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Abstract. The paper deals with random vectors X possessing the stochastic

representation X = RU where R is a positive random radius and U is a Lp-

norm generalised symmetrised Dirichlet random vector independent of R. The
Kotz Type I multivariate distribution appears prominently in the asymptotic

results.

1. Introduction

Let X be a spherical random vector in Rk, k ≥ 2, i.e. the distribution function
of X is invariant with respect to orthogonal transformations in Rk. Define the

associated random radius R by the stochastic representation R
d
= (
∑k
i=1X

2
i )1/2 (

d
=

stands for equality in distribution). Cambanis et al. (1981) show in their pioneering
paper that if R > 0 almost surely we have the stochastic representation

X
d
= RU ,(1)

with U uniformly distributed on the unit sphere of Rk independent of the associated
random radius R.

The main distributional properties of elliptical random vectors can be found
in Kotz (1975), Cambanis et al. (1981), Anderson and Fang (1990), Fang et. al
(1990), Fang and Zhang (1990), Szab lowski (1990), Berman (1992), Gupta and
Varga (1993), Kano (1994), Kotz and Ostrovskii (1994) among many other sources.

When U is uniformly distributed on the unit sphere of Rk the spherical distri-
butions become quite tractable. On the other hand, due to these restrictions some
important multivariate distributions such as Dirichlet distributions with unequal
parameters do not belong to this class. Eliminating the assumption of the unifor-
mity of the distribution function of U allows studying more general distributions
which share the simple stochastic representation (1).

Fang and Fang (1990) chose U to have generalised symmetrised Dirichlet distri-
bution (see below (2) for the definition) thus introducing generalised symmetrised
Dirichlet random vectors in Rk with the stochastic representation (1). In the afore-
mentioned paper several properties of this new class of random vectors are given.
The well known in the theory and practice Dirichlet distribution was originally
introduced by P.G.L. Dirichlet (a famous French-German mathematician in 1839).

Another possible generalisation is to deal with the general Lp-norm (p > 0),
but still retain the condition that U is uniformly distributed on the unit sphere
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of Rk with respect to the Lp-norm. This approach is suggested by Gupta and
Song (1997) and Szab lowski (1998). Distributional properties of Lp-norm spherical
random vectors derived in Gupta and Song (1997) and Szab lowski (1998) are, as
expected, similar to the properties derived for L2-norm spherical random vectors
in Cambanis et al. (1981). Fang and Fang (1990), Gupta and Song (1997) and
Szab lowski (1998) provide results that are shared by a wide class of multivariate
distribution functions, and in particular by the class of spherical random vectors.

In this paper we shall consider a further generalisation (combining results in the
aforementioned papers) by taking U in (1) to be a multivariate Lp-norm generalised
symmetrised Dirichlet distribution (see below (2)), introducing thus via (1) Lp-norm
generalised symmetrised Dirichlet random vectors.

We provide in this paper some basic distributional properties of Lp-norm gen-
eralised symmetrised Dirichlet (LpGSD) distributions. Furthermore, we obtain
certain asymptotic results which are in line with the previous results for Lp-norm
spherical random vectors. Conditional limiting theorems are derived in the last
section. It is quite surprising that the standard Kotz Type I LpGSD distribution
approximates a large subclass of LpGSD random vectors.

2. Notation and Preliminaries

For completeness we shall first present some notation and then review sev-
eral known results about Lp-norm spherical random vectors and generalised sym-
metrised Dirichlet ones.

Let I be a non-empty subset of {1, . . . , k}, k ≥ 2, and set J := {1, . . . , k}\ I. For
any vector x = (x1, . . . , xk)> ∈ Rk set xI := (xi, i ∈ I)>, and write x>I in place of
(xI)

>. Denote for two vectors in Rk,x,y the operations

x+ y := (x1 + y1, . . . , xk + yk),

x > y, if xi > yi, ∀ i = 1, . . . , k,

x ≥ y, if xi ≥ yi, ∀ i = 1, . . . , k,

x 6= y, if for some i ≤ k, xi 6= yi,

x 6≤ y, if for some i ≤ k,xi > yi,

and define ax := (a1x1, . . . , akxk)>, cx := (cx1, . . . , cxk)>, a ∈ Rk, c ∈ R,

‖xI‖p :=
(∑
i∈I
|xi|p

)1/p
, p > 0, (Lp-norm),

Sk−1p := {x ∈ Rk : ‖x‖p = 1}, (unit sphere).

Let moreover 0 := (0, . . . , 0)> ∈ Rk, 1 := (1, . . . , 1)> ∈ Rk. We shall be
denoting by Beta(a, b) and Gamma(a, b) respectively, the distribution functions of
a Beta or a Gamma random variables with parameters a and b. If a random vector
Z has the distribution function Q, this will be indicated by Z ∼ Q.

Throughout the paper α := (α1, . . . , αk), k ≥ 2 will denote a vector with positive
components i.e. α > 0, p be a fixed positive constant (p > 0) and

α :=

k∑
i=1

αi, αI :=
∑
i∈I

αi, I ⊂ {1, . . . , k}, |I| ≥ 1.
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The probability density function (p.d.f) of the Dirichlet distribution (see e.g. Kotz
et al. (2000)) is given by

Γ(α)∏k
i=1 Γ(αi)

(
1−

k−1∑
i=1

ui

)αk−1 k−1∏
i=1

uαi−1
i ,

where
∑k−1
i=1 ui ≤ 1, ui > 0, i = 1, . . . , k. Denote by (U1, . . . , Uk−1)> a random

vector with the above p.d.f and write (U1, . . . , Uk−1)> ∼ D(k,α). The transformed

random vector (U
1/p
1 , . . . , U

1/p
k−1)> has p.d.f

pk−1Γ(α)∏k
i=1 Γ(αi)

(
1−

k−1∑
i=1

upi

)αk−1 k−1∏
i=1

upαi−1
i , ui > 0, i = 1, . . . , k :

k−1∑
i=1

|ui|p ≤ 1.

Let I1, . . . , Ik be independent random variables taking values −1, 1 with probability

1/2. The random vector (I1U1/p
1 , . . . , Ik−1U1/p

k−1)> represents a symmetrisation

with power p of (U1, . . . , Uk−1)>. (For p = 2 it is referred in literature simply as
symmetrisation). The p.d.f of the symmetrised random vector is thus

h(u1, . . . , uk−1) :=
pk−1Γ(α)

2k−1
∏k
i=1 Γ(αi)

(
1−

k−1∑
i=1

|ui|p
)αk−1 k−1∏

i=1

|ui|pαi−1,(2)

where
∑k−1
i=1 |ui|p ≤ 1. (See (8) below for alternative derivation of this p.d.f).

Fang and Fang (1990) designate U = (U1, . . . ,Uk)> to have symmetrised Dirichlet

distribution (with respect to α) provided ‖U‖2 = 1 and Ui = IiU1/2
i , i = 1, . . . , k−

1. We shall extend that definition as follows.

Definition 1. A random vector U in Rk is said to have the Lp-norm symmetrised
Dirichlet (LpSD) distribution with parameter α if ‖U‖p = 1 almost surely and
(U1, . . . ,Uk−1)> has the p.d.f h given by (2). (We shall denote U ∼ SD(k, p,α)).

In some cases it may be more convenient to utilise unsymmetrised Dirichlet
distributions. We denote

U ∼ D(k, p,α)(3)

if U ≥ 0 and ‖U‖p = 1 almost surely such that (U1, . . . ,Uk−1)> has the density
function 2k−1h(u1, . . . , uk−1), ui > 0, i ≤ k, where h is defined in (2).

Considering U to be a Lp-norm symmetrised Dirichlet random vector with the
stochastic representation (1) we arrive at the following definition.

Definition 2. A random vector X in Rk, k ≥ 2 is said to possess a Lp-norm
generalised symmetrised Dirichlet distribution with parameter α (denoted X ∼
GSD(k, p,α, F )) if it possesses stochastic representation (1) where R > 0, almost
surely with the distribution function F independent of U , where U ∼ SD(k, p,α).

In the next section we shall derive some basic properties of the LpGSD ran-
dom vectors and then proceed to Section 4 where we shall discuss dependence and
asymptotic dependence of LpGSD distributions. Conditional limiting theorems mo-
tivated by previous results in Berman (1982,1983) and Berman (1992) are derived
in Section 5. Section 5 focuses on the asymptotic tail behaviour in the case when
the associated random radius is regularly varying. The proofs are relegated to
Section 7. Further theoretical results are provided in the Appendix.
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3. Main Distributional Properties

Using the derivations and definitions presented in Section 2 for a random vector
X ∼ GSD(k, p,α, F ) we have the following stochastic representation

X
d
= RU d

= R(I1U1/p
1 , . . . , Ik−1U1/p

k−1, IkUk)>,(4)

where (U1, . . . , Uk−1)> is a Dirichlet random vector with parameter α and Uk > 0
is such that the relation

k−1∑
i=1

Ui + Upk = 1

is valid almost surely.
The stochastic representation (3.1) shows that the role of parameter p in the

distributional properties of LpGSD random vectors is determined solely by the
power transformation of the Dirichlet random vector (U1, . . . , Uk−1)>. Although
the distributional properties of Dirichlet random vectors are well-known (see e.g.
Fang et al. (1990) or Kotz et al. (2000)), the main properties of LpGSD random
vectors do not follow automatically. Further derivations are needed (as in Fang
and Fang (1990)) to obtain the main distributional properties. Gupta and Song
(1997) have shown that the Lp-norm spherical random vectors possess the same
properties as the L2-norm spherical (or simply spherical) random vectors. Here
we shall show that the same is valid for LpGSD random vectors, utilising the
techniques presented by Fang and Fang (1990).

First we shall observe that it is possible to arrive at the definition of the LpGSD
random vectors via a single density generator (as it is presented in Fang and Fang
(1990) for the L2-norm).

Actually the definition of the density generator is unrelated to p and is therefore
similar to the one given in Fang and Fang (1990) presented below:

Definition 3. (Density generator) Let g be a positive measurable function, and
α := (α1, . . . , αk)>, k ≥ 2 be a given vector with positive components. If for some
ω ∈ (0,∞] the function g satisfies(

2

p

)k∏k
i=1 Γ(αi)

Γ(α)

∫ ω

0

g(x)xα−1 dx = 1, α :=

k∑
i=1

αi,(5)

we shall call g to be a density generator with respect to α, denoting g ∼ G(α, ω).
If the integral above is finite for any α (with positive components) we shall refer
to g as the universal density generator.

The next result shows that a density generator uniquely defines the p.d.f of a
LpGSD random vector.

Theorem 1. Let g ∼ G(α, ω) with α ∈ (0,∞)k, k ≥ 2, and ω ∈ (0,∞], and X be
a k-dimensional random vector with the density function h defined by

h(x) := g(

k∑
i=1

|xi|p)
k∏
i=1

|xi|pαi−1, ∀x ∈ Rk : 0 < ‖x‖p < ω,(6)
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with p > 0. Then X ∼ GSD(k, p,α, F ) where F is a distribution function on [0, ω)
with the p.d.f f

f(r) = 2

(
2

p

)k−1∏k
i=1 Γ(αi)

Γ(α)
g(rp)rpα−1, ∀r ∈ (0, ω).(7)

Conversely, if X ∼ GSD(k, p,α, F ) with F being a distribution function with the
p.d.f f then X possesses the density function h defined in (6) with the density
generator g defined by the density f in (7).

In the case when X is defined in terms of a density generator g ∼ G(α, ω) we
shall denote X ∼ GSD(k, p,α, g) suppressing the symbol ω.

Several examples below should clarify the definitions and the theorem above.

Example 1. [Symmetrised Dirichlet] Let α ∈ (0,∞)k, k ≥ 2 and c, p be positive
constants and specify g(x) = c(1− x)αk−1,∀x ∈ (0, 1). Define the density function
h of a random vector (U1, . . . ,Uk−1)> in Rk−1 as in (6) by

h(x) := c(1−
k−1∑
i=1

|xi|p)αk−1
k−1∏
i=1

|xi|pαi−1, x ∈ Rk−1 : 0 < ‖x‖pp < 1.

Utilising 5 we arrive at:

c−1 =

(
2

p

)k−1∏k−1
i=1 Γ(αi)

Γ(
∑k−1
i=1 αi)

∫ 1

0

x
∑k−1

i=1 αi−1(1− x)αk−1 dx

=

(
2

p

)k−1∏k−1
i=1 Γ(αi)

Γ(α)
, α :=

k−1∑
i=1

αi.

Consequently we have for any x ∈ Rk−1 such that ‖x‖p < 1

h(x1, . . . , xk−1) =

(
p

2

)k−1
Γ(α)∏k
i=1 Γ(αi)

(1−
∑
i≤k−1

|xi|p)αJ−1
∏

i≤k−1

|xi|2αi−1.(8)

Example 2. [Kotz Type I] Let the density generator g be of the form

g(x) = cxN exp(−rxs), x > 0, c > 0, N ∈ R, r > 0, s > 0.(9)

For a given α and restricting N > −α we obtain using (5) that the constant c is
determined by

c

(
2

p

)k∏k
i=1 Γ(αi)

Γ(α)

∫ ∞
0

xN exp(−rxs)xα−1 dx = 1.

Observing that ∫ ∞
0

xN exp(−rxs)xα−1 dx =
Γ((N + α)/s)

sr(N+α)/s
(10)

we arrive at:

c :=

(
p

2

)k
sr(N+α)/s

Γ((N + α)/s)

Γ(α)∏k
i=1 Γ(αi)

.(11)

Here the density generator g given by (9) is a universal one.
We say that X in Rk is a Kotz Type I LpGSD random vector if its density function
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h is given for any x ∈ Rk by

(12) h(x) :=

(
p

2

)k
sr(N+α)/s

Γ((N + α)/s)

Γ(α)∏k
i=1 Γ(αi)

‖x‖pNp exp(−r‖x‖psp )

k∏
i=1

|xi|pαi−1,

involving the norm of x, an exponential function and a product of the components
of x (compare with (8)). In the standardised case N = 0 and r = s = 1 the random
vector X possesses independent components such that

(13) |Xi|p ∼ Gamma(αi, 1/p), ∀i = 1, . . . , k.

We shall denote by Kα,p the distribution function of X when N + 1 = r = s = 1.

Example 3. [Kotz Type II] Let the density generator g be of the form

g(x) = cxN exp(−rxs), x > 0, c > 0, N < 0, r > 0, s < 0.(14)

Here the values of N and s are negative. Analogously to the previous example, for
a given α, the constant c is obtained from (5)

c

(
2

p

)k∏k
i=1 Γ(αi)

Γ(α)

∫ ∞
0

xN exp(−rxs)xα−1 dx = 1.

Choosing N < −α we obtain

c :=

(
p

2

)k
(−s)r(N+α)/s

Γ((N + α)/s)

Γ(α)∏k
i=1 Γ(αi)

> 0.

Here g is also a universal density generator.
We define X in Rk to be a Kotz Type II LpGSD random vector provided its p.d.f
h is given for N < −α and x ∈ Rk by

h(x) :=

(
p

2

)k |s|r(N+α)/s

Γ((N + α)/s)

Γ(α)∏k
i=1 Γ(αi)

‖x‖pNp exp(−r‖x‖psp )

k∏
i=1

|xi|pαi−1.

The Lp-norm Kotz Type II spherical random vectors are considered in Hashorva
(2006d). The original definition of these random vectors for the L2-norm case is
due to Kotz (1975).

Example 4. [Kotz Type III] Let X = RU with R a positive random radius
independent of the k-dimensional random vector U which is such that ‖U‖p = 1
almost surely. We refer to X as a Kotz Type III random vector if the associated
random radius R > 0 has asymptotic tail behaviour (u→∞)

P {R > u} = (1 + o(1))KuN exp(−ruδ) K > 0, δ ∈ R, N ∈ R, r > 0.(15)

For δ ≤ 0 we assume that N < 0. If U is a LpGSD random vector then X is a
LpGSD random vector.
Both Kotz Type I and Type II LpGSD random vectors belong to the larger class
of the Kotz Type III random vectors.

Example 5. [Pearson Type VII] The density generator is g(x) = c(1 + t/s)−N

with c, s positive constants. Assuming N > α we obtain the density function h of
a k-dimensional LpGSD Pearson Type VII distribution

h(x) =

(
p

2

)k
s−α

Γ(N)

Γ(N − α)
∏k
i=1 Γ(αi)

(1 +

k∑
i=1

|xi|p/s)N
k∏
i=1

|xi|pαi−1,

for all x ∈ Rk.
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Example 6. [Kummer-Beta] Let g be a density generator of a Kummer-Beta
LpGSD distribution given by

g(x) = cxδ−1(1− x)γ−1 exp(−λx), 0 < x < 1, δ > 0, λ ≥ 0, γ > 0.

The normalising constant c for given positive constants αi, i ≤ k such that α > 1−δ
is specifically determined via the relations:

c−1 =

(
2

p

)k∏k
i=1 Γ(αi)

Γ(α)

∫ 1

0

xα−1 exp(−λx)xδ−1(1− x)γ−1 dx

=

(
2

p

)k∏k
i=1 Γ(αi)

Γ(α)

∫ 1

0

xα+δ−2(1− x)γ−1 exp(−λx) dx

=

(
2

p

)k∏k
i=1 Γ(αi)

Γ(α)
1F1(α+ δ − 1;α+ δ + γ − 1;−λ)Γ(α+ δ − 1)Γ(γ)

Γ(α+ δ + γ − 1)
,

where 1F1 is the confluent hypergeometric function of the first kind (also known as
Kummer’s function of the first kind). 1F1 has a hypergeometric series expansion
given by

1F1(a, b, x) = 1 +
a

b
x+

a(a+ 1)

b(b+ 1)

x2

2!
+ · · · =

∞∑
k=0

(a)k
(b)k

xk

k!
,

where (a)k, (b)k are the Pochhammer symbols.

Example 7. [Kummer-Gamma]

The density generator g of a Kummer-Gamma LpGSD distribution is specified
as

g(x) = cxδ−1(1 + x)γ−1 exp(−λx), x > 0, δ > 0, λ > 0, γ > 0,

with

c−1 =

(
2

p

)k∏k
i=1 Γ(αi)

Γ(α)

∫ ∞
0

xα−1 exp(−λx)xδ−1(1 + x)γ−1 dx

=

(
2

p

)k∏k
i=1 Γ(αi)

Γ(α)
Ψ(α+ δ − 1;α+ δ − γ − 1;λ)Γ(α+ δ − 1),

where Ψ is the confluent hypergeometric function of the second kind. It is also
known as the Kummer’s function of the second kind, Tricomi function, or Gordon
function.

See Kotz and Ng (1995) for some basic properties of the Kummer-Beta and
Kummer-Gamma distributions. We note in passing that a Kummer-Gamma LpGSD
random vector belongs to the class of Kotz Type III LpGSD random vectors defined
in Example 4.

In addition to the fulfillment of the stochastic representation (1) the most distin-
guishing property of LpGSD distributions is the so-called amalgamation property,
initially presented in Cambanis at al. (1981) for elliptical random vectors, and in
Fang and Fang (1990), Gupta and Song (1997) for generalised symmetrised Dirich-
let and Lp-norm spherical random vectors, respectively.

Theorem 2 (Amalgamation property). Let I1, . . . , Im,m ≥ 2 be a partition of
{1, . . . , k}, k ≥ 1 and X ∼ GSD(k, p,α, F ) be a k-dimensional random vector as in
Theorem 1. Then for any j = 1, . . . ,m we have the stochastic representation

XIj
d
= RWjZIj ,(16)
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where the variables R,Wm := (W1, . . . ,Wm)>,ZI1 , . . . ,ZIm are pairwise indepen-
dent random vectors with the random variable R > 0, and

R ∼ F, Wm ∼ D(m, p,am), ZIj ∼ SD(kj , p,αIj ), j = 1, . . . ,m,(17)

with am := (
∑
i∈I1 αi, . . . ,

∑
i∈Im αi)

>, kj = |Ij | ≥ 1 and SD(kj , p,αIj ),

D(m, p,a) as in Definition 2.1 and 2.2, respectively.

For any non-empty index set I and p > 0 we define the associated random radius
RI,p of X by

RI,p :=
(∑
i∈I
|Xi|p

)1/p
= ‖XI‖p > 0, p > 0.

In the case I = {1, . . . , k} we shall simply write R instead of RI,p.

Corollary 3. Let X be defined as in Theorem 2, and RI,p be the associated random
radius of X with respect to the non-empty index set I with m elements. Then the
stochastic representation

XI
d
= RI,pVI(18)

is valid with RI,p independent of VI where VI ∼ SD(m, p,αI). Furthermore, if
m < k

RpI,p
d
= RpW(19)

holds where W > 0 is distributed as W ∼ Beta(αI , α−αI), with W,R independent.

Corollary 4. Let X ∼ GSD(k, p,α, F ) be a LpGSD random vector in Rk. Then
we have the stochastic representation

Xj
d
= RIj

[
|cos(Θj)|

j−1∏
i=1

sin(Θi)
]2/p

, 1 ≤ j ≤ k − 1,(20)

Xk
d
= RIk

[
|sin(Θk−1)|

k−2∏
i=1

sin(Θi)
]2/p

,(21)

where Ij = sign(cos(Θj)), 1 ≤ j ≤ k − 1, Ik = sign(sin(Θk−1)) are independent
random variables, being further independent of the random angles Θi, 1 ≤ i ≤ k− 1
which have the density functions

qi(θ) :=
Γ(αJ)

Γ(αJ − αi)Γ(αi)
|sin(θ)|2αJ−1|cos(θ)|2αi−1, 0 ≤ θ ≤ π, 1 ≤ i ≤ k − 2,

where J := α−
∑i
j=1 αi, and

qk−1(θ) :=
1

2

Γ(αk−1 + αk)

Γ(αk−1)Γ(αk)
|sin(θ)|2αk−1|cos(θ)|2αk−1−1, 0 ≤ θ ≤ 2π.

Furthermore, R,Θi, 1 ≤ i ≤ k − 1 are independent random variables and R ∼ F .
Conversely, if (20),(21) holds with R,Θi, 1 ≤ i ≤ k independent random variables
where R ∼ F is a positive random radius and the random angle Θi has the density
function qi defined above, then X ∼ GSD(k, p,α, F ).
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Remark 1. a) In view of Corollary 3, any subvector XI , I ⊂ {1, . . . , k} of a k-
dimensional LpGSD random vector X has a LpGSD distribution function. More-
over XI possesses a density function. This property was derived for elliptical dis-
tributions in Cambanis et al. (1981). Explicitly, let XI be as defined in Corollary
3, then if follows from (19) that the associated random radius RI,p possesses the
density function f given for any u ∈ (0, ω) by

f(u) = pupαI−1 Γ(α)

Γ(αI)Γ(α− αI)

∫ ω

u

(rp − up)α−αI−1r−p(α−1) dF (r).(22)

Here ω is the upper endpoint of the distribution function F of R.
In the special case αi = 1/p, i = 1, . . . , k, the expression for the p.d.f simplifies

to (see e.g. Gupta and Song (1997))

f(u) = pum−1
Γ(k/p)

Γ(m/p)Γ((k −m)/p)

∫ ∞
u

(rp − up)(k−m)/p−1r−k+p dF (r).(23)

b) If αi = i/p, 1 ≤ i ≤ k, then Corollary 4 reduces to Theorem 2 in Szab lowski
(1998). The case of L2-norm spherical random vectors is presented in Theorem
2.11 of Fang et al. (1990).

Next we derive the conditional distribution XI |XJ = xJ ,x ∈ Rk where I, J
are two non-empty disjoint index sets of {1, . . . , k}. It follows that the conditional
distribution is determined in terms of the norm ‖xJ‖p := (

∑
j∈J |xj |p)1/p.

We again emphasis that the results obtained in this section are similar to the results
for much narrower classes of spherical and elliptical random vectors. Namely, the
asymptotic results remain valid when in the basic stochastic representation (1),
the L2-norm uniformly distributed random vector U is replaced by a Lp-norm
generalised symmetrised Dirichlet random vector.

Theorem 5. Let X ∼ GSD(k, p,α, F ), with p > 0,α ∈ (0,∞)k, k ≥ 1, and let
I, J be partitions of {1, . . . , k}. Then for any x ∈ Rk with F (‖xJ‖p) ∈ (0, 1) we
have

XI |XJ = xJ
d
= R‖xJ‖pVI , VI ∼ SD(m, p,αI).(24)

Moreover VI is independent of R‖xJ‖p > 0 with the distribution function G given
by

G(x) := 1−

∫ ω
(‖xJ‖pp+xp)1/p

(rp − ‖xJ‖pp)αI−1r−pα+p dF (r)∫ ω
‖xJ‖p(rp − ‖xJ‖pp)αI−1r−pα+p dF (r)

, ∀x > 0,(25)

where ω ∈ (0,∞] is the upper endpoint of the distribution function F .

4. Dependence and Asymptotic Dependence

A simple example of elliptical random vectors is X ∼ N(µ,Σ) a Gaussian ran-
dom vector in Rk, k ≥ 2, with the covariance matrix Σ and mean vector µ. It
is well-known (see e.g. Fang et al. (1990)) that the independence of the compo-
nents of X is equivalent to the assumption that Σ is the identity matrix. It is also
well-known (see e.g. Cambanis et al. (1981), Fang et al. (1990)) that a spherical
random vector has independent components iff its components are Gaussian. Fang
and Fang (1990) provide several conditions which imply the independence of the
components of L2-norm generalised symmetrised Dirichlet random vectors. In the
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next theorem we shall show that similar conditions are valid for a more general case
of LpGSD random vectors.

Also it follows from the Theorem 6 that independence of components holds only
in the case of Kotz Type I LpGSD distribution with parameters N + 1 = s = 1 and
r > 0.

Theorem 6. Let X be a Lp-norm generalised symmetrised Dirichlet random vec-
tor in Rk, k ≥ 2, with the density generator g ∼ G(α, ω). The following statements
are equivalent:
(1) X possesses independent components.
(2) For any I ⊂ {1, . . . , k} the random vector XI has Kotz Type I LpGSD distri-
bution with parameters N = 0, s = 1 and r > 0.
(3) There exist I, J disjoint index sets such that XI is independent of XJ .
(4) There exist I, J disjoint index sets with I ∪ J ⊂ {1, . . . , k} such that XI |XJ is
independent of XJ .
(5) For any I ⊂ {1, . . . , k} we have RpI,p ∼ Γ(αI , r) with αI =

∑
i∈I αi and r is a

positive constant.
(6) There exist I, J disjoint index sets with I ∪ J ⊂ {1, . . . , k} (provided αI 6= αJ)
such that the density generators of XI and XJ differ only up to a positive constant.

The assumption of the above theorem that X possesses a density function is
somewhat restrictive. In view of Theorem 2 any subvector XI , with 1 ≤ |I| < k
possesses a density function even when X does not posses one. Thus if k ≥ 2, the
assumption that X has a density generator is not needed. Several statements given
above could then be easily reformulated.

Next, we shall discuss the asymptotic dependence of LpGSD random vectors. Let
X be as in Theorem 6 with the associated random radius R ∼ F . A meaningful
parameter for the asymptotic dependence between the components Xi, Xj , 1 ≤ i <
j < k, is the limit (provided it exists)

τ(Xi, Xj) := lim
t↑ω

P {Xi > t,Xj > t}
P {Xi > t}+ P {Xj > t}

,

where ω := sup{x : F (x) < 1} is the upper endpoint of F .
If ω is finite then Theorem 2 implies that

τ(Xi, Xj) = 0, 1 ≤ i < j ≤ k(26)

since both Xi, Xj and RI,p, I = {i, j}, have the same upper endpoint ω. Hence the
joint tail probabilities diminish faster than each of the marginal tail probability.

The next result shows that (26) holds even if ω =∞, provided that the associated
random radius R has a rapidly varying survival function 1− F , i.e.

lim
t→∞

1− F (ct)

1− F (t)
= 0(27)

for any c > 1.

Theorem 7. Let X be a LpGSD random vector in Rk, k ≥ 2, with the associated
random radius R which is almost surely positive. If the distribution function F of
R satisfies (27), then

τ(Xi, Xj/z) = 0, 1 ≤ i < j ≤ k(28)

is valid for any z ∈ (0,∞).
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Example 8. [Continue Example 4]. Let X = RU be a k-dimensional Kotz
Type III random vector. In view of the property (15) we have for any c > 1

P {R > cu}
P {R > u}

= (1 + o(1))cN exp
(
−r[cδ − 1]uδ

)
→ 0, u→∞.

This implies that the survival function 1−F satisfies (27). Consequently (28) holds
if X is a LpGSD random vector.

5. Conditional Limiting Theorems

Let X be as in Theorem 5 with R ∼ F such that F has the upper endpoint
ω ∈ (0,∞]. Given I, J two subsets of {1, . . . , k} we shall derive in this section an as-
ymptotic approximation for the distribution function of the conditional random vec-
tor XI |XJ = uJ ,u ∈ Rk, letting uJ tend to some boundary point. Similar results
for spherical and elliptical random vectors are derived in Hashorva (2006b,c,2007).
In fact, the motivation for the aforementioned results comes from those previously
reported in Berman (1992) where elliptical random vectors are discussed. As in
Berman (1992) we assume a certain asymptotic tail behaviour of the distribution
function F related to extreme value theory. Explicitly, we shall suppose that F is in
the max-domain of attraction of an univariate extreme value distribution function
H, i.e.

lim
n→∞

sup
x∈R

∣∣∣Fn(r(n)x+ q(n))−H(x)
∣∣∣ = 0,(29)

where r(n) > 0, q(n), n ≥ 1 are given constants.
We shall denote the above asymptotic relation by F ∈ MDA(H), and refer the
reader for a further insight in the extreme value theory to the following stan-
dard monographs: de Haan (1970), Leadbetter et al. (1983), Resnick (1987), Reiss
(1989), Falk et al. (2004), Kotz and Nadarajah (2005).

We note in passing that H is either a) the unit Gumbel distribution Λ(x) =
exp(− exp(−x)), or b) the unit Weibull distribution Ψγ(x) = exp(−|x|γ), x < 0, γ >
0, or c) the unit Fréchet distribution Φγ(x) = exp(−x−γ), x > 0, γ > 0. The symbol
ω denotes again the upper endpoint of the distribution function F .
We consider each case separately.
The Gumbel Case F ∈MDA(Λ):
If H = Λ then (29) is equivalent to the fact that there exists a positive measurable
function w such that

lim
u↑ω

1− F (u+ x/w(u))

1− F (u)
= exp(−x), ∀x ∈ R(30)

is valid. The positive scaling function w has the following asymptotic properties
(see e.g. Resnick (1987) or Kotz and Nadarajah (2005))

lim
u↑ω

w(u+ x/w(u))

w(u)
= 1(31)

hold uniformly for x in compact sets of R. Furthermore

lim
u↑ω

k(u)w(u) =∞,(32)

with k(u) := u if ω =∞ and k(u) := ω − u otherwise.
It will be shown in the next theorem that the conditional distribution of LpGSD
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random vectors is approximated by a Kotz Type I LpGSD random vector, provided
F satisfies the limiting condition (30). Evidently, the Kotz Type I LpGSD class of
distributions includes the Gaussian distributions with correlation matrix equal the
identity matrix. For L2-norm spherical random vectors the limiting distribution
is Gaussian (see Hashorva (2006b)). It is rather surprising that a large class of
LpGDS distributions can be approximated by a distribution function (Kotz Type I),
which is completely known, provided the associated random radius is in the Gumbel
max-domain of attraction. Moreover, the limiting distribution has independent
components!

Theorem 8. Let F,X be as in Theorem 5 with ω ∈ (0,∞] the upper endpoint of
F , and I, J be two non-empty disjoint sets of {1, . . . , k}. Assume that distribution
function F is in the Gumbel max-domain of attraction with positive scaling function
w. If un ∈ Rk, n ≥ 1, is such that ‖un,J‖p < ω, n ≥ 1, and furthermore

lim
n→∞

‖un,J‖p = ω,(33)

we then have the convergence in the distribution(
w(‖un,J‖p)
‖un,J‖p−1p

)1/p(
XI |XJ = un,J

)
d→ Z, n→∞,(34)

where Z ∼ KαI ,p is a Kotz Type I LpGSD random vector in R|I| with parameters
αI , N + 1 = r = s = 1.

For Z ∼ KαI ,p we have the stochastic representation

Z
d
= RIVI ,

with RpI > 0 independent of VI and moreover

RpI ∼ Gamma(αI , 1/p), VI ∼ SD(|I|, p,αI).
Consequently if p = 2 and α = 1/2 ∈ Rk, then Z is a standard Gaussian random
vector in R|I| with independent components. The above theorem asserts that for
a spherically distributed X the conditional limiting distribution is Gaussian with
the identity correlation matrix. This is shown in Corollary 3.1 of Hashorva (2006b)
which is motivated by Theorem 4.1 of Berman (1983) (see also Theorem 12.4.1 in
Berman (1992) and Lemma 8.2 in Berman (1982)).
It is interesting to note that the Gaussian approximation of Type I spherical random
vectors (L2-norm) is a special case of the Kotz approximation of LpGSD Type I
random vectors. We present next an example.

Example 9. [Regularly varying scaling function] Let X be a k-dimensional
LpGSD random vector with associated random radius R which has distribution
function F in the Gumbel max-domain of attraction with the scaling function

w(u) = (1 + o(1))uδL(u), δ > 0, u→∞,
where L is a positive function such that limu→∞ L(Ku)/L(u) = 1,∀K > 1.
Consider now positive constants un, n ≥ 1 such that limn→∞ un = ∞ and let I, J
be two non-empty disjoint subsets of {1, . . . , k}. For a given vector a ∈ Rk such
that aJ 6= 0J and any integer n ≥ 1 define

un := una, hn :=

(
w(un‖aJ‖p)

(un‖aJ‖p)p−1

)1/p

= (L(un‖aJ‖p))1/p(un‖aJ‖p)(δ+1)/p−1.
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Clearly, un, n ≥ 1, satisfies (33), consequently Theorem 8 implies

hnXI |XJ = unaJ
d→ Z ∼ KαI ,p, n→∞,(35)

where KαI ,p denotes a standard Kotz Type I LpGSD random vector.

If X is a Kotz Type III as in Example 2, then the associated random radius has
the distribution function in the Gumbel max-domain of attraction with the scaling
function w given by

w(u) = (1 + o(1))rδuδ−1, u→∞.
This follows easily by observing that

P {R > u+ x/w(u)}
P {R > u}

= (1 + o(1))
(

1 +
x

rδuδ

)N
exp
(
−ruδ

[(
1 +

x

rδuδ

)δ
− 1
])

→ exp(−x), u→∞.

Hence for this case (35) holds with hn := (rδ)1/p(un‖aJ‖p)δ/p−1, n ≥ 1.

The Weibull Case F ∈MDA(Ψγ)):
The distribution function F has necessarily a finite upper endpoint ω.
Without loss of generality we assume in the following theorem that ω = 1. The
conditional distribution of XI |XJ = un,J can be approximated (n → ∞) by
another LpGSD random vector as shown in the next theorem.

Theorem 9. Let F, I, J,X,un, n ≥ 1 be as in Theorem 8 and cn, n ≥ 1, be a
sequence of positive constants converging to 0. Assume that the upper endpoint of
F is ω = 1, and furthermore

lim
n→∞

1− ‖un,J‖p
cn

= 1(36)

holds. If F ∈MDA(Ψγ), γ > 0, we then have(
1

pcn

)1/p(
XI |XJ = un,J

)
d→ RIVI , n→∞,(37)

where RpI ∼ Beta(αI , γ + α − αI − αJ),RI > 0 and RI is independent of VI ∼
SD(|I|, p,αI).

We note in passing that Theorem 12.7.1. in Berman (1992) a related result to
(37) is shown for a bivariate elliptical random vector. The multivariate extension
of Berman’s theorem is presented in Theorem 3.2 of Hashorva (2007).

Example 10. [Kummer-Beta] Let X be as in Example 6. It follows that the
random radius R associated with X has the distribution function in the Weibull
max-domain of attraction of Ψγ . Consider the sequence of vectors un = (1 −
1/n, 0, . . . , 0), n ≥ 1 in Rk. If I = {1, . . . , r}, 1 ≤ r < k, then (36) holds with
cn = 1/n, n ≥ 1. Consequently Theorem 9 implies the convergence(

n

p

)1/p(
XI |XJ = un,J

)
d→ RIVI , n→∞,

where J = {r + 1, . . . ,m}, r < m ≤ k,RI ∼ Beta(
∑r
i=1 αi, γ + k −m) and VI ∼

SD(r, p,αI).
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The Fréchet Case F ∈MDA(Φγ):
In this case F has an infinite upper endpoint. Similarly to the two other cases of
max-domain of attraction it is possible also to approximate here the conditional
distribution of LpGSD random vectors. We have:

Theorem 10. Let F, I, J,X, cn,un, n ≥ 1 be as in Theorem 9 such that

(38) lim
n→∞

cnun,J = uJ 6= 0J

is valid. If F ∈MDA(Φγ), γ > 0, we then have the convergence in the distribution

(39) cn

(
XI |XJ = un,J

)
d→ Y I |Y J = uJ , n→∞,

where Y ∼ GSD(k, p,α, Fγ) with the distribution function Fγ defined by

Fγ(r) := 1− (r/‖uJ‖p)−γ−p(α−αI−αJ ), ∀r ≥ ‖uJ‖p.

A natural choice for the constants cn, n ≥ 1 in the above theorem is cn :=
1/‖un,J‖p, n ≥ 1, provided that limn→∞‖un,J‖p = ∞. The latter is actually a
necessary condition for (38) to hold.

Example 11. [Kotz Type III] Let X be as in Example 4 with N < 0, δ ≤ 0, p >
0. Then the associated random radius R of X has the distribution function in the
max-domain of attraction of the Fréchet distribution Φ−N . Consequently, if X is
also a LpGSD random vector, Theorem 10 implies for I, J disjoint index sets and
un > 0, n ≥ 1 such that limn→∞ un =∞

1

un

(
XI |XJ = unuJ

)
d→ Y I |Y J = uJ , n→∞,

where ‖uJ‖p > 0 and Y ∼ GSD(k, p,α, F−N ), with the distribution function F−N
given by

F−N (r) = 1− (r/‖uJ‖p)N−p(k−m), ∀r ≥ ‖uJ‖p.

6. Tail Asymptotics

Let X be a k-dimensional LpGDS random vector with the associated ran-
dom radius R. The distributional properties of X are determined by those of
R. Similarly we expect that in an asymptotic context the asymptotic behaviour of
P {X/n ∈ B}, n→∞, with B being a Borel set, is defined by the tail asymptotics
of R. In the special cases when R has distribution function in the max-domain of
attraction of an univariate extreme value distribution H, then the tail asymptotic
behaviour of X1 can be determined by applying Lemma 16 in the Appendix.
The case where R is regularly varying with index γ ≥ 0, i.e.

lim
t→∞

P {R > tx}
P {R > t}

= x−γ , ∀x > 0,

is quite tractable as shown in Hashorva (2006a). The above asymptotic relation
defines the tail asymptotic of X and in particular of its components, and moreover
the converse is true.

Indeed we have the following result:

Theorem 11. Let X ∼ GSD(k, p,α, F ) be a k-dimensional random vector with
the associated random radius R, and A ∈ Rk×k be a non-singular matrix. The
statements below are then equivalent:
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i) |X1| is regularly varying with a positive index γ.
ii) For any non-empty I ⊂ {1, . . . , k} the random radius ‖XI‖p is regularly

varying with index γ > 0, and furthermore if |I| < k then

P {‖XI‖p > u} = (1 + o(1))
Γ(α)Γ(αI + γ/p)

Γ(αI)Γ(α+ γ/p)
P {‖X‖p > u}, u→∞.(40)

iii) For any non-empty I ⊂ {1, . . . , k} with m elements and any Borel set B ⊂ Rm
not containing the origin 0 ∈ Rm

lim
u→∞

P {(AIIXI + µI)/u ∈ B}
P {Xi > u}

=
2γΓ(αi)Γ(α+ γ/p)

Γ(α)Γ(αi + γ/p)

∫ ∞
0

P {rAIIVI ∈ B}r−γ−1 dr(41)

holds with i ≤ k,µ ∈ Rk and VI ∼ SD(m, p,αI).

Corollary 12. Let A,R,X be as in Theorem 11. Assume that the associated
random radius R or the first components X1 of X is regularly varying with positive
index γ. Let Xi ∼ Gi, i ≤ k, ai(n) := G−1i (1− 1/n), n > 1 with G−1i the generalised
inverse of Gi and set Y := AX. Then we have for any y = (y1, . . . , yk)> > 0

lim
n→∞

P {Y1/a1(n) ≤ y1, . . . , Yk/ak(n) ≤ yk}n

= exp
(
−γ
∫ ∞
0

P {rcAU 6≤ y}r−γ−1 dr
)
,(42)

where the vector c = (c1, . . . , ck)> has components given by

ci :=

(
Γ(α)Γ(αi + γ/p

2Γ(αi)Γ(α+ γ/p)

)−1/γ
, i ≤ k.

Remark 2. i) Statement iii) in Theorem 11 implies that X is a multivariate
regularly varying random vector in Rk with index γ > 0, and in particular |Xi|, i ≤ k
is regularly varying with index γ. See Basrak at al. (2002) for more details on regular
variation of random vectors.

ii) If A is the identity matrix then the right-hand side of (42) is a distribution
function with the Fréchet marginal distributions Φγ(x) = exp(−x−γ), x > 0.

iii) Using (41) we obtain for any δ, λ, p, γ positive with λ− δ > 0

γΓ(δ)Γ(λ+ γ/p

Γ(λ)Γ(δ + γ/p)

∫ ∞
1

P {Z > r−p}r−γ−1 dr = 1,(43)

with Z ∼ Beta(δ, λ− δ). Consequently we have

hδ,λ,γ(x) :=
γΓ(δ)Γ(λ+ γ/p)

Γ(λ)Γ(δ + γ/p)

∫ ∞
x

P {Z > r−p}r−γ−1 dr, x ≥ 1(44)

is a survival function of a positive random variable in [1,∞).

Example 12. [Kotz Type II] Let as in Example 3 X be a Kotz Type II LpGSD
random vector with parameters α, s < 0, N < −α. It follows that R is regularly
varying with the index −p(N+α). Hence, any component of X is regularly varying
with the index −p(N + α).
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7. Proofs

Proof of Theorem 1 We carry out the following transformations of variables

yi = xir
−p, i = 1, . . . , k − 1, and rp =

k∑
i=1

|xi|p.

Calculating the Jacobian of this transformation we arrive at the p.d.f of X

h(r, z1, . . . , zk1) = 2g(rp)rp
∑k

i=1 αi−1
k−1∏
i=1

|zi|pαi−1
(

1−
k−1∑
i=1

|zi|p
)αk−1

=
2k
∏k
i=1 Γ(αi)

pk−1Γ(α)
g(rp)rp

∑k
i=1 αi−1c

k−1∏
i=1

|zi|pαi−1
(

1−
k−1∑
i=1

|zi|p
)αk−1

,

with c−1 := (2/p)k−1
∏k
i=1 Γ(αi)/Γ(α). Hence the result follows by recalling the

form of density function in (8).
Now, if X has p.d.f h given by (6), then in view of (1) the p.d.f of RU is given by

h(r, u1, . . . , uk−1) = f(r)q(u1, . . . , uk−1),

with q as in (2). Transforming the variables as above it follows that X has p.d.f h
given by (6), hence the proof is complete. �

Proof of Theorem 2 The proof is analogous (considering p instead of 2) to the
proof of Theorem 4.1 of Fang and Fang (1990). For the sake of completeness we shall

provide a sketch. First note that X
d
= RU with R independent of U ∼ SD(k, p,α).

The properties of U and in particular can be derived considering X ∼ Kα,p as in
Example 2 (N + 1 = r = s = 1). Since also XIj , 1 ≤ j ≤ m are LpGSD random
vectors we have

XIj
d
= RIjVIj , 1 ≤ j ≤ m,

with RIj
d
= ‖XIJ‖p independent of VIj ∼ SD(|Ij |, p,αIj ).

By Lemma 13 and (13) we have

Rp
d
= ‖X‖pp = Γ(α, 1/p), RpIj

d
= ‖XIj‖pp = Γ(aj , 1/p), 1 ≤ j ≤ m,

with aj :=
∑
i∈Ij αi. Denote am := (a1, . . . , am)> ∈ (0,∞)m and

Zj :=
XIj

‖XIj‖p
, Wm := (W1, . . . ,Wm)>, with Wj :=

‖XIj‖p
‖X‖p

, 1 ≤ j ≤ m.

Evidently, ‖W ‖p = 1 almost surely. The proof now follows easily since Wm ∼
SD(m, p,am). �

Proof of Corollary 3 Let J = {1, . . . , k} \ I, and F denote the distribu-
tion function of RW where W > 0 is independent of R with W ∼ Beta(αI , αJ).
Applying Theorem 2 to partitions I, J we obtain

XI
d
= RI,pVI , with VI ∼ SD(|I|, p,αI).

Since RI,p independent of U , XI is a LpGSD random vector in R|I|. Using Lemma
13 we have

RI,p = ‖XI‖p
d
= ‖RWVI‖p = RW‖VI‖p = RW,

and the proof is completed. �
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Proof of Corollary 4 Let Ii, i ≤ k be independent random variables taking
values −1, 1 with probability 1/2. For simplicity we show the proof when k = 3.
The general case k > 3 follows utilising similar arguments. By the assumption

X
d
= RU , with U ∼ SD(3, p, (α1, α2, α3)) independent of R. In view of Theorem

2, we have

X
d
= R

(
I1(1− V p1 )1/p, I2V1(1− V p2 )1/p, I3V1V2

)
,

where V p1 ∼ Beta(α2 + α3, α1), V p2 ∼ Beta(α3, α2). Define the random angles
Θ1 ∈ [0, π],Θ2 ∈ [0, 2π] such that

sin(Θ1) := V
p/2
1 , |cos(Θ1)|2/p := (1− V p1 )1/p,

|cos(Θ2)|2/p := (1− V p2 )1/p, |sin(Θ2)| := V
p/2
2 ,

and sign(cos(Θ2)) independent of sign(sin(Θ2)) two symmetric random variables.
It follows that the density function of Θ1 is given by

q1(θ) :=
Γ(α1 + α2 + α3)

Γ(α2 + α3)Γ(α1)
|sin(θ)|2(α2+α3)−1|cos(θ)|2α1−1, θ ∈ [0, π],

and Θ2 has density function

q2(θ) :=
1

2

Γ(α2 + α3)

Γ(α3)Γ(α2)
|sin(θ)|2α3−1|cos(θ)|2α2−1, θ ∈ [0, 2π].

Hence we have the stochastic representation

X1
d
= R|cos(Θ1)|2/p sign(cos(Θ1)), X2

d
= R[sin(Θ1)|cos(Θ2)|]2/p sign(cos(Θ2)),

X3
d
= R[sin(Θ1)|sin(Θ2)|]2/p sign(sin(Θ2)).

The converse follows easily by reversing the argument. �
Proof of Theorem 5 The proof is based on the stochastic representation (1)

and the amalgamation property with respect to the partitions I, J . It follows along
the lines of the proof of Theorem 5 in Cambanis et al. (1981). �

Proof of Theorem 6 The amalgamation property of LpGSD random vec-
tors shows that the conditional and marginal distributions of Lp-norm generalised
symmetrised Dirichlet random vectors are of the same form as those for the case
of L2-norm. Thus the proof of the general case p > 0 follows by utilising the same
arguments as in the proof of Theorem 4.3 in Fang and Fang (1990). �

Proof of Theorem 7 Let i, j, i 6= j be given and z > 0, c0 ∈ (0, 1) be
constants. Set kpz := inf{|x1|p + |x2|p : x1 ≥ 1, x2 ≥ z} ≥ 1 which does exist. In
view of Corollary 3, we obtain for any t ∈ (0, ω) (write I := {i, j})

P {Xi > t,Xj > tz}
P {Xi > t}+ P {Xj > tz}

≤ P {|Xi|p + |Xj |p ≥ kztp}
P {Xi > t}

=
2P {RI,p ≥ kzt}
P {|Xi| > t}

≤ 2P {R ≥ kzt}
P {RWi > t,W1 > c0}

≤ 2P {R ≥ kzt}
P {R > t/c0}P {Wi > c0}

,
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with Wi > 0 almost surely such that W p
i ∼ Beta(αi, α − αi). Since the survival

function of the random radius R is rapidly varying and kz ≥ 1, the claim follows
by choosing c0 ∈ (1/kz, 1) and then letting t→∞. �

Proof of Theorem 8 Let ω ∈ (0,∞] denote the upper endpoint of the distri-
bution function F and set

an := ‖un,J‖p, and wn := w(an), n ≥ 1.

By the assumptions limn→∞ an = ω and F ∈ MDA(Λ) with a positive scaling
function w, we thus obtain that in view of (31) and (32)

lim
n→∞

anwn = ∞, lim
n→∞

wn(ω − an) =∞.(45)

Theorem 5 and Lemma 16 imply that XI∪J is a LpGSD random vector with the
associated random radius R∗ which has distribution function in the max-domain of
attraction of Λ and the scaling function w. Therefore, we may assume for simplicity
I ∪ J = {1, . . . , k}. In view of Theorem 5, we have for any large n(

XI |XJ = un,J

)
d
= RanVI , VI ∼ SD(|I|, p,αI),(46)

with VI independent of Ran such that

P {Ran > x} =

∫ ω
(apn+xp)1/p

(rp − apn)αI−1r−pα+p dF (r)∫ ω
an

(rp − apn)αI−1r−pα+p dF (r)

for all x ∈ (0, (ωp − apn)1/p). Furthermore, (30) implies that for any s ∈ R

lim
n→∞

1− F (an + s/wn)

1− F (an)
= exp(−s).

Hence the sequence of distribution functions

Fn(s) :=
F (an + s/wn)− F (an)

1− F (an)
, s ≥ 0, n ≥ 1

converges uniformly to the unit exponential distribution as n→∞. Moreover (45)
implies for any x ≥ 0

(xpap−1n /wn + apn)1/p = an + (1 + o(1))p−1xp/wn, n→∞.

Transforming the variables we have for n large

P {Ran > x(ap−1n /wn)1/p}

=

∫ ω
an+(1+o(1))p−1xp/wn

(rp − apn)αI−1r−pα+p dF (r)∫ ω
an

(rp − apn)αI−1r−pα+p dF (r)

=

∫ wn(ω−an)
xp/p

((an + s/wn)p − apn)αI−1(an + s/wn)−pα+p dFn(s)∫ wn(ω−an)
0

((an + s/wn)p − apn)αI−1(an + s/wn) dFn(s)

=

∫ wn(ω−an)
xp/p

sαI−1(1 + o(1)) dFn(s)∫ wn(ω−an)
0

sαI−1(1 + o(1)) dFn(s)
, n→∞.

Lemma 4.4 of Hashorva (2006b) implies that

lim
n→∞

∫ wn(ω−an)

xp/p

sαI−1 dFn(s) =

∫ ∞
xp/p

sαI−1 exp(−s) ds, ∀x ≥ 0.
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Hence we obtain for any x > 0

lim
n→∞

P {Ran > x(ap−1n /wn)1/p} =
1

Γ(αI)

∫ ∞
xp/p

sαI−1 exp(−s) ds =: P {RI > x}.

Consequently we have the convergence in distribution(
wn

ap−1n

)1/p

Ran
d→ RI , n→∞,

where RI > 0 such that RpI ∼ Γ(αI , 1/p). Noting that RI is independent of U we
arrive at the desired result. �

Proof of Theorem 9 Let an, Ran , n ≥ 1 be as in the proof of Theorem
8 and set Fn(s) := F (1 − cns), s ≥ 0, n ≥ 1. For simplicity we assume that
an = 1− cn, n ≥ 1 and denote hn := (1− F (an))−1, n ≥ 1. If I ∪ J has less then k
elements then Theorem 5 and Lemma 16 (Appendix) imply that the random vector
XI∪J is a LpGSD random vector with associated random radius in the max-domain
of attraction of Weibull distribution Ψγ∗ , γ∗ := γ+α−αI −αJ > 0. For simplicity,
we consider therefore the case that I ∪ J = {1, . . . , k} only. Since F ∈ MDA(Ψγ)
we have (see Kotz and Nadarajah (2005))

lim
n→∞

hn[1− Fn(s)] = sγ , ∀s > 0.

Furthermore limn→∞ cn = 0 implies that

(pcnx
p + (1− cn)p)1/p = 1− cn(1− xp)(1 + o(1)), n→∞.

Transforming the variables we obtain

P {Ran > x(pcn)1/p}

=

∫ 1

(pcnxp+(1−cn)p)1/p(rp − (1− cn)p)αI−1r−pα+p dF (r)∫ 1

1−cn(rp − (1− cn)p)αI−1r−pα+p dF (r)

=

∫ 1

1−cn(1−xp)(1+o(1))
(rp − (1− cn)p)αI−1r−pα+p dF (r)∫ 1

1−cn(rp − (1− cn)p)αI−1r−pα+p dF (r)

=

∫ (1−xp)(1+o(1))

0
(1− s)αI−1(1 + o(1)) d(hnFn(s))∫ 1

0
(1− s)αI−1(1 + o(1)) d(hnFn(s))

.

Utilising similar arguments as in Theorem 3.2 in Hashorva (2007) we have

lim
n→∞

P {Ran > x(pcn)1/p} =

∫ 1−xp

0
(1− s)αI−1sγ−1 ds∫ 1

0
(1− s)αI−1sγ−1 ds

= 1−
∫ xp

0
sαI−1(1− s)γ−1 ds∫ 1

0
sαI−1(1− s)γ−1 ds

.

We thus have the convergence in the distribution(
1

pcn

)1/p

Ran
d→ RI , n→∞,

where RI satisfies RpI ∼ Beta(αI , γ) almost surely. Now, the proof follows using
(46) and the fact that RI is independent of U . �
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Proof of Theorem 10 Let an, Ran , n ≥ 1, be as in the proof of Theorem 8
and set

Fγ(r) := 1−
(

r

‖uJ‖p

)−γ−p(α−αI−αJ )

, ∀r ≥ ‖uJ‖p.

Evidently, Fγ is a distribution function on [‖uJ‖p,∞). In view of Theorem 5 and
Lemma 16 we need to show the claim only for the case I ∪ J = {1, . . . , k}. Assume
now for simplicity that un,J = dnuJ , dn := 1/cn, n ≥ 1. The upper endpoint of
the distribution function F is ∞ by the assumption. For any x > 0 and large n we
have

P {Ran > dnx} =

∫∞
dn(‖uJ‖pp+xp)1/p

(rp − dpn‖uJ‖pp)αI−1r−pα+p dF (r)∫∞
dn‖uJ‖p(rp − dpn‖uJ‖pp)αI−1r−pα+p dF (r)

=

∫∞
(‖uJ‖pp+xp)1/p

(rp − ‖uJ‖pp)αI−1r−pα+p d(hnF (dnr))∫∞
‖uJ‖p(rp − ‖uJ‖pp)αI−1r−pα+p d(hnF (dnr))

,

with hn := (1 − F (dn))−1, n ≥ 1. Since limn→∞ dn = ∞, the assumption on F
implies

lim
n→∞

hn[1− F (dnx)] = x−γ , ∀x > 0,

hence we have by Fatou Lemma (see e.g. Kallenberg (1997))

lim inf
n→∞

∫ ∞
(‖uJ‖pp+xp)1/p

(rp − ‖uJ‖pp)αI−1r−pα+p d(hnF (dnr))

≥
∫ ∞
(‖uJ‖pp+xp)1/p

(rp − ‖uJ‖pp)αI−1r−pα+p d(r−γ).

It follows by the Karamata Theorem (see e.g. Resnick (1987))

lim sup
n→∞

∫ ∞
(‖uJ‖pp+xp)1/p

(rp − ‖uJ‖pp)αI−1r−pα+p d(hnF (dnr))

≤
∫ ∞
(‖uJ‖pp+xp)1/p

(rp − ‖uJ‖pp)αI−1r−pα+p d(r−γ).

Consequently

lim
n→∞

P {Ran > dnx}

=

∫∞
(‖uJ‖pp+xp)1/p

(rp − ‖uJ‖pp)αI−1r−p(αI+αJ )+pr−p(α−αI−αJ ) d(r−γ)∫∞
‖uJ‖p(rp − ‖uJ‖pp)αI−1r−p(αI+αJ )+pr−p(α−αI−αJ ) d(r−γ)

=

∫∞
(‖uJ‖pp+xp)1/p

(rp − ‖uJ‖pp)αI−1r−p(αI+αJ )+p dFγ(r)∫∞
‖uJ‖p(rp − ‖uJ‖pp)αI−1r−p(αI+αJ )+p dFγ(r)

=: P {RI > x}.
We note that

(rp − ‖uJ‖pp)αI−1r−pα+p ≤ rpαI−pr−pα+p ≤ r−pαJ ≤ 1, ∀r > 0.

Applying now (46) and recalling that the random variable Ran , n ≥ 1 is independent
of U , we arrive at

cn

(
XI |XJ = un,J

)
d→ RIVI , n→∞.
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In view of Theorem 5 we have

RIVI
d
= Y I |Y J = uJ ,

where Y ∼ GSD(k, p,α, Fγ). This completes the proof. �
Proof of Theorem 11 We shall show that statement i) implies that R is

regularly varying with index γ > 0. The rest of the proof follows along the lines of
Theorem 3.1 of Hashorva (2006a).
Let Z := (Z1, . . . , Zk)> be a Kotz Type I LpGSD random vector in Rk with coeffi-
cient α and V > 0 be a random variable such that V ∼ Beta(α1, α− α1). Assume
that V,Z and X are mutually independent and denote

R := ‖X‖p =
( k∑
j=1

|Xi|p
)1/p

, R̃ := ‖Z‖p =
( k∑
j=1

|Zi|p
)1/p

.

By (13) R̃
p
∼ Gamma(α, 1/p) Since X1 is symmetric about 0, the assumptions

that X1 is regularly varying with index γ implies that |X1|p is also regularly varying

with index γ/p > 0. R̃ is independent of |X1|, hence applying Lemma 17 (see

Appendix) we have that ( R̃ |X1|)p is also regular varying with positive index γ/p.
In view of Corollary 3 we have

( R̃ |X1|)p
d
= R̃

p
(RpV )

d
= ( R̃

p
V )Rp

d
= (|Z1|R)p,

consequently (|Z1|R)p is regularly varying with index γ/p.
Applying once more (13) we have |Z1|p ∼ Gamma(α1, 1/p) with |Z1|p being inde-
pendent of Rp. Lemma 17 implies that Rp is regularly varying with the positive
parameter γ/p. This concludes the proof. �

Proof of Corollary 12 Denote r(n) := F−1(1 − 1/n),∀n > 1 with F−1

being the generalised inverse of the distribution function F . In view of Theorem
11, applying Proposition 0.8 (vii) of Resnick (1987), we have for i ≤ k

lim
n→∞

r(n)

ai(n)
=

(
Γ(α/p)Γ(αi + γ/p)

2Γ(αi)Γ(α+ γ/p)

)−1/γ
=: ci.

Utilising the arguments presented in Theorem 11 we obtain for any y = (y1, . . . , yk)> >
0

lim
n→∞

n
[
1− P {Y1/a1(n) ≤ y1, . . . , Yk/ak(n) ≤ yk}

]
= lim

n→∞
n
[
1− P

{ Y1
r(n)

r(n)

a1(n)
≤ y1, . . . ,

Yk
r(n)

r(n)

ak(n)
≤ yk

}]
= lim

n→∞
n
[
1− P

{
c1

Y1
r(n)

≤ y1, . . . , ck
Yk
r(n)

≤ yk
}]

= γ

∫ ∞
0

P {rcAU 6≤ y}r−γ−1 dr,

with c := (c1, . . . , ck)> and U ∼ GSD(k, p,α). This completes the proof. �

8. Appendix

In this appendix several lemmas related to Dirichlet integrals, Gamma and Beta
distributions are cited.
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Lemma 13. [Gupta and Song (1997), Lemma 1.1] Let X,Y be two random vectors

in Rk such that X
d
= Y , and fi, 1 ≤ i ≤ d, be measurable functions. We then have

(f1(X), . . . , fd(X))
d
= (f1(Y ), . . . , fd(Y )).(47)

Lemma 14. [Gupta and Song (1997), Lemma 2.3] Let f be a non-negative mea-
surable function. For αi > 0, i = 1, . . . , k, we have:∫

[0,∞)k
f(

k∑
i=1

xi)

k∏
i=1

xαi−1
i dx1 · · · dxk =

∏k
i=1 Γ(αi)

Γ(α)

∫ ∞
0

f(x)xα−1 dx,(48)

provided one of the integrals exist.

The next lemma is a minor generalisation of Lemma 2.3 of Gupta and Song
(1997).

Lemma 15. Let f be a non-negative measurable function. We then have for any
pi > 0 and αi > 0, i = 1, . . . , k,∫

[0,∞)k
f(

k∑
i=1

xpii )

k∏
i=1

xαi−1
i dx1 · · · dxk =

∏k
i=1 Γ(αi/pi)

Γ(α/pi)
∏k
i=1 pi

∫ ∞
0

f(x)xα/pi−1 dx(49)

and∫
Rk

f(

k∑
i=1

|xi|pi)
k∏
i=1

|x|αi−1
i dx1 · · · dxk =

2k
∏k
i=1 Γ(αi/pi)

Γ(α/pi)
∏k
i=1 pi

∫ ∞
0

f(x)xα/pi−1 dx(50)

provided one of the integrals exist.

Proof. Assume that the integral

I :=

∫
[0,∞)k

f(

k∑
i=1

xpii )

k∏
i=1

xαi−1
i dx1 · · · dxk

is finite. Changing the variables yi := xpii , i ≤ k, and using Lemma 14 we obtain

I =
1∏k
i=1 pi

∫
[0,∞)k

f(

k∑
i=1

yi)

k∏
i=1

y
αi/pi−1
i dy1 · · · dyk

=

∏k
i=1 Γ(αi/pi)

Γ(α/pi)
∏k
i=1 pi

∫ ∞
0

f(x)xα/pi−1 dx.

Now the equation (50) follows easily. �

Theorem 16. Let Y be a random variable with the distribution function H which
has the upper endpoint ω ∈ (0,∞] and H(0) = 0. Let Za,b be a Beta distributed
random variable with positive parameters a, b being independent of Y , and τ > 0 be
a fixed constant.
i) If H ∈MDA(Λ) with a positive scaling function w we have as u ↑ ω

P {Y [1− Za,b]1/τ > u} = (1 + o(1))
Γ(a+ b)

Γ(b)

(
τ

uw(u)

)a
[1−H(u)].(51)

ii) If H ∈MDA(Φα), α > 0, then ω =∞ and

P {Y [1− Za,b]1/τ > u} = (1 + o(1))
Γ(a+ b)Γ(b+ α/τ)

Γ(b)Γ(a+ b+ α/τ)
[1−H(u)](52)
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holds as u→∞
iii) If H ∈MDA(Ψα), α > 0 and ω = 1, we then have

P {Y [1− Za,b]1/τ > u}

= (1 + o(1))
Γ(α+ 1)Γ(a+ b)

Γ(b)Γ(α+ a+ 1)
(τ(1− u))a[1−H(u)], u ↑ 1.(53)

Proof. The proof for the case τ = 2 is given in Theorem 12.3.1, 12.3.2, 12.3.3 of
Berman (1992). The general case τ > 0 is shown in Theorem 6.2 of Hashorva
(2006d). �

Lemma 17. Let X,Y be two independent positive random variables with Y p ∼
Gamma(a, λ), a, λ > 0, p > 0. If X is regularly varying with index γ ≥ 0, we then
have

lim
u→∞

P {XY > u}
P {Y > u}

=
Γ(a+ γ/p)

λγ/pΓ(a)
∈ (0,∞).(54)

Conversely, if the product XY is regularly varying with index γ ≥ 0, then X is also
regularly varying with index γ and furthermore (54) is valid.

Proof. The proof can be found in Lemma 6.1 of Hashorva (2006d) where the case
γ > 0 is considered. We sketch it below. If X is regularly varying with the positive
index γ ≥ 0, then (54) follows by Breiman’s Lemma (see for some deep related
results Denis and Zwart (2005)).
Suppose for simplicity that p = 1, λ = 1. For any t > 0 we may write by the
independence of X and Y

P {XY > t} =
ta

Γ(a)

∫ ∞
0

P {XY > t|Y = tx} exp(−tx)xa−1 ds

= ta
∫ ∞
0

exp(−tv) dG(v),

where

G(s) :=
1

Γ(a)

∫ s

0

P {X > 1/x}xa−1 dx, s > 0.

The assumption XY is regularly varying with index γ ≥ 0 means∫ ∞
0

exp(−tv) dG(v) = t−a−γL(1/t), t→∞,(55)

with L(x) such that limt→0 L(Kt)/L(t) = 1,∀K > 0. In view of Karamata’s
Tauberian Theorem (Feller (1966), Resnick (1987)) (55) is equivalent with

G(t) =
1

Γ(a+ γ + 1)
ta+γL(t), t→ 0,

or equivalently

G(1/t) =
1

Γ(a+ γ + 1)
t−a−γL(1/t), t→∞.

Consequently as t→∞∫ 1/t

0

P {X > 1/x}xa−1 dx =
Γ(a)

Γ(a+ γ + 1)
t−a−γL(1/t).
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Since P {X > x}x−a−1, x > 0 decreases monotonically in x for any a > 0 we get
applying the Monotone Density Theorem (Resnick (1987))

P {X > t}t−a−1 =
(a+ γ + 1)Γ(a)

Γ(a+ γ + 1)
t−a−γ−1L(1/t), t→∞,

thus the proof follows. �
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