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Abstract 

Background  In 1975, the mummified body of a female has been found in the Franciscan church in Basel, Switzer-
land. Molecular and genealogic analyses unveiled her identity as Anna Catharina Bischoff (ACB), a member of the 
upper class of post-reformed Basel, who died at the age of 68 years, in 1787. The reason behind her death is still a 
mystery, especially that toxicological analyses revealed high levels of mercury, a common treatment against infections 
at that time, in different body organs. The computed tomography (CT) and histological analysis showed bone lesions 
in the femurs, the rib cage, and the skull, which refers to a potential syphilis case.

Results  Although we could not detect any molecular signs of the syphilis-causing pathogen Treponema pallidum 
subsp. pallidum, we realized high prevalence of a nontuberculous mycobacterium (NTM) species in brain tissue sam-
ple. The genome analysis of this NTM displayed richness of virulence genes and toxins, and similarity to other infec-
tious NTM, known to infect immunocompromised patients. In addition, it displayed potential resistance to mercury 
compounds, which might indicate a selective advantage against the applied treatment. This suggests that ACB might 
have suffered from an atypical mycobacteriosis during her life, which could explain the mummy’s bone lesion and 
high mercury concentrations.

Conclusions  The study of this mummy exemplifies the importance of employing differential diagnostic approaches 
in paleopathological analysis, by combining classical anthropological, radiological, histological, and toxicological 
observations with molecular analysis. It represents a proof-of-concept for the discovery of not-yet-described ancient 
pathogens in well-preserved specimens, using de novo metagenomic assembly.
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Background
In 1975, a mummified corpse of a female individual was 
found in the Franciscan church (also known as the Bar-
füsser church) in Basel, Switzerland, during an excavation 
by the Archäologischen Bodenforschung Basel-Stadt in 
the church (Fig. 1A, B). The mummy’s coffin was encoun-
tered in a brick grave at a prominent position in the church 
(Fig. 1C, D), in front of the choir, along with another cof-
fin that contained another human skeleton [1]. Genealogic 

studies and molecular analyses unveiled the mummy’s 
identity identifying her as Anna Catharina Bischoff (ACB, 
29.03.1719-30.08.1787), a member of the upper class of 
post-reformed Basel, who died at the age of 68 years [2, 3]. 
By checking historical records of the church, it turned out 
that the mummy had been discovered earlier during the 
nineteenth century; then, due to ethical concerns, it has 
been reburied where it was again found in 1975 [2]. During 
this reburial, the coffin had been covered with soil (Fig. 1C).

Fig. 1  Description of the mummy’s finding site. A Map of Europe with zoom-in on Basel in Switzerland. B The Franciscan church during the 
renovation in 1975. C Photograph showing the first glance on the mummy tomb; recognizable are the overlapped hands. D The location of 
the burial chamber (indicated by red arrow) inside the Franciscan church (© Archäologische Bodenforschung, 1975/6 – Plan “Grabkammer und 
Grabschächte (G564)”, modified by H. Eichin 1981)
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The diseases and probable causes of death of ACB are 
still unknown, especially since the toxicological analyses 
of the mummy revealed high levels of mercury in differ-
ent body organs [4], which is assumed to be the reason 
behind the mummification of the corpse (the antibac-
terial effect of mercury can slow down putrefaction), 
in addition to the dry conditions in the masonry grave 
shaft and the high salt concentration of the surrounding 
soils. Since mercury inhalation was a common treatment 
against infections, particularly syphilis [5], it was believed 
that she might have suffered from syphilis during her life-
time. This assumption was further supported by the com-
puted tomography (CT) and histological results, which 
showed suggestive bone lesions in the skull, but degen-
erative lesions in femurs and rib cage. However, these 
lesions were histologically considered equivocal respect-
ing late sequelae of syphilis infection, which led to addi-
tional differential diagnoses of a possible tuberculosis 
(TB) or Paget’s disease [6].

In this study, we aimed to investigate molecularly 
whether the mummy could have suffered from syphilis, 
by carrying out a comprehensive shotgun metagenomic 
analysis on different body organs, in order to detect pos-
sible DNA traces of the causing pathogen, Treponema 
pallidum subsp. pallidum, or other pathogens that might 
have led to the bone lesions or might be linked to the 
mercury treatment.

Results
Human mitochondrial DNA analysis of the samples 
confirms their origin
Initially, we analyzed the mitochondrial DNA of all tis-
sues in order to confirm that they contain authentic 
DNA. All the samples taken from the mummy showed 
the same mitochondrial haplotype (i.e., U5a1+!16192) 
as previously reported [3], except for the skull bone sam-
ple, which showed additional background contamination 
with other human DNA (Additional file 1: Table S1) [3]. 
Interestingly, analysis of the human DNA of the maggots 
(Sample ID 3169), which were collected from underneath 
the mummy, revealed the same mitochondrial haplo-
type as of the mummy, indicating initial feasting on the 
decayed flesh of the mummy [7] or potential diffusion 
of mummy’s DNA into the surroundings [8]. The other 
control samples, coming from the skeletons of other indi-
viduals from the same tomb, showed two different mito-
chondrial haplotypes (Additional file 1: Table S1).

Metagenomic analysis did not reveal any Treponema 
genomes but unusual high prevalence of Mycobacteriaceae 
in brain tissue
Driven by the radiological and histological observations 
and the toxicological analysis (Fig.  2A, B), we carried 

out a shotgun metagenomic screening of different sam-
ples from different body parts of the mummy, represent-
ing tissues where the infection can be expected to occur 
(please refer to Additional file  1: Table  S1 for details). 
Although most of the tissues displayed overwhelming 
prevalence of postmortem microbial communities, e.g., 
Clostridia, we were still able to spot some tissue-specific 
taxa, particularly in the gut (Turicibacter sanguinis and 
Ruminococcus gnavus) and the tooth (e.g., Prevotella 
denticola and Actinomyces dentalis) samples (Addi-
tional file 1: Table S2). Additionally, we did not find any 
metagenomic reads assigned to the syphilis-causing path-
ogen Treponema pallidum subsp. pallidum (Additional 
file  2: Figure S1), nor even the containing-family Spiro-
chaetaceae, except for the tooth sample, which displayed 
presence of other Treponema species, e.g., T. socranskii, 
T. denticola, and T. maltophilum, which are all known to 
be linked to periodontitis and being members of the oral 
microflora [9, 10].

Unexpectedly, the brain tissue displayed exceptional 
high abundance of the family Mycobacteriaceae, repre-
senting more than 80% of the total microbial metagen-
omic reads (Fig. 2C, Additional file 2: Figure S2) [11–13]. 
In this respect, it is important to mention that the toxico-
logical analysis displayed the highest mercury concentra-
tions in the brain samples, i.e., up to 28 ng × mg−1 tissue 
material (Fig.  2B), since the brain is the target organ in 
the uptake or administration of elemental mercury. This 
opens a question on whether these two observations are 
correlated.

De novo assembly revealed a nontuberculous 
mycobacterium (NTM) in the brain
Based on the high abundance of Mycobacteriaceae in the 
brain, we performed a de novo metagenomic assembly 
on the brain metagenomic reads (for further informa-
tion on assembly, please refer to the “Methods” section). 
We were able to resolve a high-quality metagenome-
assembled genome (MAG, 99.5 % completeness and < 
0.5 % contamination, as estimated by CheckM), belong-
ing to a nontuberculous mycobacterium (NTM) species 
(Fig.  3A, B, Additional file  1: Table  S3). Interestingly, 
more than 57% of the brain metagenomic reads were 
mapped against the assembled genome (Additional file 1: 
Table S4). The genome constituted of 66 contigs of total 
size of ~ 4.8 Mb and mean coverage of 185.9 ± 45.4 × 
(Additional file 1: Table S5).

Considering that the genus Mycobacterium has 
undergone major phylogenomic-based taxonomic 
reassignments and rearrangements [16, 17], we used 
species-representative genomes of the whole Mycobac-
teriaceae family in order to gain an in-depth taxonomic 
characterization of our discovered genome within it, 
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using PhyloPhlAn marker genes (please refer to the 
“Methods” section). The resulting phylogeny was highly 
congruent with the recently proposed taxonomy [16], 
having main clades representing the classical human 
pathogenic Mycobacterium spp., Mycobacteroides spp., 
Mycolicibacter spp., and finally Mycolicibacterium spp., 
where our genome falls within (Fig.  3B). Further, we 
compared our genome with all characterized species 
within the genus Mycolicibacterium to find the closest 
relative within the genus. For this purpose, we carried 
out a pairwise genomic comparison between all species 
including ours, using the Mash distance tool [18]. The 

mash distances of the brain NTM genome is relatively 
distant from all the characterized species within the 
genus (minimum distance = 20.03%) and clusters close 
to M. thermoresistibile, M. hassiacum, M. agri, and M. 
moriokaense (Fig.  3C). Although the four species are 
known to be, like other members of the genus, environ-
mental bacteria, they have previously been reported to 
cause infections in humans (Fig.  3C, and for detailed 
examples, please refer to Additional file  1: Table  S6) 
[19–94]. Moreover, most of Mycolicibacterium spp. 
have been previously isolated from hosts (Additional 
file 1: Table S6).

Fig. 2  Overview on the radiological, toxicological, and microbiological characteristics of the ACB mummy. A Computed tomography (CT)-based 
three-dimensional reconstruction of the skull. Notice the darker colors which represent lower x-ray densities than healthy bone. Copyright: 
Holger Wittig, Institute of Forensic Medicine, University of Basel. B Concentration of elemental mercury in different body samples, where the 
error bars refer to the standard errors. C Relative abundances of the top 12 microbial families on different body tissues as inferred by number of 
shotgun-metagenomic reads compared against the nr-database (please refer to the “Methods” section for details). Numbers in parentheses refer to 
sample IDs (please refer to Additional file 1: Table S1 for further details)



Page 5 of 16Sarhan et al. BMC Biology            (2023) 21:9 	

Genome‑wide analysis indicates potential virulence 
of the brain NTM
Before subjecting the brain genome to further func-
tional analysis, we checked for the authenticity of this 
bacterium (henceforth referred to as “brain NTM”), i.e., 
being ancient on the one hand, and on the other being 
exclusively present in the brain, not being a contami-
nant from other tissues or even from the environment 
surrounding the burial site. Therefore, we tested the 
terminal deamination levels on the metagenomic brain 
reads mapped to the genome of the brain NTM (the 
“Methods” section). We noticed very low levels of ter-
minal C-to-T and G-to-A substitutions, even less than 
the human DNA damage in this tissue (Fig.  3D, Addi-
tional file  2: Figure S3), although the fragment length 
distribution of the brain NTM was lower than of the 
human autosomal DNA (Fig. 3D, Additional file 2: Fig-
ure S3). When we further compared the human auto-
somal DNA from different organs, we realized variable 
levels of ancient DNA (aDNA) damages, correlating 
with the variable concentrations of mercury in different 
organs.

To further assess the possibility of the brain NTM being 
an external contamination, we investigated in addition 
to the mummy tissues more samples representing the 
following (Additional file  2: Figure S4) [2]: (i) bone and 
tooth samples from other skeletons found in the same 
burial site (upper coffin); (ii) textile sample and mag-
gots that were found on the mummy; and finally, (iii) soil 
samples that were found covering the upper parts of the 
mummy. After mapping all metagenomic reads of each 
of the aforementioned samples against the brain NTM 
genome and considering threshold of minimum 3x cov-
erage (please refer to the “Methods” section for details), 
we did not find any sufficient breadth (i.e., > 50% of the 
genome covered at least 3 times) for any of the mum-
my’s samples, except for the skull bone and dura mater 

samples, which appeared to carry the bacterium, hav-
ing average breadth values of > 70% (Fig.  4A). Thereby, 
we excluded the possibility of the external contamination 
and continued with the functional analyses.

We checked the overall virulence potential of the bac-
terium, by comparing all coding sequences (CDS) against 
the virulence factor database (VFDB) [95]. The genome 
contained three different clusters of type VII secretion 
systems (T7SSs), which are responsible for effector pro-
teins in pathogenic and non-pathogenic mycobacteria, 
and help to survive in the host by evading the immune 
system [96]. Considering the genome of M. tuberculosis 
as a reference, our genome contained the core genes of 
the ESX-1 system as well as the full genes of the ESX-3 
and ESX-4, with the same exact synteny arrangement 
(Additional file 2: Figure S5).

Since the NTM genome was exclusively present in 
the brain, we checked for the ability of the bacterium to 
invade the brain and cross the blood brain barrier (BBB). 
Be and colleagues identified the genes Rv0311, Rv0931, 
Rv0986, and Rv0805 (CpdA) in M. tuberculosis to be sig-
nificantly involved in brain invasion and survival [97]. 
Indeed, we detected homologs of the four genes scat-
tered throughout the genome (Fig. 4A). Moreover, it has 
been also previously reported that NTM can invade brain 
within circulating macrophages [98].

We additionally checked the brain NTM genome for 
the presence of toxin-antitoxin (TA) systems that are 
assumed to be contributing to the virulence of myco-
bacteria [99]. In comparison with other members of the 
genus Mycolicibacterium, and representatives of other 
known pathogenic mycobacteria, we realized that the 
brain NTM genome together with M. tuberculosis H37Rv 
were on the top in richness of TA systems (Additional 
file 2: Figure S6). Generally, TA systems are typically com-
posed of a protein (toxin) and another antagonistic pro-
tein (antitoxin). Under stress conditions, the antitoxin, 

(See figure on next page.)
Fig. 3  Genome-level taxonomic assignment of the brain bacterium. A Taxonomic assignment of the brain NTM contigs as assigned by searching 
against the NCBI-nt database, using BLASTn. The number of the assigned contigs is shown next the taxon names based on the lowest common 
ancestor (LCA) as determined by MEGAN (please refer to the “Methods” section for further details). B Unrooted phylogenetic tree of the family 
Mycobacteriaceae, including a single representative genome of each species, based on PhyloPhlAn marker genes. The background colors of the 
clades refer to: red, Mycobacterium spp.; yellow, Mycolicibacter spp.; green, Mycobacteroides spp.; and blue, Mycolicibacterium spp. C Heatmap-based 
on MASH distances of all characterized species’ genomes within the genus Mycolicibacterium including the genome of the brain bacterium 
(highlighted in bold red font). The heatmap annotations to the left of the heatmap refers to whether the microbe was isolated from a host or 
was reported as a human pathogen. For further details on the isolation sources, please refer to the Additional file 1: Table S6. D Damage plots 
of human DNA of different tissues as well as the brain NTM. The damage plots were generated considering the mapped reads of the indicated 
tissues different body tissues (i.e., tooth, intestinal tissues, skull, dura mater, and brain) against human genome (hg19) while the brain NTM was 
generated considering the brain metagenomic reads mapped against the brain NTM assembled genome. Ancient DNA damage represented by 
the terminal substitution of Cytosine to Thymine at the 5′ ends of the DNA fragments. The labels in parenthesis refer to sample ID and the mercury 
concentrations ± standard error. For further information on the read lengths distribution please refer to Additional file 2: Figure S3 [14, 15]. Note: 
The human DNA are showing variable levels of ancient DNA damages, despite of being of the same individual. The lowest levels of the human DNA 
damages are in the brain and dura mater samples, which goes with the abundance of the brain NTM and the mercury concentrations as well
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which is a labile molecule gets degraded, allowing the 
toxin molecule to halt essential cellular processes, lead-
ing to growth inhibition of bacteria [99]. Such process is 
reversible, which means that as soon as the conditions 
become favorable again, the antitoxin binds to the toxin 
and maintains essential cellular processes are restored. 

It is postulated that such TA systems play a great role 
in bacterial persistence under stress conditions, par-
ticularly in M. tuberculosis infections, which sometimes 
mediates dormant states tolerant to antibiotic treatment 
and the host’s immune response, i.e., latent tuberculosis. 
Analysis of transcriptomic profiles of antibiotic-induced 

Fig. 3  (See legend on previous page.)
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persistence in M. tuberculosis revealed upregulation of 
10 TA systems [100], which supports the assumptions of 
them being involved in pathogen persistence. In general, 
M. tuberculosis and ACB’s brain NTM contain remark-
ably higher numbers of TA systems, compared with other 
mycobacteria, so we can deduce that it may have caused a 
persistent infection, by entertaining a privilege over other 
microbes in terms of survivability and competitiveness in 
extreme conditions.

Finally, and in relation to the high mercury concentra-
tions in the brain, we checked for the mercury resistance 
genes in the genome of the brain NTM in comparison 
with the mercury resistance operon of the M. marinum 
plasmid. We found in addition to the regulator protein 
gene and the core genes, i.e., mercuric reductase and 

alkylmercury lyase, other heavy metal resistance genes 
and antibiotic resistance genes (Additional file  2: Fig-
ure S5). The heavy metal resistance genes were mainly 
responsible for assimilation of copper, zinc, and arse-
nic, while the antibiotic resistance genes were directed 
against vancomycin, tetracycline, and beta-lactam antibi-
otics (Additional file 2: Figure S5).

Evidence for a pre‑infection transduction event 
that possibly increased the virulence
Although all mummy’s samples (except the brain, dura 
mater, and skull bones) seemed to be void of the brain 
NTM, they all displayed remarkable presence of one 
contig, i.e., contig 38, which indicates spread throughout 
the body, likely through the blood stream. To check the 

Fig. 4  Genetic map of the brain bacterium genome. A The heatmap shows distribution of the DNA of the brain NTM in the mummy’s samples as 
well as other control samples; The numbers to the left refer to the sample ID as referred to in Additional file 1: Table S1, while the letters refer to the 
samples group as follows: S, the mummy’s tissue samples; C1, control samples that were in contact with the mummy; C2, samples that were taken 
from other individuals from the same burial site; C3, soil sample that was collected from inside the coffin of the mummy (please refer to Additional 
file 1: Table S1 and Additional file 2: Figure S4 for further details). The presence is shown by breadth values with minimum coverage of 3x per site. 
The contigs are arranged in a descending order from left to right (for details on the contigs, please refer to Additional file 1: Table S5). The loci 
referred to in bold red fonts are gene clusters/operons and are further detailed in Additional file 2: Figure S5, while those in black bold are genes 
that are known to be involved in crossing blood brain barrier (BBB) and brain invasion. B The genetic map of the contig 38, which is assumed to be 
a phage genome, as inferred by the tool PHASTER (for further details on the phage annotation, please refer to Additional file 1: Table S7)
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possibility that this contig might have been misplaced 
during the binning step, we went back to the metagen-
omic contigs and clustered them based on the coverage 
and the GC content, to whether this contig is an out-
lier to the rest of the genome. Considering both assem-
bly methods, the contig was placed perfectly within the 
defined cluster of the brain NTM, showing similar cov-
erage and GC content (Additional file  2: Figure S7). As 
further confirmation on the authenticity of the brain 
NTM, the contig 38 was completely absent from the 
samples of the other individuals and the soil sample. To 
explain the presence of this contig throughout the body, 
we hypothesized that it could be a circulating phage, 
since bacteriophages were shown to be present in the 
stool of patients with pulmonary diseases and to migrate 
through blood stream [101, 102]. Therefore, we screened 
for presence of viral sequences within our genome using 
the tool PHASTER (see the “Methods” section) and real-
ized that the contig_38, which showed high prevalence in 
other mummy tissues, highly resembles phage genomes 
(Fig. 4B). Further, the CheckV tool displayed a high-qual-
ity viral genome with 91.35 completeness (Additional 
file 1: Table S8), having additionally other host/non-viral 
genes within the genome. By deeply annotating the con-
tig, we found the basic structural proteins of phages, e.g., 
capsids, tail fibers, and portal proteins, in addition to 
other functional proteins, e.g., terminase, recombination 
proteins, and endolysin (Fig. 4B).

Interestingly, within this contig, there was the homol-
ogous gene of Rv0805 (CpdA), one of the genes that is 
involved in brain invasion and persistence. The presence 
of prophages has been recently reported in the genomes 
of clinical mycobacteria and assumed to aid in their viru-
lence evolution. Moreover, when compared with environ-
mental mycobacteriophages from PhagesDB, bacterial 
virulence genes were found to be enriched in the clinical 
mycobacterial prophages [103, 104]. This might indicate 
that the brain NTM has undergone a natural pre-infec-
tion transduction process that increased its virulence and 
enabled invasion and microbial survival in the brain.

Discussion
The mummy of the Franciscan Church from Basel, Swit-
zerland (ACB, 1719–1787) represents a unique exam-
ple of multidisciplinary studied mummy [2]. Since the 
mummy is dated back to the eighteenth century, exten-
sive historical, genealogical, and molecular investigations 
were necessary that resulted in reconstructing a fam-
ily tree over 22 generations including nowadays living 
relatives [3]. The analyses showed that she belonged to a 
wealthy upper-class family, which might indicate that she 
might have had access to an advanced and special health-
care. The initial radiological and histological analyses of 

her mummified body indicated combination of differ-
ent diseases, such as atherosclerosis and gallstones, and 
the toxicological analysis showed high concentrations 
of mercury in different body parts. Thus, studying the 
paleopathological status and the treatments she received 
provide insights into an important time in the European 
history, as she lived during the scientific revolution and 
before the onset of the industrial revolution.

One of the main intriguing findings was the high mer-
cury concentration that has been revealed even at the 
mummy’s discovery time in 1975 [105] and was assumed 
to be one of the main reason for mummification. The 
presence of mercury also triggered some questions 
regarding her health status and in which context she 
had been exposed to these high concentrations of mer-
cury. Historically, the beginning of mercury usage in the 
medical fields in Europe dates probably back to 1495, at 
the beginning of the first documented syphilis outbreak 
[106]. During that time, mercury had been already in 
use in the Arabic medicine to treat skin infections and 
leprosy [5, 107]. Therefore, it was adopted in Europe to 
treat syphilis and other infectious diseases by differ-
ent methods of treatments, such as topical application, 
inhalation of mercury vapors, or even by ingestion of 
mercury salts [5, 108–110]. From the toxicological point 
of view, humans can get exposed to different forms of 
mercury, i.e., inorganic (e.g., mercury chloride), organic 
(e.g., methylmercury), or elemental (e.g., mercury vapors) 
[111]. The elemental form is absorbed by inhalation, 
passes from the lungs into the blood, crosses the blood-
brain barrier and accumulates in the brain [112, 113]. 
While the inorganic forms, due to their lower liposolubil-
ity, were hypothesized to need to be accompanied with 
selenium (Se) that neutralizes the mercury’s toxicity to 
be able to access and cumulate in the brain [114]. On the 
other hand, mercury in its ionic forms is mainly accumu-
lated in the kidney and liver. Considering that we found 
higher mercury concentrations in the brain than in the 
other body samples, we postulate that ACB was exposed 
to mercury vapors as a treatment for an extended time 
period. However, we cannot exclude that ACB was 
exposed to a treatment with an ointment containing col-
loidal elemental mercury or another inorganic mercury 
treatment, considering the correlation between the con-
centrations of the selenium and mercury, particularly in 
the brain of ACB (Additional file 2: Figure S8).

The classical explanation for the presence of mercury in 
the mummy would be the syphilis, which is mainly a sex-
ually transmitted bacterial disease caused by Treponema 
pallidum subsp. pallidum [115]. Its symptoms are highly 
variable and can range from small chancres and nodular 
granulomatous skin lesion to late-onset prominent bone 
lesions [116]. Syphilis is also known as one of the “great 
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imitators,” as it causes symptoms similar to other diseases 
making its diagnosis challenging [117]. For instance, in 
1885, a bacillus bacterium was isolated from a syphilitic 
chancres [118, 119], which was assumed to be the caus-
ing pathogen, but later and by further research turned 
out to be the non-tuberculous M. smegmatis that causes 
very similar ulcers to those of T. pallidum subsp. palli-
dum [77]. In our case, we could not find any metagen-
omic reads that can be assigned to T. pallidum, and the 
only partially supporting clues would be the bone lesions 
unveiled by the radiological analysis with yet equivo-
cal histopathology and the existence of mercury itself, 
where both are indirect evidence on syphilis. However, it 
might be useful in the future to consider employing a tar-
get enrichment capture approach particularly for those 
hardly to recover pathogens [120].

The other possible explanation for the mercury treat-
ment can be deduced from the extraordinarily high abun-
dance of Mycobacteriaceae in the brain of ACB as well as 
scattered incidence in the dura mater and the skull bone 
samples. By employing de novo metagenomic assembly, 
we resolved a near-full NTM genome. In general, NTM 
are considered as environmental bacteria, which inhabit 
different niches like soils and water. Many of the NTM 
were reported to cause human infections but remained 
neglected for decades until their recent remarkable emer-
gence in clinical infections [121, 122]. NTM affect pri-
marily human lungs, causing pulmonary disease, but can 
also infect other body parts, particularly in immunocom-
promised patients [123]. In the ancient metagenomics 
and paleopathology fields, NTM are usually mentioned 
within environmental contexts or as contaminants, due 
to the difficulty to confidently assign them as true patho-
gens like M. tuberculosis [124].

However, in this study, we opted to extensively analyze 
the genome of the brain NTM to explain their unusual 
existence and high abundance in the brain. The primary 
approach to check the DNA of a genome of whether it is 
ancient, is to analyze the ancient DNA damage pattern, 
i.e., terminal 5′C-to-T deamination. When we checked 
the damage pattern of the brain NTM, we found low 
damage levels (Fig. 3D). Interestingly, when we checked 
the damage of the human DNA of different organs of 
the mummy, we realized variability in the damage levels, 
negatively correlating with the mercury concentrations. 
For instance, the highest mercury concentrations were 
found in the brain samples, where we found the lowest 
human DNA damage (please refer to Fig. 3D for further 
examples). Despite of being a rare finding, this observa-
tion could explain the low damage levels on the brain 
NTM and highlights the inter-body variability of the 
DNA damages, which might open a discussion on using 
the ancient DNA damage as a primary tool for assessing 

modern contamination, particularly when dealing with 
unusually mummified materials.

In our case, the NTM contamination possibility can 
be toned down as soon as we consider the following: (i) 
the extraordinarily high abundance in the brain; (ii) the 
exclusive incidence in the brain and the close-by tissues 
and the absence from the other control samples as well 
as other organs of the mummy; (iii) the distribution of 
the putative phage within the mummy’s tissues and the 
absence from the control samples; (iv) the virulence 
potential of the genome particularly including genes that 
can enable crossing the BBB; (v) the richness of TA-sys-
tems that presumably enabled persistence under stress 
and unfavorable conditions; and, finally, (vi) the mer-
cury-, heavy metal-, and antibiotic resistance genes of the 
bacterium. Therefore, we can gain confidence on the ori-
gin of the bacterium and its potential to be a brain patho-
gen that survived despite of the mercury treatment.

Overall, and based on the radiological, histological, tox-
icological, and molecular analyses of the ACB’s mummy, 
the current situation might suggest two different scenar-
ios that explain her health status in relation to the high 
mercury concentrations. First, ACB suffered from syphi-
lis and was exposed to a mercury treatment successfully, 
and T. pallidum was completely eradicated, while the 
NTM brain infection occurred later. Second, she suffered 
from an NTM, and probably showed symptoms similar 
to syphilis, and was therefore subjected to mercury treat-
ment, but the pathogen survived the mercury due to its 
content of mercury and heavy metal resistance genes. 
The first scenario can be supported by the radiological 
findings, i.e., the bone lesions of the skull and the ribs; 
however, it is not supported at the molecular level. While 
the second scenario is highly supported by the molecu-
lar analysis, and radiological signs could also support this 
hypothesis.

Conclusions
In conclusion, this study spots the light on one NTM as 
one of the, not only nowadays, cause of neglected diseases 
and infections, which might have been misdiagnosed as 
syphilis or tuberculosis during the eighteenth century 
and may still be overlooked or misinterpreted nowadays 
in paleopathological studies due to the guided interest 
in more common and better-known diseases. The study 
of this mummy exemplifies the importance of employ-
ing differential diagnostic approaches in paleopathologi-
cal analysis by combining classical anthropological and 
radiological observations with molecular investigations. 
It also demonstrates the value of employing comparative 
metagenomic approaches in analyzing multiple samples 
from one individual. Finally, the study shows the value of 
employing de novo metagenomic assembly in recovering 
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extinct and not-yet described ancient genomes, in well-
preserved specimens, and gaining better insights on their 
phylogenetic and functional characteristics that are often 
beyond the potential of other tools.

Methods
Mummy sampling
The analyzed tissues and bones have been sampled at 
the Natural History Museum of Basel (Additional file 1: 
Table S1). The sampled tissues were checked visually and 
histologically to confirm their tissue of origin. Additional 
control samples were taken from the soil surrounding 
the mummy and the textile found underneath the body. 
Moreover, bone and teeth samples were taken from the 
other skeletons found in another coffin in the same burial 
site (please refer to Additional file 2: Figure S4).

DNA extraction, library preparation, and DNA sequencing
Amounts of 9–200 mg of the ancient materials or the 
control samples were used for DNA extraction, following 
the protocol described by Maixner and colleagues [125]. 
DNA extracts were quantified using QUANTUS (Pro-
mega, USA); then, 20 μl of each extract were converted 
into double-indexed DNA libraries following a special 
protocol for highly degraded ancient DNA [126]. All pre-
vious steps were carried out in the ancient DNA labora-
tory of the Eurac Research Institute for mummy studies 
in Bolzano, Italy. The double-indexed libraries were sub-
jected to next generation DNA sequencing using HiSeqX 
(2 × 150 paired-end), resulting in sequencing depths 
of 9–51 × 106 paired-end reads per sample (Additional 
file 1: Table S1).

Processing of ancient DNA sequences
We used the tool fastp [127] to trim the adapters and 
low-quality reads and to merge paired-end reads with 
at least 10 nucleotides overlap. Then, the quality filtered 
merged reads were de-duplicated and filtered for mini-
mum sequence length of 25 nucleotides, using SeqKit 
[128].

Human DNA analysis
To check the authenticity of the analyzed materials, we 
included, as a reference, in our analyses the shotgun 
metagenomic dataset generated from a tooth sample 
that was used to reveal the identity and the mitochon-
drial haplogroup of the mummy (https://​www.​ebi.​ac.​uk/​
ena/​brows​er/​view/​PRJEB​44723 ) [3]. For the analysis, we 
mapped the quality-filtered deduplicated merged reads 
against the human reference genome (build hg19) [129] 
and the human reference mtDNA genome (rCRS) [130] 
using Burrows-Wheeler Aligner (BWA) [131]. Then, we 
used SAMtools to filter for minimum mapping quality 

of 30, QualiMap to generate basic mapping statistics 
[132], and mapDamage 2.0 [14] to quantify the percent-
ages of C-to-T and G-to-A substitution of the mapped 
ancient DNA reads. In the case of mitochondrial DNA, 
we additionally used option “--rescale” to rescale the 
quality scores of the damaged mis-incorporated sites and 
the tool Schmutzi to estimate the level of contamination 
based on deamination patterns [133]. For haplogroup 
assignment, we first converted the rescaled bam files into 
variant calling format (VCF) and then employed Hap-
loGrep 2.0 [134].

Moreover, and to confirm the sex of the mummy sam-
ples, we used the mapped human DNA reads to compute 
the karyotype frequency of X and Y chromosomes, using 
a Maximum likelihood method [135].

General microbial profiling
To have an overview on the microbial composition of the 
samples, we used the search tool BLASTX of DIAMOND 
v2.0.13 [136] to compare our metagenomic reads, with 
the default parameters, against the nr-protein database 
[137]. Then, we used MEGAN v6.21.16 [11] to process 
the DIAMOND outputs and to assign the metagenomic 
reads to their lowest common ancestor (LCA), with the 
parameters “--minPercentIdentity 97” and “--minSup-
port 10”. Since the BLASTX compares nucleotides against 
amino acid sequences, we confined our LCA filters to the 
family-level to minimize the false positives. The number 
and percentages of assigned reads are summarized in 
Additional file 1: Table S4.

De novo assembly of metagenomic reads
We used the quality-filtered unmerged reads of the brain 
sample (Eurac ID 3045, 26411722 pair-end reads) to per-
form de novo sequence assembly, using the metagen-
omic assemblers MEGAHIT [138] and SPAdes with 
“--meta” option [139]. All contigs shorter than 1000 
nt were excluded from the downstream analyses. The 
metagenomic binners MetaBAT2 [140], MaxBin2 [141], 
and CONCOCT [142] were used to resolve potential 
genomes, based on similarity of abundance and tetra-
nucleotide frequency. Then, the DAS Tool was used to 
resolve consensus bins from each assembler, indepen-
dently (Additional file 2: Figure S7).

Further, we checked the completeness and contamina-
tion of the resulting bins using CheckM [143] and kept 
only the high-quality genomes (completeness > 90% and 
contamination < 5%). CheckM checks for the presence of 
single-copy genes (SCG) specific for each lineage. If the 
program finds more than one copy of any of those SCG, it 
considers this as a potential contamination. To calculate 
the strain heterogeneity, the program calculates the relat-
edness between the multiple copies of those SCG, based 

https://www.ebi.ac.uk/ena/browser/view/PRJEB44723
https://www.ebi.ac.uk/ena/browser/view/PRJEB44723
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on amino acid similarity. Then, the function “classify_wf” 
of GTDB-Tk v1.5.0 (April 23, 2021) has been used, with 
default parameters, to classify the resulting bins taxo-
nomically [144, 145].

As a result, two of the bins displayed identical taxo-
nomic classification (g__Mycobacterium sp.) and MASH 
distance of < 0.01, each is resulting from different assem-
bler, i.e., MEGAHIT and SPAdes. Therefore, we used 
SeqMan tool of DNASTAR [146] to reassemble the con-
tigs of both bins, by aligning all contigs vs all contigs, in 
order to improve the assembly quality, e.g., N50 value 
and number of contigs. Finally, we ended up with near-
full genome with 99.55% completeness and 0.45% con-
tamination (Additional file 1: Table S3).

To check the taxonomy of the resulting contigs, we 
searched all the contigs against the NCBI-nt database 
[137]. Then, the module “blast2rma” of MEGAN v6.21.16 
[11] with the parameters “--minPercentIdentity 80” has 
been applied to assign the contigs to their lowest com-
mon ancestor (LCA).

Phylogenetic analysis
To classify the resulting genome phylogenetically, we 
used the PhyloPhlAn 3.0 tool [147] to retrieve repre-
sentative genomes of each species within the family 
Mycobacteriaceae. Then, we built the phylogeny based 
on the 400 universal PhyloPhlAn marker genes using the 
option “--diversity low --accurate”. The configuration file 
included the following tools with the default parameters 
set by PhyloPhlAn: DIAMOND v2.0.13 [136], MAFFT 
v7.427 [148], trimAl v1.4.1 [149], FastTree v2.1.11 [150], 
and RAxML v8.2.12 [151].

Based on the PhyloPhlAn phylogenetic assignment, 
we retrieved representative genomes of all character-
ized species belonging to the genus Mycolicibacterium 
and added our brain bacterium genome, then calcu-
lated MASH distances all vs. all, using the “phylophlan_
metagenomic” module of PhyloPhlAn 3.0 [18].

Checking the brain bacterium in the control samples
To check the presence of the brain bacterium in other tis-
sues than the brain or in the control samples, we mapped 
the quality-filtered reads of each sample against the 
sequence of the brain bacterium, using Bowtie2 [152], 
with the option “--end-to-end.” Then, we sorted and 
indexed the resulted bam files using SAMtools [153], 
including a minimum mapping quality of 30. We used 
the script CMSeq (https://​github.​com/​Segat​aLab/​cmseq) 
to calculate the depth and breadth of the mapping. Posi-
tions were considered as true covered positions if they 
were covered at least 3 times. Afterwards, we calculated 
the breadth per contig and plotted the breadth as a heat-
map (Fig. 4).

Finally, we used the tool DamageProfiler [15] to check 
for ancient DNA damage patterns, i.e., C-to-T and G-to-
A substitutions, resulting from cytosine deamination.

Bacterial genome annotation
In addition to the genomes of the Mycolicibacterium 
spp., we included the genome of Mycobacterium tuber-
culosis H37Rv from the Genbank databases (NCBI Ref-
erence Sequence: NC_018143.2) and Mycobacteroides 
abscessus (NCBI Reference Sequence: NZ_CP034180.1), 
in the genome annotation analyses. We used the Prokka 
pipeline to annotate the genomes [154], implemented 
Prodigal for gene prediction [155], and RNAmmer to find 
ribosomal RNA genes [156].

To search for the virulence genes, we compared all 
coding sequences against the virulence factor database 
(VFDB) [95], using mmseqs2 with its default parameters. 
To annotate the type VII secretion system gene clusters, 
we manually extracted the regions from M. tuberculo-
sis H37Rv and our brain bacterium genome, based on 
Prokka annotation and compared them in a pairwise 
manner, using the BLASTp (all vs. all). Visualization of 
gene synteny was done using Clinker [157]. Following 
the same previous approach, we compared the mercury 
resistance operon in our brain bacterium genome to 
the well-characterized mercury resistance operon of M. 
abscessus.

To find the genes that are potentially involved in 
brain invasion [97], we manually retrieved the genes 
(Rv0311,Rv0805, Rv0931c, and Rv0986) from the Myco-
browser database (https://​mycob​rowser.​epfl.​ch). The 
tool OrthoFinder [158] was used to find the homologous 
sequences in our brain bacterium genome as well as the 
other Mycolicibacterium spp. genomes, including the M. 
tuberculosis and M. abscessus.

To check the presence of toxin/antitoxin (TA) sys-
tems in the analyzed genomes, we compared all coding 
sequences inferred by Prokka against the TA database 
(TADB 2.0), and confined the analysis to the experimen-
tally validated type II TA loci [159]. We used mmseq2 for 
comparison using default parameters.

Viral genome annotation
To search for viral sequences within the genome of the 
brain bacterium, we used the tool PHASTER (PHAge 
Search Tool Enhanced Release) [160], which predicts and 
annotates phage genes with comparison to curated phage 
and bacterial gene databases (https://​phast​er.​ca). Addi-
tionally, we used the tool CheckV [161] to check the qual-
ity and completeness of the potential phage genomes. 
Then, we used different approaches to perform func-
tional annotation of the contig which has been assigned 
as phages: (i) we used Prokka standard annotation as 

https://github.com/SegataLab/cmseq
https://mycobrowser.epfl.ch
https://phaster.ca
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described previously; (ii) we used the PHASTER anno-
tation tool; (iii) we used the tool MicrobeAnnoatator 
[162] implementing a DIAMOND search against differ-
ent databases (i.e., KEGG Orthology, KO; Enzyme Com-
mission, E.C.; Gene Ontology, GO; Pfam; and InterPro); 
and finally (iv) we used the MMseqs2 protein search tool 
[163] against the IMG/VR v3 database, which includes 
genomes of cultivated and uncultivated viruses [164].

Mercury determination
The concentrations of mercury were measured in sam-
ples by inductively coupled plasma system coupled to 
mass spectrometry (ICP-MS; 7700 Series; Agilent, 
Palo Alto) at the University center of legal medicine 
(Geneva, Switzerland). Prior to analysis, samples were 
diluted with aqua regia to dissolve even poorly soluble 
mercury salts. The solution contained 10 ng/mL Rho-
dium (Rh) and 10 ng/mL Indium (In) as internal stand-
ards. In addition, each analytical batch of study samples 
was processed with laboratory controls, including 
method blanks and standard reference materials to 
continuously monitor method performance.

Graphical plotting
The following R packages were used to plot the data: 
“ggplot2,” “pheatmap,” “webr,” and “moonBook” in R-stu-
dio (https://​www.​rstud​io.​com).
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