat 426	
  
counterintuitive observation that MHC class I expression declines with infection, hatching is 427	
  
delayed by infection, but there is a positive correlation between MHC class I expression and 428	
  
hatching date within each treatment group. 429	
  
 430	
  
Components of phenotypic variation and the consequences of environmental stress 431	
  
We found significant heritable variation for MHC class I expression and hatching time under 432	
  
benign experimental conditions. As both of these traits are closely tied to fitness, one would 433	
  
traditionally expect them to be characterized by reduced additive genetic variance due to 434	
  
directional selection (Mousseau & Roff 1987). However, a number of studies have 435	
  
demonstrated that significant heritable variation is often maintained in fitness-related traits 436	
  
(e.g. Laurila et al. 2002; Jacob et al. 2007; Jacob et al. 2010), with high residual variance 437	
  
sometimes giving the impression of depleted heritable variation (Houle 1992). On the 438	
  
contrary, little additive genetic variance was observed for embryonic mortality under these 439	
  
conditions, although our power to detect such variation was limited by the overall lack of 440	
  
mortality.  441	
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 We found that the significance of the sire effect changed for some of the monitored 442	
  
traits and not for others in the Pseudomonas treatments, suggesting environmental 443	
  
dependencies. Heritable variation for gene expression and for hatching time seemed to 444	
  
decrease after inoculation with one of the Pseudomonas isolates; however, both isolates did 445	
  
not seem to have the same effect on heritable variation for a given trait, suggesting that 446	
  
different strains of the same bacterium can differentially affect a trait’s evolutionary potential. 447	
  
Somewhat analogous declines in the heritability of expression have been observed in another 448	
  
set of immune genes, i.e. cytokines, post-immunostimulation with a Vibro vaccine in 449	
  
Chinook salmon (Aykanat et al. 2012). Heritable variation for embryonic mortality seemed to 450	
  
increase under stressful conditions (i.e. in PF1), due potentially to a release of cryptic genetic 451	
  
variation that, under different circumstances, would be phenotypically neutral (Gibson & 452	
  
Dworkin 2004; McGuigan & Sgro 2009). These observations support the view that the effect 453	
  
of environmental stressors on additive genetic variance is not only trait-dependent, but also 454	
  
dependent on the stressor at hand (for other examples see Hoffmann & Merilä 1999; Laugen 455	
  
et al. 2005). However, none of the possible environmental dependencies on heritability could 456	
  
be confirmed in pair-wise comparisons between the controls and the pathogen strain (i.e. the 457	
  
sire x treatment interaction terms were never statistically significant).  458	
  

As with sire effects, the importance of dam effects on offspring phenotype can also 459	
  
vary according to the ecological conditions (Einum & Fleming 1999; Laugen et al. 2005 and 460	
  
references therein). In the case of MHC class I expression, the significance of dam effects 461	
  
appeared to remain stable after treatment with one isolate of P. fluorescens (PF1), but to 462	
  
decrease following inoculation with the second (PF2). No dam x treatment interaction on 463	
  
gene expression was found, suggesting that the decrease in transcription across environments 464	
  
was uniform across females. The significance of dam effects on embryonic mortality and 465	
  
hatching time increased under certain pathogen conditions, as confirmed also in significant 466	
  
dam x treatment interaction terms in the pairwise comparisons between the controls and the 467	
  
pathogen strains. Maternal sibgroups must have varied in their response to treatment either 468	
  
due to characteristics of the maternal environmental contributions (e.g. immune compounds 469	
  
(Magnadottir 2006)) or due to genetic effects.  470	
  
 471	
  
Heritable variation for embryo reaction norms 472	
  
While we found evidence of additive genetic variance for all monitored traits and under some 473	
  
environmental conditions, we found no indications of heritable variation for reaction norms. 474	
  
As only four males were used in the current study, our power to detect such interactions was 475	
  
limited. Nevertheless, the observed additive genetic variance generally appeared to be context 476	
  
dependent. While certain studies have provided evidence of gene x environment interactions 477	
  
on reaction norms, including survival/length (Evans et al. 2010b), body mass (Crespel et al. 478	
  
2013), developmental time (Clark et al. 2013; Pompini et al. 2013), and gene expression 479	
  
(Côté et al. 2007) in salmonids, others have not for some of the same traits (larval length: 480	
  
Clark et al. 2013; embryonic survival: Pompini et al. 2013). These discrepancies may be 481	
  
reflective of differential selective pressures imposed by environmental stressors, or of the 482	
  
costs of plasticity varying between species and traits (DeWitt et al. 1998).  483	
  

With respect to gene expression reaction norms, differences may also arise as a 484	
  
consequence of the genes’ functions. For example, a study by Landry et al. (2006) 485	
  
demonstrated that in yeast, heritable variation for expression reaction norms was biased 486	
  
towards genes with low ties to fitness. This bias was presumably due to the fact that such 487	
  
genes are expected to have fewer constraints on their possible responses to environmental 488	
  
change, and therefore have less canalized reaction norms. A wider survey of the 489	
  
transcriptional responses to pathogen stressors would be needed to confirm if the same were 490	
  
true in our whitefish population. 491	
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 492	
  
Conclusions 493	
  
Treatment of whitefish embryos with two distinct isolates of the opportunistic pathogen P. 494	
  
fluorescens resulted in decreased expression of MHC class I. The more the MHC gene was 495	
  
transcribed, the later embryos hatched, suggesting a tradeoff between expression and an 496	
  
earlier life-history transition or the existence of further factors that influence both MHC 497	
  
expression and timing of hatching. Significant heritable variation was found for gene 498	
  
expression, embryo mortality, and hatching time under certain experimental conditions, but 499	
  
not for others. However, no evidence of gene by environment interactions on the reaction 500	
  
norms was found for any trait of interest. As heritable variation in reaction norms can play a 501	
  
key role in determining a population’s ability to cope with unpredictable environments 502	
  
(Hutchings 2011), its absence could have important implications concerning the whitefish’s 503	
  
capacity to adapt to changing ecological conditions. 504	
  
 505	
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Table 1. Primers used in the present study. 813	
  
Gene Forward Primer 5’-3’ Reverse Primer 5’-3’ 

GAPDH a  ATG ACC ACT CCA TCT CCG TAT TC  ACG ACG TAA TCG GCA CCG 
G6PD b  CCC TAT ATG AAG GTG GCA GAC TCT  GGC GTA CTT CCC ACT GAC ATA AG  
b-actin c  GTG GCG CTG GAC TTT GAG CA  ACC GAG GAA GGA GGG CTG GA 
NADH d  CAT CAC CAT CGC ACT ATC CA  CCT CCT TGG GTT CAC TCG TA 
MHC class I e  TGT GGC TGT GGG GAT GGT GGA  TTT GGG CAC CGC TCT CTG GC 
MHC class II f ATG TTT TCC TTT TAG ATG GAT ATT TT   AGC CCT GCT CAC CTG TCT TA  

a Atlantic salmon (Olsvik et al. 2005), b rainbow trout (Benedetto et al. 2011), c whitefish 814	
  
(Brzuzan et al. 2007), d Atlantic salmon (Olsvik et al. 2005), e whitefish, modified from Binz 815	
  
et al. (Binz et al. 2001), f salmonids (Pavey et al. 2011). 816	
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Table 2. Observed MHC I genotypes. Primers amplified a 68 bp fragment of the MHC gene. 817	
  

Individual Alleles GenBank 
Accession Number  

Male 1 Cosp-A1-H-6/8* AF213305/AF2133
08  Cosp-A1-H-1 AF213306 

Male 2 
M 

Cosp-A1-H-15 AF213293 
Male 3 Cosp-A1-H-6/8*  
 Cosp-A1-H-1  
 Cosp-A1-H-10 AF213296 
Male 4 Cosp-A1-H-6/8*  
 Cosp-A1-H-1  
Female 1 Cosp-A1-H-6/8*  
 Cosp-A1-H-1  
 Cosp-A1-H-10  
 Cosp-A1-H-11 AF213303 
Female 2 Cosp-A1-H-1  
 Cosp-A1-H-15  
 Cosp-A1-H-10  
Female 3 Cosp-A1-H-6/8*  
 Cosp-A1-H-15  
Female 4 Cosp-A1-H-1  
 Cosp-A1-H-11  
* matches to either Cosp-A1-H-6 or Cosp-A1-H-8 (Binz et al. 2001)818	
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Table 3. Likelihood ratio tests on mixed model logistic regressions on MHC class I 819	
  
expression, embryonic mortality, and hatching time. Treatment was entered as a fixed effect 820	
  
(two levels including the control and PF1 (A) or the control and PF2 (B)), while sire and dam 821	
  
were entered as random effects. To test the effect of treatment, a reduced model was 822	
  
compared to the reference model (in bold). To test for interaction effects, a model 823	
  
incorporating the term was compared to the reference model. Akaike’s information criteria 824	
  
(AIC), which provide a measure of model fit and model complexity (lower values indicate a 825	
  
better fit to the data) and likelihood ratio tests (LRT) were used to compare model fits (c2).  826	
  

	
  827	
  
t: treatment; s: sire; d: dam; t x s: treatment x sire; t x d: treatment x dam interactions; DF: 828	
  
degrees of freedom829	
  

Model 
Effect 
tested AIC c2 DF p AIC c2 DF p AIC c2 DF p 

  MHC I expression Embryonic mortality Hatching time 

A) Control vs. PF1 
t + s + d  66.3  5  135.1  4  1757.2  5  

s + d t 70.5 6.2 4 0.01 160.0 26.8 3 <0.001 1785.5 30.3 4 <0.001 
t + t x s + d t x s 69.7 0.6 7 0.73 139.1 0.1 6 0.98 1761.2 0 7 1 
t + s + t x d t x d 69.5 0.8 7 0.68 123.8 15.3 6 <0.001 1760.1 1 7 0.59 

B) Control vs. PF2 
t + s + d  40.4  5  82.2  4  1828.9  5  

s + d t 42.5 4.1 4 0.04 80.7 0.5 3 0.48 1948.0 121.1 4 <0.001 
t + t x s + d t x s 42.4 2 7 0.36 86.2 0 6 1 1831.6 1.3 7 0.52 
t + s + t x d t x d 42.6 1.8 7 0.4 85.8 0.3 6 0.84 1820.8 12.1 7 0.002 
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Table 4. REML estimates of variance components (Vsire, VDam, and VRes) for MHC class I 830	
  
expression, embryonic mortality and hatching time in each treatment (control, PF1, and PF2). 831	
  
Numbers in parentheses indicate percent of total variance explained by each separate 832	
  
component. The significance of each variance component was determined by comparing a 833	
  
mixed effect model incorporating all effects of interest to one lacking it (see Methods). 834	
  

 VSire VDam VRes 
A) MHC I expression    

Control 0.06 (40.0)*** 0.02 (13.3)* 0.07 (46.7) 
PF1 0.05 (27.7)** 0.03 (16.7)* 0.10 (55.6) 
PF2 0.02 (22.2) 0.01 (11.1) 0.06 (66.7) 

B) Embryonic mortality    
Control 0 (0) 0 (0) 1♯ 

PF1 2.1(21.6)** 6.6 (68.0)*** 1♯ 
PF2 0 (0) 0.5 (33.3) 1♯ 

C) Hatching time    
Control 3.1 (18.2) *** 0.4 (0.02) 13.5 (79.4) 

PF1 2.6 (6.4) 0.8 (1.9) 37.1 (91.7) 
PF2 5.8 (17.0)*** 3.6 (10.5)** 24.8 (72.5) 

♯ Since mortality was a binomial response variable, residual variance was set to one. 835	
  
*p < 0.05; **p<0.01, ***p < 0.001 836	
  
 837	
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Fig. 1. Mean MHC class I gene expression per treatment (± SE).  838	
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Fig. 2. Treatment effects on (A) embryo mortality and (B) time until hatching (means ± SE).  848	
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Fig. 3. Reaction norms of MHC class I gene expression across (A) control and exposure to 850	
  
PF1 and (B) control and exposure to PF2. Lines correspond to means per paternal sibgroup 851	
  
(N = 4). 852	
  

 853	
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Fig. 4. Days to hatching versus MHC class I expression. Points represent means across 854	
  
treatments per fullsib family (N=16).  855	
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