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Abstract

Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, 

mortality, costs, and heightened risk of suicide. We conducted a genome-wide association (GWA) 

meta-analysis based in 135,458 cases and 344,901 control, We identified 44 independent and 

significant loci. The genetic findings were associated with clinical features of major depression, 

and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant 

medications and genes involved in gene splicing were enriched for smaller association signal. We 

found important relations of genetic risk for major depression with educational attainment, body 

mass, and schizophrenia: lower educational attainment and higher body mass were putatively 

causal whereas major depression and schizophrenia reflected a partly shared biological etiology. 

All humans carry lesser or greater numbers of genetic risk factors for major depression. These 

findings help refine and define the basis of major depression and imply a continuous measure of 

risk underlies the clinical phenotype.

INTRODUCTION

Major depressive disorder (MDD) is a notably complex and common illness1. It is often 

chronic or recurrent and is thus accompanied by considerable morbidity, disability, excess 

mortality, substantial costs, and heightened risk of suicide2–8. Twin studies attribute 

approximately 40% of the variation in liability to MDD to additive genetic effects 

(phenotype heritability, h2)9, and h2 may be greater for recurrent, early-onset, and 

postpartum MDD10,11. GWA studies of MDD have had notable difficulties in identifying 
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individual associated loci12. For example, there were no significant findings in the initial 

Psychiatric Genomics Consortium (PGC) MDD mega-analysis (9,240 cases)13 or in the 

CHARGE meta-analysis of depressive symptoms (N=34,549)14. More recent studies have 

proven modestly successful. A study of Han Chinese women (5,303 recurrent MDD cases) 

identified significant loci15, a meta-analysis of depressive symptoms (161,460 individuals) 

identified two loci16, and an analysis of self-reported major depression identified 15 loci 

(75,607 cases).

There are many reasons why identifying causal loci for MDD has proven difficult12. MDD is 

probably influenced by many genetic loci each with small effects17, as are most common 

diseases18 including psychiatric disorders19,20. Estimates of the proportion of variance 

attributable to genome-wide SNPs (SNP heritability, hSNP
2 ) indicate that around a quarter of 

the h2 for MDD is due to common genetic variants21,22, and demonstrate that a genetic 

signal is detectable in GWA data, implying that larger sample sizes are needed to detect 

specific loci given their effect sizes. Such a strategy has been proven in schizophrenia 

studies, the flagship adult psychiatric disorder in genomics research. We thus accumulated 

clinical, population, and volunteer cohorts23. This pragmatic approach takes the view that 

sample size can overcome heterogeneity to identify risk alleles that are robustly associated 

with major depression. Potential concerns about combining carefully curated research 

cohorts with volunteer cohorts were ameliorated via multiple lines of evidence that suggest 

the results are likely to be applicable to clinical MDD. As discussed more fully below, our 

analyses have neurobiological, clinical, and therapeutic relevance for major depression.

RESULTS

Cohort analyses: phenotype validation

We identified seven cohorts that used a range of methods to ascertain cases with major 

depression (described in detail in Table 1, Supplementary Tables 1–3). The methods used by 

these cohorts were extensively reviewed drawing on the breadth of expertise in the PGC, and 

we assessed the comparability of the cohorts using genomic data. We use “MDD” to refer to 

directly evaluated subjects meeting standard criteria for major depressive disorder and use 

“major depression” where case status was determined using alternative methods as well as to 

the phenotype from the full meta-analysis.

We evaluated the comparability of the seven cohorts by estimating the common-variant 

genetic correlations (rg) between them. These analyses strongly supported the comparability 

of the seven cohorts (Supplementary Table 3) as the weighted mean rg was 0.76 (SE 0.03). 

The high genetic correlations between the 23andMeD and other cohorts are notable. While 

there is no statistical evidence of heterogeneity in the rg estimates between pairs of cohorts 

(P=0.13), the estimate is statistically different from 1 which may reflect etiological 

heterogeneity. This estimate can be benchmarked against the slightly larger weighted mean 

rg between schizophrenia cohorts of 0.84 (SE 0.05)21.

Given the positive evidence of the genetic comparability of these cohorts, we completed a 

GWA meta-analysis of 9.6 million imputed SNPs in 135,458 MDD and major depression 
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cases and 344,901 controls (Fig. 1). There was no evidence of residual population 

stratification24 (LD score regression intercept 1.018, SE 0.009). We estimated hSNP
2  to be 

8.7% (SE 0.004, liability scale, assuming lifetime risk 0.15, Supplementary Table 3b and 

Supplementary Fig. 1), and note that this is about a quarter of h2 estimated from twin or 

family studies9. This fraction is somewhat lower than that of other complex traits18, and is 

plausibly due to etiological heterogeneity (and reflecting the mean rg <1 between cohorts).

To evaluate the impact of combining major depression cohorts that used different 

ascertainment methods, we undertook a series of genetic risk score (GRS) prediction 

analyses to demonstrate the validity of our GWA results for clinical MDD (Fig. 2). 

Importantly, the variance explained in out-of-sample prediction increased with the size of the 

GWA discovery cohort (Fig. 2a), with the GRS from the full discovery sample meta-analysis 

explaining 1.9% of variance in liability (Fig. 2a, Supplementary Fig. 2, and Supplementary 

Table 4). For any randomly selected case and control, GRS ranked cases higher than controls 

with probability 0.57 (i.e., AUC=0.57), and the odds ratio of MDD for those in the 10th 

versus 1st GRS decile (OR10) was 2.4 (Fig. 2b, Supplementary Table 4). GRS analyses in 

other disorders (e.g., schizophrenia25) have shown that mean GRS increases with clinical 

severity in cases. We found significantly higher major depression GRS in those with more 

severe MDD, as measured in different ways (Fig. 2c). Last, because around half of the major 

depression cases were identified by self-report (i.e., diagnosis or treatment for clinical 

depression by a medical professional), we further evaluated the comparability of the 

23andMeD cohort with the other cohorts (full meta-analysis excluding 23andMeD, 

“FMex23”) as detailed in Fig. 2c, Supplementary Table 5 and Supplementary Note. Taken 

together, we interpret these results as supporting this meta-analysis of GWA results for these 

seven cohorts.

Implications of the individual loci for the biology of major depression

Our meta-analysis of seven MDD and major depression cohorts identified 44 independent 

loci that were statistically significant (P<5×10−8), statistically independent of any other 

signal26, and supported by multiple SNPs. This number supports our prediction that GWA 

discovery in major depression would require about five times more cases than for 

schizophrenia (lifetime risk ~1% and h2~0.8) to achieve approximately similar power27. Of 

these 44 loci, 30 are novel and 14 were significant in a prior study of MDD or depressive 

symptoms. The overlap of our findings with prior reports were: 1/1 with CHARGE 

depressive symptom14, 1/2 overlap with SSGAC depressive symptom16, and 12/15 overlap 

with Hyde et al.28 ). There are few trans-ancestry comparisons for major depression so we 

contrasted these European results with the Han Chinese CONVERGE study15 

(Supplementary Note). The loci identified in CONVERGE are uncommon in Europeans 

(rs12415800 0.45 vs 0.02 and rs35936514 0.28 vs 0.06) and were, not significant in our 

analysis.

Table 2 lists genes in or near the lead SNP in each region, regional plots are in 

Supplementary Data 1, and Supplementary Tables 6–7 provide extensive summaries of 

available information about the biological functions of the genes in each region. In the 

Supplementary Note we review four key genes in more detail: OLFM4 and NEGR1 (notable 
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for reported associations with obesity and body mass index29–34), RBFOX1 (notable for 

independent our associations at both the 5′ and the 3′ ends, a splicing regulator35,36, with a 

functional role that may be consistent with chronic hypothalamic-pituitary-adrenal axis 

hyperactivation reported in MDD37), and LRFN5 (notable for its role in pre-synaptic 

differentiation38,39 and neuroinflammation40).

Gene-wise analyses identified 153 significant genes after controlling for multiple 

comparisons (Supplementary Table 7). Many of these genes were in the extended MHC 

region (45 of 153) and their interpretation is complicated by high LD and gene density. In 

addition to the genes discussed above, other notable and significant genes outside of the 

MHC include multiple potentially “druggable” targets that suggest connections of the 

pathophysiology of MDD to neuronal calcium signaling (CACNA1E and CACNA2D1), 

dopaminergic neurotransmission (DRD2, a principal target of antipsychotics), glutamate 

neurotransmission (GRIK5 and GRM5), and presynaptic vesicle trafficking (PCLO).

Finally, comparison of the major depression loci with 108 loci for schizophrenia19 identified 

six shared loci. Many SNPs in the extended MHC region are strongly associated with 

schizophrenia, but implication of the MHC region is novel for major depression. Another 

example is TCF4 (transcription factor 4) which is strongly associated with schizophrenia but 

not previously with MDD. TCF4 is essential for normal brain development, and rare 

mutations in TCF4 cause Pitt–Hopkins syndrome which includes autistic features41. GRS 

calculated from the schizophrenia GWA results explained 0.8% of the variance in liability of 

MDD (Fig. 2c).

Implications from integration of functional genomic data

Results from “-omic” studies of functional features of cells and tissues are necessary to 

understand the biological implications of results of GWA for complex disorders42. To further 

elucidate the biological relevance of the major depression findings, we integrated the results 

with a wide range of functional genomic data. First, using enrichment analyses, we 

compared the major depression GWA findings to bulk tissue mRNA-seq from GTEx43. Only 

brain samples showed significant enrichment (Fig. 3A), and the three tissues with the most 

significant enrichments were all cortical. Prefrontal cortex and anterior cingulate cortex are 

important for higher-level executive functions and emotional regulation which are often 

impaired in MDD. Both of these regions were implicated in a large meta-analysis of brain 

MRI findings in adult MDD cases44. Second, given the predominance of neurons in cortex, 

we confirmed that the major depression genetic findings connect to genes expressed in 

neurons but not oligodendrocytes or astrocytes (Fig. 3B)45. Given the different methods used 

by the seven MDD/major depression cohorts in this study, demonstration of enrichment of 

association signals in the brain regions expected to be most relevant to MDD provides 

independent support for the validity of our approach.

Third, we used partitioned LD score regression46 to evaluate the enrichment of the major 

depression GWA findings in over 50 functional genomic annotations (Fig. 3C and 

Supplementary Table 8). The major finding was the significant enrichment of hSNP
2  in 

genomic regions conserved across 29 Eutherian mammals47 (20.9 fold enrichment, 
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P=1.4×10−15). This annotation was also the most enriched for schizophrenia46. We could not 

evaluate regions conserved in primates or human “accelerated” regions as there were too few 

for confident evaluation47. The other enrichments implied regulatory activity, and included 

open chromatin in human brain and an epigenetic mark of active enhancers (H3K4me1). 

Notably, exonic regions did not show enrichment suggesting that, as with schizophrenia17, 

genetic variants that change exonic sequences may not play a large role in major depression. 

We found no evidence that Neanderthal introgressed regions were enriched for major 

depression GWA findings48.

Fourth, we applied methods to integrate GWA SNP results with those from gene expression 

and methylation quantitative trait loci studies (eQTL and mQTL). SMR49 analysis identified 

13 major depression associated SNPs with strong evidence that they control local gene 

expression in one or more tissues, and nine with strong evidence that they control local DNA 

methylation (Supplementary Table 9 and Supplementary Data 2). A transcriptome-wide 

association study50 applied to data from the dorsolateral prefrontal cortex51 identified 17 

genes where major depression-associated SNPs influenced gene expression (Supplementary 

Table 10). These genes included OLFM4 (discussed above).

Fifth, we added additional data types to attempt to improve understanding of individual loci. 

For the intergenic associations, we evaluated total-stranded RNA-seq data from human brain 

and found no evidence for unannotated transcripts in these regions. A particularly important 

data type is assessment of DNA-DNA interactions which can localize a GWA finding to a 

specific gene that may be nearby or hundreds of kb away52–54. We integrated the major 

depression results with “easy Hi-C” data from brain cortical samples (3 adult, 3 fetal, > 1 

billion reads each). These data clarified three associations. The statistically independent 

associations in NEGR1 (rs1432639, P=4.6×10−15) and over 200 kb away (rs12129573, 

P=4.0×10−12) both implicate NEGR1 (Supplementary Fig. 3a), the former likely due to the 

presence of a reportedly functional copy number polymorphism (see Supplementary Note) 

and the presence of intergenic loops. The latter association has evidence of DNA looping 

interactions with NEGR1. The association in SOX5 (rs4074723) and the two statistically 

independent associations in RBFOX1 (rs8063603 and rs7198928, P=6.9×10−9 and 

1.0×10−8) had only intragenic associations, suggesting that the genetic variation in the 

regions of the major depression associations act locally and can be assigned to these genes. 

In contrast, the association in RERE (rs159963 P=3.2×10−8) could not be assigned to RERE 
as it may contain super-enhancer elements given its many DNA-DNA interactions with 

many nearby genes (Supplementary Fig. 3b).

Implications based on the roles of sets of genes

A parsimonious explanation for the presence of many significant associations for a complex 

trait is that the different associations are part of a higher order grouping of genes55. These 

could be a biological pathway or a collection of genes with a functional connection. Multiple 

methods allow evaluation of the connection of major depression GWA results to sets of 

genes grouped by empirical or predicted function (i.e., pathway or gene set analysis).

Full pathway analyses are in Supplementary Table 11, and 19 pathways with false discovery 

rate q-values < 0.05 are summarized in Fig. 4. The major groupings of significant pathways 
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were: RBFOX1, RBFOX2, RBFOX3, or CELF4 regulatory networks; genes whose mRNAs 

are bound by FMRP; synaptic genes; genes involved in neuronal morphogenesis; genes 

involved in neuron projection; genes associated with schizophrenia (at P<10−4)19; genes 

involved in CNS neuron differentiation; genes encoding voltage-gated calcium channels; 

genes involved in cytokine and immune response; and genes known to bind to the retinoid X 

receptor. Several of these pathways are implicated by GWA of schizophrenia and by rare 

exonic variation of schizophrenia and autism56,57, and immediately suggest shared 

biological mechanisms across these disorders.

A key issue for common variant GWA studies is their relevance for pharmacotherapy. We 

conducted gene set analysis that compared the major depression GWA results to targets of 

antidepressant medications defined by pharmacological studies58, and found that 42 sets of 

genes encoding proteins bound by antidepressant medications were highly enriched for 

smaller major depression association P-values than expected by chance (42 drugs, rank 

enrichment test P=8.5×10−10). This finding connects our major depression genomic findings 

to MDD therapeutics, and suggests the salience of these results for novel lead compound 

discovery for MDD59.

Implications based on relationships with other traits

Prior epidemiological studies associated MDD with many other diseases and traits. Due to 

limitations inherent to observational studies, understanding whether a phenotypic correlation 

is potentially causal or if it results from reverse causation or confounding is generally 

difficult. Genetic studies now offer complementary strategies to assess whether a phenotypic 

association between MDD and a risk factor or a comorbidity is mirrored by a non-zero rg 

(common variant genetic correlation) and, for some of these, evaluate the potential causality 

of the association given that exposure to genetic risk factors begins at conception.

We used LD score regression to estimate rg of major depression with 221 psychiatric 

disorders, medical diseases, and human traits22,60. Supplementary Table 12 contains the full 

results, and Table 3 holds the rg values with false discovery rates < 0.01. First, the rg were 

very high between our major depression GWA results and those from two studies of current 

depressive symptoms. Both correlations were close to +1 (the samples in one report 

overlapped partially with this meta-analysis16 but the other did not 14).

Second, we found significant positive genetic correlations between major depression and 

every psychiatric disorder assessed along with smoking initiation. This is the most 

comprehensive and best-powered evaluation of the relation of MDD with other psychiatric 

disorders yet published, and these results indicate that the common genetic variants that 

predispose to MDD overlap substantially with those for adult and childhood onset 

psychiatric disorders, although they remain substantially distinct as well.

Third, the common-variant genetic architecture of major depression was positively 

correlated with multiple measures of sleep quality (daytime sleepiness, insomnia, and 

tiredness). The first two of these correlations used UK Biobank data with people endorsing 

major depression, other major psychiatric disorders, shift workers, and those taking 

hypnotics excluded. This pattern of correlations combined with the importance of sleep and 
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fatigue in major depression (two criteria for MDD) suggests a close and potentially profound 

mechanistic relation. Major depression also had a strong genetic correlation with 

neuroticism (a personality dimension assessing the degree of emotional instability); this is 

consistent with the literature showing a close interconnection of MDD and this personality 

trait. The strong negative rg with subjective well-being underscores the capacity of major 

depression to impact human health.

Finally, major depression had significant negative genetic correlations with data from two 

studies of educational attainment, which while often considered at the genetic level as proxy 

measures of intelligence also likely includes more complex personality constructs. With this 

in mind, it is relevant to note that the rg between major depression and IQ61 was not 

significantly different from zero, despite an the rg between years of education and IQ of 0.7, 

implying complex relationships between these traits worthy of future investigation. We also 

found significant positive correlations with multiple measures of adiposity, relationship to 

female reproductive behavior (decreased age at menarche, age at first birth, and increased 

number of children), and positive correlations with coronary artery disease and lung cancer.

We used bi-directional Mendelian randomization (MR) to investigate the relationships 

between four traits genetically correlated with major depression: years of education 

(EDY)62, body mass index (BMI)29, coronary artery disease (CAD)63, and schizophrenia19. 

These traits were selected because all of the following were true: phenotypically associated 

with MDD, significant rg with MDD, and >30 independent genome-wide significant 

associations from large GWA. We report GSMR64 results but obtained qualitatively similar 

results with other MR methods (Supplementary Table 13 and Supplementary Fig. 4). MR 

analyses provided evidence for a 1.12-fold increase in major depression per standard 

deviation of BMI (PGSMR=1.2×10−7) and a 0.84-fold decrease in major depression per 

standard deviation of EDY (PGSMR=2.3×10−6). There was no evidence of reverse causality 

of major depression for BMI (PGSMR=0.53) or EDY (PGSMR=0.11). For BMI there was 

some evidence of pleiotropy, as six BMI SNPs were excluded by the HEIDI-outlier test 

including SNPs near OLFM4 and NEGR1. Thus, these results are consistent with EDY and 

BMI as either causal risk factors or correlated with causal risk factors for major depression. 

These results provide hypotheses for future research to understand these potentially 

directional relationships.

For CAD, the MR analyses were not significant when considering major depression as an 

outcome (PGSMR=0.30) or as an exposure (PGSMR=0.12), however, the high standard error 

of the estimates using MDD SNP instruments implies this analysis should be revisited when 

more major depression genome-wide significant SNP instruments become available from 

future GWA studies.

We used MR to investigate the relationship between major depression and schizophrenia. 

Although major depression had positive rg with many psychiatric disorders, only 

schizophrenia has sufficient associations for MR analyses. We found significant bi-

directional correlations in SNP effect sizes for schizophrenia loci in major depression 

(PGSMR=1.1×10−40) and for major depression loci in schizophrenia (PGSMR=1.5×10−11). 

These results suggest that the major depression-schizophrenia rg of 0.34 is consistent with 
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partially shared biological pathways being causal for both disorders. Although it is plausible 

that diagnostic misclassification/ambiguity (e.g., misdiagnosis of MDD as schizoaffective 

disorder) could contaminate these analyses, levels of misclassification would need to be 

implausibly high (30% unidirectional, 15% bidirectional) to result in an rg of ~0.3REF65.

All MR analyses were repeated after excluding the 23andMeD cohort, and the pattern of 

results was the same (Supplementary Table 13).

DISCUSSION

The nature of severe depression has been discussed for millennia66. This GWA meta-

analysis is among the largest ever conducted in psychiatric genetics, and provides a body of 

results that help refine and define the fundamental basis of major depression.

In conducting this meta-analysis of major depression, we employed a pragmatic approach by 

including cohorts that met empirical criteria for sufficient genetic and phenotypic similarity. 

Our approach was cautious, clinically informed, guided by empirical data, and selective 

(e.g., we did not include cohorts with bipolar disorder (which requires MDD), depressive 

symptoms, neuroticism, or well-being). Approximately 44% of all major depression cases 

were assessed using traditional methods (PGC29, GenScot), treatment registers (iPSYCH, 

GERA; such approaches have been extensively used to elucidate the epidemiology of major 

depression), or a combination of methods (deCODE, UK Biobank) whereas ~56% of cases 

were from 23andMeD (via self-report)28. Multiple lines of genetic evidence supported 

conducting meta-analysis of these seven cohorts (e.g., out-of-sample prediction, sign tests, 

and genetic correlations).

However, our approach may be controversial to some readers given the unconventional 

reliance on self-report of major depression. We would reframe the issue: we hypothesize that 

brief methods of assessing major depression are informative for the genetics of MDD. We 

present a body of results that are consistent with this hypothesis. Even if unconventional, our 

hypothesis is testable and falsifiable, and we invite and welcome empirical studies to further 

support or refute this hypothesis.

Our results lead us to draw some broad conclusions. First, major depression is a brain 

disorder. Although this is not unexpected, some past models of MDD have had little or no 

place for heredity or biology. The genetic results best match gene expression patterns in 

prefrontal and anterior cingulate cortex, anatomical regions that show differences between 

MDD cases and controls. The genetic findings implicated neurons (not microglia or 

astrocytes), and we anticipate more detailed cellular localization when sufficient single-cell 

and single-nuclei RNA-seq datasets become available67.

Second, the genetic associations for major depression (as with schizophrenia)46 tend to 

occur in genomic regions conserved across a range of placental mammals. Conservation 

suggests important functional roles. Notably, our analyses did not implicate exons or coding 

regions.
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Third, the results also implicated developmental gene regulatory processes. For instance, the 

genetic findings pointed at the splicing regulator RBFOX1 (the presence of two independent 

genetic associations in RBFOX1 strongly suggests that it is the relevant gene). Gene set 

analyses implicated genes containing binding sites to the protein product of RBFOX1, and 

this gene set is also significantly enriched for rare exonic variation in autism and 

schizophrenia56,57. These analyses highlight the potential importance of splicing to generate 

alternative isoforms; risk for major depression may be mediated not by changes in isolated 

amino acids but rather by changes in the proportions of isoforms coming from a gene, given 

that isoforms often have markedly different biological functions68,69. These convergent 

results provide possible clues of a biological mechanism common to multiple severe 

psychiatric disorders that merits future research.

Fourth, in the most extensive analysis of the genetic “connections” of major depression with 

a wide range of disorders, diseases, and human traits, we found significant positive genetic 

correlations with measures of body mass and negative genetic correlations with years of 

education, while showing no evidence of genetic correlation with IQ. MR analysis results 

are consistent with both BMI and years of education being causal, or correlated with causal, 

risk factors for major depression, and our results provide hypotheses and motivation for 

more detailed prospective studies, as currently available data may not provide insight about 

the fundamental driver or drivers of causality. The underlying mechanisms are likely more 

complex as it is difficult to envision how genetic variation in educational attainment or body 

mass alters risk for MDD without invoking an additional mechanistic component. While the 

significant MR analyses need further investigations to fully understand, the negative MR 

results provide important evidence that there is not a direct causal relationship between 

MDD and subsequent changes in body mass or education years. If such associations are 

observed in epidemiological or clinical samples, then it is likely not MDD but something 

correlated with MDD that drives the association.

Fifth, we found significant positive correlations of major depression with all psychiatric 

disorders that we evaluated, including disorders prominent in childhood. This pattern of 

results indicates that the current classification scheme for major psychiatric disorders does 

not align well with the underlying genetic basis of these disorders. Currently, only 

schizophrenia has a sufficient number of genome-wide significant loci to conduct MR 

analysis, but the bidirectionally significant MR results are consistent a shared biological 

basis for major depression and schizophrenia.

The dominant psychiatric nosological systems were principally designed for clinical utility, 

and are based on data that emerge during human interactions (i.e., observable signs and 

reported symptoms) and not objective measurements of pathophysiology. MDD is frequently 

comorbid with other psychiatric disorders, and the phenotypic comorbidity has an 

underlying structure that reflects shared origins (as inferred from factor analyses and twin 

studies)70–73. Our genetic results add to this knowledge: major depression is not a discrete 

entity at any level of analysis. Rather, our data strongly suggest the existence of biological 

processes common to major depression and schizophrenia (and likely, other psychiatric 

disorders).
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Finally, as expected, we found that major depression had modest hSNP
2  (8.7%) as it is a 

complex malady with both genetic and environmental determinants. We found that major 

depression has a very high genetic correlation with proxy measures that can be briefly 

assessed. Lifetime major depressive disorder requires a constellation of signs and symptoms 

whose reliable scoring requires an extended interview with a trained clinician. However, the 

common variant genetic architecture of lifetime major depression in these seven cohorts 

(containing many subjects medically treated for MDD) has strong overlap with that of 

current depressive symptoms in general community samples. Similar relations of clinically-

defined ADHD or autism with quantitative genetic variation in the population have been 

reported74,75. The “disorder versus symptom” relationship has been debated extensively76, 

but our data indicate that the common variant genetic overlap is very high. This finding has 

important implications.

One implication is for future genetic studies. In a first phase, it should be possible to 

elucidate the bulk of the common variant genetic architecture of MDD using a cost-effective 

shortcut – large studies of genotyped individuals who complete online self-report 

assessments of lifetime MDD (a sample size approaching 1 million MDD cases may be 

achievable by 2020). Use of online assessment could allow for recording of a broad range of 

phenotypes including comorbidities and putative environmental exposures, but the key 

feature being large samples with consistently assessed measures. In a second phase, with a 

relatively complete understanding of the genetic basis of major depression, one could then 

evaluate smaller samples of carefully phenotyped individuals with MDD to understand the 

clinical importance of the genetic results. Subsequent empirical studies may show that it is 

possible to stratify MDD cases at first presentation to identify individuals at high risk for 

recurrence, poor outcome, poor treatment response, or who might subsequently develop a 

psychiatric disorder requiring alternative pharmacotherapy (e.g., schizophrenia or bipolar 

disorder). This could form a cornerstone of precision medicine in psychiatry.

In summary, this GWA meta-analysis of 135,438 MDD and major depression cases and 

344,901 controls identified 44 loci. An extensive set of companion analyses provide insights 

into the nature of MDD as well as its neurobiology, therapeutic relevance, and genetic and 

biological interconnections to other psychiatric disorders. Comprehensive elucidation of 

these features is the primary goal of our genetic studies of MDD.

ONLINE METHODS

PGC29 cohort

Our analysis was anchored in a GWA mega-analysis of 29 samples of European-ancestry 

(16,823 MDD cases and 25,632 controls). Supplementary Table 1 summarizes the source 

and inclusion/exclusion criteria for cases and controls for each sample. All PGC29 samples 

passed a structured methodological review by MDD assessment experts (DF Levinson and 

KS Kendler). Cases were required to meet international consensus criteria (DSM-IV, ICD-9, 

or ICD-10)83–85 for a lifetime diagnosis of MDD established using structured diagnostic 

instruments from assessments by trained interviewers, clinician-administered checklists, or 

medical record review. All cases met standard criteria for MDD, were directly interviewed 
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(28/29 samples) or had medical record review by an expert diagnostician (1/29 samples), 

and most were ascertained from clinical sources (19/29 samples). Controls in most samples 

were screened for the absence of lifetime MDD (22/29 samples), and randomly selected 

from the population.

Additional cohorts

We critically evaluated six independent, European-ancestry cohorts (118,635 cases and 

319,269 controls). Supplementary Table 2 summarizes the source and inclusion/exclusion 

criteria for cases and controls for each cohort. These cohorts used a range of methods for 

assessing MDD or major depression. Most studies included here applied otherwise typical 

inclusion and exclusion criteria for both cases and controls (e.g., excluding cases with 

lifetime bipolar disorder or schizophrenia and excluding controls with major depression).

Cohort comparability

Supplementary Table 3 summarizes the numbers of cases and controls in PGC29 and the six 

additional cohorts. The most direct and important way to evaluate the comparability of these 

cohorts for a GWA meta-analysis is using SNP genotype data. 22,24 We used LD score 

(LDSC) regression (described below) to estimate hSNP
2  for each cohort (Supplementary Table 

3 and Supplementary Fig. 1), and rg for all pairwise combinations of the cohorts 

(Supplementary Table 3b), and to demonstrate no evidence of sample overlap. We used 

leave-one-sample-out genetic risk scores (GRS) finding significant differences in case-

control GRS distributions of the left-out-sample for all-but-one PGC29 samples 

(Supplementary Table 4). For full details of the cohort comparability analyses including 

GRS analyses see the Supplementary Note. In GRS analyses the discovery sample is the 

GWA sample that provides the allelic-weightings for each SNP used to generate a sum score 

for each individual in the independent target sample.

Genotyping and quality control

Genotyping procedures can be found in the primary reports for each cohort (summarized in 

Supplementary Table 3). Individual genotype data for all PGC29 samples, GERA, and 

iPSYCH were processed using the PGC “ricopili” pipeline (URLs) for standardized quality 

control, imputation, and analysis19. The cohorts from deCODE, Generation Scotland, UK 

Biobank, and 23andMeD were processed by the collaborating research teams using 

comparable procedures. SNPs and insertion-deletion polymorphisms were imputed using the 

1000 Genomes Project multi-ancestry reference panel (URLs)86. More detailed information 

on sample QC is provided in the Supplementary Note.

Linkage disequilibrium (LD) score regression (LDSC)22,24 was used to estimate hSNP
2  from 

GWA summary statistics. Estimates of hSNP
2  on the liability scale depend on the assumed 

lifetime prevalence of MDD in the population (K), and we assumed K=0.15 but also 

evaluated a range of estimates of K to explore sensitivity including 95% confidence intervals 

(Supplementary Fig. 1). LDSC bivariate genetic correlations attributable to genome-wide 

SNPs (rg) were estimated across all MDD and major depression cohorts and between the full 

meta-analyzed cohort and other traits and disorders.
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LDSC was also used to partition hSNP
2  by genomic features24,46. We tested for enrichment of 

hSNP
2  based on genomic annotations partitioning hSNP

2  proportional to bp length represented 

by each annotation. We used the “baseline model” which consists of 53 functional 

categories. The categories are fully described elsewhere46, and included conserved 

regions47, USCC gene models (exons, introns, promoters, UTRs), and functional genomic 

annotations constructed using data from ENCODE 87 and the Roadmap Epigenomics 

Consortium88. We complemented these annotations by adding introgressed regions from the 

Neanderthal genome in European populations89 and open chromatin regions from the brain 

dorsolateral prefrontal cortex. The open chromatin regions were obtained from an ATAC-seq 

experiment performed in 288 samples (N=135 controls, N=137 schizophrenia, N=10 bipolar, 

and N=6 affective disorder)90. Peaks called with MACS91 (1% FDR) were retained if their 

coordinates overlapped in at least two samples. The peaks were re-centered and set to a fixed 

width of 300bp using the diffbind R package92. To prevent upward bias in heritability 

enrichment estimation, we added two categories created by expanding both the Neanderthal 

introgressed regions and open chromatin regions by 250bp on each side.

We used LDSC to estimate rg between major depression and a range of other disorders, 

diseases, and human traits22. The intent of these comparisons was to evaluate the extent of 

shared common variant genetic architectures in order to suggest hypotheses about the 

fundamental genetic basis of major depression (given its extensive comorbidity with 

psychiatric and medical conditions and its association with anthropometric and other risk 

factors). Subject overlap of itself does not bias rg. These rg are mostly based on studies of 

independent subjects and the estimates should be unbiased by confounding of genetic and 

non-genetic effects (except if there is genotype by environment correlation). When GWA 

studies include overlapping samples, rg remains unbiased but the intercept of the LDSC 

regression is an estimate of the correlation between association statistics attributable to 

sample overlap. These calculations were done using the internal PGC GWA library and with 

LD-Hub (URLs)60.

Integration of GWA findings to tissue and cellular gene expression

We used partitioned LDSC to evaluate which somatic tissues were enriched for major 

depression heritability93. Gene expression data generated using mRNA-seq from multiple 

human tissues were obtained from GTEx v6p (URLs). Genes for which <4 samples had at 

least one read count per million were discarded, and samples with <100 genes with at least 

one read count per million were excluded. The data were normalized, and a t-statistic was 

obtained for each tissue by comparing the expression in each tissue with the expression of 

all other tissues with the exception of tissues related to the tissue of interest (e.g., brain 

cortex vs all other tissues excluding other brain samples), using sex and age as covariates. A 

t-statistic was also obtained for each tissue among its related tissue (ex: cortex vs all other 

brain tissues) to test which brain region was the most associated with major depression, also 

using sex and age as covariates. The top 10% of the genes with the most extreme t-statistic 

were defined as tissue specific. The coordinates for these genes were extended by a 100kb 

window and tested using LD score regression. Significance was obtained from the 

coefficient z-score, which corrects for all other categories in the baseline model.
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Lists of genes specifically expressed in neurons, astrocytes, and oligodendrocytes were 

obtained from Cahoy et al.45 As these experiment were done in mice, genes were mapped to 

human orthologous genes using ENSEMBL. The coordinates for these genes were extended 

by a 100kb window and tested using LD score regression as for the GTEx tissue specific 

genes.

We conducted eQTL look-ups of the most associated SNPs in each region and report GWA 

SNPs in LD (r2 > 0.8) with the top eQTLs in the following data sets: eQTLGen Consortium 

(lllumina arrays in whole blood N=14,115, in preparation), BIOS (RNA-seq in whole blood 

(N=2,116),94 NESDA/NTR (Affymetrix arrays in whole blood, N=4,896),95 GEUVADIS 

(RNA-seq in LCL (N=465),96 Rosmap (RNA seq in cortex, N= 494)97, GTEx (RNA-seq in 

44 tissues, N>70)43, and Common Mind Consortium (CMC, prefrontal cortex, Sage Synapse 

accession syn5650509, N=467)51.

We used summary-data-based Mendelian randomization (SMR)49 to identify loci with 

strong evidence of causality via gene expression and DNA methylation (eQTL and meQTL). 

SMR analysis is limited to significant cis SNP-expression (FDR < 0.05) and SNPs with 

MAF > 0.01 at a Bonferroni-corrected pSMR. Due to LD, multiple SNPs may be associated 

with the expression of a gene, and some SNPs are associated with the expression of more 

than one gene. Since the aim of SMR is to prioritize variants and genes for subsequent 

studies, a test for heterogeneity excludes regions that may harbor multiple causal loci (pHET 

< 0.05; a very conservative threshold). SMR analyses were conducted using eQTLs from 

eQTLGen Consortium (whole blood), GTEx (11 brain tissues), and Common Mind 

Consortium43,51 as well as meQTLs from whole blood98.

We conducted a transcriptome wide association study50 using pre-computed expression 

reference weights for CMC data (5,420 genes with significant cis-SNP heritability) provided 

with the TWAS/FUSION software. The significance threshold was 0.05/5420.

DNA looping using Hi-C

Dorsolateral prefrontal cortex (Brodmann area 9) was dissected from postmortem samples 

from three adults of European ancestry (Dr Craig Stockmeier, University of Mississippi 

Medical Center). Cerebra from three fetal brains were obtained from the NIH NeuroBiobank 

(URLs; gestation age 17–19 weeks, African ancestry). We used “easy Hi-C” to assess DNA 

chromatin (looping) interactions (see Supplementary Note).

Gene-wise and pathway analysis

Our approach was guided by rigorous method comparisons conducted by PGC 

members55,99. P-values quantifying the degree of association of genes and gene sets with 

MDD were generated using MAGMA (v1.06)100. MAGMA uses Brown’s method to 

combine SNP p-values and account for LD. We used ENSEMBL gene models for 19,079 

genes giving a Bonferroni corrected P-value threshold of 2.6×10−6. Gene set P-values were 

obtained using a competitive analysis that tests whether genes in a gene set are more 

strongly associated with the phenotype than other gene sets. We used European-ancestry 

subjects from 1,000 Genomes Project (Phase 3 v5a, MAF ≥ 0.01)101 for the LD reference. 
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The gene window used was 35 kb upstream and 10 kb downstream to include regulatory 

elements.

Gene sets were from two main sources. First, we included gene sets previously shown to be 

important for psychiatric disorders (71 gene sets; e.g., FMRP binding partners, de novo 
mutations, GWAS top SNPs, ion channels)57,102,103. Second, we included gene sets from 

MSigDB (v5.2)104 which includes canonical pathways and Gene Ontology gene sets. 

Canonical pathways were curated from BioCarta, KEGG, Matrisome, Pathway Interaction 

Database, Reactome, SigmaAldrich, Signaling Gateway, Signal Transduction KE, and 

SuperArray. Pathways containing between 10-10K genes were included.

To evaluate gene sets related to antidepressants, gene-sets were extracted from the Drug-

Gene Interaction database (DGIdb v.2.0)105 and the Psychoactive Drug Screening Program 

Ki DB106 downloaded in June 2016. The association of 3,885 drug gene-sets with major 

depression was estimated using MAGMA (v1.6). The drug gene-sets were ordered by p-

value, and the Wilcoxon-Mann-Whitney test was used to assess whether the 42 

antidepressant gene-sets in the dataset (ATC code N06A in the Anatomical Therapeutic 

Chemical Classification System) had a higher ranking than expected by chance.

One issue is that some gene sets contain overlapping genes, and these may reflect largely 

overlapping results. The pathway map was constructed using the kernel generative 

topographic mapping algorithm (k-GTM) as described by Olier et al.107 GTM is a 

probabilistic alternative to Kohonen maps: the kernel variant is used when the input is a 

similarity matrix. The GTM and k-GTM algorithms are implemented in GTMapTool 

(URLs). We used the Jaccard similarity matrix of FDR-significant pathways as input for the 

algorithm, where each pathway is encoded by a vector of binary values representing the 

presence (1) or absence (0) of a gene. Parameters for the k-GTM algorithm are the square 

root of the number of grid points (k), the square root of the number of RBF functions (m), 

the regularization coefficient (l), the RBF width factor (w), and the number of feature space 

dimensions for the kernel algorithm (b). We set k=square root of the number of pathways, 

m=square root of k, l=1 (default), w=1 (default), and b=the number of principal components 

explaining 99.5% of the variance in the kernel matrix. The output of the program is a set of 

coordinates representing the average positions of pathways on a 2D map. The x and y axes 

represent the dimensions of a 2D latent space. The pathway coordinates and corresponding 

MAGMA P-values were used to build the pathway activity landscape using the kriging 

interpolation algorithm implemented in the R gstat package.

Mendelian randomization (MR)108

We conducted bi-directional MR analysis for four traits: years of education (EDY)62, body 

mass index (BMI)29, coronary artery disease (CAD)63, and schizophrenia (SCZ)19. We 

denote z as a genetic variant (i.e., a SNP) that is significantly associated with x, an exposure 

or putative causal trait for y (the disease/trait outcome). The effect size of x on y can be 

estimated using a two-step least squares (2SLS)109 approach: b̂xy = b̂zy / b̂zx, where b̂zx is 

the estimated effect size for the SNP-trait association the exposure trait, and b̂zy is the effect 

size estimated for the same SNP in the GWAS of the outcome trait.
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We used generalized summary statistics-based MR (GSMR)64 to estimate b̂xy and its 

standard error from multiple SNPs associated with the exposure trait at a genome-wide 

significance level. We conducted bi-directional GSMR analyses for each pair of traits, and 

report results after excluding SNPs that fail the HEIDI-outlier heterogeneity test (which is 

more conservative than excluding SNPs that have an outlying association likely driven by 

locus-specific pleiotropy). GSMR is more powerful than inverse-weighted MR (IVW-MR) 

and MR-Egger because it takes account of the sampling variation of both b ̂zx and b̂zy. 

GSMR also accounts for residual LD between the clumped SNPs. For comparison, we also 

conducted IVW-MR and MR-Egger analyses. 110 More details are provided in the 

Supplementary Note.

Genome build

All genomic coordinates are given in NCBI Build 37/UCSC hg19.

Data availability

The PGC’s policy is to make genome-wide summary results public. Summary statistics for a 

combined meta-analysis of PGC29 with five of the six expanded samples (deCODE, 

Generation Scotland, GERA, iPSYCH, and UK Biobank) are available on the PGC web site 

(URLs). Results for 10,000 SNPs for all seven cohorts are also available on the PGC web 

site.

GWA summary statistics for the Hyde et al. cohort (23andMe, Inc.) must be obtained 

separately. These can be obtained by qualified researchers under an agreement with 

23andMe that protects the privacy of the 23andMe participants. Contact David Hinds 

(dhinds@23andme.com) to apply for access to the data. Researchers who have the 23andMe 

summary statistics can readily recreate our results by meta-analyzing the six cohort results 

file with the Hyde et al. results file from 23andMe.28

Availability of genotype data for PGC29 is described in Supplementary Table 15. For the 

expanded cohorts, interested users should contact the lead PIs of these cohorts (which are 

separate from the PGC).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Results of GWA meta-analysis of seven cohorts for major depression
(a) Relation between adding cohorts and number of genome-wide significant genomic 

regions (before the rigorous vetting used to define the final 44 regions). Beginning with the 

largest cohort (#1 on the x-axis), added the next largest cohort (#2) until all cohorts were 

included (#7). The number next to each point shows the total effective sample size 

equivalent to sample size where the numbers of cases and controls are equal. (b) Association 

test quantile-quantile plot showing a marked departure from a null model of no associations 

(y-axis truncated 10−12). (c) Manhattan plot with x-axis showing genomic position (chr1-

chr22 plus chrX), and the y-axis showing statistical significance as –log10(P) t-statistic; 

threshold for significance accounting for multiple testing shown by horizontal line. 
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Association test from meta-analysis of 135,458 major depression cases and 344,901 

controls. The red line shows the genome-wide significance threshold (P=5×10−8).
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Fig. 2. Genetic risk score (GRS) prediction analyses into PGC29 MDD target samples
(a) Variance explained (liability scale) based on different discovery samples for three target 

samples: PGC29 (16,823 cases, 25,632 controls), iPSYCH (a nationally representative 

sample of 18,629 cases and 17,841 controls,) and a clinical cohort from Münster not 

included in the GWA analysis (845 MDD inpatient cases, 834 controls). PGC29-LOO: 

Target sample is one of the PGC29 samples, with discovery sample the remaining 28 PGC29 

samples, hence, leave-one-out. (b) Odds ratios of major depression per GRS decile relative 

to the first decile for iPSYCH and PGC29 target samples. (c) Odds ratios of major 

depression in GRS standard deviation (SD): 3,950 early onset vs 3,950 late onset cases 

earlier age at onset; 4,958 severe vs 3,976 moderate cases defined by count of endorsed 

MDD symptom criteria; 5,574 cases recurrent MDD vs 12,968 single episode cases; severity 

defined as chronic/unremitting MDD 610 “Stage IV” cases vs 499 “Stage II” or 332 first-

episode MDD 77 used the NESDA sample from PGC29. Error bars represent 95% 

confidence intervals. Logistic regression association test p-values in the target sample for 

GRS generated from SNPs with p-value < 0.05 in the discovery sample.
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Fig. 3. Comparisons of the major depression GWA meta-analysis
(a) Enrichment in bulk tissue mRNA-seq from GTEx; t-statistic, sample sizes in GTEx 

range from N=75–564. Threshold for significance accounting for multiple testing shown by 

vertical line. (b) Major depression results and enrichment in three major brain cell types; t-

statistic; threshold for significance accounting for multiple testing shown by horizontal line. 

Sample sizes vary as these data are aggregated from many different sources. (c) Partitioned 

LDSC to evaluate enrichment of the major depression GWA findings in over 50 functional 

genomic annotations (Supplementary Table 8); enrichment statistic; threshold for 

significance accounting for multiple testing given by horizontal dashed line. Sample sizes 

vary as these data are aggregated from many different sources.
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Fig. 4. 
Generative topographic mapping of the 19 significant pathway results. The average position 

of each pathway on the map is represented by a point. The map is colored by the –log10(P) 

obtained using MAGMA. The X and Y coordinates result from a kernel generative 

topographic mapping algorithm (GTM) that reduces high dimensional gene sets to a two-

dimensional scatterplot by accounting for gene overlap between gene sets. Each point 

represents a gene set. Nearby points are more similar in gene overlap than more distant 

points. The color surrounding each point (gene set) indicates significance per the scale on 

the right. The significant pathways (Supplementary Table 11) fall into nine main clusters as 

described in the text.
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Table 1

Brief description of the seven MDD or major depression cohorts used in the meta-analysis

Sample Country Case ascertainment Cases Controls

PGC2913, a Various Structured diagnostic interviewsb 16,823 25,632

deCODE13 Iceland National inpatient electronic records 1,980 9,536

GenScotland78,79 UK Structured diagnostic interview 997 6,358

GERA80 USA Kaiser Permanente Northern California Healthcare electronic 
medical records (1995–2013)

7,162 38,307

iPSYCH81 Denmark National inpatient electronic records 18,629 17,841

UK Biobank82 (Pilot data release) UK From self-reported MDD symptoms or treatment or electronic 
records69

14,260 15,480

23andMeD28 (Discovery sample)c USA Self-reported diagnosis or treatment for clinical depression by a 
medical professional

75,607 231,747

Total 135,458 344,901

a
19 additional samples to the 10 samples published in the first PGC-MDD paper13.

b
One sample used natural language processing of electronic medical records followed by expert diagnostic review.

c
In Hyde et al.28 SNPs in 15 genomic regions met genome-wide significance in the combined discovery and replication samples, and 11 regions 

achieved genome-wide significance in the discovery sample made available to the research community and used here. More details are provided in 
Supplementary Tables 1–3.
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