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Abstract 

Background:  Hyperglycemia in the setting of an acute coronary syndrome (ACS) impacts short term outcomes, 
but little is known about longer term effects. We therefore designed this study to firstly determine the association 
between hyperglycemia and short term and longer term outcomes in patients presenting with ACS and secondly 
evaluate the prognostic role of diabetes, body mass index (BMI) and the novel biomarker Cyr61 on outcomes.

Methods:  The prospective Special Program University Medicine-Acute Coronary Syndrome (SPUM-ACS) cohort 
enrolled 2168 patients with ACS between December 2009 and October 2012, of which 2034 underwent PCI (93.8%). 
Patients were followed up for 12 months. Events were independently adjudicated by three experienced cardiologists. 
Participants were recruited from four tertiary hospitals in Switzerland: Zurich, Geneva, Lausanne and Bern. Participants 
presenting with acute coronary syndromes and who underwent coronary angiography were included in the analy-
sis. Patients were grouped according to history of diabetes (or HbA1c greater than 6%), baseline blood sugar level 
(BSL; < 6, 6–11.1 and > 11.1 mmol/L) and body mass index (BMI). The primary outcome was major adverse cardiac 
events (MACE) which was a composite of myocardial infarction, stroke and all-cause death. Secondary outcomes 
included the individual components of the primary endpoint, revascularisations, bleeding events (BARC classification) 
and cerebrovascular events (ischaemic or haemorrhagic stroke or TIA).

Results:  Patients with hyperglycemia, i.e. BSL ≥ 11.1 mmol/L, had higher levels of C-reactive protein (CRP), white 
blood cell count (WBC), creatinine kinase (CK), higher heart rates and lower left ventricular ejection fraction (LVEF) 
and increased N-terminal pro-brain natriuretic peptide. At 30 days and 12 months, those with BSL ≥ 11.1 mmol/L had 
more MACE and death compared to those with BSL < 6.0 mmol/L or 6.0–11.1 mmol/L (HR-ratio 4.78 and 6.6; p < 0.001). 
The novel biomarker Cyr61 strongly associated with high BSL and STEMI and was independently associated with 
1 year outcomes (HR 2.22; 95% CI 1.33–3.72; Tertile 3 vs. Tertile 1).
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Background
Cardiovascular disease (CVD) remains the main cause of 
deaths worldwide. Indeed, in 2008 more than 17 million 
people died from CVDs and 10% of the global disease 
burden has been attributed to CVD [1]. The most com-
mon forms are chronic and acute coronary syndromes 
(ACS). Their causes are multifactorial, but involve behav-
ioural risk factors such as physical inactivity, unhealthy 
diets, alcohol abuse and weight gain [2] which are also 
leading to the metabolic syndrome and diabetes. Elevated 
blood glucose levels are major determinants of athero-
sclerosis and plaque formation and unfavourable out-
comes in the population at large [3].

The global prevalence of diabetes in adults aged over 25 
is 10%. According to the International Diabetes Founda-
tion 425 million are estimated to have diabetes in 2017 
and if this trend continues, there will be 642 million adult 
diabetics in 2040 [4]. More than half of them are expected 
to die from CVD. Indeed, cardiovascular events are two 
to four times more common in individuals with type 1 or 
type 2 diabetes [5]. Of note, the risk of developing type 2 
diabetes, coronary heart disease and/or ischemic stroke 
increases steadily with an increasing BMI [6–10].

Hyperglycemia is associated with unfavourable short 
term outcomes in both diabetics and non-diabetics pre-
senting with ACS [11, 12] and also in those with cardio-
genic shock [13]. However, the associations involved 
between hyperglycemia and short as well as long-term 
outcomes are not well understood. We investigated the 
relationship between hyperglycemia and possible mecha-
nisms reflected by established and novel biomarkers of 
both short- and long-term outcomes in patients presenting 
with ACS undergoing PCI. Furthermore, we analysed the 
impact of the diagnosis of diabetes, and the relationship 
between diabetes and body mass index (BMI) on outcome.

Methods
Study population
The prospective multi-centre Special Program University 
Medicine (SPUM)-ACS Biomarker cohort (ClinicalTri-
als.gov Nr. NCT01000701) recruited patients who were 
referred for coronary angiography with the primary diag-
nosis of ACS to one of four Swiss University Hospitals 

(Zurich, Bern, Lausanne and Geneva) between December 
2009 and October 2012. It comprised consecutive recruit-
ment and follow-up performed at 30  days (phone call) 
and 1 year (clinical visit). Female and male patients aged 
18  years or older presenting within 5  days (preferably 
within 72  h) after pain onset with the main diagnosis of 
ST-elevation myocardial infarction (STEMI), non-ST-ele-
vation myocardial infarction (NSTEMI) or unstable angina 
(UA) were included. Within this consortium, a centralised 
electronic database was implemented providing compre-
hensive information on all patients. All adverse events 
occurring within 1  year after the index ACS event were 
ascertained at 30 days (telephone visit) and 1 year (clini-
cal visit) and adjudicated by an independent adjudication 
committee consisting of 3 experienced cardiologists.

Patient selection
Patients had symptoms compatible with angina pectoris 
(chest pain, dyspnea) and fulfilled at least one of the fol-
lowing criteria: (a) ECG changes such as persistent ST-
segment elevation or depression, T-inversion or dynamic 
ECG changes, new left bundle branch block (LBBB); (b) 
evidence of positive (predominantly conventional) tro-
ponin by local laboratory reference values; (c) known 
coronary artery disease, specified as status after myocar-
dial infarction, or PCI or newly documented ≥ 50% ste-
nosis of an epicardial coronary artery during the initial 
catheterisation. Exclusion criteria included severe physi-
cal disability, inability to comprehend the study or life 
expectancy of less than 1 year for non-cardiac reasons.

Measurement of biomarkers
Blood was drawn from the radial or femoral sheath at 
the beginning of the procedure and, following centri-
fuge, was stored at −  80  °C to allow for later analysis. 
Plasma glucose was measured using local laboratories 
with blood collected at the time of presentation to the 
hospital, therefore patients were not necessarily fasting 
prior to blood collection. Biomarkers were measured in 
serum blinded to the current analysis in a central core 
laboratory (AvE, Department of Clinical Chemistry, Uni-
versity Hospital Zurich, Switzerland). C-reactive protein 
(CRP), high-sensitivity troponin T (hsTnT), N-terminal 

Conclusions and relevance:  In this large, prospective, independently adjudicated cohort of in all comers ACS 
patients undergoing PCI, both a history of diabetes and elevated entry glucose was associated with inflammation and 
increased risk of MACE both at short and long-term. The mediators might involve increased sympathetic activation, 
inflammation and ischemia as reflected by elevated Cyr61 levels leading to larger levels of troponin and lower LVEF.
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pro-brain natriuretic peptide (NT-proBNP) were meas-
ured using immunoassays and the COBAS8000 autoana-
lyser from Roche Diagnostics, Mannheim, Germany). In 
addition, the soluble matricellular protein Cysteine-rich 
angiogenic inducer (Cyr61, syn. CCN1) was determined 
in serum using a immunoassay (EIA-5108, DRG Instru-
ments GmbH, Marburg, Germany) [14].

Definitions and endpoints
The primary endpoint of major adverse cardiovascular 
events (MACE) was defined as the composite of death, 
myocardial infarction (MI) and stroke. Secondary end-
points included the individual components of the primary 
endpoint, revascularisations, bleeding events (BARC clas-
sification) and cerebrovascular events (ischaemic or haem-
orrhagic stroke or TIA). Diabetes was defined as patients 
with a clinically known history of diabetes and/or on oral 
or injectable antidiabetic medication and/or HbA1c > 6.5% 
on admission. In patients with measured HbA1c, diabetes 
was considered present in individuals with HbA1c > 6.5% 
and ruled-out if HbA1c was < 5.7%. Pre-diabetes was 
defined as a HbA1c between 5.7 and 6.5%.

Data analysis and statistics
To compare diabetics with non-diabetics we used two-
sided t-tests to compare two groups assuming equal vari-
ances and ANOVA to compare more than two groups. 
If assumptions of normality were violated, rank sum test 
was used to compare two groups and Kruskal–Wallis tests 
were used to compare more than two groups with an ordi-
nal classification (e.g. blood glucose level). Significance 
levels were chosen at p < 0.05. Patients were stratified 
according to BSL levels on presentation, BMI categories 
and medication history (insulin; Oral hypoglycemic agents 
and diabetics without specific antidiabetic medication).

Outcomes after ACS with PCI were compared between 
diabetics and non-diabetics at 30  days and 1  year using 
Kaplan–Meier survival curves and evaluated using log 
rank tests. Outcomes were also compared in patients 
with entry glucose of < 6.0  mmol/L, 6.0–11.1  mmol/L 
and > 11.1  mmol/L and comparison was made using 
log rank tests. To assess more closely the relationship 
between extreme hyperglycemia (glucose > 11.1 mmol/L) 
and major adverse cardiac events (independent of dia-
betic status), we performed Cox regression analysis 
adjusting for patients diabetic status using an entry glu-
cose of < 6.0  mmol/L as a reference. We used landmark 
analyses to evaluate the unadjusted impact of hypergly-
cemia in survivors at 30 days to 365 days. Log rank tests 
was used to compare groups in the landmark analysis.

For the analysis of body mass index (BMI) on outcomes 
after ACS, patients were grouped according to their 

body mass index (BMI): BMI < 25  kg/m2 (normal), BMI 
25–29.9 kg/m2 (overweight) and BMI > 30 kg/m2 (obese) 
and outcomes were compared using Kaplan–Meier sur-
vival analyses and log rank tests. Multivariate logistic 
regression was used to assess the relationship between 
above and below median Cyr61 levels and hyperglycemia. 
Cox regression analysis was performed to then assess 
the relationship between tertiles of Cyr61 levels and out-
comes, taking into account potential confounders such as 
MI type, leucocyte count and hyperglycemia.

Results
Baseline characteristics
Baseline demographics
Out of 2168 patients with an ACS referred for coro-
nary angiography, 2034 underwent PCI (93.8%) which 
were the basis for the current analysis. Overall, 82% of 
patients were male and 18% were female. Out of these 
2034 ACS patients, 18.3% (n = 373) were diabetics. The 
male–female ratio was similar among diabetic and non-
diabetic patients (Table  1). However, diabetic patients 
were older (p < 0.001) and had a higher BMI compared to 
non-diabetics patients (p < 0.001). A higher proportion of 
diabetics patients had a BMI > 30 kg/m2 (33.4% vs. 19.1%; 
p < 0.001). Diabetic patients also had a higher heart rate 
(78.4 bpm vs. 75.5 bpm; p = 0.001), but no significant dif-
ference in blood pressure compared to non-diabetics. 
Furthermore, left ventricular ejection fraction (LVEF) 
was lower in diabetic patients compared to non-diabetics 
(p < 0.01, Table 1).

Laboratory values and biomarkers
Diabetic patients had significantly lower HDL-cholesterol 
(HDL-C), lower LDL-cholesterol (LDL-C) and lower 
total cholesterol, but elevated triglycerides compared to 
non-diabetics (all p < 0.001). In addition, diabetic patients 
had significantly higher levels of CRP (p < 0.001), while 
leucocyte counts were similar (Table 1).

Glucose levels at presentation
The median glucose on arrival was 8.3  mmol/L in 
diabetics and 6.1  mmol/L in non-diabetics, and 
7.4% (n = 134) of patients presented with glu-
cose ≥ 11.1  mmol/L (Fig.  1). In patients with a his-
tory of diabetes or with HbA1c > 6.5%, 28.5% (n = 97) 
had glucose ≥ 11.1  mmol/L, compared to only 2.5% 
(n = 37) of patients with previously unknown diabetes. 
There were significant differences in clinical param-
eters between these glucose groups, with patients with 
higher glucose having a higher heart rate, higher lev-
els of CRP, higher leucocyte count and NT-proBNP 
and lower LVEF (Additional file 1: Table S1). Nearly all 
NSTEMI patients with glucose ≥ 11.1  mmol/L had a 
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diagnosis of diabetes (29/30; 96.7%) whereas only two-
thirds of STEMI patients with glucose ≥ 11.1  mmol/L 
had a diagnosis of diabetes (62/92; 67.4%).

Clinical outcomes in diabetics and non‑diabetics
Diabetics versus non‑diabetics
At 30  days, 6.2% (n = 23) of diabetic patients had experi-
enced the primary endpoint compared with 3.3% (n = 55) of 
non-diabetics (p < 0.009; Fig. 2a). At 1 year, 13.7% (n = 51) of 
diabetics had experienced the primary endpoint compared 

to 6.7% (n = 112) of non-diabetics (p < 0.001). Thirty-day 
mortality was 3.2% (n = 12) in diabetics and 1.7% (n = 28) 
in non-diabetics (p = 0.054; Fig.  3a). This trend towards a 
higher mortality in diabetics reached statistical significance 
at 1 year (7.0% vs. 3.4%; p = 0.002; Fig. 3).

On landmark analysis, the diagnosis of diabetes was 
associated with the primary endpoint at 1 year in sur-
vivors to 30 days (log rank test p = 0.005; Fig. 2b). Fur-
thermore, the diagnosis of diabetes was associated with 
increased risk of death at 1 year in those who survived 
to 30 days (log rank test p = 0.005; Fig. 3b).

There was a significantly higher stroke rate in dia-
betics compared to non-diabetics at 30  days (1.9% vs. 
0.4%; p = 0.001) and 1  year (2.7% vs. 0.8%; p = 0.002). 
However, revascularisation rates did not differ between 
diabetics and non-diabetics (2.1% vs. 1.7%; p = 0.602) at 
30 days and 1 year (7.8% vs. 5.9%; p = 0.176). Also, there 
was no significant difference in bleeding in diabetics 
and non-diabetics at 30 days (4.0% vs. 4.9%; p = 0.482) 
or 1 year (5.9% vs. 7.8%; p = 0.201).

Outcomes according to baseline glucose
At 30  days, patients with glucose upon presentation 
of ≥ 11.1  mmol/L had significantly higher risk of the 
primary endpoint and mortality (Fig. 4). This was con-
firmed on univariate Cox regression analysis where a 
BSL ≥ 11.1 mmol/L was associated with a hazard ratio 
of 4.78 (95% CI 2.55–8.97; p < 0.001) for the primary 
endpoint at 30  days and a hazard ratio of 6.6 (95% CI 
3.65–11.9; p < 0.001) for death at 30  days compared to 
patients with BSL < 6.0  mmol/L. After adjustment for 
diabetes history, the relationship between hypergly-
cemia and MACE remained significant with a hazard 
ratio of 5.21 (95% CI 2.47–10.98; p < 0.001). The hazard 
ratio for patients with a glucose of 6.0–11.1  mmol/L 
was 1.21 (95% CI 0.69–2.10).

Using landmark analysis, including only survi-
vors at 30  days, patients with glucose ≥ 11.1  mmol/L 
still had significantly higher risk of MACE from 30 to 
365 days (log rank p = 0.005; Fig. 4b). The rate of stroke 
at 30  days was significantly different between groups 
and was 2.24% in those with glucose ≥ 11.1  mmol/L, 
0.93% with glucose 6–11.1  mmol/L and 0.14% in glu-
cose < 6  mmol/L (p = 0.016). There was no difference 
between groups at either 30 days or 1 year in terms of 
revascularisation or bleeding.

When stratifying by infarct type (STEMI vs. 
NSTEMI/Unstable Angina), hyperglycemia (BSL ≥ 11.1 
vs. BSL < 6.0) was predictive of outcomes at 365  days 
in both groups. The impact was more pronounced for 
STEMI patients (HR 5.64; 95% CI 2.95–10.76) compared 
to NSTEMI/UA patients (HR 3.02; 95% CI 1.25–7.31).

Table 1  Demographics, hemodynamic parameters 
and  major laboratory values in  non diabetics (NO DM) 
and diabetics (DM)

BMI body mass index, CRP C-reactive protein, HBA1C haemoglobin A1c, HDL-C 
high density lipoprotein cholesterol, LDL-C low density lipoprotein cholesterol, 
LVEF left ventricular ejection fraction, STEMI ST segment elevation myocardial 
infarction, NSTEMI non ST-segment elevation myocardial infarction, UA unstable 
angina

No DM
(N = 1661)

DM
(N = 373)

p value

BMI 26.8 ± 4.1 28.8 ± 4.7 < 0.001

Sex

 ♂ 1313 295 0.99

 ♀ 348 78

% female 21.0% 20.9% 0.91

Age (years) 62.8 ± 12.4 66.5 ± 12.2 < 0.001

Hypertension 883 (53%) 291 (78%) < 0.001

Previous MI 198 (11.9%) 83 (22.2%) < 0.001

Previous PCI 244 (14.7%) 92 (24.7%) < 0.001

Previous CABG 62 (3.7%) 36 (9.7%) < 0.001

Previous stroke 29 (1.7%) 18 (4.8%) < 0.001

Previous TIA 18 (1.1%) 15 (4.0%) < 0.001

ACS type

 STEMI 948 (57.1% 174 (46.7%) < 0.001

 NSTEMI 663 (39.9%) 180 (48.2%)

 UA 50 (3.0%) 19 (5.1%)

LVEF (%) 51.7 ± 11.2 48.9 ± 12.3 < 0.001

Heart rate (BPM) 75.5 ± 16.0 78.4 ± 15.7 0.001

Systolic BP (mmHg) 130.1 ± 23.5 131.9 ± 23.1 0.18

Diastolic BP (mmHg) 75.7 ± 14.5 75.4 ± 16.5 0.70

HDL-c (mmol/L) 1.2 ± 0.3 1.1 ± 0.3 < 0.001

LDL-c (mmol/L) 3.3 ± 1.1 2.7 ± 1.2 < 0.001

Triglycerides (mmol/L) 1.005 (0.66–1.53) 1.14 (0.81–1.83) < 0.001

Cholesterol (mmol/L) 5.0 ± 1.2 4.5 ± 1.4 < 0.001

Leukocytes (g/L) 9.7 (7.52–12.2) 9.34 (7.4–12.1) 0.197

CRP (mg/L) 2.5 (1.1–7) 3.9 (1.6–11.1) < 0.001

Glucose (mmol/L) 6.6 ± 1.9 9.8 ± 4.6 < 0.001

HBa1c (%) 5.8 ± 0.3 7.6 ± 1.9 < 0.001

hs troponin T (µg/L) 0.20 (0.06–0.71) 0.19 (0.057–0.681) 0.49

Creatine kinase (U/L) 235 (114–539) 185 (93–419) < 0.001

nt-probnp (ng/L) 337 (113–1155) 633 (192–2325) < 0.001

Cyr61 (pg/mL) 510 (340–951) 487 (344–780) 0.25
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Fig. 1  Box plots of selected variables and biomarkers according to glucose level at baseline. Differences between groups analysed using either 
ANOVA or Kruskal–Wallis tests
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Finally, we found that the impact of hyperglycemia 
on outcomes was more pronounced in non-diabetic 
patients compared to diabetics. Non-diabetics present-
ing with glucose ≥ 11.1  mmol/L had a 30  day MACE 
rate of 21.6% (p < 0.001 compared to glucose < 6 mmol/L 
and 6–11.1  mmol/L), while diabetics presenting with 
glucose ≥ 11.1  mmol/L had a 30  day MACE rate of 
10.3% (p = 0.06 compared to glucose < 6  mmol/L and 
6–11.1 mmol/L). At 1 year non-diabetics presenting with 
glucose ≥ 11.1 mmol/L had a MACE rate of 27% (p < 0.001 
compared to glucose < 6  mmol/L and 6–11.1  mmol/L), 
while diabetics presenting with glucose ≥ 11.1  mmol/L 
had a MACE rate of 21.7% (p = 0.01 compared to glu-
cose < 6 mmol/L and 6–11.1 mmol/L).

Association between Cyr61, diabetes, hyperglycemia 
and outcomes
In patients with glucose ≥ 11.1  mmol/L, levels of Cyr61 
were significantly higher than those with glucose lev-
els < 6.0 mmol/L or 6.0 mmol/L to 11.1 mmol/L (p < 0.001; 
Fig.  1). Furthermore levels of Cyr61 were higher across 
all categories of glucose for patients with STEMI while 
Cyr61 levels did not change significantly across glucose 

groups in NSTEMI/unstable angina (Fig.  5). Although 
both Cyr61, CRP and leucocyte count levels were higher 
in patients with glucose ≥ 11.1  mmol/L (Fig.  1), there 
was a weak negative correlation between Cyr61 and CRP 
(r = − 0.15; p < 0.001) levels, while a moderately positive 
correlation existed between Cyr61 and leucocyte count 
(r = 0.26; p < 0.001). There was no difference in Cyr61 
levels in patients with HbA1c ≥ 8.0% compared to those 
with HbA1c < 8.0% (p = 0.13). On univariate analysis, 
patients with BSL > 11.1 mmol/L had significantly higher 
odds of having Cyr61 levels above the median (OR 2.79; 
95% CI 1.87–4.16; p < 0.001). Given the known associa-
tion between higher Cyr61 levels and STEMI [14], we 
adjusted for STEMI and other risk factors including age, 
gender, BMI, hypertension, diabetes, LDL cholesterol, 
LVEF, troponin T, STEMI and serum creatinine and CRP. 
There was still a strong relationship between hyperglyce-
mia (as defined by BSL ≥ 11.1 mmol/L) and above median 
Cyr61 levels (OR 2.45; 95% CI 1.16–5.15, p = 0.018).

In terms of outcomes, we grouped Cyr61 levels into ter-
tiles and found at 30 days using univariate cox regression 
analysis, a significantly higher risk of MACE in patients 
in the highest Cyr61 tertile (HR 2.39; 95% CI 1.28–4.47). 

Fig. 2  a Kaplan–Meier curves of major adverse cardiovascular 
events (MACE) in diabetics versus non-diabetics in the first 30 days. 
b Landmark survival curves (30 days to 1 year) of major adverse 
cardiovascular events in diabetics versus non-diabetics

Fig. 3  a Kaplan–Meier survival curves of mortality in diabetics versus 
non-diabetics in the first 30 days. b Landmark survival analysis using 
Kaplan–Meier survival curves to assess mortality in diabetics versus 
non-diabetics from 30 to 365 days
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After adjustment for STEMI, leucocyte count and glu-
cose group, the relationship was not significant (HR 1.85; 
95% CI 0.88–3.88) while there was a significant relation-
ship between BSL ≥ 11.1  mmol/L and MACE (HR 5.55; 
95% CI 2.71–11.37). At 1 year, after performing the same 
adjustments, there was a significant relationship between 

outcomes and the highest Cyr61 tertile (HR 2.22; 95% CI 
1.33–3.72) as well as a persistent relationship between 
BSL ≥ 11.1  mmol/L and outcomes (HR 3.92; 95% CI 
2.29–6.72).

Outcomes and BMI
Outcomes according to BMI were analysed in 2’004 
patients according to 3 different classes of BMI levels. 
There were significant differences among BMI groups 
at baseline. A significantly higher proportion of dia-
betics (34.4% vs. 19.2%; p < 0.001) had BMI > 30  kg/
m2. Patients with BMI > 30 had the highest systolic 
(133.9 ± 23.2  mmHg) and diastolic (78.2 ± 15.1  mmHg) 
blood pressure in comparison to those with BMI 25–29.9 
(systolic 130.2 ± 23.3, diastolic 75.9 ± 14.7  mmHg; 
p < 0.01) or a BMI < 25 (128.6 ± 23.2/73.9 ± 14.7  mmHg; 
p < 0.001). Moreover, the group with BMI > 30 showed 
the highest heart rate (77.4 ± 15.2  bpm; p < 0.003 vs. 
BMI 25–29.9, p = 0.52 vs. BMI < 25), higher CRP lev-
els (12.5 ± 25.1  mg/L; p < 0.03 vs. BMI 25–29.9, p < 0.07 
vs. BMI < 25) and the highest entry glucose levels 
(7.5 ± 3.1 mmol/L; p < 0.001 vs. BMI < 25, p < 0.05 vs. BMI 
25–29.9) in comparison with the other groups.

There were no significant differences in the pri-
mary endpoint at 1 year between the three BMI groups 
(p = 0.211) (Table  2). When patients were grouped 
according to their history of diabetes, there was a sig-
nificantly higher risk of the primary endpoint in diabetic 
patients with a BMI < 25  kg/m2 compared to diabetic 
patients with BMI 25–29.9  kg/m2 and BMI >=30  kg/m2 
(Table 2). In terms of 1-year mortality, diabetic patients 
with a BMI < 25 kg/m2 had the highest mortality (14.3%), 
which was significantly different compared to the other 
BMI groups. There was no difference in outcomes in non-
diabetics stratified by BMI groups (p = 0.065) (Table 2).

Discussion
This large prospective real-world ACS study shows 
that in both diabetic and non-diabetic patients under-
going primary PCI (1) hyperglycemia on admission 
of ≥ 11.1 mmol/L, but not between 6.0 and 11.1 mmol/L 
is associated with inflammation, increased heart rate, 
larger troponin levels and reduced LVEF; (2) even with 
current guideline-based management hyperglycemia 
remains a powerful risk factor for 30 day and 1 year out-
comes (particularly in non-diabetics) (4) In diabetics, 
MACE including stroke and mortality was higher than in 
non-diabetics and (5) the novel inflammation and myo-
cardial injury biomarker Cyr61 [14] was most strikingly 
associated with hyperglycemia, STEMI and was predic-
tive of outcomes.

Fig. 4  a Kaplan–Meier curves of MACE in ACS patients within 30 days 
according to plasma glucose levels on presentation. b Landmark 
survival analysis using Kaplan–Meier survival curves comparing 
outcomes from 30 days to 1 year according to plasma glucose levels 
on presentation

p < 0.001

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0

C
yr

61
 (

pg
/m

L)

BSL < 6.0 BSL 6.0 − 11.1 BSL > 11.1
excludes outside values

Cyr61

Fig. 5  Box plot demonstrating change in Cyr61 levels as glucose 
increases, stratified by infarct type (STEMI vs. NSTEMI/UA)



Page 8 of 10Winzap et al. Cardiovasc Diabetol          (2019) 18:142 

Hyperglycemia outcomes and potential mechanisms
Of particular interest is the extremely high risk of MACE 
in the cohort of patients with elevated plasma glucose. 
Indeed, levels of ≥ 11.1  mmol/L, which are considered 
diagnostic for diabetes in stable patients [15], were asso-
ciated with a sixfold increase in mortality and a fourfold 
increase in MACE at 30  days in spite of current guide-
line-based management. Similar associations between 
glucose and outcomes have been seen in a small study of 
NSTEMI patients undergoing PCI [16], while others have 
also shown that hyperglycemic patients are more likely to 
present with STEMI [17]. Importantly, we have demon-
strated that this increased risk persists up to 1 year both 
in the overall and landmark analysis suggesting a long-
term effect beyond the acute exposure to high glucose. 
This is most likely explained by poor longer term glycemic 
control, however other mechanisms may also contribute. 
Indeed, glycemic variability has previously been shown 
to be predictive of outcomes in a cohort of patients with 
ACS undergoing PCI [18]. Furthermore, the risk of repeat 
revascularization has been shown to be associated with 
the severity of diabetes, with insulin dependent diabetics 
at highest risk of need for repeat revascularization [19].

The risk associated with markedly elevated entry glu-
cose may at least partly reflect sympathetic stimulation. 
Of note, catecholamines are known to stimulate glucose 
release from the liver and induce hyperglycemia [20]. 
Heart rate, which is a crude measure of sympathetic acti-
vation, was indeed higher in patients with high rather 
than lower or normal entry glucose. In line with this 
interpretation, marked sympathetic activation in ACS 
patients is known to be associated with worse outcomes 

[21]. Accordingly, these patients also had a higher maxi-
mal creatinine kinase rise, lower ejection fraction and 
increased NT-BNP compared to the other two groups. 
Similarly, in previously published small series of patients 
with cardiogenic shock who do have markedly elevated 
catecholamines, entry glucose was also predictive [22].

Mechanistically, the higher mortality and MACE in those 
with high entry glucose may result from direct glucotoxic 
effects [23], leading to attenuated endothelium-depend-
ent vasodilatation [24], thereby impairing the micro- and 
macrocirculation and and leading to reduced myocardial 
perfusion, ischemia and increased infarct size [25]. Hyper-
glycaemia can also alter platelet function and intraplatelet 
signalling pathways and can cause conformational changes 
in platelet glycoproteins [26], leading to more solid coro-
nary clots that are associated with worse outcomes [27].

Cyr61, STEMI and hyperglycemia
A number of novel biomarkers have been proposed in 
risk stratification of ACS patients. The biomarker Cyr61 
is most interesting in this context as it is involved in 
inflammation, cell adhesion, migration and proliferation 
and reflects myocardial injury under ischemic conditions 
before troponins become elevated and predicts outcome 
in the ACS population [14]. In our study, we found a strik-
ing relationship between Cyr61, STEMI and hypergly-
cemia with no significant relationship with longer term 
glycemic control as measured using HbA1c or even the 
presence or absence of diabetes. The lack of association 
with long term glycemic control contrasts with previ-
ous research which demonstrated upregulation of Cyr61 
in diabetics with proliferative retinopathy, a surrogate 
marker of diabetes severity [28]. In terms of inflamma-
tion, there was a weak negative relationship between 
Cyr61 and CRP, but a positive relationship between Cyr61 
and leucocyte count suggesting that it is regulated by cel-
lular immunity. Indeed, the protein is particularly highly 
expressed at sites of inflammation and tissue repair [29].

We have previously found Cyr61, a marker of myocar-
dial ischemia and injury, to be elevated in STEMI patients 
[14], compared to NSTEMI patients. This has been rep-
licated in another analysis that demonstrated higher 
Cyr61 in patients with ACS compared to stable angina 
and control patients without coronary artery disease [30]. 
Building on this, we further found Cyr61 levels in STEMI 
patients increased as glucose increased, whereas there 
was no such dose dependent effect in NSTEMI. This likely 
reflects the larger degree of ischaemia present in STEMI 
leading to elevated glucose whereas the reasons for 
hyperglycemia in the NSTEMI population may be more 
related to longer-term glycemic control and not solely 
to the ischemia itself. Indeed, out of 30 patients with 
NSTEMI and BSL ≥ 11.1  mmol/L, 29 had a diagnosis of 

Table 2  Body mass index (BMI) and outcomes in diabetics 
and non-diabetics

BMI < 25 BMI 25–29.9 BMI > 30 p value

MACE (1 year)

 Diabetics 21/91 (23.1%) 16/178 (9.0%) 16/135 
(14.1%)

0.001

 Non diabet-
ics

36/550 (6.6%) 44/744 (5.9%) 15/306 (4.9%) 0.621

Death (1 year)

 Diabetics 13/91 (14.3%) 9/178 (5.1%) 9/135 (6.7%) 0.023

 Non-diabet-
ics

21/550 (3.8%) 17/744 (2.3%) 4/306 (1.3%) 0.065

Revascularization (1 year)

 Diabetics 13/91 (14.3%) 11/178 (6.2%) 7/135 (5.2%) 0.025

 Non-diabet-
ics

26/550 (4.7%) 53/744 (7.1%) 15/306 (4.9%) 0.14

Stroke (1 year)

 Diabetics 1/91 (1.1%) 5/178 (2.8%) 3/135 (2.2%) 0.667

 Non-diabet-
ics

5/550 (0.9%) 5/744 (0.7%) 3/306 (1.0%) 0.838
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diabetes whereas only two-thirds of STEMI patients with 
BSL ≥ 11.1 mmol/L had a diagnosis of diabetes.

Obesity and inflammation
Obesity is a major risk factor for the development of diabe-
tes [31], and in line with this observation, diabetic patients 
presented with a higher BMI than non-diabetic patients. 
The association between MACE rates and BMI showed a 
U-shape relationship with the highest event rate in those 
with a BMI of less than 25 kg/m2, the lowest in those with a 
BMI of 25 to 30 kg/m2 and intermediate event rate in those 
with a BMI of greater than 30 kg/m2. The increased MACE 
in diabetics with BMI < 25 kg/m2 was driven primarily by 
repeat revascularisation, although the 1-year risk of death 
was also numerically higher. Cohort studies have previ-
ously found that results similar to ours are caused by con-
founding and following adjustment patients with a BMI 
between 20 and 24.9 had a lower adjusted all-cause mor-
tality, with excess mortality in low weight (BMI < 20 kg/m2) 
driven by extra-cardiac causes [32].

An underlying cause of the observed findings could be 
inflammation which is known to be associated with insu-
lin resistance and elevated postprandial glucose levels [33]. 
Indeed, both diabetics and non-diabetics with elevated 
entry glucose also had increased levels of CRP and white 
blood cell count reflecting activation of both humoral and 
cellular inflammatory pathways. Of note, inflammation has 
indeed been shown to determine outcomes after ACS [34].

Limitations
A limitation of the study is the onsite measurement of 
glucose in an all-comer cohort although this was always 
performed in arterial blood and is a highly established 
and standardized measurement. Also, measurement of 
glucose was obviously not necessarily fasting in the emer-
gency setting, Given patients with STEMI have a shorter 
time from symptom onset to angiography, the blood for 
patients presenting with STEMI was taken earlier in their 
disease course compared to NSTEMI/UA patients which 
may confound the interpretation of some biomarkers 
related to ischaemia and inflammation. Furthermore, this 
is a registry without interventional measures allowing for 
definitive proof of causality of the observed findings.

Conclusions
In this large, prospective, independently adjudicated 
cohort of in all comers ACS patients undergoing PCI, 
both a history of diabetes and most strikingly markedly 
elevated entry glucose > 11.1 mmol/L was associated with 
inflammation, elevated troponin levels and increased 
risk of MACE both at short and long-term. The media-
tors might involve increased sympathetic activation, 

inflammation and ischemia as reflected by elevated Cyr61 
levels leading to larger infarcts and lower LVEF.
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