1	The Maggia nappe: an extruding sheath fold basement nappe in the Lepontine gneiss
2	dome of the Central Alps
3	
4	Albrecht Steck, Jean-Luc Epard, Henri Masson
5	Institut des Sciences de la Terre, Université de Lausanne, bâtiment Geopolis, Dorigny, 1015 Lausanne,
6	Switzerland.
7	e-mail: Albrecht.Steck@unil.ch
8	
9	Abstract
10	
11	The Lepontine gneiss dome represents a unique region of the Central Alps where Oligocene-Miocene
12	amphibolite facies grade rocks and fold nappes of the deepest tectonic level of the Alpine orogenic belt are
13	exposed in a tectonic window. The Cenozoic structures of the Maggia nappe reveals a giant tens of kilometre
14	scale tubular fold structure that cross-cut through the surrounding lower Penninic nappes from its root situated in
15	the southern steep-belt of the Alps near Bellinzona. The Mesozoic sedimentary cover of the Maggia nappe is
16	typical for the Helvetic stratigraphic domain. The age of formation of the lower Penninic fold-nappes by ductile
17	detachment of the upper European crust during its underthrusting below the higher Penninic and Austroalpine
18	orogenic lid and Adriatic indenter was estimated between 40 and 30 Ma. Maximal pressures of 8-9 kbars and
19	temperatures of 600-700 °C were attended during and after the nappe emplacement some 30-22 Ma ago. The
20	Maggia and surrounding nappes are crosscut by the isograds of the Barrovian regional metamorphism.
21	
22	Keywords Swiss Alps, Alpine tectonics, Penninic nappes, sheath fold structure
23	
24	1. Introduction
25	
26	The block diagram of the Central Alps of Switzerland and Italy illustrates the tectonic position of
27	Maggia nappe in the Lepontine gneiss dome (Fig. 1, modified after Steck, 2008)). The geology of the Lepontine
28	gneiss dome of the Central Alps of Switzerland and Italy is documented on numerous geological maps and

29 stratigraphic studies of the twenties century (e.g. Geologische Karte und Tektonische Karte der Schweiz (2005). 30 The here considered lower Penninic nappes are composed of polycyclic basement gneisses intruded by Permo-31 Carboniferous granites and overlain by their autochthonous Mesozoic-Cenozoic sedimentary cover of European 32 affinity (Steck et al., 2013). A modern geological study of the Central Alps started with the fieldwork of Schmidt 33 & Preiswerk (1905), Preiswerk et al. (1934) and Niggli et al. (1936) after the discovery of the lower Penninic 34 fold nappe structures during the perforation of the Simplon railway gallery by Schardt (1903). The first 35 description of the Antigorio fold nappe with its amplitude of 9 km by Gerlach (1869) was followed by the 36 confirmation of the fold nappe geometry of the Simplon structures and the higher Saint Bernard and Monte Rosa 37 nappes by Schardt (1903), Schmidt & Preiswerk (1905), Argand (1916), Milnes (1974), Steck (1984), Escher 38 (1988) and Froitzheim (2001). Schmid et al. (2004) and Berger et al. (2005) considered the Maggia nappe as a 39 thrust sheet situated in a high tectonic level of the lower Penninic nappe stack and attributed it to the middle 40 Penninic Briançonnais domain as already proposed by Preiswerk et al. (1934). The high tectonic position on top 41 of the Cimalunga unit was also formerly proposed by Steck et al. (2013). New field work and the integration of 42 the observations of Bächlin et al. (1974) and Spicher and Wenk (1981) conducted us to the conclusion, that the 43 Maggia nappe plunges in the southern steep belt of the Alps as a tubular fold structure below the higher 44 Mergoscia and Cimalunga units (Fig. 2). The interpretation of the Maggia nappe as a sheath fold like tubular 45 fold structure will be discussed in the present study. The study of the Mesozoic Cristallina sedimentary cover of 46 the northern Sambuco lobe of the Maggia nappe similar to that of the Helvetic Gotthard massif conducted us to 47 the conclusion that the Maggia nappe belongs to the Helvetic or European domain. Some units of the Valais 48 suture, as the Mergoscia and Cimalunga Mélanges, possess relicts of an eclogitic late Eocene high-pressure 49 metamorphism. The entire nappe pile was afterwards formed concomitant with and overprinted by an Oligocene-50 Miocene Barrovian-type orogenic regional metamorphism. The aim of this study is to describe the enigmatic 51 Maggia nappe in the frame of the Alpine orogeny and discuss possible models of its formation.

- 52
- 53

2. Geological Setting of the Maggia and surrounding nappes.

54

The Lower Penninic nappe stack is composed from base to top of the Leventina, Verampio, Antigorio, Simano
(the latter subdivided in Simano and Campo Tencia units, after Preiswerk, 1934), Lebendun, Maggia, Mergoscia,
Cimalunga, Adula, Orselina-Bellinzona, Monte Leone and Valais calc-schist nappes that were detached from the
upper European crust during its SE-directed underthrusting below the middle and higher Penninic nappes, the

59 Dent Blanche-Sesia thrust sheet and Adriatic indenter (Table 1). Milnes (1974; Steck, 1984; Steck et al. 2013)

60 considered the Lower Penninic nappes of the Lepontine gneiss dome as fold-nappes. The fold-nappe geometry of

61 the Maggia nappe is well exposed in its northern Sambuco lobe with its autochthonous Mesozoic sedimentary

62 cover the Cristallina unit on its upper and lower fold limb (Figs. 2 and 4).

63 The deepest level of the Alpine nappe stack is overprinted by an amphibolite facies grade Barrovian-64 type regional metamorphism (e.g. Niggli & Niggli, 1965; Trommsdorff, 1966; Engi et al., 1995; Rubatto et al., 65 2009). An older late Eocene eclogite facies metamorphism affected the Mergoscia, Cimalunga and Adula nappes 66 (e.g. Heinrich, 1986; Trommsdorff, 1990; Pfeifer et al. 1991; Becker, 1993; Gebauer, 1996; Brower et al. 2005; 67 Herwartz et al. 2011; Sandmann et al. 2014). The external limit of the Oligocene-Miocene amphibolite facies 68 grade metamorphism is indicated by the albite An0-3-hornblende = plagioclase An >17-hornblende-isograd 69 (Wenk & Keller, 1969; the isograd position is modified in the Monte Rosa region after Steck et al., 2001, 2015). 70 The nappe stack of the Central Lepontine gneiss dome is represented on Table 1 and the Alpine structures of the 71 central part of the Lepontine gneiss dome are illustrated on the map and profiles of Figs. 2 and 3.

72 The Maggia nappe was for a first time represented on a geological map of the Lepontine gneiss dome 73 by Preiswerk, 1932 in Niggli et al. (1936) and Preiswerk et al. (1934) as a NW-SE oriented synform 74 perpendicular to the SW-NE trend of the Central Alps. Already Preiswerk (1919), in a structural study of the 75 Campolungo pass region recognised the superposition of the Maggia transverse synform on the deeper Antigorio 76 nappe to the west and the Campo Tencia and Simano (=Verzasca gneiss) nappes to the east. Preiswerk's model 77 was confirmed by our own observations (Steck, 1998; Steck et al., 2013). Grütter and Kündig considered in the 78 same review paper of Niggli et al. (1936) the Maggia nappe as a tectonic root that separates the deeper Antigorio 79 from the higher Campo Tencia nappe. An idea that was also suggested by other studies (Grujic & Mancktelow, 80 1996, Maxelon & Mancktelow, 2005, Rütti et al., 2005). The latter model is contrary to the Alpine structural 81 data collected by Preiswerk (1919), Wenk (1955), Steck (1998) and correctly documented on Fig 12 of Maxelon 82 & Mancktelow (2005). The superposition of the Antigorio and Campo Tencia nappes by the frontal Maggia 83 nappe proposed by Preiswerk in Niggli et al. (1936) is confirmed by new fieldwork on the Pizzo Massari - Pizzo 84 Prevat geological profile (Fig. 4). The frontal fold hinge of the Campo Tencia Nappe and the sedimentary 85 syncline of the Campolungo pass transect form a down facing fold structure testifying that the Sambuco klippe is 86 situated above the Campo Tencia nappe front. The geometry of the down facing Mogno Mesozoic sedimentary 87 syncline was also confirmed by observations in the Prato-Camblee water gallery (personal communication by 88 Franz Keller, Fig. 5; Steck et al. (2013).

89 Keller et al. (1980) separate on their 1:25'000 scale geological map "Campo Tencia" the northern 90 Sambuco klippe from its southern continuation the Maggia synform. The Alpigia gneisses, separating the 91 Sambuco klippe from the southern Maggia synform, were attributed by Keller et al. (1980) to the Antigorio 92 nappe. This attribution is supported by the identical Early Permian U-Pb zircon ages of the tonalites, 93 granodiorites and granites dated between 289 ± 2 Ma and 296 ± 2 Ma by Bergomi et al. (2007) in the Antigorio 94 nappe and between 288 ± 2 and 294 ± 2 Ma in the Alpigia unit by Hirsiger et al. (2015). The tonalites, 95 granodiorites and granites of the Matorello gneiss in the northern Sambuco klippe and the similar Cocco gneiss 96 in the centre of the Maggia synform have a Late Carboniferous age dated at $300-304 \pm 8$ Ma for the Matorello 97 and at 308 ± 7 Ma for the Cocco gneiss (U-Pb zircon ages, Bussien et al., 2011). The latter data corroborate the 98 Keller et al. (1980) proposal that the Sambuco spoon and the Maggia synform belong to the same Maggia 99 complex and not the Sambuco unit to the Helvetic and the southern Maggia synform to the Briançonnais domain 100 as proposed by Berger et al. (2005). The Early Permian Mezzalama granite of the Monte Rosa nappe and the 101 Randa-granite of the Brianconnais Siviez-Mischabel basement are dated at 270±4 Ma (Bussy in Steck et al. 102 1999; Pawlig & Baumgartner, 2001). Based on the structural study of the northern and middle part of the 103 Maggia synform we first concluded that the Maggia synform continues to the south and superpose there the 104 deeper Mergoscia and Cimalunga nappes (Steck et al. 2013), an idea also supported by Schmid et al. (2004, 105 2017), Berger et al. (2005), Berger & Mercolli (2006) and Bousquet et al. (2012). New field observations on the 106 southern end of the Maggia nappe conducted us to a totally different model of the Maggia structure that we 107 discuss later in this study. The Maggia nappe plunges near Bellinzona as a tubular fold below the Mergoscia 108 nappe in the southern steep belt (Chapter 3. Alpine structures).

109 Preiswerk in Niggli et al. (1936) considered the Maggia nappe as a synformal klippe situated on top of 110 the Lower Penninic nappes and as a lateral equivalent of the Middle Penninic Sankt-Bernhard nappe of the 111 Briançonnais domain. This attribution to the Briançonnais domain was later adopted by Schmid et al. (2004; 112 2017), Berger et al. (2005) and Bousquet et al. (2012). It is in agreement with Preiswerk's idea based on the high 113 level tectonic position of the Maggia nappe. New stratigraphic studies of the Mesozoic cover sediments suggest 114 an attribution of the Maggia nappe to the Helvetic palaeographic domain (Masson & Steck, 2015). The Sambuco 115 klippe of the northern Maggia nappe retains its autochthonous stratigraphic cover, the Cristallina Mesozoic 116 sediments of a typical Helvetic affinity, similar to the autochthonous cover of the Gotthard massif (Liszkay-117 Nagy, 1965). The Triassic starts with a thin band of 30-50 cm of quartzose and arkosic sandstone overlain by a 118 band of < 2 m of white dolomite. The latter dolomite is followed by the Naret Formation, a series of 100 m of

119 heterogeneous, garnet, staurolite and kyanite bearing sandstones with some thin layers of yellow calcite and 120 dolomite marbles similar to the Rhaetian of the Gotthard cover, the lower and upper garnet schists of Liszkay-121 Nagy (1965). The Lower and Middle Jurassic is composed of variable types of some garnet, kyanite and 122 staurolite bearing graphitic sandstones and conglomerates, gritty and banded marbles, overlain by pure Upper 123 Jurassic white calcite marble on top. The Pertusio zone, at the limit of the Maggia and Campo Tencia nappes, is 124 composed of complex refolded centimetre-decimetre slices of quartzite and white calcite marble of a probable 125 middle and upper Jurassic age respectively and the up to ten metre white marbles of the Someo zone at the limit 126 between the Maggia and Mergoscia nappes of a probable Upper Jurassic age are interpreted as the reduced 127 Mesozoic cover of the Maggia nappe forming the southern Helvetic continental margin. The fossil-free and 128 strong deformation of these sedimentary slices makes their stratigraphic interpretation questionable and open. 129 Never the less it is herein suggested that the Sambuco-Maggia nappe belongs together with the Antigorio and the 130 Gotthard fold nappe to the Helvetic stratigraphic domain. The Campolungo Triassic sedimentary cover of the 131 Campo Tencia nappe is characterized by its huge over 300m wide zone of banded black and white dolomitic 132 marbles overlying a thin band of basal quartzite. It may be attributed to a transition zone between the Helvetic 133 and Briançonnais domains. A similar large series of Triassic dolomitic marbles characterize the units of the 134 Brianconnais domain (Ellenberger, 1953; Escher, 1988)

135 The Mergoscia and Cimalunga nappes are composed of tectonic mélanges of polycyclic basement 136 gneisses, Meso-Cenozoic continental and marine sediments and oceanic ophiolites, successively overprinted by 137 an approximate Late Eocene eclogite and Oligocene-Early Miocene amphibolite facies regional metamorphism 138 (Engi et al. 1995; Rubatto et al. 2009; Sandmann et al. 2014). The Orselina nappe is a similar tectonic mélange 139 overprinted by the Oligocene-Early Miocene amphibolite facies metamorphism but without eclogite facies relicts 140 (Fig. 2; Steck et al., 2013; Pfeifer et al. 2018). The Mergoscia and Cimalunga tectonic mélanges and the Adula 141 nappe with their Late Eocene eclogite facies metamorphism (Becker, 1993; Brouwer et al. 2005; Herwartz et al. 142 2011; Sandmann et al. 2014), the Bosco and Bombogno-Orselina-Bellinzona mélanges, the Monte Leone and 143 Valais calc-schist nappes mark a major zone of deep subduction and accretion in the Nappe stack of the 144 Lepontine Alps situated below the middle Penninic nappes of the Brianconnais paleogeographic domain. This 145 Late Eocene zone of deep subduction and accretion in the Alpine thrust belt is named Valais suture on Table 1 146 (Engi et al. 1995; 2001; Gebauer, 1996; Cavargna-Sani et al. 2014).

147

148 **3.** Alpine structures of the Sambuco – Maggia nappe

149

150 The decode of the Alpine structure and history of the Maggia nappe was a main subject of the present field work. 151 The Maggia unit forms a high Alpine nappe of the Lepontine gneiss dome. It overlies the deeper Antigorio 152 nappe to the west and Campo Tencia and Verzasca nappes to the east. The measured fold axis and stretching 153 lineations of this study corroborate the data of the structural map of the Ticino Alps by Wenk (1955). The gneiss 154 structures result from multiple ductile folding during and after the nappe emplacement. The unequivocal 155 distinction of the successive formed folds and their axial surface schistosities was established in the Helvetic Aar 156 and Gotthard F2 basement folds and in the frontal parts of the lower Penninic F2-F3 Verampio, Antigorio, 157 Maggia and higher basement fold nappes (Liszkay-Nagy, 1965; Masson et al. 1980; Steck, 1984, 1987, 1990, 158 1998, 2011). Four schistosities S1-S4 and six phases of folding F1-F6 are distinguished in the Maggia and 159 surrounding nappes. Late crenulation folds F7 with a sub-horizontal to low-angle west dipping axial surface 160 were formed during a phase of vertical shortening below the Simplon normal fault (Table 2, Steck, 1987). Note 161 that the first alpine schistosity S1, sub-parallel to the lithologic banding observed by Liszkay-Nagy (1965 and 162 this study) in the Nufenen-pass region is missing in many descriptions (Huber et al. 1980; Huber, 1981; Maxelon 163 & Mancktelow, 2005). This early first schistosity is also clearly observable in the Mesozoic sediments of the 164 autochthonous cover of the Aar and Gotthard massifs F2 basement folds. But first folds F1 are infrequent and 165 rarely demonstrable (Steck, 1984, 1987, 2011).

166 Early schistosites S1-S3 and a SE-plunging stretching lineation L1-L3 were developed in the gneiss 167 fold nappes during their NW-directed ductile shear décollement from the upper European crust during its 168 underthrusting below the middle and higher Penninic nappes, the Dent Blanche-Sesia thrust sheet and Adriatic 169 indenter. A dominant and late axial surface schistosity S4, post nappe folds F4 and an associated SE-plunging 170 stretching lineation L4 were developed after the NW-directed nappe emplacement, creating the southwest-171 verging Verzasca antiform and Sambuco-Maggia synform during a phase of dextral shear in the zone of Alpine 172 collision between the European plate and the Adriatic indenter (Fig. 2 and 3). The pre-existing NW-directed S1-173 S3-related sense-of-shear structures were inverted by rotation around the axis and stretching lineation of the 174 younger Verzasca F4-antiform (Allaz et al., 2005; Steck et al., 2013). The unequivocal discernment of the 175 different phases of schistosities and stretching lineations is difficult and in many places impossible. The final 176 planar and linear gneiss structures result from internal rotation and transposition by continuous ductile 177 deformation (Figs. 2 and 3). The post-nappe steepening of the southern Alpine belt with the formation of the

178 Vanzone and Cressim F5 backfolds occurred during the so-called Argand's phase of backfolding (Fig. 1 and179 Table 2; Argand, 1911; Milnes, 1974).

The northern end of the SE-plunging Maggia F4-synform was later overprinted by younger NE-trending
Foroglio and Cristallina F6 folds creating a type 2-fold interference pattern after Ramsay (1967). The Neogene
uplift of the Lepontine gneiss dome since over 18 Ma (Steck & Hunziker, 1994) accompanied by its erosion
were responsible for the separation of the Sambuco lobe from its southern continuation the Maggia synform
(Figs. 1 and 2).

185 The fold axes and parallel stretching lineations of the synformal Maggia nappe plunge from north to 186 south, between the Val Lavizzara, Peccia, Bignasco and the Verzasca reservoir, over a distance of 30 km with a 187 regular low angle of 0-10° to the SE. To the south-east of the Verzasca reservoir the fold axes plunge increases 188 rapidly from 10° to 70°, ending in an east closing steep plunging F5 antiform of the Mergoscia nappe (Fig. 2). 189 New detailed field work in the Sementina and upper Gorduno valleys confirm the geological observations of 190 Bächlin et al. (1974): The Ruscada- and Cocco-gneisses of the Maggia nappe dip to the SE with a steep angle of 191 over 75° in a tubular fold structure below the eclogitic Mergoscia mélange nappe (Fig. 2). It is "der 192 schlundartige Wirbel von Bellinzona", the gorge like whirl of Bellinzona represented by Wenk (1955) on his 193 map of Alpine fold axes. Spicher & Wenk (1981) describe the steep converging structure near Bellinzona as a 194 late vortex-like root zone, in a neutral sense of the term, formed under highly ductile conditions in Oligocene-195 Early Miocene time, after the nappe emplacement and during a late orogenic phase of folding and re-196 crystallisation in the deep mobile belt (Read 1955) of the Alps. It is herein considered that the on the geological 197 map established sheath fold like tubular structure originate from the overprint and squeeze of the Maggia F1-F3 198 thrust root during the late F4-F5 folding phases related to dextral shear in the southern steep belt of the Alps 199 (Figs. 2, 3 and 6). The southern root of the Maggia nappe possesses the geometry of a tubular sheath fold like 200 structure surrounded by the Antigorio and Campo Tencia-Verzasca nappes at its base and the eclogitic 201 Mergoscia and Cimalunga mélanges on the top (Fig. 2 and 6). The geometry of this sheath fold like tubular 202 structure results from multiple folding and not from the mechanism of simple shear alone proposed by the 203 Cobbold & Quinquins (1980) model. Sheath folds or sheath fold like structures of centimetre- to metre-204 dimension are common in other Alpine ductile thrust zones, for instance at the base of the Helvetic Doldenhorn 205 thrust fold (Krayenbühl & Steck, 2009), there characterised by multiple ductile folding. Lacassin and Mattauer 206 (1985) described a kilometre-scale sheath fold in the Mattmark region on top of the NW-directed Monte Rosa 207 nappe thrust. The pictures of fold interference patterns published by these authors suggest also a zone of multiple shear folding. Cobbold and Quinquins (1980) discussed and studied experimentally a sheath fold model as a
mechanism of simple shear affecting a pre-existing deflection of an irregular surface. The formation of the
Maggia sheath fold like tubular structure results not from the process of simple shear alone described in the
Cobbold and Quinquins (1980) model, but probably by a more complex process of multiple shear folding in a
thrust zone. The intersection of folds of successive generations may be an ideal site for the formation of a sheath
fold like structure.

- 214
- 215

4. Age and pressure-temperature conditions of the ductile Lower Penninic nappe detachment zone

217

216

218 The ductile detachment of the Lower Penninic nappes from the upper European crust started at the base of the 219 Alpine Middle and Upper Penninic nappe stack, an overburden of 25 km, after its emplacement dated between 220 52-35 Ma (Markley et al., 1998; Skora et al., 2015) and after or synchronous of the 40-35 Ma of the Paleocene-221 Eocene planktonic foraminifera in the Sion-Courmayeur zone, Valais flysch (or contourite) nappe near Sion 222 (Bagnoud et al., 1998) and before the formation of the Vanzone and Cressim back folds and the Southern Steep 223 belt of the Central Alps since about 30 Ma (Milnes, 1974; Berger et al., 1996; Steck and Hunziker, 1994; Schmid 224 et al., 1996; Steck et al., 2013). The detachment of the Lower Penninic nappes in the zone of underthrusting of 225 the European crust below the higher Alpine orogenic lid occurred consequently in the Early Oligocene between 226 40 and 30 Ma by ductile shear under increasing greenschist to amphibolite facies metamorphic conditions and 227 this before reaching the thermal peak. Stable assemblages of kyanite-staurolite-garnet-biotite crystallised during 228 the formation of the main S3 schistosity and the NW-directed L3 shear and remained stable during the W-229 verging Verzasca and Maggia F4 folding. Most of the acicular or prismatic hornblende, staurolite and kyanite 230 synkinematic crystals are oriented parallel to L2-3 stretching lineations, others postkinematic are non-oriented 231 (Allaz et al. 2005). Maximum pressures reaching 8-9 kbars and temperatures of 600-700°C where attended in the 232 Maggia region (Todd & Engi, 1997; Allaz et al., 2005; Brower et al., 2005; Burri et al. 2005; Boston et al. 2017). 233 The isograds of the Barrovian regional metamorphism cut through the nappe limits (Fig. 7, e.g. Niggli & Niggli, 234 1965; Trommsdorff, 1966; Wenk & Keller, 1969; Burri et al. 2005). The northern limit of the over 6 km wide 235 Tertiary migmatite zone cross the southern root of the Maggia nappe to the south of the village of Maggia and 236 occupies the southern steep belt of the Alps from the entrance of the Valle Onsernone and Locarno to the west to 237 the Bergell intrusion to the east (Fig. 7, Burri et al., 2005; Steck et al., 2013). In situ migmatites were dated in

238 the Bellinzona region by the age of Cenozoic synkinematic leucosome veins of the high amphibolite facies grade 239 metamorphism of the K-feldspar-silimanite zone at 32-22 Ma with U-Pb SHRIMP zircon ages by Rubatto et al. 240 (2009), allanite U-Pb ages by Gregory et al. (2012) and U-Pb monazite ages by Boston et al. (2017). These 241 Cenozoic migmatites are of the same age as cross cutting crustal derived pegmatites and aplites (Romer et al., 242 1996; Schärer et al., 1996). The concentration of Tertiary migmatite and discordant aplites and pegmatites in the 243 southern steep belt and the geometry of the Andesine An >40 amphibolite-isograd around the southern Maggia-244 root suggest a greater terrestrial heat flow in vertical zones of the Lepontine gneiss dome (Fig. 7, Wenk & 245 Keller, 1969). Schärer et al. (1996) suggest that frictional heating in the dextral shear zone of the southern steep 246 belt of the Alps may also be responsible for this phase of post-nappe heating. This signifies that the up heating to 247 thermal peak conditions of the southern steep belt outlast the pre-existing extrusion and emplacement of the 248 Maggia nappe. Thermal peak conditions and emplacement of crustal derived aplites and pegmatites are coeval to 249 a Late Oligocene to Miocene incipient phase of vertical shortening and lateral, mainly SW-NE directed 250 extension of the Alpine nappe stack, dextral shear in the southern steep belt of the Alps and the formation of the 251 Simplon low-angle detachment of the Lepontine dome and Dent Blanche depression pull-apart structure (Fig. 1; 252 Steck, 1990; Steck & Hunziker, 1994; Steck et al., 2013).

253

5. Discussion of models for the extrusion structures in fold nappes.

255

256 A fundamental question exists in the interpretation of the Penninic nappes, are they simple thrust sheets as the 257 Sesia-Dent Blanche (Salassic) and Australpine thrust sheets, are they folds deforming crustal sheets or are they 258 nappes formed by a mechanism of ductile folding alone. The question is still discussed. Froitzheim et al. (1996) 259 and Schmid et al. (2004) consider the Maggia nappe as a thrust sheet. In contrast, Wenk (1955), Milnes (1974), 260 Maxelon & Mancktelow (2005), Steck (1984, 2008) and Steck et al. (2013) interpreted the Lower Penninic 261 nappes of the Lepontine gneiss dome as fold-nappes formed by multiple ductile shear folding and decollement of 262 the upper European crust under greenschist to amphibolite facies metamorphic conditions during its south 263 directed underthrusting below the higher Penninic and Salassic orogenic lid and Adriatic indenter. The geometry 264 and penetrative texture of the gneiss fold nappes suggest a mechanism of ductile folding under greenschist to 265 amphibolite facies conditions. The study of Cenozoic deformed granitic basement rocks of the Alpine Aar 266 massif - Leventina nappe transect by Voll (1976) reveal their ductile behaviour related to the quartz 267 synkinematic crystallisation at temperatures over 300°C and feldspar crystallization at amphibolite facies

268 conditions. Early brittle thrusting under lower temperature conditions cannot completely be excluded. A model 269 for fold nappe extrusion by ductile squeezing of the deep zone of the Europe-Adria collision is suggested by 270 Merle & Guillier (1989). A more realistic mechanism of ductile detachment of basement gneiss folds by pure 271 and simple shear from the under-thrust European crust was proposed by Epard & Escher (1996), Escher & 272 Beaumont (1997) and Pfiffner et al. (2000). Field data confirm the fold nappe geometry of the Maggia nappe 273 front. The northern Sambuco lobe of the Maggia nappe possess slices of its autochthonous Mesozoic 274 sedimentary cover on its upper and lower fold limb. The sedimentary cover is farther south reduced and strongly 275 deformed to thin quartzite and limestone bands of the Pertusio and Someo cover series (Fig. 2 and 4). The 276 question of the autochthony of these sediments is open. It is herein suggested that these slices of Mesozoic 277 sediments represent a reduced autochthonous cover of the Maggia nappe and the southern border of the 278 European continental margin. The Maggia nappe roots in the southern steep belt of the Alps in direct contact 279 with the eclogitc Mergoscia and Cimalunga mélanges units (Fig. 2 and Table 1; Bächlin et al. 1974). It is 280 probable that the Maggia nappe emplacement is related to the deep subduction and later extrusion and accretion 281 of these ultra-high pressure units in the Valais suture (Table 1). The action of strong buoyancy and diapirism of 282 deep subducted and later extruded and accreted upper crustal slabs was suggested in the model of Chemenda et 283 al. (1995). A vertical pull and imbrication of the Maggia fold nappe by the deep subducted high pressure rocks 284 of the Valais suture during their extrusion is probable. Engi et al. (2001) suggest the notion of tectonic 285 accretionary channel (TAC) for such enigmatic zones of deep subduction, extrusion and accretion of the Alps.

286

6. Conclusions

288

289 The tectonic window of the Central Alps allows the study of the structural variation through superposed 290 tectonic levels of the orogenic belt. It permits a modern image of the so-called "Stockwerk Tektonik" of 291 Wegmann (1953). NW-directed thrusting and multiple ductile folding of detached European crustal rocks 292 characterise the deepest exposed tectonic level of the Central Alpine nappe stack. The Maggia nappe represents a 293 north-directed pipe-like extruding fold-nappe structure. It has the geometry of a tubular sheath fold like structure 294 that roots in the southern steep belt of the Central Alps (Figs.2 and 6). Its Mesozoic stratigraphic cover assigns 295 the Maggia fold nappe to the Helvetic paleogeographic domain. It is bordered by the higher tectonic units of the 296 Valais suture composed of the high pressure Mergoscia and Cimalunga mélanges, the Adula high pressure 297 nappe, the medium pressure Orselina mélange and the Valais calc-schist nappe situated below the Middle

298	Penninic nappes of the Briançonnais domain and the Monte Rosa nappe. The formation of the Lower Penninic
299	nappe pile occurred between some 40 and 30 Ma ago by ductile detachment of the upper European crust starting
300	with high-pressure conditions in the Mergoscia and Cimalunga mélanges followed by increasing greenschist and
301	amphibolite facies conditions in the zone of underthrusting below the higher orogenic lid and Adriatic indenter.
302	The thermal peak of the Tertiary Barrovian regional metamorphism was attended between 30 and 22 Ma after
303	the Alpine nappe emplacement and related to the uplift and E-W extension of the Oligocene-Miocene Lepontine
304	gneiss dome structure.
305	
306	Acknowledgments We thank Djordje Grujic and an anonymous reviewer for their constructive suggestions that

307 helped improving this manuscript and Prof. Wolf-Christian Dullo for editorial handling and comments.

308 References

- 309
- Allaz, J., Maeder, X., Vannay, J.-C. & Steck, A. (2005). Formation of alumosilicate-bearing quartz veins in
- 311 the Simano nappe (Central Alps): structural, thermobarometric and oxygen isotope constraints.
- 312 Schweizerische Mineralogische und Petrographische Mitteilungen 85, 191-214.
- 313 Argand, E. (1911). Les nappes de recouvrement des Alpes Pennines et leurs prologements structuraux.
- **314** Beiträge zur Geologischen Karte der Schweiz [N.F.] 31, 26.
- Bächlin, R., Bianconi, F., Codoni, A., Dal Vesco, E., Knoblauch, P., Kündig, E., Reinhard, M., Spänhauer,
- 316 F., Spicher, A., Trommsdorff, V. & Wenk, E. (1974). Blatt 1313 Bellinzona. *Geologischer Atlas der*

317 Schweiz 1:25'000, Federal Office of Topography, Ch-3084 Wabern.

- 318 Bagnoud, A., Wernli, R., Sartori, M. (1998). Découverte de foraminifères planctoniques paléogènes dans la
- zone de Sion-Courmayeur à Sion (Valais, Suisse). *Eclogae geologicae Helvetiae 91/3*, 421-429.
- Becker, H. (1993). Garnet peridotite and eclogite Sm-Nd mineral ages from the Lepontine dome (swiss
- Alps): New evidence for Eocene High-pressure metamorphism in the central Alps. *Geology 21*, 599-602.
- 322 Berger, A. & Mercolli, I. (2006). Tectonic and petrographic map of the Central Lepontine Alps. *Carte*
- 323 geologica speziale N. 127, 1:100'000, Federal Office of Topography, Ch-3084 Wabern.
- Berger, A., Mercolli, I. & Engi, M. (2005). The central Lepontine Alps: Notes accompanying the tectonic
- and petrographic map sheet Sopra Ceneri (1:100'000). *Schweizerische Mineralogische und Petrographische*
- **326** *Mitteilungen 85*, 109-146.
- 327 Berger, A., Rosenberg, C. & Schmid, S.M. (1996). Ascent, emplacement and exhumation of the Bergell
- 328 pluton within the Southern Steep Belt of the central Alps. *Schweizerische Mineralogische und*
- **329** *Petrographische Mitteilungen* 76, 357-382.
- Bergomi, M.A., Tunesi, A., Shi, Y.-R., Colombi, A. & Liu, D.-Y. (2007). SHRIMPH U-Pb geochronical
- 331 constraints of pre-Alpine magmatism in the Lower Penninic units of the Ossola Valley (Western Alps,
- 332 Italy), *Geochronological Research Abstracts*, 9, 07780, European geosciences Union.
- Bianconi, F. (1971). Geologia e petrografia delle regione del Campolungo. Materiali per la Carta
- **334** *Geologica della Svizzera N.S. 142*, 238 p.
- Bianconi, F., Beffa, F.A., Steiger, R.H., Günthert, A., Hasler, P., Baumer, P. & Huber, C.W. (2014). Foglio
- 336 1252 Ambri-Piotta.- Atlante geologico della Svizzera 1:25 000, Carta 138, Federal Office of Topography,
- **337** *Ch-3084 Wabern.*

- 338 Bianconi, F. & Strasky, S. (2015). Foglio 1252 Ambri-Piota. Atlante geologico della Svizzera 1:25 000,
- **339** *Note explicative 138, Federal Office of Topography, Ch-3084 Wabern.*
- 340 Boston, K.R., Rubatto, D., Hermann, J., Engi, M. & Amelin, Y. (2017). Geochronology of accessory
- allanite and monazite in the Barrovian metamorphic sequence of the Central Alps, Switzerland. *Lithos* 286-
- **342** *287*, 502-518.
- Bousquet, R., Goffé, B., Vidal, O., Patriat, M. & Oberhänsli, R. (2002). The tectono-metamorphic history of
- the valaisan dmain from the Western to the Central Alps: New constraints for the evolution of the Alps.
- 345 Bulletin of the Geological Society of America114, 207-225.
- Bousquet, R., Schmid, S.M., Zeitlinger, G., Oberhänsli, R., Rosenberg, C., Molli, G., Robert, C.,
- 347 Wiederkehr, M. & Rossi, Ph. (2012). Tectonic framework of the Alps. Map 1: 1 000 000. *Commission for*
- 348 the Geological Map of the World. Subkommission for Magmatic and Metamorphic Maps. IUGS and IUGG,
- 349 *Paris. http://www.cegm.org.*
- Brower, F.M., Burri, T., Engi, M. & Berger, A. (2005). Eclogite relics in the Central Alps: PT-evolution,
- Lu-Hf ages and implications for formation of tectonic mélange zones. *Schweizerische Mineralogische und Petrographische Mitteilungen 85*, 147-174.
- Burri, T., Berger, A. & Engi, M. (2005). Tertiary migmatites in the Central Alps: regional distribution, field
- 354 relations, conditions of formation, and tectonic implications. *Schweizerische Mineralogische und*
- **355** *Petrographische Mitteilungen 85, 215-232.*
- Bussien, D., Bussy, F., Magna, T.& Masson, H. (2011). Timing of Palaeozoic magmatism in the Maggia
- and Sambuco nappes and paleogeographic implications (Central Lepontine Alps). Swiss Journal of
- **358** *Geosciences 104*, 1-29.
- 359 Cavargna-Sani, M., Epard, J.-L., Bussy, F. & Ulianov, A. (2014a). Basement lithostratigraphy of the Adula
- appe: implications of Palaeozoic evolution and Alpine kinematics. *International Journal of Earth Sciences 103*, 61-82.
- 362 Cavargna-Sani, M., Epard, J.-L. & Steck, A. (2014b). Structure, geometry and kinematics of the northern
- 363 Adula nappe (Central Alps). *Swiss Journal of Geosciences 107*, 135-156.
- 364 Chemenda, A.I., Mattauer, M., Malavieille, J. & Bocun, A.N. (1995). A mechanism for syn-collisional rock
- 365 exhumation and associated mormal faulting: Results from physical modelling. *Earth and planetary Sciences*
- **366** *letters 132, 225-232.*

- 367 Cobbold, P.R. & Quinquins, H. (1980). Development of sheath folds in shear regimes. *Journal of Structural*368 *Geology* 2, 119-126.
- 369 Ellenberger, F. (1953). La série du Barrhorn et les rétrocharriages penniques. *C.R. Académie des Sciences*370 (*Paris*) 236, 218-220.
- Engi, M., Berger, A. & Roselle, G.T. (2001). Role of the tectonic accretion channel in collisional orogeny.
- **372** *Geology 29*, 1143-1146
- Engi, M., Todd, C.S. & Schmatz, D.R. (1995). Tertiary metamorphic conditions in the eastern Lepontine
- **374** Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 75, 347-369.
- 375 Epard, J.-L., Escher, A. (1996). Transition from basement to cover: a geometric model. *Journal of*
- **376** *Structural Geology, 18, 533-548.*
- Escher, A. (1988). Structure de la nappe du Grand Saint-Bernard entre le val de Bagnes et les Mischabel.
- **378** *Rapports géologique du Service hydrologique et géologique national 7.*
- Escher, A. & Beaumont, C., 1997. Formation, burial and exhumation of basement nappes at crustal scale: a
- geometric model based on the western Swiss-Italian Alps. *Journal of Structural Geology*, *19*, 955-974.
- **381** Froitzheim, N. (2001). Origin of the Monte Rosa nappe in the Pennine Alps A new working hypothesis.
- **382** Bulletin of the Geological Society of America, 113/5, 604-614.
- **383** Froitzheim, N., Schmid, S.M. & Frey, M. (1996). Mesozoic palaeography and the timing of eclogite facies
- 384 metamorphism in the Alps: A working hypothesis. *Eclogae Geologicae Helvetiae* 89, 81-110.
- 385 Galster, F., Cavargna-Sani, M., Epard, J.-L. & Masson, H. (2012). New stratigraphic data from the lower
- **386** Penninic between the Adula nappe and the Gotthard massif and consequences for the tectonics and the
- **387** paleogeography of the Central Alps. *Tectonophysics* 579, 37-55.
- 388 Gebauer, D. (1996). A P-T-t path for an (ultra?-) high pressure ultramafic/mafic rock association and its
- felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example:
- Alpe Arami (Central Swiss Alps). In: Basu, A. and Hart, S. (eds): *Earth processes: Reading the isotopic*
- 391 *code, Geophysical Monograph 95, American Geophysical Union, Washington, 307-330.*
- **392** Gregory, J.C., Rubatto, D., Hermann, J., Berger, A. & Engi, M. (2012). Allanite behaviour during incipient
- 393 melting in the southern Central Alps. *Geochimica et Cosmochimica Acta* 84, 433-458.
- 394 Grond, R., Wahl, F. & Pfiffner, M. (1995). Poly-phase Alpine deformation and metamorphism in the
- 395 northern Cima Lunga unit, Central Alps (Switzerland). Schweizerische Mineralogische und Petrographische
- **396** *Mitteilungen* 75(3), 371-386.

- 397 Grujic, D. & Mancktelow, N.S. (1996). Structure of the northern Maggia and Lebendun nappes, Central
- **398** Alps, Switzerland. *Eclogae Geologicae Helvetiae* 89, 461–504.
- Heinrich, C.A. (1986). Eclogite facies regional metamorphism of hydrous mafic rocks in the Central Alpine
 Adula nappe. *Journal of Petrology 27*, 123-154.
- 401 Herwartz, D., Nagel, T.J., Munker, C., Scherrer, E.E. & Froitzheim, N. (2011). Tracing two orogenic cycles
- 402 in one eclogite sample by Lu-Hf garnet chronometry. *Nature Geoscience 4*, 178-183.
- 403 Hirsiger, C., Bussy, F., Epard, J.-L., Masson, H., Steck, A. & Ulianov, A. (2015). The Lower Permian
- 404 Alpigia magmatic complex and its country rock (Upper Maggia Valley, Central Alps): petrology,
- 405 geochronology and structural position. 13th Swiss Geoscience Meeting, Basel 2015, Abstracte volume 54.
- 406 Huber, M.L. (1981). Geologisch-strukturelle Untersuchungen im oberen Maggiagebiet (Tessin, Schweiz).
- 407 *Ph.D. dissertation, ETH Zürich,* 221 p.
- 408 Huber, M.L., Ramsay, J. & Simpson, C. (1980). Deformation in the Maggia and Antigorio nappes,
- 409 Lepontine Alps. *Eclogae Geologicae Helveltiae* 73, 593-606.
- 410 Keller, F., Wenk, E., Bianconi, F. & Hasler, P. (1980). Blatt 1272 P. Campo Tencia, *Geologischer Atlas der*
- 411 Schweiz, 1: 25'000, Atlasblatt 73, Federal Office of Topography, Ch-3084 Wabern.
- 412 Krayenbuhl, T. & Steck, A. (2009). Structure and kinematics of the Jungfrau syncline, Faflertal (Vais,
- 413 Alps), and its regional significance. *Swiss Journal of Geosciences 102*, 441-456.
- 414 Lacassin, R. & Mattauer, M. (1985). Kilometer scale sheath fold at Mattmark and implications for transport
- 415 direction in the Alps. *Nature 316*(6022), 739-724.
- 416 Liszkay-Nagy, M. (1965). Geologie der Sedimentbedeckung des südwestlichen Gotthard-Massivs im
- 417 Oberwallis. *Ecloge geologicae Helveticae* 58, 901-965.
- 418 Markley, M.J., Teyssier, C., Cosca, M.A., Caby, M.A., Hunziker, J.C. & Sartori, M. (1998). Alpine
- deformation and 40Ar/39Ar geochronology of synkinematic white mica in the Siviez-Mischabel Nappe,
- 420 western Pennine Alps, Switzerland. *Tectonics* 17, 407–425.
- 421 Masson, H., Herb, R. & Steck, A. (1980). Helvetic Alps of Western Switzerland. Excursion No I in
- 422 *Geology of Switzerland a guide-book by Trümpy, R.* edited by Schweizerische Geologische Kommission,
- 423 Wepf & Co, Basel, NewYork.
- 424 Masson, H. & Steck, A., 2015. The Maggia-Sambuco nappe: stratigraphy, correlations and tectonic
- 425 consequences (Central Alps). 13th Swiss Geosciences Meeting, Basel 2015, Abstract Volume 1, 16-17.
- 426 Maxelon, M. & Mancktelow, N.S. (2005). Three-dimensional geometry and tectonostratigraphy of the

- 427 Pennine zone, Central Alps, Switzerland and Northern Italy. *Earth-Sciences Reviews* 71, 171–227.
- 428 Milnes, A. G. (1974). Post-nappe folding in the western Lepontine Alps. *Eclogae Geologicae Helveltiae* 67,
 429 333-348.
- 430 Niggli, E. & Niggli, C. (1965). Karten der Verbreitung einiger Mineralien der Alpidischen Metamorphose in
- 431 den Schweizeralpen (Stilpnomelan, Alkali-Amphibol, Chloritoid, Staurolith, Disthen, Sillimanit). *Eclogae*
- 432 *Geologicae Helveltiae* 58, 335-368.
- 433 Niggli, P., Preiswerk, H., Grütter, O., Bossard, L. & Kündig, E. (1936). Geologische Beschreibung der
- 434 Tessineralpen zwischen Maggia und Bleniotal. Beiträge zur Geologischen Karte der Schweiz N.F. 71.
- 435 *Lieferu*ng.
- 436 Pfeifer, H.R., Colombi. A., Ganguin, J., Hunziker, J.C., Oberhansli, R. & Santini, L. (1991). Relics of high-
- 437 pressure metamorphism in different lithologies of the Central Alpa, an updating inventory. *Schweizerische*
- 438 *Mineralogische und Petrographische Mitteilungen 71,* 441-451.
- 439 Pfeifer, H.R., Kobe Huldrich †, Colombi, A., Steck, A., Pozzorini, D. & Gouffon, Y. (2019). Map sheet
- 440 1312: Atlante geologico et Note esplicative, *Ufficio federale di topografia*, *Wabern, Svizzera*.
- 441 Pfiffner, M.A., Ellis, S. & Beaumont, C. (2000). Collision tectonics in the Swiss Alps: Insight from
- 442 geodynamic modelling. *Tectonics 19*, 1065-1094.
- 443 Preiswerk, H. (1919). Die überkippte Tauchfalte am Campolungopass und ihre früheren Deutungen. "Heim-
- 444 Festschrift", Vierteljahresschrift Naturforschende Gesellschaft Zürich, LXIV, 1–15.
- 445 Preiswerk, H., Bossard, L., Grütter, O., Niggli, P., Kündig, E. & Ambühl, E. (1934). Geologische Karte der
- 446 Tessineralpen zwischen Maggia- und Bleniotal. Geologische Spezialkarte Nr. 116. Bern: Schweizerische
- 447 *Geologische Kommission.*
- 448 Ramsey, J. (1967). Folding and fracturing of rocks. *London: McGraw-Hill*.
- 449 Read, H.H. (1955). Granite series in mobile belts. *Special Publication of geological Society of America* 62,
 450 409-430.
- 451 Romer, R., Schärer, U. & Steck, A. (1996). Alpine and pre-Alpine magmatism in the root zone of the
- 452 western Alps. *Contribution to Mineralogy and Petrography 123*, 138-158.
- 453 Rubatto, D., Herrmann, J., Berger, A. & Engi, M. (2009). Protracted fluid-induced melting during Barrovian
- 454 metamorphism in the Central Alps. *Contributions to Mineralogy and Petrology*, 158, 703-722.
- 455 Rütti, R., Maxelon, M. & Mancktelow, N.S. (2005). Structure and kinematics of the northern Simano nappe,
- 456 Central Alps, Switzerland. *Eclogae Geologicae Helveltiae* 98, 63-81.

- 457 Sandmann, S., Nagel, T.J., Herwartz, D., Fonseca, R.O.C. & Kursawski, R.M. (2014). Lu-Hf garnet
- 458 systematics of a polymetamorphic basement unit: new evidence for coherent exhumation of the Adula
- 459 Nappe (Central Alps) from eclogite facies conditions. *Contributions to Mineralogy and Petrology*, *168:*460 1075.
- 461 Schärer, U., Cosca, M., Hunziker, J. & Steck, A. (1996). Termination of major ductile strike-slip shear and
- differential cooling along the Insubric Line (Central Alps). *Earth and Planetary Sciences letters* 142, 331-
- **463** 351.
- 464 Schardt, H. (1903). Note sur le profil géologique et la tectonique du massif du Simlon compares au travaux
 465 antérieurs. *Eclogae Geologicae Helvetiae* 8, 173-200.
- 466 Schmid, S.M., Berger, A., Davidson, C., Giere, R., Hermann, J., Nievergelt, P., Puschnig, A.R. &
- 467 Rosenberg, C. (1996). The Bergell pluton (southern Switzerland, northern Italy): overview accompanying a
- 468 geological-tectonic map of the intrusion and surrounding country rocks. *Schweizerische Mineralogische und*
- 469 *Petrographische Mitteilungen* 76, 329-355.
- 470 Schmid, S.M., Fügenschuh, B., Kissling, E. & Schuster, R. (2004). Tectonic map and overall architecture of
 471 the Alpine orogeny. *Eclogae Geologicae Helveticae* 97, 93-117.
- 472 Schmid, S.M., Kissling, E., Diehl, T., van Hinsbergen, D.J.J. & Molli, G. (2017). Ivrea mantle wedge, arc of
- 473 Western Alps, and kinematic evolution of the Alps-Apennines orogenic system. *Swiss Journal of*
- **474** *Geosciences 110*, 581-612.
- 475 Schmidt, C. & Preiswerk, H. (1905). Geologische Karte der Simplongruppe. *Beiträge zur Geologischen*
- 476 *Karte der Schweiz.* 26, Spezialkarte No 48.
- 477 Schmidt, M.W. (1989). Petrography and structural evolution of ophiolitic remnants in the Bellinzona Zone,
- 478 Southern Steep Belt, Central Alps (CH/I). *Schweizerische Mineralogische und Petrographische*
- **479** *Mitteilungen 69*, 393-405.
- 480 Simpson, C. (1982). The structure of the northern lobe of the Maggia nappe, Ticino, Switzerland. *Eclogae*
- 481 *Geologicae Helvetiae* 75, 495-516.
- 482 Skora, S., Mahlen, N.J., Johnson, C.M., Baumgartner, L.P., Lapen T.J., Beard, B.L. & Szilvagyi, E.T. (2015).
- 483 Evidence for protracted prograde metamorphism followed by rapid exhumatio of the Zermatt-Saas Fee
- 484 ophiolite. *Journal of metamorphic Geology 33*, 711-734.
- 485 Spicher, A. & Wenk, E. (1981). Blatt 1313 Bellinzona. *Geologischer Atlas der Schweiz 1:25'000*,
- 486 Erläuterungen, Federal Office of Topography, Ch-3084 Wabern.

- 487 Steck, A. (1984). Structures de déformation tertiaries dans les Alpes centrales (transversal Aar-Simplon-
- 488 Ossola). Eclogae Geologicae Helveltiae 77, 55-100.
- 489 Steck, A. (1987). Le massif du Simplon Réflexions sur la cinématique des nappes de gneiss.
- 490 Schweizerische Mineralogische und Petrographische Mitteilungen 67, 27-45
- 491 Steck, A. (1990). Une cartes des zones de cisaillement ductile des Alpes centrales. *Eclogae Geologicae*
- **492** *Helvetiae 83*, 603-627.
- 493 Steck, A. (1998). The Maggia cross-fold: An enigmatic structure of the Lower Penninic nappes of the
- 494 Lepontine Alps. *Eclogae Geologicae Helvetiae* 91, 333–343.
- 495 Steck, A. (2011). Blatt 1269 Aletschgletscher und Erläuterungen. Geologischer Atlas Schweiz 1:25'000,
- 496 *Karte 131, Federal Office of Topography, Ch-3084 Wabern.*
- 497 Steck, A., Della Torre, F., Keller, F., Pfeifer, H.R., Hunziker, J. & Masson. H. (2013). Tectonics of the
- 498 Lepontine Alps: ductile thrusting and folding in the deepest tectonic levels of the Central Alps. *Swiss*
- 499 *Journal of Geosiences 106*, 427-450.
- 500 Steck, A., Epard, J.L., Escher, A., Gouffon, Y. & Masson, H. (2001). Notice explicative de la carte
- 501géologique de Suisse occidentale 1:100'000. Carte géologique special N°123, Office fédérale des Eaux et de502
- 502 *la Géologie, (Berne).*
- 503 Steck, A. & Hunziker, J. (1994). The Tertiary structural and thermal evolution of the Central Alps –
- 504 compressional and extensional structures in an orogenic belt. *Tectonophysics* 238, 229-254.
- 505 Steck, A., Masson, H. & Robyr, M. (2015). Tectonics of the Monte Rosa and surrounding nappes
- 506 (Switzerland and Italy): Tertiary phases of subduction, thrusting and folding in the Pennine Alps. *Swiss*
- 507 Journal of Geosiences 108, 3-34.
- 508 Tektonische Karte der Schweiz, 1:500'000, 2005. Federal Office for Water and Geology. Bern.
- Todd, C.S. & Engi, M. (1997). Metamorphic field gradients in the Central Alps. *Journal of Metamorphic Geology 15*, 513-530.
- 511 Trommsdorff, V. (1966). Progressive Metamorphose kieseliger Karbonatgesteine in den Zentraalpen
- 512 zwischen Bernina und Simplon. Schweizerische Mineralogische und Petrographische Mitteilungen, 46,
- **513** 431-460.
- 514 Trommsdorff, V. (1990). Metamorphism and tectonics in the central Alps: the Alpine evolution lithospheric
- 515 mélange of the Cimalunga and Adula. *Memorie della Socita Geologica Italiana* 45, 39-49.
- 516 Voll, G. (1976). Recrystallisation of quartz, biotite and feldspars from Erstfeld to the Leventina nappe,

- 517 Swiss Alps and its geological significance. *Schweizerische Mineralogische und Petrographische*
- 518 *Mitteilungen, 56,* 641-647.
- 519 Wegmann, E. (1953). Über gleichzeitige Bewegungsbilder verschiedener Stockwerke. *Geologische*520 *Rundschau 41*, 21-33.
- 521 Wenk, E. (1955). Eine Strukturkarte der Tessineralpen. Schweizerische Mineralogische und
- 522 *Petrographische Mitteilungen, 35*, 311-319.
- 523 Wenk, E. & Keller, F. (1969). Isograden in Amphibolitseries der Zentraalpen. Schweizerische
- 524 *Mineralogische und Petrographische Mitteilungen*, 49, 157-191.
- 525 Zingg, A., Handy, M.R., Hunziker, J.C. & Schmid, S.M. (1990). Tectonometamorphic history of the Ivrea
- 526 zone and its relationship to the crustal evolution of the Southern Alps. *Tectonophysics*, *182*, 169-192.
- 527 Zingg, A. & Hunziker, J.C. (1990). The age of movements along the Insubric line west of Locarno
- 528 (Northern Italy and southern Switzerland)., 83/3 *Eclogae Geologicae Helveltiae*, 629-644.

529 530

- 531
- 532
- 533
- 534

535	Table	and	figure	captions
-----	-------	-----	--------	----------

536

537 Table 1: Tectonic units of the Central Alps of Switzerland and Italy enumerated from north to south and bottom 538 to top. The radiometric ages of the phases of high pressure metamorphism suggest a displacement of the zones of 539 deep subduction and accretion from south to north in the Alpine nappe stack: the Senonian Canavese, Eocene 540 Piemont and Late Eocene - Oligocene Valais sutures (Zingg & Hunziker, 1990; Zingg et al. 1990; Brower et al. 541 2005; Sandmann et al. 2014; Skora et al. 2015). 542 543 Table 2: Comparison of models of the Cenozoic structural evolution of the lower Penninic nappes published by 544 Huber et al. (1980), Huber (1981), Simpson (1982), Grujic & Mancktelow (1996), Maxelon & Mancktelow 545 (2005) and this study. 546 547 Fig. 1: Blockdiagram of the Central Alps, modified after Steck et al. (2008). The Maggia-Sambuco nappe is 548 situated in the centre of the Lepontine gneiss dome. CT = Campo Tencia nappe, GN = Gurnigel flysch, 2DK = 549 Seconda zona diorito-kinzigitica, UH = Ultrahelvetic, ZH = Zone Houillère. Campo Tencia and Simano nappes 550 of Preiswerk (1934) form a composite nappe designated as Simano nappe on the Tectonic map of Switzerland 551 (2005) and on Figs. 2 and 3. 552 553 Fig. 2: Tectonic and structural map of the central Lepontine gneiss dome. A-E indicate the positons of the 554 geological profiles through the Maggia nappe of Fig. 3. Abbreviations: Cr = Cristallina Mesozoic cover, H =555 Helvetic nappes, ML = Monte Leone nappe, Pe = Pertusio Meszoic cover, P.d.L. = Poncione dei Laghetti Klippe 556 (Maggia nappe), PV = Pizzo del Vallone nappe, So = Someo Mesozoic cover, VALAIS CALC-SCHISTS 557 designates a complex zone, the eastern continuation of the Sion-Courmayeur zone composed of the Bedretto 558 zone of Bianconi & Starsky (2015). Fig. 2 is based on the 1:25 000 Geologischer Atlas der Schweiz 1313 559 Bellinzona (Bächlin et al. 1974), 73 Campo Tencia (Keller et al. 1980), 1262 Ambri-Piota (Bianconi & Strasky, 560 2015), 1291 Bosco/Gurin (Della Torre et al. 2015), 1312 Locarno (Pfeifer et al. 2018), unpublished originals of 561 Eduard Wenk and Paul Graeter of 1292 Maggia and our one new structural data. 562 563 Fig. 3: Geological profiles A-E (on Fig. 2) and representation of Alpine deformational structures on Schmidt net,

564 lower hemisphere. The Maggia nappe forms a F4-synform to the north in the profiles B – E and plunges to the

565	west of Bellinzona in a steep structure (profile A). The late steepening of the fold axis is related to back folding
566	and designated F5. Note the frontal down facing fold of the Campo Tencia nappe (profile E).
567	
568	Fig. 4: Tectonic map and geological Pizzo Massari-Pizzo Prevat profile through the frontal down facing Campo
569	Tencia nappe F2-fold and its autochthonous Campolungo Triassic sedimentary cover, the Bedretto calc-schist
570	nappe (Bianconi, 1971; Bianconi & Starsky, 2015) and the Sambuco gneisses with its autochthonous Cristallina
571	Mesozoic sedimentary cover in an inverted position at the nappe base and an upper normal position in the
572	syncline to the west of the Pizzo Massari.
573	
574	Fig. 5: The cut out of the geological map of Keller et al. (1980) illustrates the uniform about 20° S-plunging axis
575	of the Mogno F2 down facing syncline. The southern and deeper continuation of the Triassic dolomite and calc-
576	schist, observed by Dazio Dal Vesco in the Prato-Camblee water gallery confirms the geometry of the down
577	facing Mogno syncline (oral communication by Franz Keller).
578	
579	Fig. 6: Block diagram of the Sambuco – Maggia sheath fold like structure.
580	
581	Fig. 7: Map of isograds of the Cenozoic Barrovian amphibolite facies metamorphism of the Central Alps. The
582	limits of the Lower Penninic nappes are crosscut by the isograds of the amphibolite facies metamorphism.
583	Highest temperature where attended at 30-22 Ma after the nappe emplacement. Isograds of metapelites after
584	Niggli & Niggli (1965), siliceous dolomites after Trommsdorff (1966), metabasites after Wenk & Keller (1969),

585 Steck et al. (2001) and migmatites after Burri et al. (2005) are represented.

	TECTONIC DIVISIO	N	ALPINE NAP CRYSTALLINE BASEMENT	PES METAN MESO-CENOZOIC SEDIMENTARY COVER	MORPHISM AGE (Ma)	CENOZOIC METAMORPHISM	
N			AAR MASSIF FOLD	LOWER HELVETIC NAPPES	10	ZEOLITE FACIES	
► bottom	HELVETIC		GOTTHARD NAPPE	WILDHORN NAPPE	2-1(GREENSCHIST FACIES	
	ULTRAHELVETIC		LUCOMAGNO-LEVENTINA NAPPE	PIORA SYNCLINE	°° ≀		
			VERAMPIO NAPPE	TEGGIOLO SYNCLINE			
			ANTIGORIO NAPPE	TEGGIOLO COVER			
	 	IST	SIMANO NAPPE	FRASCO COVER			
	Š	LC L	CAMPO TENCIA NAPPE	CAMPOLUNGO COVER	30	AMPHIBOLITE FACIES	
	2))	ean		LEBENDUN NAPPE	38-3		
		g D	OSBARINO-VALGRANDE NAPPE	PIZZO DEL VALLONE NAPPE	1		
	L L	Э Ц	MAGGIA (-SAMBUCO) NAPPE	CRISTALLINA-PERTUSIO-SOMEO CO	OVER		
			ADULA NAPPE MERGOSCIA-CIMALUNGA TECTON	C MELANGES	≥38	ECLOGITE→ AMPHIBOLITE FACIES	
			ORSELINA-BELLINZONA TECTONIC	MELANGES VALAIS SUTURE		AMPHIBOLITE FACIES	
			MONTE LEONE NAPPE	HOLZERSPITZ COVER		GREENSCHIST FACIES	
				VALAIS CALC-SCHIST NAPPE		BLUESCHIST FACIES	
top				BARRHORN COVER	40-35		
			MONTE ROSA NAPPE		~50-38		
	UPPER PENNINIC	ANTRONA - ZERMATT-SAAS FEE OPHIOL		PIEMONT SOTORE PHIOLITIC NAPPES	~30-30	ECLOGITE→ AMPHIBOLITE FACIES	
	TERTIARY MAGMATISM		BERGELL TONALITE		30	NON METAMORPHIC	
			SESIA ZONE	CANAVESE SUTURE	≥70-65	ECLOGITE→ AMPHIBOLITE FACIES	
	SOUTHERN ALPS		IVREA ZONE	CANAVESE COVER		GREENSCHIST FACIES BORDER	
S			STRONA-CENERI ZONE	LOMBARDIAN COVER		NON METAMORPHIC	

Steck, Epard & Masson (this study) and Liszkay-Nagy (1965), Steck (1987, 1998), Steck et al. (2013)							
Main deformational phases	early deformation in Mesozoic sediments S1, F1	NW-directed main nappe emplacement S2-S3, F2-F3	W-verging recumbent-folds S4, F4	Southern steep belt F5	late backfolds F6 vertical shortening F7		
Main structures	first schistosity and rare early folds	Maggia and Lower Penninic nappes Gotthard fold	Verzasa antiform Maggia synform Ziccher fold Bosa and Wandfluhhorn antiform	Vanzone antiform Cressim antiform verticalisation of Maggia root to the W of Bellinzona	Chièra synform Cristallina synform Foroglio antiform Salmone antiform Masera synform Simplon fault		
Metamorphic grade	Metamorphic grade greenschist facies amphibolite pfacies retrograde						
Age of deformation and metamorphism ~Late Eocene							
Huber, Ramsay & Simpson (1980), Grujic & Mancktelow (1996), Maxelon & Mancktelow (2005)							
Main deformational phases	D1 thrusting and isoclinal folding	D2 main post-nappe folding	D3 transverse folds	D4 Northern Backfolds Southern Steep Belt	D5 vertical shortening		
Main structures	Teggiolo zone	Antigorio antiform (-nappe) Ledendun synform Campolungo synform	Peccia-Basodino synform Campo Tencia synform Maggia steep zone Wandfluhhorn antiform	Cristallina synform Chièra synform Southern Steep Belt	Simplon fault		
Metamorphic grade	prograde	amphibolite facies	amphibolite facies	retrograde			
Age	Late Eocene-Oligocene	Oligocene (pre-Bergell)	Late Oligocene	Neoge	ne		

The Mogno down facing syn cline

Triassic dolomite | and Valais calc-schist | outcrops in Prato-Camblee water gallery (alt. 1135m), after Ez o Dal Vesco, personal communication by Franz Keller

staurolite and ka nite bearing garnet micaschists of Campo Tencia nappe

cut out of map sheet 1272 P. Campo Tencia by Keller et al. (1980)

20 aix al plunge

