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Abstract

IMPORTANCE An estimated 40% of dementia is potentially preventable by modifying 12 risk factors
throughout the life course. However, robust evidence for most of these risk factors is lacking.
Effective interventions should target risk factors in the causal pathway to dementia.

OBJECTIVE To comprehensively disentangle potentially causal aspects of modifiable risk factors for
Alzheimer disease (AD) to inspire new drug targeting and improved prevention.

DESIGN, SETTING, AND PARTICIPANTS This genetic association study was conducted using
2-sample univariable and multivariable mendelian randomization. Independent genetic variants
associated with modifiable risk factors were selected as instrumental variables from genomic
consortia. Outcome data for AD were obtained from the European Alzheimer & Dementia Biobank
(EADB), generated on August 31, 2021. Main analyses were conducted using the EADB clinically
diagnosed end point data. All analyses were performed between April 12 and October 27, 2022.

EXPOSURES Genetically determined modifiable risk factors.

MAIN OUTCOMES AND MEASURES Odds ratios (ORs) and 95% CIs for AD were calculated per
1-unit change of genetically determined risk factors.

RESULTS The EADB-diagnosed cohort included 39 106 participants with clinically diagnosed AD and
401 577 control participants without AD. The mean age ranged from 72 to 83 years for participants
with AD and 51 to 80 years for control participants. Among participants with AD, 54% to 75% were
female, and among control participants, 48% to 60% were female. Genetically determined high-
density lipoprotein (HDL) cholesterol concentrations were associated with increased odds of AD (OR
per 1-SD increase, 1.10 [95% CI, 1.05-1.16]). Genetically determined high systolic blood pressure was
associated with increased risk of AD after adjusting for diastolic blood pressure (OR per 10–mm Hg
increase, 1.22 [95% CI, 1.02-1.46]). In a second analysis to minimize bias due to sample overlap, the
entire UK Biobank was excluded from the EADB consortium; odds for AD were similar for HDL
cholesterol (OR per 1-SD unit increase, 1.08 [95% CI, 1.02-1.15]) and systolic blood pressure after
adjusting for diastolic blood pressure (OR per 10–mm Hg increase, 1.23 [95% CI, 1.01-1.50]).

CONCLUSIONS AND RELEVANCE This genetic association study found novel genetic associations
between high HDL cholesterol concentrations and high systolic blood pressure with higher risk of AD.
These findings may inspire new drug targeting and improved prevention implementation.
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Key Points
Question What are the genetic

associations between modifiable risk

factors and Alzheimer disease (AD)?

Findings In this genetic association

study using a mendelian randomization

framework with the largest genomic

data sets to date, including 39 106

participants with clinically diagnosed AD

and 401 577 control participants without

AD, genetically determined increased

high-density lipoprotein cholesterol and

increased systolic blood pressure were

associated with higher risk of AD.

Meaning These findings suggest that

genetically determined increased high-

density lipoprotein cholesterol and

systolic blood pressure may be involved

in AD pathogenesis, which may thus

inspire new drug targeting and

improved early dementia prevention.
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Introduction

Dementia is a rapidly increasing health threat worldwide, affecting more than 50 million people and
projected to triple in prevalence by 2050.1 A 2020 report by Livingston et al for the Lancet
Commission for Dementia Prevention, Intervention and Care1 estimated that up to 40% of dementia
could be prevented or delayed by modifying 12 risk factors throughout the life course.1 However,
various degrees of inconsistency for these risk factors exist between observational studies and
clinical trials, leading to mixed quality of evidence underpinning recommendations.2,3 Effective
interventions should target ameliorating risk factors that lie in the causal pathways. Hence,
thoroughly unfolding the genomic background for associations between modifiable risk factors and
dementia might help to develop future efficacious preventive and therapeutic approaches.

Associations identified in observational studies are not equivalent to causality due to
confounding and reverse causation; the latter may explain why associations between risk factors and
dementia change across the lifespan, especially in late life.4,5 Although randomized clinical trials may
demonstrate an unconfounded effect of a certain intervention on dementia, interventions after
irreversible neuron damage or with a relatively short duration may have a negligible effect. The
mendelian randomization (MR) design uses genetic variants associated with the exposure to
investigate potential causal relationships between risk factors and outcomes. The exposure is thus
lifelong, and the random allocation of variants at conception minimizes confounding and reverse
causation.6 Thus, the MR approach may help establish causality and guide whether a comprehensive
randomized clinical trial targeting the risk factor will be meaningful to perform. Several MR studies
have been conducted to disentangle the associations between modifiable risk factors and Alzheimer
disease (AD), the most common type of dementia and the only type of dementia with large-scale
genomewide association studies (GWAS). Genetically, longer educational attainment has been well-
established as associated with lower risk for AD, whereas other risk factors, including lipid traits,
blood pressure (BP), body mass index (BMI), smoking, and alcohol consumption have shown
inconclusive associations with AD. This may be due to lack of power, small number of genetic
instruments, and other biases related to study design. Consequently, more powerful and state-of-
the-art MR studies are warranted to examine genomic associations between modifiable risk factors
and AD.

The new landmark paper on AD genetic etiology by the European Alzheimer & Dementia
Biobank (EADB) provides new possibilities to disentangle potential causal aspects of modifiable risk
factors for AD.7 Furthermore, the massively increasing availability of high-quality genotypic data in
large consortia provides more powerful genetic instrumental variables. Collectively, this prompted us
to scrutinize the genetic associations between modifiable risk factors and AD using complementary
and up-to-date MR methods.

Methods

In this genetic association study, we implemented a 2-sample MR approach that uses genetic variants
as instrumental variables for the exposure to investigate whether a lifetime exposure may be causally
associated with an outcome (eFigure 1 in Supplement 1). Ethical approvals were obtained by each
individual participating cohort; therefore, no additional ethical approvals or informed consents were
required. Our study followed the Strengthening the Reporting of Genetic Association Studies
(STREGA) reporting guideline and Strengthening the Reporting of Observational Studies in
Epidemiology Using Mendelian Randomization (STROBE-MR) reporting guidelines. The schematic
overview of the study design is presented in Figure 1, and previous main MR studies on modifiable
risk factors and AD are listed in eTable 1 in Supplement 1. We used summary GWAS statistics for each
exposure and AD.
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Selection of Instrumental Variables
Modifiable risk factors include educational attainment,8 lipids and lipoproteins9 (low-density
lipoprotein [LDL] cholesterol, triglycerides [TG], apolipoprotein B [apoB], high-density lipoprotein
[HDL] cholesterol, and apolipoprotein A1 [apoA1]), BMI,10 alcohol consumption,11 smoking
initiation,11 systolic BP (SBP) and diastolic BP (DBP),12 and type 2 diabetes.13 Details on the GWAS
from which we obtained summary-level associations between genetic variants and risk factors are
described in Table 1. Selection and summary information of the independent single nucleotide
variants (SNVs) are in Table 2 and the eMethods in Supplement 1.

Alzheimer Disease Data Sources
The associations between SNVs and late-onset AD were retrieved from EADB, the largest AD
genomic consortia. EADB brings together a range of European cohorts and GWAS consortia, and
summary estimates were based on 39 106 participants with clinically diagnosed AD, 46 828

Figure 1. Schematic Overview of the Study Design

SNV-exposure (modifiable risk factor) associations

GWAS meta-analysis (n = 681 275) on BMI, with 941 SNVs

SNV-AD associations Analyses

UKB (n = ~441 016), including LDL  cholesterol, apoB, TG,
HDL cholesterol, and apoA1, with number of SNVs ranging
from 220 to 534

GWAS meta-analysis (n = 3 037 499) on educational years,
with 3952 SNVs

GWAS meta-analysis (n = 1 232 091) on smoking initiation,
with 378 SNVs

GWAS meta-analysis (n = 941 280) on alcoholic drinks per week,
with 99 SNVs

GWAS meta-analysis (n = 757 601) on blood pressure, with 266
SNVs for systolic and 346 SNVs for diastolic blood pressure

GWAS meta-analysis (148 726 participants with AD and
965 732 controls) on diabetes, with 425 SNVs

EADB diagnosed
• GWAS meta-analysis (39 106 clinically
 diagnosed cases and 401 577 controls)

EADB excluding entire UKB
• GWAS meta-analysis (36 659 clinically
 diagnosed cases and 63 137 controls)

EADB proxy
• GWAS meta-analysis (39 106 clinically
 diagnosed cases, 46 828 proxy cases,
 and 401 577 controls)

Single-variable MR: IVW, weighted median,
MR-Egger, MR-PRESSO
Multivariable MR for lipid traits and
blood pressure

Single-variable MR: IVW, weighted median,
MR-Egger, MR-PRESSO
Multivariable MR for lipid traits and
blood pressure

Single-variable MR: IVW, weighted median,
MR-Egger, MR-PRESSO
Multivariable MR for lipid traits and
blood pressure

AD indicates Alzheimer disease; apoA1, apolipoprotein A1; apoB, apolipoprotein B; BMI,
body mass index; EADB, European Alzheimer & Dementia Biobank; GWAS, genome-wide
association study; HDL, high-density lipoprotein; IVW, inverse-variance weighted; LDL,

low-density lipoprotein; MR, mendelian randomization; MR-PRESSO, mendelian
randomization pleiotropy residual sum and outlier; SNV, single nucleotide variant; TG,
triglycerides; UKB, UK Biobank.

Table 1. GWAS Data Sources for Instrumental Variables Selection

Study Risk factor Consortium Participantsa Covariates
Okbay et al,8 2022 Education attainment SSGAC; UKB;

23andMe
3 037 499 Age, sex,

age × sex, PCs
Richardson et al,9

2020
Low-density lipoprotein
cholesterol

UKB

440 546 Age, sex

High-density lipoprotein
cholesterol

403 943

Triglycerides 441 016

Apolipoprotein A1 393 193

Apolipoprotein B 439 214

Yengo et al,10 2018 BMI GIANT, UKB 681 275 Age, sex, PCs

Liu et al,11 2019 Smoking initiation
GSCAN; 23andMe

1 232 091 Age, sex,
age × sex, PCs

Alcohol consumption 941 280

Evangelou et al,12

2018
Systolic blood pressure

UKB; ICBP
757 601 Age, sex, age2, BMI

Diastolic blood pressure

Vujkovic et al,13

2020
Type 2 diabetes

DIAMENTE
148 726 with AD Age, sex, PCs

965 732 controls

Abbreviations: AD, Alzheimer disease; BMI, body mass
index; DIAMENTE, Diabetes Meta-analysis of Trans-
ethnic Association Studies consortium; GIANT, Genetic
Investigation of Anthropometric Traits consortium;
GWAS, genome-wide association study; GSCAN, GWAS
and Sequencing Consortium of Alcohol and Nicotine
use; ICBP, International Consortium of Blood Pressure
Genome Wide Association Studies; PCs, principal
components; SSGAC, Social Science Genetic
Association Consortium; UKB, UK Biobank.
a Numbers are participants with European ancestry.
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participants with proxy AD, and 401 577 control participants without AD7 (generated in August 31,
2021). Proxy AD was only identified from the UK Biobank via questionnaire data asking if parents of
the participants had AD (“Has/did your father or mother ever suffer from Alzheimer’s
disease/dementia?”). Participants were categorized into proxy AD if the answer was yes, otherwise
they were controls. Three summary data sets were used: (1) the EADB-diagnosed data set in which
only participants who had been clinically diagnosed with AD were included in the summary data; (2)
the EADB data set, excluding the entire UK Biobank (UKB) (generated on September 19, 2022); and
(3) the EADB-proxy data set, which included both participants who had been clinically diagnosed
with AD and those with proxy AD (eMethods in Supplement 1) from the UKB were included
(generated on February 10, 2022).

Statistical Analysis
All analyses were performed between April 12 to October 27, 2022. The MR results are given as odds
ratios (ORs) with corresponding 95% CIs of log odds of AD per unit increase in genetically
determined risk factors. The estimates are scaled by year of education completed, ever smoked
regularly vs never smoked, 10–mm Hg increase of BP, SD for consumption of alcoholic drinks per
week, and SD for the other continuous risk factors; for diabetes, the estimates represent the OR of
AD per 1-unit higher log odds of diabetes. In the reverse direction, the results represent the relative
increase in the odds of AD per 1-unit change in each behavioral risk factor. Statistical power for MR
analyses were calculated using the power calculation tool.14 We have 80% power to detect a
minimum of 3% change in log odds of AD (eFigure 2 in Supplement 1).

To maintain statistical power while still limiting the number of false-positive conclusions, we
corrected for multiple testing per MR-method using false discovery rate proposed by Benjamini and
Hochberg.15 Two-sided P < .05 indicated statistical significance. All the analyses were undertaken
using R version 4.0.2 (R Project for Statistical Computing).

Associations between genetic variants and risk factors and AD were harmonized to ensure that
estimates were aligned on the same allele. Ambiguous genetic variants with palindromic genotypes
were excluded. We used the inverse-variance weighted (IVW) method as the primary analysis, which
combines SNV-specific estimates calculated by Wald ratios through dividing the genetic association
with AD by the genetic association with each risk factor. When a genetic variant affects other traits
that influence the outcome independently of the hypothesized exposure, known as horizontal
pleiotropy, this may violate 1 of the key MR assumptions of exclusion restriction. IVW assumes no
violation of MR assumptions, particularly no directional pleiotropic effect of each instrumental
variable, and constrains intercepts to zero. Furthermore, we performed several MR sensitivity

Table 2. Summary Information of Genetic Instruments for Modifiable Risk Factors

Risk factor Unit SNVs, No.a LD thresholdb Variation, %
Low-density lipoprotein
cholesterol

SD in mmol/L 220 0.001 7.7c

Triglycerides SD in mmol/L 440 0.001 10.3c

Apolipoprotein B SD in g/L 255 0.001 9.2c

High-density lipoprotein
cholesterol

SD in mmol/L 534 0.001 11.9c

Apolipoprotein A1 SD in g/L 440 0.001 10.1c

Educational attainment years 3952 0.1 12-16

BMI SD per 1 unit 507 0.001 6

Smoking initiation Ever smoked regularly vs
never smoke

378 0.1 2.3

Alcohol consumption SD in alcoholic drinks per
week

99 0.1 0.7

Systolic blood pressure 10 mm Hg 266 0.1 5.7

Diastolic blood pressure 10 mm Hg 346 0.1 5.3

Type 2 diabetes Log odds 425 0.05 19

Abbreviations: BMI, body mass index (calculated as
weight in kilograms divided by height in meters
squared); LD, linkage disequilibrium; SNV, single
nucleotide variant.
a Number of independent SNVs at genome-wide

significance level (P < 5 × 10−8).
b LD refers to the degree to which an allele of 1 genetic

variant is inherited or correlated with an allele of a
nearby genetic variant within a given population. The
threshold to prune for LD was obtained in the original
genome-wide association studies.

c Variation explained by genetic instrumental variables
were calculated based on the formula:
β2 × 2 × MAF × (1 − MAF), where MAF denotes mean
minor allele frequency from European populations,
obtained through Phenoscanner V2. Calculation of
the remaining percentages are given in the original
articles.
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analyses to address invalid instruments, unbalanced pleiotropy, outliers, and correlated risk factors.
The weighted median estimator and MR-Egger allows the inclusion of pleiotropic genetic variants
and were used to investigate whether bias in IVW estimates were present due to invalid
instruments.16,17 The regression slope from MR-Egger represents the estimated effect of an exposure
on the outcome, and the freely estimated intercept additionally provides a mean magnitude of the
pleiotropic effects across all genetic variants if it deviates from zero. MR-Egger is statistically less
efficient (ie, with wider CIs) but provides a causal estimate that accounts for horizontal pleiotropy.
Therefore, the point estimates from these 2 methods might be close to null even if a strong
association is observed through IVW; however, the CIs should largely overlap. To assess the
distortions of the IVW estimate from any heterogeneity or horizontal pleiotropy, MR-PRESSO was
applied to detect and correct for outliers, giving an unbiased estimate.18

For correlated risk factors, we performed multivariable MR, an extension of the basic MR design
and estimates the effects of 2 or more related exposures on an outcome simultaneously.
Subsequently, the direct effect, ie, the effect not confounded or mediated by other factors, of each
exposure in the model is obtained.19 For lipids, apoA1 and apoB are highly correlated with HDL and
LDL cholesterol, respectively. To avoid multicollinearity in the multivariable MR model, we adjusted
HDL and TG for LDL and apoB, HDL and LDL for TG, and LDL and TG for HDL and apoA1.

Four additional sensitivity analyses were conducted and are described in detail in eMethods in
Supplement 1. First, we used the Causal Analysis using Summary Effect Estimates) method,
accounting for correlated pleiotropy.20 A second analysis excluded SNVs on the entire chromosome
19, addressing the independence of the strong apolipoprotein E (APOE) locus. Third, we used cross-
trait linkage disequilibrium-score regression, accounting for sample overlap.21 Fourth, we evaluated
possible reverse causation of AD on behavioral risk factors.

Results

EADB-Diagnosed Data Set
The EADB-diagnosed cohort included 39 106 participants with clinically diagnosed AD and 401 577
control participants without AD. In the EADB-diagnosed data set, the mean age ranged from 72 to 83
years among participants with AD and 51 to 80 years among control participants without AD. Among
participants with AD, 54% to 75% were female, and among control participants, 48% to 60% were
female. A detailed description of the demographic characteristic is given in the original literature.7

The results from the EADB-diagnosed data set are presented in eTable 1 in Supplement 2 and
visualized in Figure 2. Increased HDL cholesterol was associated with increased odds of AD (OR per
1-SD increase, 1.07 [95% CI, 1.01-1.13]). The point estimate for HDL cholesterol was enhanced on
correction for outliers using MR-PRESSO (OR, 1.10 [95% CI, 1.05-1.16]; P < .001) and remained similar
to the IVW estimate in other MR sensitivity methods (eTable 1 in Supplement 2). After adjusting for
DBP, SBP was associated with increased risk of AD in multivariable MR (OR per 10–mm Hg increase,
1.22 [95% CI, 1.02-1.46]). Analyses using different univariable MR methods were not statistically
significant (OR per 10–mm Hg increase, 1.02 [95% CI, 0.96-1.09]), but analysis using other MR
sensitivity methods remained significant. A 10–mm Hg genetically determined higher level of DBP
was associated with lower risk of AD across different MR methods. Genetic predisposition to longer
educational attainment was associated with lower odds of AD in all analyses (IVW OR, 0.83 [95% CI,
0.79-0.87]). The estimates for apoA1, smoking, and BMI were inconclusive. LDL cholesterol, apoB,
TG, alcohol consumption, and diabetes were consistently not associated with the odds of AD in all
MR methods. A detailed list of SNVs involved in the HDL cholesterol signal is given in eTable 2 in
Supplement 2.

EADB Excluding the Entire UKB
The results from the EADB data set excluding UKB generally resemble those from the EADB
diagnosed data set (Figure 3; eTable 3 in Supplement 2). For HDL cholesterol concentrations, the
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Figure 2. Associations of Genetically Determined Modifiable Risk Factors and Alzheimer Disease (AD) in the European Alzheimer & Dementia Biobank Data Set
of Participants With Clinically Diagnosed AD
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Figure 3. Associations of Genetically Determined Modifiable Risk Factors and Alzheimer Disease (AD) in the European Alzheimer & Dementia Biobank Data Set
Excluding the Entire UK Biobank
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IVW and multivariable MR analyses found the same results (ORs for both, 1.08 [95% CI, 1.02-1.15]).
After adjusting for DBP, increased SBP was associated with increased risk of AD (OR per 10–mm Hg
increase, 1.23 [95% CI, 1.01-1.50]). The analyses corrected for multiple testing remained significant in
both IVW and MR-PRESSO. Higher DBP was associated with lower risk of AD in the IVW analysis (OR
per 10–mm Hg increase, 0.87 [95% CI, 0.79-0.97]) and remained similar using other sensitivity
methods. Genetic predisposition to longer educational attainment was associated with lower odds
of AD in all analyses (IVW OR, 0.85 [95% CI, 0.81-0.90]). Smoking initiation and higher BMI were
associated with lower odds of AD (smoking: IVW OR, 0.90 [95% CI, 0.83-0.98]; BMI: IVW OR, 0.91
[95% CI, 0.84-0.99]). No associations were found between other modifiable risk factors and odds
of AD.

EADB-Proxy Data Set
Results using EADB-proxy data set are shown in eFigure 3 in Supplement 1. Longer educational
attainment was associated with higher odds of AD (IVW OR, 1.06 [95% CI, 1.01-1.10]). A detailed
illustration leading to this counterintuitive finding is provided in eFigure 4 in Supplement 1. In IVW
analyses, higher HDL cholesterol (OR, 1.10 [95% CI, 1.04-1.15]) and higher apoA1 (OR, 1.07 [95% CI,
1.00-1.13]) were associated with higher odds of AD, whereas smoking (OR, 0.88 [95% CI,
0.82-0.94]), higher BMI (OR, 0.89 [95% CI, 0.83-0.95]), and higher DBP (OR, 0.85 [95% CI, 0.78-
0.92]) were associated with lower odds of AD. LDL, apoB TG, alcohol consumption, SBP, and
diabetes showed no association (eFigure 3 in Supplement 1).

Other Sensitivity Analyses
The various sensitivity analyses examining the association between genetically determined
modifiable risk factors and AD generally showed similar results (eAppendix 1, eTable 2, eFigure 5, and
eFigure 6 in Supplement 1). Furthermore, genetic predisposition to high odds of AD were not
associated with educational attainment, smoking, alcohol consumption, or BMI (eTable 3 in
Supplement 1).

Discussion

This genetic association study using 2-sample mendelian randomization based on the largest
genomic consortia found that genetically determined high HDL cholesterol and high SBP were
associated with higher odds of AD. There was no consistent evidence supporting genetic associations
of other lipid traits, BMI, alcohol consumption, smoking initiation, or diabetes with odds of AD.
Moreover, our study suggested that meticulous care should be taken when using individuals with
proxy AD from the UKB in 2-sample MR studies, as the results can be seriously biased.

Conflicting results for modifiable risk factors and AD have been reported in previous MR studies.
For HDL cholesterol in particular, genetic studies have found no association22-29 or an association of
high concentration of extra-large particles with lower risk of AD.30,31 These inconsistencies may be
attributed to insufficient power and other biases, including pleiotropy. To our knowledge, our study is
the first to identify an association between high HDL cholesterol concentrations and higher AD risk
in a comprehensive range of complementary analyses. The genetic instruments for HDL cholesterol
are marking well-known genes in HDL cholesterol biology, including ATP binding cassette A and G
transporters, cholesteryl ester transfer protein, endothelial lipase, hepatic lipase, lipoprotein lipase,
and scavenger receptor B1, further strengthening the validity of our findings. Although the
underlying mechanisms remain unclear, there are a few biologically plausible explanations. HDL
particles are complex, comprising a wide spectrum of sizes, compositions, and functionality. Small,
but not large, HDL particles exchange lipids between plasma and cerebrospinal fluid compartments
and form apoE and apoA1 small HDL particles through the interaction between plasma-derived
apoA1 and brain-derived apoE.32 These particles subsequently promote neuronal membrane lipid
remodeling and synaptic plasticity, limit apoE self-aggregation, and increase receptor binding and
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amyloid-β clearance.33 Indeed, the concentration of small particles in cerebrospinal fluid is highly
correlated with the concentrations in plasma and is positively associated with cognitive function.34

However, high HDL cholesterol concentrations in plasma lead to a shift toward large HDL particles
and significant increases in apoA1.35 Therefore, high plasma HDL cholesterol concentrations
characterizing large buoyant HDL particles may play a role in dementia pathogenesis by disrupting
the homeostasis between plasmatic particles and the beneficial apoE and apoA1 small HDL particles
in cerebrospinal fluid.

Observationally, hypertension in midlife has been suggested as an independent risk factor for
AD, whereas hypertension in late life showed null or reverse associations with AD, particularly for
DBP.36,37 Sustained hypertension from midlife to late life, compared with midlife and late-life BP
within reference ranges, was associated with increased risk of dementia.38 Nevertheless, most
studies have BP measured at 1 or few separate time points, which may not fully capture the
longitudinal changes and their cumulative effect. Results from individual antihypertensive
randomized clinical trials are inconclusive. A meta-analysis combining 12 trials (baseline BP 154/83.3
mm Hg) concluded that antihypertensive treatment is associated with significantly decreased
dementia risk through decreasing SBP.39 Similarly, a pooled individual-participant data analysis of 5
randomized clinical trials provided evidence supporting benefits associated with antihypertensive
treatment in late midlife and later life to lower the risk of dementia.40 However, these effects last
only for the duration of the trials. Our findings of genetically determined and thus lifelong high SBP
and low DBP independently associated with high AD risk were partly in line with previous MR
findings.41,42 These associations are reinforced by a study in which a long-term cumulative SBP
increase was associated with subsequently higher dementia risk, whereas a cumulative DBP increase
was associated with lower risk.43 There are several hypothesized explanations, which are discussed
in detail in eAppendix 2 in Supplement 1.

We observed associations of high BMI and smoking initiation with lower risk of AD. Individual-
level data analyses have suggested that the BMI association might be restricted to older age groups
only.44 The association between smoking initiation or lifetime smoking and AD were mixed in
previous MR studies using summary data; individual-level data from a genetically homogenous
Danish population in a 1-sample MR study observed a higher risk of AD with high smoking quantity.45

Nevertheless, a meta-analysis that pooled the results from 2 summary statistics-based MR studies
found no associations either for smoking initiation or quantity46; however, the estimates from the
included studies showed opposite directions, resulting in significant heterogeneity. The mechanisms
behind these findings need further investigation. Finally, no genetic associations of LDL cholesterol,
apoB, TG, alcohol consumption, or diabetes with risk of AD were observed.

Despite the confirmation of the association between longer educational attainment and low AD
risk in EADB participants with clinically diagnosed AD, the association counterintuitively reversed
when including participants with proxy AD. There are significant differences and genetic
heterogeneity in the associations between education and clinically diagnosed AD and a self-reported
proxy phenotype.47 A possible explanation may be that the status of a proxy AD diagnosis may be
associated with the person’s educational level, which most likely is influenced by their parental
educational level. Thus, the selected instrumental variables were associated with parental
educational attainment through the genetic variants for parental education, violating the
independence assumption of the MR design. This may also apply to other modifiable factors that are
associated with education, such as LDL cholesterol and BMI, as manifested by their associations with
AD becoming stronger when including proxy AD diagnoses.

The main strength of this study is the use of the largest genomic consortia to date, yielding
ample statistical power and instrumental variables explaining much phenotypic variation. The mixed
definition of AD in the consortia allowed us to explore the potential influence of proxy AD on the
associations between behavioral risk factors and AD. Furthermore, several MR sensitivity analyses
were performed to account for bias related to study design. The statistical correction for sample
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overlap between exposure and end point data, as well as the possibility to use the EADB data
excluding the entire UKB, enabled us to produce robust findings.

Limitations
This study has some limitations. An inherent limitation of our study is that the included genetic
studies predominantly consist of individuals of European ancestry, which limits the extrapolation of
our findings to individuals of other ethnicities. Moreover, to our knowledge, all MR studies performed
to date take advantage of genetic variants that are associated with 1-time measurement of the
exposure. The associations of some risk factors at midlife and late life, such as BMI, have been
contradictory. This may also explain the associations of high BMI with lower AD risk both in previous
MR studies and in our MR study. Several observational studies have examined risk factor trajectories
throughout the life course, capturing a more complete picture and representing the associations of
time-varying factors, which might be more relevant than a single point measurement in examining
risk of AD. However, no additional analyses could be performed due to the lack of trajectory GWAS.

Conclusions

This genetic association study found novel genetic associations between high HDL cholesterol
concentrations and high SBP with higher risk of AD. These findings may inspire new drug targeting
and improved early dementia prevention.
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