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Abstract
The Principle of Total Evidence, postulated by Carnap in 1947, implies that to achieve the best assignation of 
a probability, all available information should be considered, subject to cost. For the evaluation of evidence, it 
is important that the best assignation of probability be made. The benefits of such an assignation are shown 
to be an increase in the expected utility of any decision made, a decrease in an expectation of an error of an 
inference that might be made and an increase in the expected weight of evidence for the correct hypothesis. 
A practical illustration is given with reference to a recent Italian case.
Keywords: Bayes’ theorem; Bayes factor; evidence evaluation; expected error; expected utility; principle of total evidence. 

1. Introduction: rationale for acquiring new evidence
The Principle of Total Evidence,1 postulated by Carnap (1947), recommends that, in the assig-
nation of a probability, all available information should be considered.2

In the context of a criminal trial, the trier of fact (judge or jury) should, ideally, be as informed 
as possible about the case under trial as is practically feasible. The Principle recommends that all 
evidence be considered. Such a recommendation has to be tempered with the cost of the acquisi-
tion of evidence. Decisions about the acquisition of evidence are part of the investigation of a 
crime. At the trial, when the cases for the prosecution and the defence are fully prepared, all evi-
dence has been acquired. There is no cost to the court associated with the admission of any evi-
dence. There is only a cost of resources within the trial process to be considered when decisions 
are being taken as to whether or not to admit formally particular items of evidence. Various bene-
fits that arise from the admission of new evidence are discussed. These benefits have been intro-
duced in the philosophical literature and are presented anew here in the context of a criminal case 
and with numerical verifications of the benefits that arise from the admission of additional evi-
dence in order to bring attention to them to the wider readership of lawyers and forensic scientists.

The case used as an illustration of these ideas is the Taffio Palmi (victim)–Busetto (convicted 
defendant) (TPB) case in Venice, Italy, where a victim was found stabbed to death in her flat 
where she lived alone. According to several witnesses, the victim used to wear a golden necklace, 
which was not found on the body, nor at the crime scene nor anywhere else in the victim’s flat. 
About a month later, a person of interest, PoI, was suspected of the crime and apprehended. 

1 Hereafter, the Principle.
2 From a historical point of view, it is of interest that Carnap (1947) (at page 138) refers to Keynes (1921) who 

wrote ‘Bernoulli’s second maxim, that we must take into account all the information we have, amounts to an injunc-
tion that we should be guided by the probability of that argument, amongst those of which we know the premises, of 
which the evidential weight is the greatest. But should not this be re-enforced by a further maxim, that we ought to 
make the weight of our arguments as great as possible by getting all the information we can?’ (p. 84). The Principle 
also underlies Locke (1689)’s statement quoted by Keynes: ‘He that judges without informing himself to the utmost 
that he is capable, cannot acquit himself of judging amiss’ (p. 89).
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During a search of the PoI’s flat, a broken necklace was recovered and seized for foren-
sic analysis.

The PoI declared that the necklace was a family heirloom and that it had not been touched in 
years. The prosecution claimed that the necklace belonged to the victim, and that it was 
snatched off the victim’s neck by the PoI during the commission of the crime. The question 
about whether that necklace was the victim’s or not became crucial evidence in the trial. A pre-
sumptive test for the detection of human cells gave a negative result, and no DNA profile was 
obtained by this analysis. A few months later, a second forensic laboratory repeated the DNA 
analysis on the necklace and obtained a complete profile corresponding to that of the victim. 
This second result played a key role at the trial despite the fact that potential contamination in 
the lab could not be excluded. Indeed, the court established that the necklace was the one that 
had been seized by the offender from the victim during the offence that led to the death of the 
victim. The PoI was then given a life sentence for the murder of the victim. The sentence was 
confirmed by the Court of Appeal and then by the Supreme Court.3

Other forensic elements were retrieved, and information from them was available at the time 
of the trial. For example, a relevant4 red-coloured fingermark was observed and collected from 
a wall in the victim’s apartment; the mark was composed of the victim’s blood and its minutiae 
did not correspond to any of the PoI’s fingerprints nor to any of the victim. Shoe-marks were 
registered at the crime scene. The marks did not correspond to any of the PoI’s shoes. Other 
items belonging to the PoI (e.g. shoes, slippers, carpets, cleaning rags) were analysed by the first 
laboratory for possible traces of the victim’s blood; no such traces were detected. The Court just 
considered one item of evidence, the DNA result from the second laboratory, the result which 
declared a correspondence between the victim’s DNA profile and that observed (in small quanti-
ties) on the necklace.5

This scenario is alarming because additional information (i.e. absence of DNA on a series of 
items, negative evidence for shoe-marks and for the fingermark) is available at no cost (since all 
the tests had been done) relevant to the uncertain event of judicial interest (i.e. the hypothesis 
that the PoI stabbed to death the victim). The expected utility for any decision involving new in-
formation will not decrease as a result of the new information. This result has long been known 
by philosophers of science and statisticians. For example, Salmon (1992) affirmed: 

An inductive argument gives a high degree of confirmation to its conclusion only if there is no 
additional evidence available at the time the argument is formulated to change the degree of 
confirmation. (free translation, at p. 100)

In its original form, Salmon (1966) wrote: 

Given that the degree of confirmation of hypothesis h on evidence e is p, and given also the 
truth of e, we are not allowed to infer h even if p is very near one. Rather, we must use our in-
ductive logic according to certain definite rules of applications. First, there is the requirement of 
total evidence. If e is the evidence statement we are going to use, it must incorporate all 
(authors’ italics) relevant available evidence. This is an important respect in which inductive 
logic differs from deductive. (p. 76)

Similarly, Lindley (1985) clarified that ‘the information is always expected to be of value’ 
(p. 131). The critical point related to the use of limited amount of information by a Court of 
Justice is well expressed by Lindley (1985): 

Our result says that the cost should be the only reason for ruling evidence to be inadmissible: 
that if evidence is virtually cost-free then it should be admitted, for it is expected to be of value 

3 Assise Venezia 22.12.2014, n.1; Assise Appello Venezia 18.11.2016; Cassazione Penale 26.04.2018, n. 37002.
4 In this context, the term ‘relevant’ denotes that the evidence recovered from the crime scene is connected with the 

crime and hence has been left by the offender, as defined by Stoney (1991, 1994).
5 The interested readers can refer to Taroni, Bozza, and Garbolino (2018a,b), Gennari (2021) and De March and 

Taroni (2020) for further details and some analysis of this criminal case.
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in judging the case. This goes against current legal practice. Thus English law does not allow ev-
idence of bad character to be used to increase the probability that the defendant is guilty. Our 
argument says it should if the evidence is almost free. We are not saying that the law is incor-
rect: we are saying that the situation needs reconsideration in the light of expected utility the-
ory. It may be, for reasons that are not clear to me, that some material fact has been forgotten 
in applying the theory to legal practice. (p. 132)

The idea that any scientific or judicial decision should be based on the available evidence with 
its suggestion of the importance of gathering more evidence has been explored in the past (see e. 
g. Good 1985 and Raiffa and Schlaifer 1961). This has been done from various points of view, 
for example, through a decision making approach calling for a calculus of the expected value of 
sample information (Good 1967) and through the expectation of the weights of evidence consid-
ered as a criterion for the value of an experimental design (Good 1979). The idea that it is better 
to use all the available information can also be viewed as a simple consequence of Bayesian con-
firmation theory, where posterior probabilities are updated by the acquisition of new informa-
tion in order to discriminate better between hypotheses.

Historically, it was Ayer (1957) who first considered the importance of making new observa-
tions. He related this consideration to Carnap (1947) ‘Principle’ where it was recommended to 
use all the available information when assigning6 a probability; in other words, that ‘the require-
ment of total evidence [ … ] says that in evaluating a hypothesis, you should take account of all 
evidence you have’ (Barrett and Sober 2020: 191). From a Bayesian perspective, one should con-
dition on all the information you have to assess how probable a hypothesis is. This approach 
represents an example of what Carnap defined as the ‘methodology of induction’. As para-
phrased by Salmon (1966): 

The methodology of induction contains rules for the application of inductive logic—that is, 
rules that tell us how to make use of the statements of degree of confirmation in deciding 
courses of practical action. As I indicated, the requirement of total evidence is one of the impor-
tant methodological rules, and the rules of maximizing estimated utility is another. These rules 
tell us how to use the results of inductive logic’. (p. 93)7

The main point of interest in this article is not how to measure the support given by any ac-
quired information [whether through the quantification of the Bayes factor after having ac-
quired such information or during a pre-assessment procedure as developed by Cook et al. 
(1998, 1999)] or to measure the way such a current or future finding may impact on a course of 
action. These ideas are well-documented. The quantification of the expected utility (or loss)8 re-
lated to a list of actions and of the gain in the acquisition of new information have been de-
scribed in literature through practical examples. For example, given that the decision to collect 
new evidence has to be taken before the evidence is available, the problem is the calculation of 
the expected gain of this new (unknown) evidence so that the gain can be compared with the 
cost of the search. Provided that utilities, or the losses, of the outcomes of our decisions can be 
quantified in such a way that they can be compared to the cost of an experiment to gather and 
analyse new evidence, Bayesian decision theory explains, in what is known as the principle of 

6 Note that the term ‘estimating a probability’ was used in the original text. As discussed by Fischhoff and Beyth- 
Marom (1983), ‘The term ‘assign’ is used rather than ‘estimate’ to emphasize that a probability expresses one’s own 
feelings rather than an appraisal of a property of the physical world. Thus, there is no ‘right’ probability value for a 
particular statement’ (p. 240).

7 Salmon (1966) refers to Carnap (1950). See, e.g., ‘Certainly I and my friends have learned much from other 
authors, both in the purely mathematical theory of probability and in the methodology of its applications’ (p. xiv), or 
the more complete paragraph ‘In the application of inductive logic still another difficulty is involved, which does con-
cern inductive logic itself. This difficulty consists in the fact that, if an observer wants to apply inductive logic to an ex-
pectation concerning a hypothesis h, he has to take as evidence e a complete report of all his observational knowledge. 
Many authors on probability have not given sufficient attention to the requirement of total evidence. They often leave 
aside a great part of the available information as though it were irrelevant. However, cases of strict irrelevancy are 
much more rare than is usually assumed’ (at p. 208).

8 Utilities and losses are considered complementary. Utility quantifies the desirability of a consequence of the deci-
sion based on the acquisition of new information. Loss quantifies the undesirability of a consequence of the decision 
based on the acquisition of new information.
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rationality, how the expected value of information may be calculated taking advantage of the 
recommendation to maximize the expected utility. This approach is not new in forensic science. 
As an illustration, consider a scenario involving information provided by the fingermarks not 
processed in a forensic science laboratory. Gittelson et al. (2013) examined the question of proc-
essing, or of not processing, a fingermark from a decision-theoretic point of view9 and answered 
this question through a quantified expression of the expected value of information associated 
with the processed fingermark which was compared with the cost of processing the mark.

The main point of interest of the article is, rather, the provision of a formal justification for 
the intuitive idea that it is rational to decide to search for, acquire and use new information as 
long as the cost of so doing is negligible when compared with the expected gain of this new in-
formation. A corollary of this idea is that all the information available at a given time should be 
used, again assuming there is no additional cost of doing so. The use of as much information as 
possible, even when it is incomplete, can only be expected to improve the quality of a decision.

The article is structured as follows: Section 2 will briefly introduce the readers to Bayesian de-
cision theory and the quantification of the expected value of information. This section also 
develops an alternative proof of the Principle. Section 3 repeats for completeness, the proof of a 
sentence by Horwich (2016) that ‘the expected error in our probability judgements is minimized 
by the acquisition of new evidence’. This result is then interpreted in the context of the TPB 
case. A corollary of the previous proofs is the extension to what has been called by Good ‘The 
theorem of the expected weight of evidence’ (Good 1985); if an alternative hypothesis is false, it 
is expected that the logarithm of the Bayes factor (weight of evidence) in its favour to be less 
than 0 in future experiments. This aspect is described in Section 4 with an application to the 
TPB case. Note that the Bayes factor may be thought of as the value of evidence and the loga-
rithm of the Bayes factor may be thought of as the weight of evidence. A discussion (Section 5), 
with some thoughts on the measurement of utility, concludes the article.

2. Bayesian decision theory
2.1 Expected utility (loss) and the expected value of perfect information
A standard procedure in decision theory is the quantification of the expected gain (or profit) of a 
certain action. Given that generally the decision to acquire new information has to be taken be-
fore the information is available, the problem is to calculate the expected gain of this new infor-
mation, so that the gain can be compared with the cost of the search or acquisition. However, in 
the TPB case (and in many others that come to trial), the cost of the collection and use of the fo-
rensic findings can be ignored because all the findings were already available to the court, so the 
cost of consideration is negligible.

Provided that the utilities (or the losses) of the outcomes of the possible actions (say, deciding 
that the PoI stabbed the victim to death, or deciding that some other person stabbed the victim 
to death) may be quantified in such a way that they can be compared to the cost of the experi-
ment, Bayesian decision theory explains how the expected value of information may be 
calculated.10

Imagine the advice to a judge who has to decide which one of two alternative hypotheses, say 
H1 and H2, to choose and suppose also that these two hypotheses can be considered as if they 
were exhaustive. Denote by d1 and d2 the set of available courses of action, and by Cij the conse-
quence of taking decision di (i¼1, 2) when hypothesis Hj (j¼ 1, 2) turns out to be true. A utility 
(loss) function can be introduced to assess the desirability (undesirability) of decision outcomes 
(consequences) and is denoted by UðCijÞ (LðCijÞ). The decision matrix is represented in Table 1 
when dealing with utilities (panel A), or with losses (panel B). An illustration is given in Table 2 
where a utility equal to 1 is associated to the most desirable consequences C11 and C22 

9 The theory of such an approach can be found in Lindley (1985) with a series of forensic applications in Taroni 
et al. (2010) and Gittelson (2013).

10 The interested reader can refer to the seminal book of Lindley (1985) for an extended presentation of Bayesian 
decision theory and to Taroni, Bozza, and Biedermann (2020) for a description of the role of decision theory in forensic 
science. A summary of the theory is given in Aitken Taroni, and Bozza (2021) with other forensic scientific examples 
given, for example, in Biedermann, Bozza, and Taroni (2008, 2016, 2020).
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(panel A). The loss function that is derived following these choices is characterized by a loss 
equal to 0 associated to the least undesirable consequences C11 and C22 (Panel B).

The best decision is that one for which the expected utility (loss) is the maximum (minimum). 
In symbols—using I to denote background information already available about the two hypoth-
eses, and E to denote the extra information—a rational decision maker will take decision di ði¼
1;2Þ as the one corresponding to the i for which 

X2

j¼1

UijPrðHjjE; IÞ (1) 

is maximized, or 

X2

j¼1

LijPrðHjjE; IÞ (2) 

is minimized.
There is an argument that this discussion should be considered in terms of only one of loss or 

utility. However, both terms are used regularly and their inclusion here eases comparison with 
other work. For those unfamiliar with the terms, they may perhaps be more easily thought of as 
costs and benefits.

An investigator has to decide whether to carry out an experiment (to acquire new information) 
the result of which is denoted E. The problem is to determine how much to pay for that experiment. 
As a first step towards the solution of the problem, it is shown how to calculate the expected value 
of perfect information, that is, how much it would be worth to know with certainty which hypothe-
sis is true. If the true hypothesis were known, the decision with the smallest loss in the column of  
Table 1 (Panel B) with respect to that hypothesis is the one to take. The expected loss with perfect 
information is calculated with the multiplication of the minimum loss for each hypothesis by the 
probability of that hypothesis, followed by the sum all these products: 

Table 1. Decision matrix with d1 and d2 denoting the possible actions, H1 and H2 denoting the states of nature (the 
hypotheses of interest), Cij denoting the consequence of deciding di when hypothesis Hj is true, Uð�Þ denoting the 
utility function quantifying the desirability of decision consequences Cij (panel A), and Lð�Þ the loss function 
quantifying the undesirability of decision consequences Cij (panel B).

Panel A H1 H2

d1: choosing H1 UðC11Þ UðC12Þ

d2: choosing H2 UðC21Þ UðC22Þ

Panel B H1 H2

d1: choosing H1 LðC11Þ LðC12Þ

d2: choosing H2 LðC21Þ LðC22Þ

Table 2. Decision matrix with d1 and d2 denoting the possible actions, H1 and H2 denoting the states of nature (the 
hypotheses of interest) and Uij (Lij) denoting the utility (loss) quantifying the desirability (undesirability) of decision 
consequences Cij. A utility (loss) equal to 1 (0) is associated to the most desirable (most undesirable) consequences.

Panel A H1 H2

d1: choosing H1 1 U12

d2: choosing H2 U21 1

Panel B H1 H2

d1: choosing H1 0 L12

d2: choosing H2 L21 0
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X2

j¼1

ðmin
i

LijÞPrðHj jE; IÞ: (3) 

The minimum loss for each hypothesis is zero, so the expected loss of perfect information is 
zero. The choice before the truth is known is given by Equation (2). The difference between 
Equations (2) and (3) is the measure of the reduction in the expected loss or, equivalently, the in-
crease in the expected gain that could be obtained with perfect information. In other words, it is 
the measure of the expected value of perfect information: 

min
i

X2

j¼1

LijPrðHj jE; IÞ−
X2

j¼1

ðmin
i

LijÞPrðHj jE; IÞ: (4) 

This is the maximum price that should be paid for perfect information. The expected value of per-
fect information will always be—by definition—greater than zero: indeed, whatever decision is taken 
without perfect information, the value of Equation (2) will be greater than the value of Equation (3), 
since every loss Lij in the former is replaced by a loss ðminiLijÞ in the latter which cannot be greater.

2.2 Expected value of sample or partial information
If the experiment (or acquisition of information which may be thought of as evidence) were of 
such kind to tell you the truth, this would be the end of the story. Unfortunately, such an experi-
ment will provide only partial information, changing your probabilities for H1 and H2 but with-
out them reaching the extreme values of 1 and 0. The experiment may be short of ideal but still 
be potentially useful. Denote by �UðdiÞ the expected utility of decision di: 

�UðdiÞ ¼
X2

j¼1

UijPrðHjjE; IÞ; (5) 

and by �LðdiÞ the expected loss of decision di: 

�LðdiÞ ¼
X2

j¼1

LijPrðHjjE; IÞ: (6) 

The best decision after having conducted the experiment (e.g. a search for a particular type of ev-
idence and observed it, E, or not, �E) will be the decision that maximizes the expected utility 

max
i

�UðdiÞ; (7) 

or minimizes the expected loss 

min
i

�LðdiÞ: (8) 

The optimal decision is often referred to as the Bayes decision or Bayes action, and it answers the 
question ‘after observation of the information, how much has been learnt about Hj, and how will 
this influence one’s choice of action?’ This approach follows the normative theory of decision 
making based on the principle of maximizing the expected utility (or minimizing the expected 
loss), which combines, in a mathematical function, both the quantification of the desirability (or 
undesirability) of decision consequences, expressed in terms of utilities (losses), and the uncer-
tainty about unknown states of nature (e.g. the hypotheses of interest) expressed by probabilities.

The theory of expected utility (loss) can be considered as a theory for rational choices (see, 
e.g., Jeffrey 1987; Chater and Oaksford 2012; Briggs 201911). In this respect, if a person fails to 

11 Text available at https://plato.stanford.edu/archives/fall2019/entries/rationality-normative-utility/.

6                                                                                                                                                                  F. Taroni et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/lpr/article/23/1/m
gae011/7758805 by U

niversité de Lausanne user on 17 Septem
ber 2024

https://plato.stanford.edu/archives/fall2019/entries/rationality-normative-utility/


prefer acts with higher expected utility (or lower expected loss), then it has been written that 
that person violates at least one of the axioms of rational preference (Zynda 2000).12

It is not known what the outcome of the experiment will be but the likelihoods are known. 
The problem is ‘how much is expected to be learnt from the information prior its observation, 
and how will the choice of action be influenced by its knowledge?’ The probabilities for the (ex-
tra) evidence can be calculated with an extension of the conversation [Lindley (1991)]: 

PrðEjIÞ ¼
X2

j¼1

PrðEjHj; IÞPrðHjjIÞ: (9) 

The action to be chosen is the one that minimizes the loss for any possible result E of the experi-
ment. The expected loss with partial information is the sum of the products of the minimum 
expected loss for each possible result of the experiment, as shown in Equation (3), and the prob-
ability of that result: 

X

E

min
i

X2

j¼1

LijPrðHjjE; IÞPrðEjIÞ: (10) 

With an application of Bayes’ formula, Equation (10) may be rewritten as 

X

E

min
i

X2

j¼1

LijPrðEjHj; IÞPrðHjjIÞ: (11) 

The choice before the experiment is given by the minimum value of Equation (2), the difference 
between that and Equation (11) is called the expected value of partial information (with the sign 
inverted), also called the expected value of sample information (see, e.g., Winkler 2003, Hays 
and Winkler 1970): 

min
i

X2

j¼1

LijPrðHjjIÞ−
X

E

min
i

X2

j¼1

LijPrðEjHj; IÞPrðHjjIÞ: (12) 

This also represents the maximum price that should be paid to have this partial information.
Similarly, the expected gain in utility is 

X

E

max
i

X2

j¼1

UijPrðEjHj; IÞPrðHjjIÞ− max
i

X2

j¼1

UijPrðHjjIÞ: (13) 

A comparison of the value obtained from Equation (13) with a given cost of the experiment 
enables a decision to be made as to whether it is worthwhile to conduct the experiment. If the 
gain in value is less than the cost of the experiment (acquisition of the information), one would 
choose not to acquire this information so to maximize the expected net gain, as suggested by 
Raiffa and Schlaifer (1961). A numerical example is given by Gittelson (2013).

It is shown in Appendix 1 that, with the use of the principle of rationality (Good 1967), con-
sideration of new evidence cannot lead to a decrease in utility. Any increase has, of course, to be 
balanced with the cost of the acquisition of new evidence. Thus, the principle of rationality sup-
ports the Principle of Total Evidence (Good 1967) that all the evidence already available should 
be used, provided that the cost of doing so is negligible.

12 An argument for expected utility theory relies on so-called representation theorems. Following Zynda [2000] (p. 
51), the argument has three premises. Briggs [2019] wrote: ‘The Rationality Condition: The axioms of expected utility 
theory are the axioms of rational preference. Representability: If a person's preferences obey the axioms of expected 
utility theory, then she can be represented as having degrees of belief that obey the laws of the probability calculus 
[and a utility function such that she prefers acts with higher expected utility]. The Reality Condition: If a person can be 
represented as having degrees of belief that obey the probability calculus [and a utility function such that she prefers 
acts with higher expected utility], then the person really has degrees of belief that obey the laws of the probability cal-
culus [and really does prefer acts with higher expected utility].’
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3. Expected error and probability assignments
It is shown by Horwich (2016) that ‘expected error in our probability judgements is minimized 
by the acquisition of new evidence’ (p. 119). It is assumed that the ‘acquisition of new evidence’ 
is cost free.

The expected error around a probability assignment on a hypothesis (e.g. a prosecution proposi-
tion13) H based on the background information I only is specified by the quantification of the ab-
solute value of the difference between the assigned probabilistic value of, say, H, PrðHjIÞ, and of 
the value for the truth (whose value equals 1) or the falsity (whose value equals 0) of H. The same 
procedure may be applied to quantify the expected error for probability assignments on H after 
the acquisition of information about the correspondence (E) or lack of correspondence (�E) of new 
evidence E¼ fE; �Eg with a feature of the PoI, for example, a fingerprint.14 Analogous reasoning 
may be applied to consideration of an alternative hypothesis (e.g. a defence proposition) �H.

3.1 Expected error on PrðHjIÞ

EeðHjIÞ ¼
PrðHjIÞf1 − PrðHjIÞgþ f1 − PrðHjIÞgfPrðHjIÞ− 0g
¼ PrðHjIÞf1 − PrðHjIÞgþ f1 − PrðHjIÞgPrðHjIÞ
¼ 2PrðHjIÞf1 − PrðHjIÞg:

(14) 

3.2 Expected error on PrðHjE; IÞ

EeðHjðE; �EÞ; IÞ ¼
PrðEjIÞ½PrðHjE; IÞf1 − PrðHjE; IÞgþf1 − PrðHjE; IÞgfPrðHjE; IÞ− 0g�þ
Prð�EjIÞ½PrðHj�E; IÞf1 − PrðHj�E; IÞgþ f1 − PrðHj�E; IÞgfPrðHj�E; IÞ− 0g�
¼ PrðEjIÞ½2PrðHjE; IÞf1 − PrðHjE; IÞg� þ
Prð�EjIÞ½2PrðHj�E; IÞf1 − PrðHj�E; IÞg�
¼ 2PrðEjIÞPrðHjE; IÞf1 − PrðHjE; IÞgþ
2Prð�EjIÞPrðHj�E; IÞf1 − PrðHj�E; IÞg:

(15) 

It can be proved that EeðHjðE; �EÞ; IÞ≤EeðHjIÞ (Horwich 2016). The proof is provided in 
Appendix 2. New information is always expected to be of value and it is rational to decide to ac-
quire it. The error (as considered by Horwich 2016) in the hypothesis assessment can never be 
increased with the addition of new evidence. Table 3 gives some illustrative values for PrðEjH; IÞ
and PrðEj �H; IÞ for a series of fixed values of PrðHjIÞ. Equal values for the expected errors are ob-
served when PrðEjH; IÞ ¼ PrðEj �H; IÞ [see the last column of Table 3 and Equation (14)] where 
the value of the evidence is neutral (the Bayes factor equals 1).

3.3 The Taffio Palmi - Busetto case (TPB)
These ideas about expected error can be applied to the TPB case. A second forensic analysis found a 
correspondence in DNA profiles for the DNA on the necklace found in Busetto’s apartment and the 
DNA profile of the victim, Taffio Palmi. This was the evidence considered by the court and may be 
thought of as the background information, I. Other evidence, that was available at no extra cost, 
was not considered by the court, and it is of interest to have some idea of the size of the reduction in 
the expected error on the probability of the guilt of Busetto if this other evidence was considered.

The propositions for consideration are

� H: Busetto (B) murdered Taffio Palmi (TP). 

13 The term ‘hypothesis’ is a generic term to clarify that there are two (or more) points of view from parties at a 
trial. The term ‘proposition’ is the text that specifies the content of the hypothesis. For example, there is a prosecutor’s 
hypothesis and its proposition is that the PoI is the source of a stain.

14 In Section 2, E denoted extra information with an implicit assumption of the presence of evidence. In Section 3, 
account is taken of the possible absence of evidence.
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� �H: Busetto did not murder Taffio Palmi. 

The expected error on PrðHjIÞ is given by Equation (14). Other available evidence that was 
not considered by the court includes the following.

� The fingermark on the wall of TP’s apartment did not correspond to any of the fingerprints 
of B. (Denote this EF.) The complement, �EF, is that the fingermark did correspond to one of 
the fingerprints of B. 

� Shoe marks found at the crime scene did not correspond to the treads of any shoes found as-
sociated with B (ES) The complement, �ES, is that the shoe marks did correspond to the treads 
of a shoe associated with B. 

� There was an absence of corresponding DNA on a series of items, such as slippers, carpets, 
and cleaning rags associated with B (ED) The complement, �ED, is that there was correspond-
ing DNA on the series of items associated with B. 

For any E of fEF;ES;EDg, the expected error on PrðHjE; IÞ, where E denotes ðE; �EÞ, is given 
by Equation (15).

For ease of notation, denote PrðHjIÞ as p0, and PrðEjH; IÞ as p and PrðEj �H; IÞ as q. For deter-
mination of the expected error associated with additional evidence E, there are three (possibly 
subjective) probabilities that need to be assigned. These are the prior probability (p0) for the 
prosecution proposition H and then the probabilities (p, q) for evidence E, conditional on H and 
conditional on �H. The probability of (EjI) may be written as 

PrðEjIÞ ¼ PrðEjH; IÞPrðHjIÞ þPrðEj �H; IÞPrð �HjIÞ ¼ pp0þ qð1 − p0Þ;

and then 

EeðHjðE; �EÞ; IÞ ¼ 2PrðEjIÞPrðHjE; IÞf1 − PrðHjE; IÞg
þ2Prð�EjIÞPrðHj�E; IÞf1 − PrðHj�E; IÞg

¼ 2PrðEjH; IÞPrðHjIÞ 1 −
PrðEjH; IÞPrðHjIÞ

PrðEjIÞ

� �

þ2Prð�EjH; IÞPrðHjIÞ 1 −
Prð�EjH; IÞPrðHjIÞ

Prð�EjIÞ

( )

¼ 2½pp0 1 −
pp0

pp0þ qð1 − p0Þ

� �

�

þ2½ð1 − pÞp0 1 −
ð1 − pÞp0

ð1 − pÞp0þð1 − qÞð1 − p0Þ

� �

�:

(16) 

Table 3. Expected error on PrðHjIÞ; EeðHjIÞ and on PrðHjE; IÞ; EeðHjE; IÞ, for changing values of PrðHjIÞ; PrðEjH; IÞ
and PrðEj�H ; IÞ.

PrðHjIÞ 0.1 0.1 0.1 0.5 0.5
PrðEjH; IÞ 0.99000 1.00000 0.50000 0.99000 1.00000
PrðEj �H ; IÞ 0.10000 0.01000 0.80000 0.10000 0.01000
EeðHjIÞ 0.18000 0.18000 0.18000 0.50000 0.50000
EeðHjE; IÞ 0.09628 0.01651 0.17177 0.10072 0.00990

PrðHjIÞ 0.5 0.9 0.9 0.9 0.9
PrðEjH; IÞ 0.50000 0.99000 1.00000 0.50000 0.50000
PrðEj �H ; IÞ 0.80000 0.10000 0.01000 0.80000 0.50000
EeðHjIÞ 0.50000 0.18000 0.18000 0.18000 0.18000
EeðHjE; IÞ 0.45055 0.03614 0.00200 0.17415 0.18000

The principle of total evidence                                                                                                                                    9 

D
ow

nloaded from
 https://academ

ic.oup.com
/lpr/article/23/1/m

gae011/7758805 by U
niversité de Lausanne user on 17 Septem

ber 2024



Some numerical examples are given in Table 4. For reference, the expected error associated 
with the prior probability PrðHjIÞ is 2p0ð1− p0Þ. This has a maximum of 0.5 when p0 equals 1/2 
and there is maximum uncertainty associated with H, and a minimum of 0 when p0 equals 1 or 
0 and there is no uncertainty associated with H; it is known with certainty either to be true or to 
be false.

The prior odds PrðHjIÞ=Prð �HjIÞ are given in parentheses alongside the three values of p0 ¼

PrðHjIÞ chosen. In addition, the reciprocal, q/p of the likelihood ratio or value of the evidence, 
PrðEjH; IÞ=PrðEj �H; IÞ, is given. As each chosen p is less than q, the reciprocal q/p of the eviden-
tial value is presented and is to be understood as the support the evidence gives for the defence 
proposition. Finally, the posterior odds PrðHjE;IÞ=Prð �HjE; IÞ, denoted Opst, are given. These dif-
fer for the three values of PrðHjIÞ.

The choice of p< q has been made by considering no or little relationship between the corre-
sponding evidence and the PoI. Thus, for each of the three items of evidence EF, ES, and ED, the 
evidence is more probable under the defence hypothesis ( �H) than the prosecution hypothe-
sis (H).

� The further p0 is from 0.5, the lower the expected error EeðHjE; IÞ is. 
� The closer p is to 0.5, the higher the expected error EeðHjE; IÞ is. 
� The closer q is to 0.5, the higher the expected error EeðHjE; IÞ is. 

The changes in the posterior odds Opst are as expected for changes in p0;p and q:

� For fixed p0 (prior odds) and q, Opst increases as p (and hence p/q) increases. 
� For fixed p0 and p, Opst decreases as q increases (and hence p/q decreases). 
� For fixed p and q, Opst increases as p0 increases. 

These aspects can be clearly observed in Fig. 1.
The prior odds p0=ð1 − p0Þ in the three examples are 2.3, 4.0, and 9.0, respectively. 

Consideration of evidence with likelihood ratio p/q can lead to a reduction in the expected error 
and a decrease in the odds in favour of the prosecution hypothesis of up to a factor of 9. As well 
as consideration of the expected error, the possible change in odds through evaluation of new 
evidence is another factor to be accounted for in the court’s consideration of evidence.

The theory and the numerical examples show that EeðHjIÞ≥EeðHjE; IÞ. The failure to con-
sider the available evidence did not reduce the error around the probability of the prosecutor’s 
hypothesis that B murdered TP. This is not a coherent way to deal with available evidence.

Table 4. Expected error EeðHjE; IÞ, denoted Ee with the consideration of evidence E. The prior probability p0 of ðHjIÞ
is chosen to be 0.7, 0.8, and 0.9 and the corresponding prior odds are given in parentheses. The probabilities for the 
presence (E) of the evidence conditional on H and conditional on the defence proposition �H are denoted p and q, 
respectively, with corresponding likelihood ratio q/p (PrðEj�H ; IÞ=PrðEjH; IÞ) in favour of the defence. The 
corresponding posterior odds are PrðHjE; IÞ=Prð�H j;E; IÞ, denoted Opst, calculated as Opst ¼

p0
1 − p0

× p
q.

p0 ¼ 0:7ð2:3Þ p0 ¼ 0:8ð4:0Þ p0 ¼ 0:9ð9:0Þ

p q Ee
q
p Opst p q Ee

q
p Opst p q Ee

q
p Opst

EeðHjIÞ ¼ 0:42 EeðHjIÞ ¼ 0:32 EeðHjIÞ ¼ 0:18
2p0ð1− p0Þ 2p0ð1− p0Þ 2p0ð1− p0Þ

0.1 0.7 0.26 7.0 0.33 0.1 0.7 0.21 7.0 0.57 0.1 0.7 0.14 7.0 1.29
0.2 0.7 0.32 3.5 0.67 0.2 0.7 0.26 3.5 1.14 0.2 0.7 0.16 3.5 2.57
0.3 0.7 0.36 2.3 1.00 0.3 0.7 0.29 2.3 1.71 0.3 0.7 0.17 2.3 3.86
0.1 0.8 0.22 8.0 0.29 0.1 0.8 0.18 8.0 0.50 0.1 0.8 0.12 8.0 1.13
0.2 0.8 0.29 4.0 0.58 0.2 0.8 0.24 4.0 1.00 0.2 0.8 0.15 4.0 2.25
0.3 0.8 0.33 2.7 0.88 0.3 0.8 0.27 2.7 1.50 0.3 0.8 0.16 2.7 3.38
0.1 0.9 0.17 9.0 0.26 0.1 0.9 0.15 9.0 0.44 0.1 0.9 0.11 9.0 1.00
0.2 0.9 0.24 4.5 0.52 0.2 0.9 0.21 4.5 0.89 0.2 0.9 0.14 4.5 2.00
0.3 0.9 0.29 3.0 0.78 0.3 0.9 0.24 3.0 1.33 0.3 0.9 0.15 3.0 3.00
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4. Expected value and weight of evidence
It was noticed by Good (1950), reiterated in Good (1979) and Good (1985), that A.M. Turing 
remarked that the expectation of the Bayes factor against a true hypothesis is equal to 1 and the 
expected weight of the evidence quantified through the logarithm of the Bayes factor in favour 
of a true hypothesis is non-negative (Good 1979: 395). These results have been expressed in the 
following terms (Good 1950): 

The expected factor for a wrong hypothesis in virtue of any experiment is equal to 1. [ … ] the 
expected weight of evidence for right hypotheses is positive and for wrong hypotheses is nega-
tive. (p. 72)

These two results refer to expectations, the first for the value and the second for the weight of 
evidence. These are considerations for investigators when thinking whether or not to consider a 
certain type of evidence. They are not applicable once the evidence has been considered and 
results have been obtained.

The value of evidence has been defined to be the Bayes factor. This definition is not just ab-
stract mathematical terminology. The Bayes factor is the multiplicative factor that converts the 
odds in favour of a hypothesis, such as a prosecution hypothesis, before evidence is assessed, to 
the odds in favour of the hypothesis after the evidence is assessed. A factor that has such a func-
tion has a good claim to be called the ‘value’ of the evidence.

Figure 1. Diagrammatic illustration of examples from Table 4 of the relationships among the expected error on the 
posterior probability, the likelihood ratio, and the posterior odds, with changes in the prior probability p0 and the 
probability of the evidence conditional on the defence proposition, q. The prior probability p0 of ðHjIÞ is chosen to be 
0.7, 0.8, and 0.9, with corresponding prior odds equal to 2.3, 4.0, and 9.0. The probabilities for the presence (E) of 
the evidence conditional on the prosecution proposition H and conditional on the defence proposition �H are 
denoted p (with illustrative values 0.1, 0.2, 0.3) and q (with illustrative values 0.7, 0.8, 0.9) and are indicated by the 
symbols •;�;�. Top: Expected error EeðHjE; IÞ (Eq. 15), denoted Ee with the consideration of evidence E. The solid 
line indicates the Expected error on PrðHjIÞ; EeðHjIÞ ¼ 2p0ð1 − p0Þ that equals 0.42, 0.32 and 0.18, respectively. 
Middle: Likelihood ratio q/p in favour of the defence. Bottom: Posterior odds Opst in favour of the prosecution 
proposition, PrðHjE; IÞ=Prð�H j;E; IÞ, calculated as Opst ¼

p0
1 − p0

× p
q.
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The weight of the evidence has been defined to be the logarithm of the Bayes factor. Again, this 
definition is not just abstract terminology. The logarithmic function converts the multiplicative ex-
pression of the relationship of the prior odds, the Bayes factor, and the posterior odds into an addi-
tive expression. The logarithm of the posterior odds is the sum of the logarithm of the Bayes factor 
and the logarithm of the prior odds. This is a very good analogy with the scales of justice. The loga-
rithm of the numerator of the Bayes factor, say logfPrðEjH; IÞg, is added to the scale of the prose-
cution containing the logarithm of the prior probability logfPrðHjIÞg to give the logarithm of the 
posterior probability logfPrðHjE; IÞg. The logarithm of the denominator of the Bayes factor, say 
logfPrðEj �H; IÞg, is added to the scale of the defence containing the logarithm of the prior probabil-
ity logfPrð �HjIÞg to give the logarithm of the posterior probability logfPrð �HjE; IÞg. Again a term 
that has such a function has a good claim to be called the ‘weight’ of the evidence.

The combined weight of a set of independent items of evidence is the sum of the individual 
weights of evidence. For example, let E1 and E2 be two independent items of evidence. Then 

log
PrðE1E2jHÞ
PrðE1E2j �HÞ

 !

¼ log
PrðE1jHÞPrðE2jHÞ
PrðE1j �HÞPrðE2j �HÞ

 !

¼ log
PrðE1jHÞ
PrðE1j �HÞ

 !
PrðE2jHÞ
PrðE2j �HÞ

 !( )

¼ log
PrðE1jHÞ
PrðE1j �HÞ

 !

þ log
PrðE2jHÞ
PrðE2j �HÞ

 !

where I has been omitted for ease of notation.
A similar, but more complex, argument can be made for the combined weight of dependent 

items of evidence. Thus, consideration of additional evidence will lead to a change in the expected 
weight of evidence. This consideration also supports the Principle in that failure to include all 
available evidence means a failure to achieve the best value for the expected weight of evidence.

4.1 Expected value of evidence
Good demonstrated these results as follows. First, it is shown that the expected value of the evi-
dence for a wrong proposition is 1.

The proof of the result that the expected value of the evidence for a wrong proposition is 1 
has two parts, one when H is true and one when �H is true. When H is true, the wrong proposi-
tion is �H. Given background information I, the value of evidence Er, the observed outcome of 
evidence E, with r¼ 1; . . . ;n possible outcomes, for example, a type of tyre or a type of shoe, in 
support of �H is PrðErj �H; IÞ=PrðErjH; IÞ, with probability PrðErjHÞ. Thus, the expected value of 
evidence E, before it is observed and noted to have a particular outcome Er, in support of �H, 
when H is true, is 

Xn

r¼1

PrðErjH; IÞ
PrðErj �H; IÞ
PrðErjH; IÞ

¼
Xn

r¼1

PrðErj �H; IÞ; (17) 

where 
P

r PrðErj �H; IÞ ¼ PrðE1 [E2 [ . . .[Enj �H; IÞ ¼ 1.
Similarly, the expected value of evidence E, before it is observed and noted to have a particular 

outcome Er, in support of H, when �H is true, is 

Xn

r¼1

PrðErj �H; IÞ
PrðErjH; IÞ
PrðErj �H; IÞ

¼
Xn

r¼1

PrðErjH; IÞ ¼ 1: (18) 

This result has an implication for the consideration of the value of the evidence. The value of 
a particular outcome Er of an evidential type E is the Bayes factor. By definition the value in sup-
port of �H is PrðErj �H; IÞ=PrðErjH; IÞ. If H is the true proposition, the evidence should support H, 
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the posterior odds in favour of H should be greater than the prior odds and so the Bayes factor 
PrðErj �H; IÞ=PrðErjH; IÞ should be less than 1. However, it has been shown that the expected 
value of this term is equal to 1. Thus, for some possible outcomes Er in fE1; . . . ;Eng, this Bayes 
factor will be greater than one and the posterior odds in favour of �H will be greater than the 
prior odds in favour of �H which is not a desirable result. The result that the expected value of 
the evidence for a wrong proposition is 1 means that there will be occasions when the outcome 
is seen to support the wrong proposition. Good (1985) notes that ‘[t]he only way to get an 
expected vaue of 1 is if the distribution of the Bayes factor is skewed to the right, that is, when 
the factor against the truth exceeds 1 it can be large’ (p. 255). Thus, there has to be careful con-
sideration of evidence, awareness of this possibility, and acceptance of the support given to the 
proposition by the evidence should not be given without careful thought. Good (1985) admits 
that ‘[i]t is disturbing that one can get a large factor against the truth’ (p. 255). There is further 
discussion of this result later in Good (1985) which is beyond the scope of this article.

As an illustration of the result in Equation (17), consider the following forensic scientific exam-
ple. A biological stain is recovered on a crime scene. A person of interest, the PoI, is considered as 
the donor of the stain. A laboratory will perform DNA analyses on the stain and on the PoI’s ref-
erence sample. The evidence presented in court is either a report of a correspondence (E1) be-
tween the two genetic profiles, or a report of a non-correspondence (E2) between them. There are 
only two possible results so n¼ 2 and, for ease of notation, denote E1 as E and E2 as �E.

The Court is interested in the evaluation of the findings under two hypotheses at the source level: 
H, the PoI is the source of the stain, and �H, the PoI is not the source of the stain (an unrelated per-
son is the source of that stain). The value of the finding is expressed through a Bayes factor.

The Bayes factor is either: 

PrðEjH; IÞ
PrðEj �H; IÞ

or
Prð�EjH; IÞ
Prð�Ej �H; IÞ

: (19) 

� The terms in the numerators, PrðEjH; IÞ and Prð�EjH; IÞ, are the probabilities that the analyst 
will report a correspondence or non-correspondence, respectively, if the PoI is the source of 
the crime scene stain. These are the two numerators of the possible Bayes factors in Equation 
(19). The probability of reporting a correspondence if the PoI is the source of the crime stain 
is the product of the probability there is a correspondence, which is 1, and the probability 
that it is reported. Denote the probability of reporting a correspondence PrðEjH; IÞ by α and 
its complement, the probability of failing to report a correspondence when there is one, as 
ð1− αÞ, respectively. 

� The terms in the denominator, PrðEj �H; IÞ and Prð�Ej �H; IÞ, are the probabilities that the analyst 
will report a correspondence or non-correspondence, respectively, if the PoI is not the source of 
the crime scene stain. The probability that a correspondence is reported given that the PoI is not 
the source of the crime stain is the probability of a random correspondence and a correct report 
of that random correspondence or the probability of a non-correspondence which is incorrectly 
reported as a correspondence. Denote the probability of a random correspondence as γ and the 
probability of a report of a non-correspondence as a correspondence as ð1− βÞ. The probability 
of the report of a non-correspondence as a non-correspondence is then β. Thus, the probability 
of a report of a correspondence (E) when the PoI is not the source of the crime stain is 
αγþð1− βÞð1− γÞ. The probability of a report of a non-correspondence (�E) when the PoI is not 
the source of the crime stain is then ð1 − αÞγþβð1 − γÞ. 

� If the evidence is the report of a correspondence between the DNA profiles of the PoI and the 
crime stain (E), the Bayes factor is 

PrðEjH; IÞ
PrðEj �H; IÞ

¼
α

αγþð1 − βÞð1 − γÞ
:
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� If the evidence is the report of no correspondence between the DNA profiles of the PoI and 
the crime stain (�E), the Bayes factor is 

Prð�EjH; IÞ
Prð�Ej �H; IÞ

¼
1 − α

ð1 − αÞγþ βð1 − γÞ
:

Assume, for example, that α¼ 0:99; γ ¼ 0:000001 and β¼ 0:999, then 

PrðEjH; IÞ
PrðEj �H; IÞ

¼
α

αγþð1 − βÞð1 − γÞ

¼
0:99

ð0:99× 0:000001Þþ ð0:001× 0:999999Þ
¼ 989:0219:

and 

Prð�EjH; IÞ
Prð�Ej �H; IÞ

¼
1 − α

ð1 − αÞγþ βð1 − γÞ
:

¼
0:01

ð0:01× 0:000001Þþ ð0:999×0:999999ÞÞ
¼ 0:01001002:

Consider that hypothesis H (the PoI is the donor of the stain) is true. The probability of a 
reported correspondence is PrðEjH; IÞ ¼ α¼ 0:99 with a corresponding Bayes factor of approxi-
mately 990. The probability of a reported non-correspondence is Prð�EjH; IÞ ¼ ð1− αÞ ¼ 0:01 
with a corresponding Bayes factor of approximately 0.010.

Therefore, the expected Bayes factor (before evidence is obtained15) in favour of �H when the 
PoI is the donor of the stain (H true) is 

PrðEjH; I Þ
PrðEj �H; IÞ
PrðEjH; IÞ

þPrð�EjH; IÞ
Prð�Ej �H; IÞ
Prð�EjH; IÞ

¼

¼ α
αγþð1 − βÞð1 − γÞ

α

� �

þð1 − αÞ
ð1 − αÞγþ βð1 − γÞ

1 − α

� �

¼ 0:99×
1

989
þ 0:01×

1
0:010

¼ 1:001: (20) 

The final result is not exactly 1 because of rounding errors. Use of a computer with greater pre-
cision gives the exact result of 1. Study of Equation (20) shows equivalence with Equation (17).

4.2 Expected weight of evidence
Good (1950) also showed that the expected weight of evidence for the correct proposition is 
non-negative and for the wrong proposition is non-positive. The proof depends on the mathe-
matical result that the geometric mean of a set of numbers is less than or equal to the arithmetic 
mean, with equality only if the set of numbers are all equal. First, some notation is defined.

Consider two mutually exclusive hypotheses H and �H and a type of evidence E with mutually 
exclusive outcomes E1;E2; . . . ;En. For a particular outcome, Er; r¼ 1; . . . ;n; the following nota-
tion is introduced for ease of presentation.

� pr ¼ PrðErj �HÞ;
� fr ¼ PrðErjHÞ=PrðErj �HÞ;
� prfr ¼ PrðErjHÞ;

and I has been omitted for ease of notation.
15 Of course, before the evidence is obtained, the value of γ is not known. The value given here is for illustration; 

the result holds for any value of γ.
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It is assumed that pr > 0 and fr > 0 for all r¼ f1;2; . . . ;ng. Also 
P

pr ¼ 1 and 
P

prfr ¼ 1:
The weight of evidence Er; r¼ 1; . . . ;n, in support of proposition H is 

log fPrðErjHÞ=PrðErj �HÞg:

If H is false (i.e. �H is true), the expected weight of evidence of type E in support of H is 

Xn

r¼1

PrðErj �HÞ log
PrðErjHÞ
PrðErj �HÞ

 !

¼
X

pr log fr ¼
X

log ðf pr
r Þ ¼ log

Y
f pr
r :

Q
f pr
r is the geometric mean of fr with weights pr (remember 

P
pr ¼ 1). Thus, from the result 

that the geometric mean is less than or equal to the arithmetic mean, 

Y
f pr
r ≤

P
prfr

P
pr
¼ 1:

Thus: 

Xn

r¼1

PrðErj �HÞ log
PrðErjHÞ
PrðErj �HÞ

 !

¼ log
Y

f pr
r ≤ log 1 ¼ 0: (21) 

The result for the expected weight of evidence of type E in support of H if H is true can be 
shown analogously to be greater than or equal to zero.16 Remember prfr ¼ PrðErjHÞ. For a slight 
easing of notation, denote prfr as qr with 

P
qr ¼ 1. Then 

Xn

r¼1

PrðErjHÞ log
PrðErj �HÞ
PrðErjHÞ

 !

¼
X

qr log f − 1
r ≤ 0;

from Equation (21). Now: 

X
qr log f − 1

r ≤0) −
X

qr log fr ≤ 0)
X

qr log fr ≥ 0;

and, hence, 

Xn

r¼1

PrðErjHÞ log
PrðErjHÞ
PrðErj �HÞ

 !

≥0: (22) 

As with the result for the value of the evidence, this result has an implication for the consider-
ation of the weight of the evidence. The weight of a particular outcome Er of an evidential type 
E is the logarithm of the Bayes factor. By definition the weight in support of �H is 
logfPrðErj �H; IÞ=PrðErjH; IÞg. As H is the true proposition, the evidence should support H, the 
posterior odds in favour of H should be greater than the prior odds and so the logarithm of the 
Bayes factor, logfPrðErj �H; IÞ=PrðErjH; IÞg, should be less than 0. It has been shown that the 
expected value of this term is less than or equal to 0. This may be thought a more pleasing result 
than for the value of the evidence as it allows for the possibility that the weight will never be 
greater than 0. However, the previous result shows that there will be a value greater than 1 and 
hence a weight greater than 0. As before, there has to be careful consideration of evidence, 

16 Note that the expected value of the evidence, the mean of a ratio, being equal to 1, does not mean that mean of 
the logarithm of the ratio is equal to zero. The logarithm of a mean of a ratio that is equal to 1 would be 0. The loga-
rithm of a mean is not the same as the mean of a logarithm.
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awareness of this possibility, and not unthinking acceptance of the support given to the proposi-
tion by the evidence.

Consider the TPB case. Proposition H is that the PoI (B) is guilty and �H is that B is not guilty. 
Consider the evidence that the fingermark on the wall of Taffio Palmi’s (TP’s) apartment did 
not correspond to any of B’s fingerprints, denote this E.17 Thus, E is supportive of proposition 
�H. The complement of E, �E, is evidence that the fingermark on the wall did correspond to one 
of B’s fingerprints and is supportive of H. In the notation of the general result, n¼ 2;E1 corre-
sponds to E and E2 corresponds to �E. The expected weight of evidence for the correct proposi-
tion is, with Equation (22) written with n¼2, E replacing E1 and �E replacing E2, 

PrðEjHÞ log
PrðEjHÞ
PrðEj �HÞ

 !

þPrð�EjHÞ log
Prð�EjHÞ
Prð�Ej �HÞ

 !

: (23) 

The value of evidence E, that the fingermark on the wall of TP’s apartment did not corre-
spond to any of B’s fingerprints, in support of H is PrðEjHÞ=PrðEj �HÞ. The value of evidence �E, 
that the fingermark on the wall of TP’s apartment did correspond to one of B’s fingerprints, in 
support of H is Prð�EjHÞ=Prð�Ej �HÞ. Investigators of the crime have to elicit values for the proba-
bilities of not finding a corresponding fingermark if B is guilty and if B is not guilty (PrðEjHÞ
and PrðEj �HÞ, respectively). Table 5 gives values for the respective likelihood ratios of not finding 
or finding a corresponding fingermark and the associated expected weight of evidence. In the 
TPB case, it is reasonable to assume that the absence of a corresponding fingermark to any of 
B’s fingerprints is suggestive that the true hypothesis is that B is innocent.

All these results support the theoretical result that the expected weight of the evidence in sup-
port of the hypothesis that B is not guilty is positive.

The likelihood ratio for the evaluation of evidence has an intuitively attractive meaning in 
that it is the factor that converts the odds in favour of a proposition before the evidence is con-
sidered to posterior odds in favour of the proposition after the evidence is considered. The re-
sult that the expected weight of evidence in favour of a true hypothesis is non-negative is 
confirmation that the statistic, logarithm of the likelihood ratio, is an intuitively attractive def-
inition for the weight of evidence. The expected weight of a particular type of evidence is a 
function which is considered before a search is made for the evidence. In the TPB case where a 
fingermark was observed on the wall of the victim’s apartment, consideration can be given to 
the expected weight of the evidence of the absence or presence of a corresponding fingerprint. 
It illustrates the relevance of the fingermark to the investigation through the requirement to 
consider the probabilities of finding or not finding a fingermark at the crime scene that corre-
sponds to a fingerprint from Busetto, if she is innocent or if she is guilty. It is not suggested 
that precise numerical values are given to these probabilities. Verbal equivalents could 
be used: for example, it is (very) unlikely that a corresponding fingermark would be found 
if B were innocent and (very) likely that a corresponding fingermark would be found if 
B were guilty.

Table 5. Probabilities of not finding a corresponding fingermark (E) if B is guilty (H) and if B is not guilty ( �H ), the 
respective likelihood ratios and the expected weight EW (in natural logarithms) of the evidence E from (23).

PrðEjHÞ PrðEj �HÞ PrðEjHÞ
PrðEj �H Þ

Prð�E jHÞ
Prð�E j �H Þ EW

0.01 0.98 0.010 49.5 3.82
0.02 0.99 0.020 98.0 4.42
0.05 0.98 0.051 47.5 3.52
0.10 0.95 0.105 18.0 2.38
0.10 0.90 0.111 9.0 1.76
0.001 0.995 0.001 199.8 5.29

17 Here, E refers to a non-correspondence. In the discussion of the expected value of evidence, Section 4.1, E refers 
to the report of a correspondence. This difference in definition has no influence on the results presented.
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5. Discussion and conclusion
Satisfaction of Carnap’s Principle of Total Evidence (Carnap 1947) enables jurists and scientists 
to reach logical and justifiable conclusions. The Principle is a fundamental prerequisite for any 
valid methodology for inferences and decisions because it justifies the acquisition and use of all 
available items of evidence. However, lawyers may argue that mathematics and numerical 
assignments (quantification) have no place in adjudication.

Appendix 1 shows that consideration of new evidence cannot lead to a decrease in utility. 
Appendix 2 shows that consideration of evidence reduces the expected error. In Section 2, it is 
commented that ‘[p]rovided that the utilities … of the outcomes of the possible actions … can 
be quantified … Bayesian decision theory explains how the expected value of information may 
be calculated’. Some may argue that since outcomes of actions cannot be quantified, the discus-
sion of this section of the article is rendered irrelevant. However, the proof that consideration of 
new evidence cannot lead to a decrease in utility does not depend on quantification. Similarly, 
the proof that consideration of evidence reduces expected error does not rely on quantification. 
For those who are wary of mathematics and quantification, these proofs may be considered as 
representations of relative likelihoods; the outcome of a particular action is more or less likely 
than the outcome of another action.

The use of symbols in mathematical arguments may give the impression that the argument is 
abstract and divorced from reality. However, in many applications, these symbols have verbal 
interpretations. In the context of the administration of justice, these verbal interpretations con-
cern evidence, propositions and assignments of uncertainty. The symbols, equations, and alge-
braic manipulations are all shorthand for verbal descriptions. The use of the symbols enables 
lengthy verbal descriptions to be made concisely and unambiguously.

Whilst consideration of the Principle of Total Evidence is important, attention has to be paid 
to the cost of the acquisition of new evidence. It is not practical to collect evidence indefinitely, 
not least because the cost of collection would increase indefinitely. For example, in a case of 
comparative genetic analysis between the profile of a biological trace found on a crime scene 
and that of a person of interest, the number of DNA markers considered cannot increase indefi-
nitely. Consider, for sake of illustration, a scenario involving results from 16 DNA markers that 
show a correspondence between the profiles. The defence could argue that additional markers 
should be studied as they could show a potential non-correspondence with their client and hence 
exonerate them as the donor of the stain.

If—as mentioned in Section 1—information was costless and there were no deadlines for the 
taking of decisions then the argument is compelling. However, these conditions do not hold in 
the context of a criminal investigation and trial. Cost plays an important role. The cost of the 
new information will allow the calculation of the net gain.

The gain in utility given by Equation (13) has to be compared with the cost of an experiment 
or, more generally, of the acquisition of new information, before a decision is made as to 
whether it is worthwhile to acquire the information.

Table 4 and Fig. 1 show the expected error associated with evidence compared with the 
expected error before the evidence was assessed. The accompanying text gives an interpretation 
of the results to show that it is not the exact values that are of particular importance; rather, it is 
the relative values. Table 4 and Fig. 1 also show the posterior odds for various values of the 
prior odds in favour of the prosecution proposition and for various probabilities associated with 
the acquisition of the evidence for each of the propositions of involvement (or not) of the person 
of interest. Again, it is not the exact values of these probabilities that are important, it is their 
relative value. The three items of evidence (fingermarks, EB, shoe marks, ES and DNA, ED) that 
were not considered by the Court in the TPB case, had been acquired. There was no additional 
cost for their acquisition. The costs to be accounted for by the Court when compared to the util-
ity of their consideration are those of the court’s time.

More generally, there is much to think about in the consideration of expected errors, utilities 
and losses. It is easy to give a theoretical result that shows an increase in utility through the ac-
quisition of additional information. It is not so easy to determine how to implement the result. 
First, consider the expected error associated with evidence Equation (16). Three (possibly sub-
jective) probabilities are required, the prior probability for the prosecution proposition, and the 
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two probabilities for the evidence, one considered conditional on the prosecution proposition, 
one considered conditional on the defence proposition.

The second consideration, that of the expected value of partial or perfect information and the 
associated values of utilities and losses, is more difficult. This is particularly the case during an 
investigation. It is easier during a trial when it may be thought all the evidence has been acquired 
and assessed by the investigators. The cost of its consideration by the court is small compared 
with the utility of increasing the probability of a correct verdict.

The prior probabilities and evidential probabilities are needed as before. It may be thought 
controversial for an investigator to consider prior probabilities. However, the investigator’s 
opinion on these will not be presented in court. It will be useful during the assessment of the 
value of the acquisition of additional evidence. The advantage of considering subjective values 
for the evidential probabilities and hence likelihood ratios has been described by Jackson, 
Aitken, and Roberts (2014).

Various factors have to be considered in the choice of utilities. The cost of the search for additional 
evidence, and for its assessment if found, may be easy to determine relative to the intangible cost of a 
miscarriage of justice. Also, the cost of losing, for example, can have different values for different pro-
tagonists in a civil trial. In a criminal trial, there is the age-old conundrum that tries to determine the 
number of guilty people acquitted that equate to the one innocent person convicted. Such miscarriages 
of justice are impossible to quantify. Perhaps the best than can be attempted is to consider probabilities 
and utilities in qualitative terms. Consider the effect of very small or very large probabilities and very 
large losses or utilities on the expected utility of partial or perfect information. Such considerations 
may provide helpful guidance as to whether to gather more evidence or not. Of course, in these days 
of sophisticated software packages it may be possible for one to be developed that will provide guid-
ance given inputs from the investigators at very little expenditure of time or money.

Not all available items of evidence were considered in the TPB case. Thus, even though quan-
tification may not be possible, it can be argued that utility was not maximized and expected er-
ror was not minimized. There is a good argument to be made that those responsible for the 
administration of criminal justice should require courts to pay attention to Carnap’s Principle. 
Whilst this may seem an esoteric requirement, it is, in reality, no more than a requirement to 
consider all available evidence, subject to cost, in order to maximize utility, minimize expected 
error, and hence improve the quality of justice.
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Appendix

Appendix 1: Proof that consideration of new evidence cannot lead to a 
decrease in utility                                                                                                         
The proof that follows shows that it is worthwhile to take account of new evidence in that such 
account cannot lead to a decrease in utility. Any increase has, of course, to be balanced with the 
cost of acquiring the new evidence. It is an expansion of the proof given in Good (1967).

Suppose there are r mutually exclusive and exhaustive hypotheses, H1;H2; . . . ;Hr and a choice 
of s acts, or classes of acts, A1;A2; . . . ;As. Let the utility of act Ai if Hj is true be UðAijHjÞ ¼ uij. 
Suppose that, on some evidence, E, there are initial probabilities pj ¼ PrðHjjEÞ. If just E is taken 
into account, then the (expected) utility of act Ai is 

P
j pjuij and the principle of rationality rec-

ommends the choice of i¼ i0, the value of i that maximizes this expression. Therefore, the 
(expected) utility in the rational use of E is 

maxi

X

j

pjuij:

Thus, in summary, the notation is as follows:

� i: identifier for actions Ai : A1; . . . ;As. 
� j: identifier for propositions Hj : H1; . . . ;Hr. 
� uij: utility UðAijHjÞ for action Ai when Hj true. 
� The prior probability of Hj with initial evidence E: pj. 
� The expected utility of action Ai is 

Pr
j¼1 pjuij ¼

Pr
j¼1 UðAijHjÞPrðHjjEÞ. 

For an application, choices need to be made for the values of the prior probabilities and 
the utilities.

The rational choice of action is the action Ai which maximizes the expected utility, suppose 
that action is Ai0 . The maximum expected utility is maxi

P
j pjuij. Thus, it can be written that the 

expected utility of Ai0 is 

maxi

X

j

pjuij ¼
X

j

pjui0j: (24) 

The questions then are: Is it worthwhile taking a new observation, taking account of new evi-
dence? Is there an increase in utility if new evidence is considered?

The new evidential type is assumed to have one of t possible outcomes, denoted E1; . . . ;Et, 
indexed by k¼ f1; . . . ; tg and assumed mutually exclusive and exhaustive and independent of E; 
a subscript is associated with the new evidence Ek to differentiate it from the prior evidence E on 
which the prior probability PrðHjjEÞ is assigned. The probabilities associated with the 
Ek; PrðEkjHjÞ depend on the proposition Hi. Denote these probabilities pjk. Since the Ek are mu-
tually exclusive and exhaustive, 

Xt

k¼1

PrðEkjHjÞ ¼ PrðE1jHjÞþ � � � þPrðEtjHjÞ ¼
Xt

k¼1

pjk ¼ 1: (25) 
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The posterior probability of ðHjjE;EkÞ is PrðHjjE;EkÞ. Denote this as qjk. Then 

qjk ¼ PrðHjjE;EkÞ ðj ¼ 1; . . . ; r; k ¼ 1; . . . ; tÞ
¼ PrðEkjHj;EÞPrðHjjEÞ=PrðEkjEÞ
¼ PrðEkjHjÞPrðHjjEÞ=PrðEkÞ

since E and Ek independent

¼ PrðEkjHjÞPrðHjjEÞ=
X

j

PrðEkjHjÞPrðHjjEÞ

¼ pjpjk=
X

j

pjpjk;

the final (posterior) probability of Hj if Ek occurs (and given E has occurred).
The expected utility of Ai given Ek, and combined with E, is 

Xr

j¼1

qjkuij ¼
X

j

UðAijHjÞPrðHjjE;EkÞ:

The principle of rationality recommends the choice of Ai for which the expected utility of Ai, 
given Ek combined with E is maximized, ie 

maxi

X

j

qjkuij:

Thus, before a new observation is made, the maximum expected utility is the weighted aver-
age of the maximum expected utilities associated with each outcome Ek, with the weights being 
the probabilities of Ek, that is, 

Xt

k¼1

PrðEkÞ maxi

X

j

ðqjkuijÞ
� �

:

Now, as shown above, 

PrðEkÞ ¼
X

j

PrðEkjHj;EÞPrðHjjEÞ

¼
X

j

PrðEkjHjÞPrðHjjEÞ

since E and Ek are independent

¼
X

j

pjkpj;

and qjk ¼ pjpjk=
X

j

pjpjk ¼ pjpjk=PrðEkÞ:

Then 
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P
k PrðEkÞ maxi

P
jðqjkuijÞ

h i
¼
P

k PrðEkÞ½maxi
P

j
pjpjk

PrðEkÞ
uij

� �

�;

¼
P

k½PrðEkÞ
1

PrðEkÞ

� �

maxi
P

j pjpjkuij

� �
�

since PrðEkÞis independent of i and j
and can be taken outside the sum as a common
factor and outside the term maxi

¼
P

k maxi
P

j pjpjkuij

h i
:

Thus, the expected utility of an action based on new evidence is 

X

k

PrðEkÞ maxi

X

j

ðqjkuijÞ
� �

¼
X

k

maxi

X

j

pjpjkuij

� �
: (26) 

This is the sum over all possible outcomes fE1; . . . ;Etg of the new evidence and is the expected 
utility before the new evidence is observed.

The rational choice of Ai if no new evidence (24) is taken is 

maxi

X

j

pjuij: (27) 

Thus, it is desired to prove that (26) is no less than (is greater or equal to) (27). In mathemati-
cal terms, it is to be shown that 

X

k

maxi

X

j

PrðHjjEÞPrðEkjHjÞuij ≥maxi

X

j

PrðHjjEÞuij: (28) 

The right-hand side of the inequality is the maximum utility without considering new evidence 
Ek. The left-hand side is the expected utility when Ek is considered.

The expression 

X

j

PrðHjjEÞPrðEkjHjÞuij ¼
X

j

pjpjkuij 

is a summation over all r possible hypotheses/propositions and is therefore independent of any 
particular value of j. The expression varies in value depending on the action Ai taken and the ob-
servation Ek made, and only on that action and that observation. The expression is said to be a 
function f of i and k and thus it can be written as f(i, k): 

f ði; kÞ ¼
X

j

PrðHjjEÞPrðEkjHjÞuij ¼
X

j

pjpjkuij 

and 
X

k

f ði;kÞ ¼
X

k

X

j

PrðHjjEÞPrðEkjHjÞuij ¼
X

k

X

j

pjpjkuij (29) 

is a function of the actions Ai; fi¼ 1; . . . ; sg only, since dependence on k has also been eliminated 
through summation.

Let i0 be a value that maximizes (29), i.e. 
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f ði0Þ ¼ maxi

X

k

f ði;kÞ; (30) 

the maximum over i of the sums 
P

k f ði;kÞ.
Consider the f ði;kÞ; j¼ 1; . . . ; s, individually for a particular value of k. Then maxif ði;kÞ is the 

maximum value of all the f ði;kÞ; i¼ 1; . . . ; s.
Thus, by definition, 

maxif ði;kÞ≥ f ði0;kÞ;

since the left-hand side is the maximum of f(i, k) over all i and in particular i0.
Sum both sides over k. 

X

k

maxif ði;kÞ≥
X

k

f ði0; kÞ:

However, again by definition, i0 is the value of i that maximizes 
P

k f ði;kÞ; see (30). Thus 
X

k

f ði0;kÞ ¼ maxi

X

k

fði; kÞ:

Thus 
X

k

maxif ði;kÞ≥maxi

X

k

fði; kÞ: (31) 

From (28), if the result 
X

k

maxi

X

j

pjpjkuij ≥maxi

X

j

pjuij 

can be proved, then the questions ‘Is it worthwhile taking a new observation, taking account of 
new evidence?’ and ‘Is there an increase in utility if new evidence is considered?’ can be answered 
in the affirmative: ‘It is worthwhile taking a new observation, taking account of new evidence’ 
and ‘There is an increase in utility if new evidence is considered’.

Consider the right-hand side of (31). 
P

k fði; kÞ ¼
P

k
P

j pjpjkuij

¼
P

k
P

j PrðHjjEÞPrðEkjHjÞuij

¼
P

j
P

k PrðHjjEÞPrðEkjHjÞuij

swapping order of summation; then PrðHjjEÞ
and uij are common factors within the
summation over k

¼
P

j PrðHjjEÞuij
P

k PrðEkjHjÞ

¼
P

j PrðHjjEÞuij

since
P

k PrðEkjHjÞ ¼ 1; from ð25Þ
¼
P

j pjuij:

Thus, the right-hand side of (31) equals maxi½
P

j pjuij�.
Remember that f ði;kÞ ¼

P
j PrðHjjEÞPrðEkjHjÞuij ¼

P
j pjpjkuij.

The left-hand side of (31), 
P

k maxif ði;kÞmay then be written as 
X

k

maxif ði;kÞ ¼
X

k

maxi

X

j

pjpjkuij:

This establishes the result 
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X

k

maxi

X

j

pjpjkuij ≥maxi

X

j

pjuij:

Thus: ‘It is worthwhile taking a new observation, taking account of new evidence’ and ‘There 
is an increase in utility if new evidence is considered’.

The result proves that it never leads to a decrease in utility to take new evidence. It is not a result 
which says what the decision should be once the evidence is taken. The result precedes the observa-
tion of new evidence. Once the new evidence has been taken and the observation made, say the ob-
servation is Ek0

, then the rational decision Ai1 is the one for which i1 is the maxi
P

j pjpjk0
uij.

Appendix 2: Proof that EeðHjðE ; �E Þ; IÞ≤EeðHjIÞ
The proof is taken from Horwich (2016: 119–20). 

Let x ¼ PrðHjIÞ; y ¼ PrðHjE; IÞ;
z ¼ PrðHj�E; IÞ;w ¼ PrðEÞ:

From Equations (14) and (15), the expected errors before and after observing E are 

EeðHjIÞ ¼ 2PrðHjIÞf1 − PrðHjIÞg ¼ 2xð1 − xÞ;
EeðHjðE; �EÞ; IÞ ¼ 2PrðEjIÞ½PrðHjE; IÞf1 − PrðHjE; IÞg�

þ 2Prð�EjIÞ½PrðHj�E; IÞf1 − PrðHj�E; IÞg�
¼ 2wyð1 − yÞþ 2ð1 − wÞzð1 − zÞ:

Note that 

PrðHÞ ¼ PrðEÞPrðHjE; IÞþPrð�EÞPrðHj�EÞ ) x ¼ wyþð1 − wÞz:

Then 

1
2
fEeðHjIÞ− EeðHjðE; �EÞ; IÞg ¼

xð1 − xÞ− wyð1 − yÞ− ð1 − wÞzð1 − zÞ
¼ x − x2 − wyþwy2 − ð1 − wÞzþð1 − wÞz2

¼ fx − wy − ð1 − wÞzgþfwy2þð1 − wÞz2 − x2g

¼ wy2þð1 − wÞz2 − x2

¼ wy2þð1 − wÞz2 − fwyþð1 − wÞzg2

¼ wy2þð1 − wÞ2 − w2y2 − ð1 − wÞ2z2 − 2wð1 − wÞyz
¼ wð1 − wÞy2þð1 − wÞfz2 − ð1 − wÞz2g− 2wð1 − wÞyz

¼ wð1 − wÞðy − zÞ2

≥ 0;

with equality if and only if y¼ z;PrðHjE; IÞ ¼ PrðHj�E; IÞ or the meaningless w¼ PrðEÞ ¼ 1 or 0. 
Thus, the expected error, EeðHj; IÞ, before the observation of E is never less than the expected er-
ror EeðHjðE; �EÞ; IÞ after the observation of E.
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