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GENERAL ABTRACT 

Colour polymorphism is common in wild population. One of the main questioning of 

evolutionary biologists is to understand how different colour variants could have evolved and be 

maintained in fluctuating environments, a selective process that forces individuals to constantly adapt 

their strategies in order to survive. This issue is particularly true for traits that are genetically inherited. 

Natural selection erodes genotypes with lowest fitness (less adapted), reducing in turn global genetic 

variation within population. In this context, the study of the evolution and maintenance of melanin-

based coloration is relevant since inter-individual variation in the deposition of these pigments is 

common in animal and plant kingdoms and is under strong genetic control.  

In this thesis, I focus on the specific case of the tawny owl (Strix aluco), a species displaying 

continuous variation in reddish pheomelanin-based coloration. Interestingly, empirical studies 

highlighted covariations between melanin-based coloration and important behavioural, physiological 

and life history traits. Recently, a genetic model pointed out the melanocortin system and their 

pleiotropic effects as a potential regulator of these covariations. Accordingly, this PhD thesis further 

investigates colour-specific behavioural, physiological, or life history strategies, while examining the 

proximate mechanisms underlying these reaction norms. 

We found that differently coloured tawny owls differently resolve fundamental trade-off 

between offspring number and quality (Chapter 1), light melanic individuals producing many low-

quality offspring and dark melanic ones producing few high-quality offspring. These reproductive 

strategies are likely to induce alternative physiological constraints. Indeed, we demonstrated that light 

melanic individuals produced higher levels of reactive oxygen species (ROS, Chapter 2), but also 

expressed higher levels of antioxidant (GSH, Chapters 2 & 3). Interestingly, we showed that light 

melanic breeding females could modulate their POMC prohormone levels according to the 

environmental conditions, while dark reddish ones produced constant levels of this prohormone 

(Chapter 4). Finally, we highlighted colour-specific patterns of prohormone convertase 1 (PC1) gene 

expression (Chapter 5), an enzyme responsible for POMC prohormone processing to ACTH and α–

MSH, for instance.  

Altogether, these results provide strong evidence of colour-specific strategies, light and 

melanic tawny owls better coping with stressful and relaxed environments, respectively. Variation in 

melanin-based coloration is likely to be maintained by the heterogeneity of our study area and strong 

environmental stochasticity within and between years, these process favouring differently coloured 

tawny owls at different periods of time. From a proximate point of view, this PhD thesis supports the 

hypothesis that covariations between phenotypic traits and melanin-based coloration stems from the 

melanocortin system, especially the fundamental role of POMC gene expression and its processing to 

melanocortin peptides. 
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RESUME 

Le polymorphisme de couleur est une variation phénotypique très fréquente dans la nature. En 

biologie évolutive, une des problématiques clés est donc de comprendre comment différent morphes 

de couleur peuvent être apparus et maintenus au cours du temps dans des environnements aussi 

variables que les nôtres, surtout que ces fluctuations forcent ces morphes à s’adapter constamment 

pour assurer leur survie. Cette thématique est particulièrement réelle lorsque les variations 

phénotypiques sont héréditaires et donc sous forte influence génétique. La sélection naturelle a en effet 

le pouvoir d’éroder rapidement la variation génétique en éliminant les génotypes mal adaptés. Dans ce 

sens, l’étude de l’évolution et de la maintenance de la coloration mélanique est donc tout à fait 

pertinente car la variation de coloration entre individus est très répandue à travers les règnes animal et 

végétal et sous forte influence génétique. 

Dans cette thèse, je me suis concentré sur le cas spécifique de la chouette hulotte (Strix aluco), 

une espèce présentant une variation continue dans la déposition de pigments pheomélaniques roux. De 

précédentes études ont déjà montré que cette variation de coloration était associée avec des variations 

de traits comportementaux, physiologiques ou d’histoire de vie. Récemment, une étude a souligné 

l’importance du système des mélanocortines et de leurs effets pléiotropes dans la régulation de ces 

covariations. En conséquence, cette thèse de doctorat a pour but d’étudier un peu plus les stratégies 

comportementales, physiologiques ou d’histoire de vie spécifiques à chaque morphe de couleur, tout 

en examinant un peu plus les mécanismes proximaux potentiellement à la base de ces normes de 

réactions. 

Nous constatons tout d’abord que les morphes de couleurs étaient associés à différentes 

stratégies dans la résolution de compromis telle que la production de beaucoup de jeunes ou des jeunes 

de qualité (Chapitre 1). Les morphes gris (dit peu mélaniques) ont tendance à produire beaucoup de 

jeunes mains de moindre qualité, alors que les morphes roux (dit fortement mélaniques) produisent 

moins de jeunes mais de meilleure qualité. Ces stratégies sont susceptibles alors d’induire certaines 

contraintes physiologiques. Par exemple, nous montrons que les morphes gris produisent plus de 

dérivés réactifs de l’oxygène (ROS, Chapitre 2), mais aussi plus d’antioxydants (GSH, Chapitres 2 & 

3). Nous montrons ensuite que les femelles grises ont une plus grande capacité à moduler leur niveau 

de POMC prohormone dans le sang en fonction des conditions environnementales, alors que les 

femelles rousses gardent un niveau constant (Chapitre 4). Finalement, nous démontrons que les 

patterns d’expression du gène codant pour la prohormone convertase 1 varient chez des jeunes issus de 

parents gris ou roux (Chapitre 5). Ceci est particulièrement intéressant car cette enzyme permet de 

scinder la POMC prohormone en plusieurs peptides importants tels que l’ACTH ou l’α–MSH. 

En conclusion, ces résultats démontrent qu’il y a bel et bien des stratégies évolutives 

différentes entre les morphes de couleurs, les chouettes hulottes grises et rousses étant respectivement 

plus adaptés à des environnements stressants ou favorables. L’hétérogénéité de notre zone d’étude et 
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la stochasticité environnementale qui caractérise ses habitats pourraient donc agir comme une source 

de sélection temporelle, laquelle favoriserait les différents morphes de couleurs à diverses périodes. 

D’un point de vue plus proximale maintenant, cette thèse de doctorat soutient l’hypothèse que les 

covariations observées entre la coloration mélanique et des traits phénotypiques importants sont 

modulées par les effets pléiotropes du système des mélanocortines, et met en avant le rôle 

prépondérant que pourrait jouer l’expression du gène POMC et sa post traduction en mélanocortines. 
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Phenotypic variation among individuals within the same population is common in most 

organisms, some individuals being, for example, larger, heavier or more colourful than others. The 

theory of evolution by natural selection provides a general background to understand such broad 

phenotypic variation in nature (Darwin 1872; 1930). However, fluctuating environments force 

individuals to constantly adapt their behavioural, physiological or life history strategy, a selective 

process that eliminates phenotypes with lowest fitness (Fisher 1930). Interestingly, high phenotypic 

variation can still persist in populations despite the eroding effects of natural selection and genetic 

drift (Lewontin 1974). The extent of variation in a population is crucial for current and future 

evolution, especially in genetically polymorphic phenotypes that are encoded by a limited number of 

alleles. Understanding how such variation is generated and maintained in natural populations is thus a 

central issue in evolutionary theory, but also in field ecology (Coleman et al. 1994; Hallgrimsson & 

Hall 2005). 

The tight association between genotype and phenotype in polymorphic species allows 

researchers to carry out detailed studies on the effect of natural and sexual selection on evolutionary 

processes. Classical examples of genetic polymorphisms include blood group system or eye coloration 

in human as well as melanic vs. peppered adult Moths Biston betularia (Grant 2004). Colour 

polymorphic organisms provide a particularly promising study system because of the dramatic colour 

variation easily observed within and between species (Endler 1990) and its strong genetic control (e.g. 

insects: Majerus 1998; reptiles: Shine et al. 1998; anurans: Hoffman & Blouin 2000; birds: Kruger & 

Lindstrom 2001; plants: Warren & Mackenzie 2001; mammals: Majerus & Mundy 2003). For my 

thesis, I will focus on the most widespread and conserved pigmentation system in animal kingdom 

(Majerus 1998), namely melanin-based coloration. 

 

THE ADAPTIVE FUNCTION OF MELANIN-BASED COLORATION 

Melanin is the most abundant pigment in animal taxa and is found in all of the main types of 

integuments among vertebrates (Ito & Fujita 1985; Shiojiri et al. 1999; Lesser et al. 2001; Mundy & 

Kelly 2003; Hoekstra 2006). Melanin-based coloration is determined by the deposition of two distinct 

pigments: grey to black eumelanin and yellow to reddish-brown pheomelanin (Wakamatsu & Ito 
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2002). In birds, a comparative study revealed that 334 species owned colour polymorphisms (3.5% of 

all birds), with higher occurrence in Strigiformes, Ciconiformes, Cuculiformes and Galliformes 

(Galeotti et al. 2003). Well-known examples of melanin-based colour polymorphism include the Ruff 

Philomachus pugnax (Lank et al. 1995), the arctic skua Stercorarius parasiticus (Mundy et al. 2004), 

the snow goose Anser caerulescens (Mundy 2005), the feral pigeon (Johnston & Janiga 1995), the 

Bananaquit Coereba flaveola (Theron et al. 2001) and the common buzzard Buteo buteo (Kruger & 

Lindstrom 2001). Nowadays, the distinction between discrete colour morphs and continuous variation 

in genetically-based coloration fades away since several colour polymorphic species display 

continuous variation in melanin expression (see for example: McGraw et al. 2004; McGraw et al. 

2005; Hofmann et al. 2007). 

 The adaptive function of melanin-based coloration has been a central evolutionary issue since 

Darwin and Wallace. A colour trait is defined as being adaptive when in some habitats or social 

conditions individuals displaying a particular coloration have a fitness benefit (in terms of growth, 

reproduction or survival) over other differently coloured individuals. Based on this definition, 

scepticism emerged among evolutionary biologists regarding the adaptive value of displaying different 

melanic attributes, mainly because the expression of these traits were frequently found to be condition-

independent. Conversely to carotenoid pigments that cannot be endogenously synthesized in 

vertebrates, melanic pigments are synthesized de novo in specialized cells, i.e. the melanocytes. Thus, 

inter-individual variation in melanin-based coloration is often under tight genetic control (Mundy & 

Kelly 2003; Roulin & Dijkstra 2003; Bize et al. 2006; Hoekstra 2006; see Box 1). Accordingly, 

melanin-based pigmentation is often considered as a phenotypic marker of alternative genotypes 

(Hoekstra 2006). 
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Box 1 – Molecular mechanisms regulating melanin production 

The molecular cascade leading to the production of both melanins have been intensively studied 

(Jackson 1994; Mishima 1994; Bennett & Lamoreux 2003; Hoekstra 2006; Mundy 2006; Hoekstra 

2010). In epidermal tissues, binding of α- melanocyte-stimulating-hormone (α-MSH) to melanocortin-

1-receptor (MC1R) promotes eumelanogenesis (Slominski et al. 2004; Pritchard & White 2007; 

Walker & Gunn 2010). This binding on the surface of melanocytes activates indeed the production of 

intracellular cAMP, a second messenger that up-regulates the eumelanogenic activity of tyrosinase 

(TYR) within melanocyte (Kobayashi et al. 1995; Barsh et al. 2000; Ito et al. 2000; Slominski et al. 

2004; Lin & Fisher 2007; Spencer & Schallreuter 2009). Rate limiting enzyme tyrosinase catalyses the 

first two-steps of melanin production (see Figure Int.1): the hydroxylation of L-tyrosine to L-

dihydroxyphenylalanine (L-DOPA) and the subsequent oxidation of 5,6-dihydroxyindole (DHI) to L-

dopaquinone (Slominski et al. 1991; Ozeki et al. 1997; Ito et al. 2000; Land & Riley 2000; Park et al. 

2009; Ito & Wakamatsu 2010; Schallreuter et al. 2011). However, binding of inverse agonist and 

antagonist Agouti-signalling-protein to MC1R can block α-MSH binding, leading to the production of 

pheomelanin at the expense of eumelanin (Suzuki et al. 1997; Gantz & Fong 2003; Lin & Fisher 

2007). Note here that the switch between eu- and pheomelanogenesis depends also on the presence of 

thiol groups (Figure Int.1), resulting from cysteine depletion in melanosomes (del Marmol et al. 1996; 

Ito & Wakamatsu 2010). In absence of thiols, dopaquinone undergoes intramolecular cyclization, 

resulting in the formation of eumelanin, whereas thiol intervention promotes the transformation of 

dopaquinone in cysteinyldopas, which is further oxidized to produce pheomelanin (Ito et al. 2000; 

Wakamatsu & Ito 2002). 
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Figure Int.1: The biosynthetic pathways to eu- and pheomelanin. Redrawn from Wakamatsu and Ito 
(2002). 
  

 

 Moreover, experimental studies manipulating brood size (Roulin et al. 1998), endoparasites 

(McGraw & Hill 2000), calorie (McGraw et al. 2002) and protein intake (Gonzalez et al. 1999) in 

birds revealed no or little effect on the extent of melanic plumage coloration (but see: Fargallo et al. 

2007; Piault et al. in press). But this sceptic view is however challenged by the finding that melanin-

based traits frequently covary with behavioural, morphological, life history or physiological traits 

(Galeotti et al. 2003; Jawor & Breitwisch 2003; Roulin 2004), raising the hypothesis that melanic 

colour traits can signal individual quality. The proximate basis for such covariations to evolve in 

natural populations lies in three distinct reasons. Melanin-based coloration may have an adaptive 

function if natural selection exerts its influence: 

(i) on coloration, which can be the case when coloration plays a role in foraging (Galeotti et 

al. 2003; Roulin & Wink 2004) and anti-predatory strategies (Jones 1977; Endler 1988; 

Johannesson & Ekendahl 2002; Caro 2005; Bond 2007); 
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(ii) on the melanic pigments, because of their effective chemico-physical properties that 

operate in antibiotic activity, resistance to solar radiation, oxidative stress or 

thermoregulation (Mackintosh 2001; Slominski et al. 2004; McGraw 2005; Clusella Trullas 

et al. 2007; Galvan & Alonso-Alvarez 2008; Galvan & Alonso-Alvarez 2009; Galvan & 

Solano 2009); 

(iii) on phenotypic traits that are genetically correlated with coloration (Strand 1999; Ducrest 

et al. 2008). 

In the latter case, selection is acting on genes that are closely associated with genes coding for 

coloration (genetic disequilibrium) or on genes with pleiotropic effects on coloration and other 

attributes. Hence, melanin-based coloration may also evolve as indirect response to selection exerted 

on alternative physiological, morphological or behavioural attributes (Kittilsen et al. 2009), and thus 

may signal alternative life history or physiological strategies to cope with variation in habitats (for 

reviews: Galeotti et al. 2003; Roulin 2004; and see Roulin & Bize 2007) or social environments 

(Rohwer 1975, 1977). In this context, I review hereafter empirical studies carried out in the tawny owl 

Strix aluco (Box 2) with the aim of highlighting how the study of variation in melanin-based 

coloration can inform us about (i) the evolution and maintenance of genetic polymorphism in natural 

populations and (ii) individual adaptation to heterogeneous environments. 

 

Box 2 – The Tawny Owl (Strix aluco) 

The tawny owl is the commonest owl in central Europe, its distribution stretching across temperate 

Eurasia (Figure Int.2). The European breeding population is estimated between 480’000 to 1’000’000 

breeding pairs (International 2012). In Switzerland, the breeding population size is estimated at about 

6000 pairs (Vogelwarte 2004). This resident species is monogamous and particularly territorial all 

year round, but immatures may disperse up to 100km (König & Weick 2008). This medium-size owl 

(36-40cm) is sexually dimorphic in size (with females 20% bigger than males). Tawny owls live 

mainly in woodlands (e.g. semi-open deciduous and mixed forest, parks, large gardens and coniferous 

wooded patches where clearings and rides exist). This nocturnal perching hunter preys mainly upon 
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small rodents such as wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus; 

Roulin et al. 2008a; Roulin et al. 2009), but also passerines, frogs, reptiles and even fish or large 

insects. Breeding starts early in the season, laying beginning at the end of January. Analyses of 

genetic parentage revealed that extra-pair copulation is low (Saladin et al. 2007). The breeding season 

is relatively synchronised between pairs and usually last until early June. The female incubates the 

clutch (i.e. one to nine eggs) during 28 days, and then remains in the nest to guard her hatchlings and 

to distribute among them prey items collected by the male. Once owlets are thermo-independent at 

15-20 days of age, the female patrols around the nest to protect her offspring from potential predators, 

while helping her partner with provisioning food to the brood (Glutz von Blotzheim & Bauer 1980; 

Galeotti 2001). 

 

Figure Int.2: Geographic distribution of tawny owls around the world with green 
areas indicating the repartition of the species. Map produced by 
www.oiseaux.net 

 

Nestling growth rate and survival strongly depend on prey availability. Offspring leave the nest at 

25–30 days of age but are still being fed and protected by the parents until 90-120 days of age (Sunde 

2008). Sexual maturity is reached within a year (König & Weick 2008). Tawny owls may live to 18-

19 years (König & Weick 2008). In our local population, however, the mean expected life span is 

approximately 3.5 years and the maximum life span was up to 15 years. 
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PLUMAGE COLORATION IN THE TAWNY OWL 

The tawny owl Strix aluco displays large inter-individual variation in the degree of melanin-

based plumage coloration (from pale to dark reddish-brown, Figure Int.3), such variation being 

explained to a large extent by the level of pheomelanin pigments (68% of total variance) deposited in 

feathers and to a lesser extent by the level of eumelanin pigments (21% of total variance; Gasparini et 

al. 2009a). 

 
A 

 
B 

 
C 

Figure Int.3: Illustration of the variation in the degree of melanin-based coloration in the tawny owl Strix aluco. 
Pictures A and B show light and dark melanic mothers, respectively. Picture C illustrates two differently coloured 
chicks born from distinct parents. 

 

Different methods have been used to assess the degree of melanin-based coloration in the 

tawny owl. Colour morphs can be directly scored in the field by human eyes (Galeotti & Pavan 1993; 

Roulin et al. 2003; Brommer et al. 2005). Another approach is to collect feathers on the back of 

individuals, a body part that displays substantial variation in reddishness, and to measure them either 

through pictures which are then analysed with the software ADOBE PHOTOSHOP, or by reflectance 

spectra collected with a spectrophotometer. Interestingly, a bimodal distribution of colour morphs can 

be observed (Figure Int.4, see also Brommer et al. 2005), suggesting the occurrence of two main 

morphs, so-called grey (i.e. light melanic) and reddish (i.e. dark melanic), with some variation in the 

degree of pheomelanin within each morph. Expression of plumage coloration is neither sexually 

dimorphic (individuals of one sex are as likely to display a given coloration as an individual of the 

other sex; Galeotti & Cesaris 1996; Roulin et al. 2003; Brommer et al. 2005; Figure Int.4), nor 

sensitive to sibling competition (Roulin & Dijkstra 2003; Roulin et al. 2008b), but is found to be 

highly heritable, h2 ranging from 0.72 in Finland (Brommer et al. 2005; Karell et al. 2011b) to 0.93 in 
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Switzerland (Gasparini et al. 2009a; Table Int.1). 

  

A B 

Figure Int.4: Frequency distribution of melanin-based plumage coloration in male (A) and female (B) 
tawny owls. Data are from 177 males and 208 females from a Swiss population of tawny owl. Coloration 
scores were obtained by reflectance spectra. Low scores reflect light melanic feathers (i.e. grey morph) 
and high score dark melanic feathers (i.e. reddish morph). 
 

POTENTIAL ADAPTIVE FUNCTIONS OF COLORATION IN THE TAWNY OWL  

Table Int.1 provides a survey of the empirical studies that investigated the potential adaptive 

function of melanin-based coloration in the tawny owl. Because melanin-based coloration, as well as 

pigment density or distribution, are experimentally difficult to manipulate, evidence of direct selection 

on these traits is lacking in natural populations. By contrast, several studies established covariations 

between melanin-based coloration and physiological, morphological and behavioural phenotypic 

traits, suggesting that the degree of plumage reddishness reflects adaptations to different 

environmental conditions. Hereafter, we discuss five major selective forces to which plumage 

coloration of tawny owls may signal an adaptation. 
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Table Int.1: Summary of empirical studies (performed before or during my PhD thesis) highlighting covariation between melanin-based plumage coloration and 
other phenotypic traits in the tawny owl. Within the studied parameter (in bold italic), different phenotypic traits (e.g. morphological, behavioural, physiological or 
life history traits) are associated. For each trait, we provide a description of the main result. References of the empirical studies are also given. 
 

 

Studied parameters    Description   Reference 
Immune parameters     

1 Antibody production  Dark melanic breeding females maintain a stronger level of antibody for a longer period of time compared to 
light melanic females  

 Gasparini et al. 2009a 

2   The same humoral challenge enhanced immune response to PHA in dark melanic nestlings while reducing it 
in light melanic nestlings 

 Gasparini et al. 2009b 

3 Body mass after PHA 
vaccination 

 Nestlings born from dark melanic mothers suffered greater body mass loss than those born from lighter 
melanic females  

 Piault et al. 2009 

4 Body mass after Tetravac 
vaccination 

 Dark melanic breeding females suffered greater body mass losses than light melanic ones  Gasparini et al. 2009a 

5 Blood parasites intensity   Dark melanic adult owls hosted higher total parasite burden than pale melanic adult owls    Galeotti & Sacchi 
2003; Karell et al. 
2011a 

Genetic parameters     
6 Heritability   Expression of plumage coloration shows high heritability (h2= 0.72 and h2= 0.93)    Brommer et al. 2005; 

Gasparini et al. 2009a; 
Karell et al. 2011b 

Hormone levels     
7 POMC prohormone   Light melanic females exhibit more circulating POMC prohormone than darker females when the brood size 

was experimentally enlarged, but not when reduced.  
  Roulin et al. 2011c, 

Chapter 4 

Physiological parameter     
8 Oxygen consumption   Foster offspring raised by light melanic mothers showed not only a lower body mass than offspring raised by 

dark melanic mothers, but also consumed more oxygen under warm temperature 
  Roulin et al. 2005 

Fitness components     
9 Body mass in relaxed 

environment 
 When fed ad libitum nestlings born from dark melanic mothers converted food more efficiently into body 

mass than offspring born from lighter melanic mothers 
 Piault et al. 2009 

10   In some years, dark melanic owls produce heavier offspring than lighter melanic individuals, while the reverse 
is true in other years  

 Roulin et al. 2003 
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11   Nestlings reared by dark melanic parents grew more rapidly in body mass than offspring reared by light 
melanic parents when the size of their brood was experimentally reduced (but not enlarged)  

 Roulin et al. 2008b 

12 Body mass in stressful 
environment 

 When food is restricted nestlings born from dark melanic mothers suffered greater body mass losses than 
those born from lighter melanic females  

 Piault et al. 2009 

13 Adult survival  Dark melanic adults suffer a higher mortality in cool-dry years  Galeotti & Cesaris 
1996 

14   Light melanic adults suffer a higher mortality in warm-wet years  Galeotti & Cesaris 
1996 

15   Light melanic morphs surviving better than dark morphs  Brommer et al. 2005 

16   In Finland, frequency of dark melanic individuals increased with global warming  Karell et al. 2011b 

17   In a Swiss population, tawny owl survival was not associated with melanin-based coloration  Roulin et al. 2003 

18   Dark melanic tawny owls are more frequent near than away from the equator  Roulin et al. 2011a 

19 Fledgling production  Light melanic male and female owls had a higher lifetime production of fledglings  Brommer et al. 2005 

20 Recruitment  Light melanic male owls produced more recruits during their lifetime than brown individuals  Brommer et al. 2005 

21   In a Swiss population, light melanic individuals were less frequently recaptured than dark melanic 
individuals 

 Roulin et al. 2003 

22 Probability of breeding    Proportion of dark melanic females that were breeding was greater in low breeding year. Although not 
breeding every year, light melanic females produce offspring of higher quality.  

  Roulin et al. 2003 

Mating behaviour     
23 Assortative mating   Sexes did not mate assortatively with respect to their colour   Brommer et al. 2005; 

Roulin et al. 2003 

Environmental parameters     
24 Habitat background   Dark melanic owls may be particularly cryptic in closed forest    Majerus 1998; 

Gehlbach & Gehlbach 
2000; Galeotti & 
Sacchi 2003 

21 



 

	  22 

Cryptism. It has been proposed that light and dark melanic morphs are more cryptic in opened and 

closed habitats, respectively (Majerus 1998; Gehlbach & Gehlbach 2000), suggesting an adaptive 

value according to environmental background (Table Int.1). Indeed, such characteristic can confer 

fitness benefits by lowering the vulnerability to predators, enhancing foraging success and minimizing 

the risks of mobbing from passerine birds (Negro et al. 2007). Although Galeotti & Sacchi (2003) 

observed that dark melanic tawny owls lived in more closed forest habitats than lighter individuals 

across a latitudinal gradient, data on larger populations and experimental studies are still needed to 

validate this hypothesis. 

Adaptation to climate conditions. The tawny owl is a long-lived species (up to 18 years; Galeotti 

2001; König & Weick 2008) distributed throughout Eurasia and thus experiencing a wide range of 

climatic condition. Several studies have reported a relationship between adult survival and colour 

morphs, the direction of this relationship changing among years and countries/environments. In Italy, 

dark melanic (i.e. so-called reddish morph) and light melanic (i.e. grey morph) tawny owls were found 

dead more often in cool-dry and warm-wet years, respectively (Galeotti et al. 1996). In Finland, a 

country characterized by cool-dry conditions, light melanic individuals have a better survival than 

darker conspecifics (Brommer et al. 2005). However, the frequency of the reddish morph increased 

rapidly as winter became milder in the last decades (Karell et al. 2011b). In line with this hypothesis, a 

comparative analysis of colour morph frequencies along a latitudinal gradient in four owl genera 

revealed that dark melanic species are more prevalent near the equator than polewards (Roulin et al. 

2011b). In Switzerland, recapture rate was associated with tawny owl plumage coloration, light 

melanic individuals being less recaptured than dark melanic ones, suggesting that grey morphs skip 

more often reproduction (Roulin et al. 2003). In contrast, the authors failed to highlight colour-specific 

survival years in this population. 

Adaptation to parasites. In Italy, dark reddish tawny owls hosted more endoparasites (Haemoproteus) 

than grey owls (Galeotti & Sacchi 2003; and see Karell et al. 2011a), especially during the breeding 

season. However, it remained unclear whether these observations were due to non-random habitat 

distribution of the different colour morphs. To clarify this issue, experimental immune challenges 

were performed in Switzerland and revealed that dark melanic females maintained higher 
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concentration of antibodies for a longer period of time than light melanic ones (Gasparini et al. 

2009a). Similarly, another experiment done on the same population reported that the same humoral 

challenge enhanced T-cell mediated immunity in nestlings born from dark melanic mothers while 

reducing it in nestlings born from light melanic mothers (Gasparini et al. 2009b). These results suggest 

that offspring of dark melanic owls mount stronger immune responses either because (i) dark melanic 

individuals inhabit environments where parasites are more abundant or virulent than in habitats 

occupied by lighter melanic individuals (ii) and/or because dark melanic individuals have a less 

efficient immune response and are thereby longer exposed to parasites than pale melanic owls. 

Interestingly, resistance to parasitism by dark melanic individuals comes at a cost in terms of greater 

loss of body mass in both nestling and adult owls (Gasparini et al. 2009a; Gasparini et al. 2009b; 

Piault et al. 2009). This outcome indicates that the cost/benefit trade-off of immunocompetence is 

differentially resolved by dark and light reddish tawny owls. 

Adaptation to variation in food resources. The tawny owl preys mainly upon small rodents, such as 

the wood mice Apodemus sp. and bank vole Clethrionomys glareolus (Roulin et al. 2009), which are 

known to show high density fluctuation over space and time (Karell et al. 2009). Although nestling 

appetite did not correlate significantly with plumage coloration of the biological mother, an 

experimental manipulation of food supply to chicks demonstrated that, when food supply was 

restricted, offspring born from light melanic mothers grow faster in body mass than those born from 

dark melanic mothers (Piault et al. 2009). But when preys were provided ad libitum, the opposite 

pattern was found (i.e. offspring of dark mothers grow faster). Moreover, a brood size manipulation 

experiment performed in the same Swiss population, but using other individuals, pointed out that 

offspring from dark melanic mothers grow quicker than offspring from light melanic mothers when 

brood size was experimentally reduced, but not when enlarged (Roulin et al. 2003; Roulin et al. 

2008b). To determine whether these colour-specific growth patterns were associated with alternative 

metabolic rates between offspring of reddish and grey mothers, Roulin et al. (2005) analysed nestling 

oxygen consumption and found that oxygen consumption was greater in offspring raised by grey foster 

mothers under warm temperature. Altogether, these outcomes suggested colour-specific reaction 

norms in the tawny owl, raising the hypothesis that differently coloured individuals better cope with 
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different stress levels. During poor breeding seasons with harsh environmental conditions (i.e. as 

simulated by food depletion (Piault et al. 2009)), light melanic individuals outperform darker reddish 

conspecifics. Once environmental conditions are restored (i.e. as simulated by ad libitum food supply; 

Piault et al. 2009) or experimentally reduced broods (Roulin et al. 2008b), the opposite pattern was 

observed with dark reddish individuals performing better than light coloured conspecifics. This 

hypothesis could explain why dark melanic female tawny owls were found to produce heavier 

offspring than light melanic ones in some years, and inversely in other years (Roulin et al. 2003; 

Roulin et al. 2004; Roulin et al. 2005). 

Adaptation to breeding conditions.  Because physiological, behavioural and life-history traits are 

often closely associated, the four latter points can induce variation in reproductive parameters between 

light and dark melanic tawny owls. In Switzerland for instance, dark melanic females keep a constant 

resolution by breeding every year, whereas light melanic females are inclined to skip reproduction in 

poor years. This observation suggests a flexible decision rule according to environmental conditions 

(Roulin et al. 2003). Note also that, in Finland, light melanic females produced more fledglings and 

recruits than darker melanic ones, potentially because of longer life span (Brommer et al. 2005).  

 

EVOLUTION OF POLYMORPHISM IN MELANIN-BASED COLORATION 

The study of evolution and maintenance of polymorphism in melanin-based coloration is a 

tremendous work, while empirical studies raised important questioning on the adaptive potential of 

colour morphs. Melanin-based coloration can be non-neutral with respect to natural selection and is 

often associated with other phenotypic traits. Thus, selection acting directly on coloration or indirectly 

via genetically correlated traits should induce changes in the frequency of colour morphs as recently 

observed in Scops owl Otus scops (Galeotti et al. 2009) and several other birds (Roulin 2004). Colour 

polymorphism can therefore emerge and be maintained because of specific evolutionary processes, 

some of them being briefly discussed in Box 3. 
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Box 3 – Maintenance of genetic colour polymorphism 

First, heterogeneity in the environment can act as divergent selective force that promotes the 

emergence and maintenance of alternative genetic colour morphs. This ‘local adaptation’ hypothesis 

states that alternative morphs are locally adapted to particular habitats (Kassen 2002; Galeotti et al. 

2003; Roulin 2004; Sgro & Hoffmann 2004; Byers 2005; Chunco et al. 2007). In the particular case 

of disruptive selection (Ford 1945; Huxley 1955; Lank 2002), individuals at both edges of colour 

distribution are favoured because of local adaptation, leading to monomorphism or dimorphism over 

the long term (Brommer et al. 2005). Second, without invoking frequency-dependent benefits of 

displaying a particular morph, one colour morph is likely to become slightly fitter over the long run, 

due to particular environmental conditions for instance. Under frequency-dependent selection, 

morphs perform less well when their frequency increase above the equilibrium frequency while their 

fitness increases when their frequency decreases. Classical example is the apostatic selection (Clarke 

1962), for which individuals displaying a new coloration enjoy the advantage of being less rapidly 

detected by preys or predators compared to other colour morphs (Bond 2007). Thus, under this 

mechanism, a rare morph confers fitness advantages. Finally, heterozygous individuals can also have 

a fitness advantage over homozygous ones, a phenomenon called ‘heterosis‘. This hypothesis has 

been proposed to occur in the Common Buzzard (Kruger et al. 2001), in which intermediate (i.e. 

heterozygous) breeding adults produce more offspring than light and dark conspecifics (i.e. 

homozygous). 

 

From an ultimate point of view, research on tawny owls showed that the degree of melanism 

covaries linearly with physiological or life-history traits. Although we cannot firmly exclude scenarios 

of disruptive selection or heterosis in the maintenance of colour polymorphism in the tawny owl, 

empirical studies failed to demonstrate that selection favours either extreme colour morphs (Roulin et 

al. 2003; Brommer et al. 2005) or intermediately-coloured individuals (Piault et al. 2009), 

respectively. One plausible, albeit speculative, scenario is that colour polymorphism of adult tawny 
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owls is maintained if spatial and temporal heterogeneity of the environment generate balancing 

selection favouring locally adapted individuals at different time scale (i.e. generations). 

 From a proximate point of view, reported covariations between melanin-based coloration and 

fitness components (Table Int.1) are likely to be genetically linked (see for instance: Roulin et al. 

2011c). However, comprehensive knowledge on the genetic basis of melanin-based coloration is 

restricted to a limited number of birds (Theron et al. 2001; Mundy et al. 2004; Mundy 2005, 2006; 

Nadeau et al. 2007; Bottje et al. 2008; Hiragaki et al. 2008; Nadeau et al. 2008), limiting, in turn, our 

understanding of the proximate mechanisms underlying the adaptive function of melanin-based 

coloration (Hoekstra 2006; Parker 2006). Recently, a review of the literature pointed out candidate 

genes, namely the melanocortin system (Box 4), that can pleiotropically affect melanin-based 

coloration and other important traits (Strand 1999; Gantz & Fong 2003; Ducrest et al. 2008). 

 

Box 4 – The melanocortin system 

This molecular system is present in most vertebrates and is functionally equivalent between species 

(Schioth et al. 2005; Hoekstra 2006). It consists in 1) α-, β-, γ-melanocyte-stimulating-hormone (MSH) 

and adrenocorticotropic hormone (ACTH), posttranslational bioactive peptides derived from the 

cleavage of the proopiomelanocortin gene (POMC; Gantz & Fong 2003; Slominski et al. 2004; 

Millington 2006), 2) a family of five seven-transmembrane G protein-couple melanocortin receptors 

(MC1-5R; Schioth 2001; Butler & Cone 2002), well conserved among vertebrates (Schioth et al. 2005), 

and 3) endogenous melanocortin antagonist Agouti-signalling- and related-proteins (ASIP and AGRP), 

two proteins encoded by pheomelanogenesis-related Agouti genes (Ito 1993; Barsh et al. 2000; Abdel-

Malek et al. 2001; Bonilla et al. 2005; Mundy & Kelly 2006; Lin & Fisher 2007; Lightner 2009). In 

epidermal tissues, binding of α-MSH to MC1R, promotes eumelanogenesis (Slominski et al. 2004; 

Pritchard & White 2007; Walker & Gunn 2010), while binding of inverse agonist and antagonist ASIP to 

MC1R can block α-MSH binding, leading to the production of pheomelanin at the expense of eumelanin 

(Suzuki et al. 1997; Gantz & Fong 2003; Lin & Fisher 2007). Of particular interest, bindings of the 

melanocortins and their antagonists to the five melanocortin-receptors can modulate numerous 
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physiological and behavioural functions (Figure Int.5), such as stress response, energy homeostasis, anti-

inflammatory response, sexual activity, resistance to oxidative stress and aggressiveness (Cone 1999; 

Fan et al. 2000; Schioth 2001; Tatro & Sinha 2003; Slominski et al. 2004; Boswell & Takeuchi 2005; da 

Silva et al. 2005; Fan et al. 2005; Bertile & Raclot 2006; Butler 2006; Cone 2006; Hillebrand et al. 

2006; Maaser et al. 2006; Millington 2006; Lin & Fisher 2007; Garruti et al. 2008; Page et al. 2011). 

 

Figure Int.5: Bioactive melanocortin peptides (α-, β-, γ- MSH or ACTH), resulting from the processing of 
POMC gene, or their inverse agonist and antagonist (i.e. ASIP or AGRP) can bind to five distinct 
melanocortin-receptors (MC1-5Rs) expressed in different tissues (indicated in brackets). These bindings 
induce different physiological responses (indicated in bold). An increase in function is represented by a ‘+’ 
sign, a decrease by a ‘-‘ sign.  
  

 

Based the assumption that activities of melanocortins and their antagonists are correlated 

among tissues, as for instance between epidermal (i.e. where melanic pigments are produced) and 

brain tissues (i.e. where several physiological responses are regulated), the melanocortin system may 

account for the observed covariations between plumage melanin-based coloration and other 

phenotypic traits. If true, this proximate mechanism represents a good candidate system to study and 
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predict relationships between different traits. Indeed, the expression of melanic colour traits can be 

used as an indicator of individual quality, such as such as resistance to stress, strong immunity 

response or high sexual activity (see for example: Roulin & Ducrest 2011). In this context, a 

fundamental pursuit in the field of evolutionary genetics is to infer the exact genetic mechanisms 

responsible for variation in specific melanin-based coloration (e.g. nucleotide diversity, patterns of 

gene expression, posttranslational modification; Hoekstra 2006; Mundy 2006; Hoekstra & Coyne 

2007). 

 

THESIS OUTLINE 

The present PhD thesis has two main objectives. First, I tackle further the hypothesis that 

pleiotropic effects of the melanocortin system account for covariations between melanin-based 

coloration and physiological responses to environmental stressors. To this end, I tested whether the 

degree of tawny owl melanism is associated with life history or physiological strategies, which may 

confer fitness-related benefits in different environments. Second, I investigate the underlying 

proximate mechanisms of these covariations through a candidate gene approach, exploring the genetic 

architecture of the melanocortin system in the tawny owl. 

Chapter 1 tests the prediction that melanin-based coloration is associated with alternative life 

history strategy in the tawny owl. Based on brood size manipulation experiments that induced 

different levels of parental workload, I demonstrate that the trade-off resolution between fledgling 

production and quality covaries with plumage melanin-based coloration in male tawny owl. 

Based on these colour-specific reproductive strategies, we might expect hence different 

strategies regarding physiological oxidative balance, such as alternative ratio in the production of 

reactive oxygen species and important antioxidant response (e.g. glutathione, hereafter GSH). Yet, it is 

poorly understood whether individuals from the same population vary in their oxidative status under 

different reproductive conditions. In Chapter 2, I reveal that differently coloured adult tawny owls 

show distinct oxidative balance, especially in their production of reactive oxygen species (ROS) and 

total GSH. 
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Tyrosinase activity is a key enzyme controlling the switch between eu- and 

pheomelanogenesis (Barsh 1996; Ito et al. 2000). But its activity can be modulated by the 

concentration of sulfhydryl compounds (Benedetto et al. 1981; 1982; Land & Riley 2000), in 

particular glutathione (i.e. GSH, characterized by an important antioxidant activity). Thus, melanin-

based coloration may be associated with different GSH expression. In Chapter 3, I specifically 

investigate the link between tawny owl melanin-based coloration (i.e. in adults and nestlings) and 

GSH expression. I show that the expression of GSH and its consumption in adults covaries with 

plumage coloration. However, I also demonstrate that GSH levels do not necessarily influence 

melanogenesis activity and, in turn, the expression of melanic colour traits in nestlings. 

 POMC gene plays a central function in the melanocortin system (Gantz & Fong 2003; Cone 

2005; Millington 2006; Rousseau et al. 2007; Ducrest et al. 2008). Hence, this candidate gene is likely 

to also play a key role in generating covariations between melanin-based coloration and other 

phenotypic traits. In Chapter 4, I reveal that differential regulation of fitness components in relation to 

environmental factors by pale and dark melanic female tawny owls may be due to colour-specific 

regulation of the POMC prohormone. These findings support the hypothesis that the widespread links 

between melanin-based coloration and fitness components may be mediated, at least in part, by the 

melanocortin system. Finally, Chapter 5 provides insights in the genetic architecture of the 

melanocortin system in the tawny owl. Although I could not detect non-synonymous mutations in the 

coding sequence of candidate melanogenic genes, I show interesting colour-specific patterns in gene 

expression of prohormone convertase 1 (PC1) in nestling skin tissues, a key prohormone in POMC 

processing to melanocortin peptides. This points out potential proximate mechanism underlying 

colour-specific reaction norms observed in this species. 

 In the discussion, I summarize the main outcomes of my research and, based on these 

evidences, I raise a global outline of colour-specific strategies to cope with stressful environments. To 

better understand these colour-specific strategies, especially in a context of trade-off resolution 

between offspring number and quality, I address, in the last chapter (Annexe 1), the hypothesis that 

differently coloured tawny owl own alternative nest defence behaviours. Accordingly, I show that nest 

defence towards conspecifics and human intruders is indeed related to dark reddish coloration. To 
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conclude, I discuss proximate mechanism potentially leading to alternative strategies in the tawny owl 

and identify some future lines of research that could help us improve our knowledge of the 

evolutionary origins, functions and mechanisms of melanin-based coloration. 
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ABSTRACT 

The maintenance of genetic variation is a long-standing debate. Although a role of ecological 

factors including environmental heterogeneity, predator-prey and host-parasite interactions has been 

acknowledged, the adaptive strategy associated with each genetic variant is usually unknown. Life-

history theory explores the evolution of trade-off resolution between reproductive and maintenance 

traits along the demographic r-K selection and “fast-slow” physiological pace of life continuums. 

Long- and short-lived species typically produce few high-quality and many low-quality offspring, 

respectively. Evidences for the coexistence of evolutionary fixed life-history strategies at the 

population level remain scarce. Since heritable melanin-based colour morphs show strikingly different 

physiological and behavioural norms of reaction in the tawny owl (Strix aluco), we investigated 

whether these colour morphs have a different pace of life. We found that light melanic owls have 

lower survival compared to dark melanic conspecifics. Thus, morphs may differentially resolve the 

trade-off between offspring number and quality. To test this hypothesis, we increased offspring food 

demand by manipulating brood size. When brood size was experimentally enlarged, light melanic 

males produced more fledglings, but in poorer condition than dark melanic conspecifics. We conclude 

that dark melanic males have a slower pace of life than lighter reddish male conspecifics. 
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INTRODUCTION 

Trade-off resolutions imposed by resource limitation and biotic interactions with predators and 

competitors are constrained by intrinsic individual-specific genetic (Lynch 2007) and physiological 

properties (Lancaster et al. 2008). In such circumstances, individuals cannot simultaneously maximize 

all life-history traits (MacArthur & Wilson 1967; Stearns 1989), but have to resolve trade-offs in an 

adaptive way depending on prevailing environmental and social conditions (Pianka 1970). One 

classical example is the effect of seasonality in temperate zones, causing fluctuations in the 

availability of resources and occurrence of stressful factors such as low temperatures during winter. In 

contrast, in the tropical zone, resources are less abundant but more homogeneously available through 

time and space. These contrasting ecological conditions promote the evolution of whole series of 

physiological traits (e.g. metabolic, hormonal, immunity), resulting in fast pace of life (r-strategists) in 

the temperate zone and slow pace of life (K-strategists) in the tropical zone (Dobzhansky 1950; 

Saether 1988; Promislow & Harvey 1990; Wiersma et al. 2007; Reale et al. 2010). These modes of 

adaptation have been mainly studied across species in comparative analyses (Saether 1988; Rushton 

2004), while the issue of adaptive genotype-specific pace of life in the same population remains to be 

tested (Gross 1985; Lank et al. 1995; Sinervo & Lively 1996). Genotypes showing slower pace of life 

are predicted to be longer-lived and favour offspring quality at the expanse of offspring number. 

In this context, the long-lived colour polymorphic tawny owl (Strix aluco) is a prime model 

species to investigate whether melanin-based coloration is associated with alternative strategies along 

the fast-r to slow-K continuum. This species exhibits a continuous inter-individual variation in 

melanin-based coloration (i.e. from light to dark reddish melanic), for which the expression is under 

strong genetic control and not or weakly sensitive to environmental conditions (Brommer et al. 2005; 

Gasparini et al. 2009a). Variation in melanin-based coloration can hence be used as a phenotypic 

marker of alternative genotypes (Hoekstra 2006). Previous studies in different countries already 

highlighted colour-specific norms of reactions to reproductive (Roulin et al. 2011c) and rearing 

conditions (Roulin et al. 2008b), food supply (Piault et al. 2009), pathogens (Gasparini et al. 2009a; 

Karell et al. 2011a) and climatic conditions (Karell et al. 2011b), leading to differences in lifetime 

recruit production (Brommer et al. 2005) and probability of skipping reproduction (Roulin et al. 
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2003). Melanin-based coloration in females covaries with offspring growth rate, dark melanic foster 

and genetic mothers producing nestlings in better conditions than light melanic mothers (Roulin et al. 

2004). Given their aptitude to cope with stressful reproductive conditions (Roulin et al. 2003; Roulin 

et al. 2008b; Roulin et al. 2011c), light melanic owls are expected to adopt a faster pace of life 

strategy, characterized by the production of many low-quality offspring (i.e. r-selected traits), 

potentially explaining the observed lower parental care per nestling (i.e. higher rate of nest predation 

(Da Silva et al. in prep., Annexe 1)). In contrast, dark melanic owls breed more regularly (Roulin et al. 

2003) and their offspring grow particularly well in experimentally relaxed rearing conditions (Roulin 

et al. 2008b; Piault et al. 2009). These characteristics should lead them to adopt a slower pace of life, 

characterized by the production of limited number of high-quality offspring (i.e. K-selected traits), 

leading to higher parental care per nestling (lower rate of nest predation (Da Silva et al. in prep., 

Annexe 1)), while maintaining sufficient resources for maintenance traits (e.g. survival (Karell et al. 

2011b) and immunocompetence (Gasparini et al. 2009a)).  

To test these predictions, we monitored a Swiss population of tawny owls during eight 

consecutive years (2005-2011), while experimentally manipulating brood sizes of differently coloured 

individuals to modify the level of parental workload (Roulin et al. 2011c). This experiment was 

repeated during four consecutive years (2007-2010) to investigate whether the impact of rearing 

experimentally enlarged (or reduced) broods over consecutive years increases the likelihood to detect 

morph-specific life history strategies. These predictions should be particularly pronounced in males 

since most prey items brought to offspring are hunted by males (Galeotti 2001). 

 

METHODS 

Study area and reproductive success 

The present monitoring was conducted between 2004 and 2011 within a 911km2 study area in 

western Switzerland, where we installed 366 nest boxes in forest patches of at least 4’000m2; the 

minimal distance between two nest boxes was 627m. These managed forest patches are located at a 

mean altitude of 672m (range: [458 – 947m]) and are composed mainly of beeches (Fagus sylvatica), 

oaks (Quercus spp.) and pure spruce (Picea abies; Roulin et al. 2011c). Between 2005 and 2011, 694 
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distinct clutches were recorded (138 breeding pairs in 2005, 57 in 2006, 128 in 2007, 91 in 2008, 72 in 

2009, 149 in 2010 and 59 in 2011). Overall, 548 of these 694 broods generated at least one hatchling 

(79.0%), while 436 broods produced at least one fledgling (62.8%). Clutch size varied between one 

and eight eggs (mean ± sd = 3.78 ± 1.51 eggs), laid between February 18 and May 29 (mean ± sd = 

April 6 ± 16 days). When considering nests where at least one egg hatched, 71% of the eggs hatched. 

The mean number of fledglings per brood was 2.1 ± 2.04. 

Measurement of plumage coloration 

The tawny owl has heterogeneous plumage colour patterns that vary continuously in the 

degree of reddishness (Roulin et al. 2005; Gasparini et al. 2009a). This species is nevertheless 

considered as colour polymorphic in the literature and textbooks (Glutz von Blotzheim & Bauer 1980; 

Galeotti 2001; Brommer et al. 2005), leading us to employ the same terminology. Scores of adult 

plumage coloration were visually determined in the field on the basis of five distinct colour morphs (1 

= reddish, 2 = reddish-brown, 3 = brown, 4 = brown-grey, 5 = grey; Roulin et al. 2005). Because we 

recently found that a so-called grey coloration reflects an absence of melanin pigments stored in 

feathers, the scale we used in previous papers is a bit counter-intuitive (a larger score indicates a lower 

degree of melanism). To obtain a common sense scale from light to dark melanic, we therefore 

multiplied the above colour scores by -1. This scoring method is highly reliable, as evidenced by high 

inter-annual repeatability of colour scores visually assigned to the same individuals between 2005 and 

2010 (r = 0.89 ± 0.02, F174,383 = 13.76, P < 0.0001; Lessells & Boag 1987). Moreover, visual scores 

were strongly correlated with coloration measurements performed with a spectrophotometer 

(Pearson’s correlation: r = -0.8, n = 302, P < 0.0001). Nevertheless, visual scoring into discrete 

numbers of morphs takes into consideration the whole plumage coloration and is therefore more 

representative of bird coloration than measuring coloration on the basis of three back feathers 

(Brommer et al. 2005). Consequently, we considered only visual colour scores in statistical analyses. 

Experimental procedure 

Out of the 694 clutches monitored between 2005 and 2011, 388 broods were matched into 

pairs according to similar hatching date (Pearson’s correlation, P < 0.0001). In 2005, 2006 and 2011, 

we exchanged on average 2.84 (± 0.97) eggs from a nest E (enlarged) to nest R (reduced), while 4.11 
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(± 1.0) eggs were exchanged from nest R to nest E. Between 2007 and 2010, 274 broods were 

matched in pairs to experience partial cross-fostering experiment coupled with a brood size 

manipulation treatment. In this case, we exchanged on average 1.75 (± 0.86) nestlings from a nest E to 

nest R, while 2.75 (± 0.86) nestlings on average underwent the opposite exchange. In both 

experimental procedures, half of the nests were thus experimentally enlarged by one nestling (i.e. nests 

E), while the other half of nests was experimentally reduced by one nestling (i.e. nests R). Clutch sizes 

of enlarged and reduced nests were initially similar (Student’s t-tests; t1,272 = 1.43, P = 0.15). We 

successfully created broods with a different number of nestlings, as more nestlings fledged from 

enlarged than reduced treatment (mean ± sd, 3.95 ± 1.92 vs. 2.55 ± 1.61, respectively; Student’s t-test: 

t1,270 = -6.44, P < 0.0001). When nestlings were 10 days of age (mean ± sd: 9.98 ± 10.5), we captured 

both parents. Females were captured in the nest box during daylight hours (8am – 6pm, n = 274 

captures), while males were captured at night when provisioning their brood (10pm – 6am, n = 252 

captures). Note that the probability of capturing males was independent of the brood size manipulation 

treatment (logistic regression: χ2 = 0.79, df = 1, P = 0.51). To estimate nestling growth, nestlings were 

recaptured every five days until they fledged at approximately 25 days of age (mean number of 

captures per individual ± sd = 5.0 ± 1.2). Upon capture, individuals were weighed to the nearest g, 

their left wing length measured to the nearest 1mm and left tarsus to the nearest 0.1mm. Note here that 

adult wing and tarsus lengths were neither associated with their plumage coloration (Student’s t-tests, 

P-values > 0.47). 

Plumage coloration, wing and tarsus lengths of breeding adults (197 males and 193 females) 

did not differ between the two brood size treatments (Student’s t-tests, P-values > 0.08). Within each 

pair of nests, plumage coloration of foster and biological parents did not significantly resemble each 

other (female: r = -0.02, P = 0.84; male: r = -0.16, P = 0.09), while intra-nest pairing with respect to 

coloration was not assortative in both treatments (Pearson’s correlations; nests R: r = 0.01, n = 116, P 

= 0.95, nests E:  r = 0.01, n = 126, P = 0.94). 
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Statistical procedure 

Using our long-term dataset of population monitoring, we examined whether tawny owls 

showed morph-specific survival rates, based on capture-mark-recapture techniques (Lebreton et al. 

1992). This approach accounts for the fact that individuals may not have been captured in years where 

they were in fact alive. Even though the experiment concretely started in 2007, we included data from 

2005 to 2011 to increase the precision of the base-line survival estimates of non-manipulated owls. 

The results did not qualitatively change if we excluded the data collected in 2005, 2006 and 2011. Our 

starting model was the classical Cormack-Jolly-Seber model with time dependent survival and 

recapture probabilities for male and female tawny owls. We first simplified the basic structure of this 

model and selected the most parsimonious structure based on the sample-size adjusted Akaike’s 

Information Criterion (AICc). We then included colour score as a time-constant individual covariate, 

and treatment (enlarged, reduced, or not manipulated) as a time-varying individual covariate in the 

model. We also examined possible interactions between tawny owl coloration and treatment, and the 

three-way interaction between sex, coloration and treatment. Finally, we examined whether treatment 

in the previous year had an effect on present survival, and whether this interacted with the present 

brood size treatment to see whether sustained exposure to one treatment had particularly large effects. 

All models were fitted in MARK 6.0 (White & Burnham 1999). 

To examine colour-specific trade-off resolution between offspring number and quality, we 

considered a subset of 247 successful (producing at least one fledgling, n = 235) or predated broods (n 

= 12). Indeed, out of the 274 broods that were experimentally manipulated between 2007 and 2010, 

we were able to capture both breeding adults for 252 broods. In five cases, male captures potentially 

led to nestling desertion, constraining us to exclude these broods from statistical analyses. We still 

considered predated broods in our analysis since nest defence behaviour is likely to be involved in key 

life-history trade-offs (Montgomerie & Weatherhead 1988; Wolf et al. 2007), since unpublished 

results showed that the intensity of nest defence behaviour is correlated with coloration in the tawny 

owl (Da Silva et al. in prep., Annexe 1). To test whether plumage coloration of the rearing parents was 

associated with variation in fledgling production, we performed a mixed-model ANCOVA including 

the number of fledglings as dependent variable. Hatching date of the first egg (Hatching date) and 
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brood size before manipulation (Brood size at hatching) were introduced as covariates in the model, 

while brood size manipulation treatment (hereafter Brood size manipulation or BSM) and coloration of 

the parents that rear the brood (Father colour, Mother Colour) were entered as independent variables, 

plus all possible interactions between the latter three variables. Since raising an enlarged brood over 

several consecutive years may have devastating long-term effects on reproductive success, we 

considered males for which we manipulated their brood in two successive years. We performed a 

mixed-model ANCOVA including the number of fledglings in the second breeding year as dependent 

variable. Using hatching date of the first egg (Hatching date in year 2) and brood size before 

manipulation in the second breeding year (Brood size at hatching in year 2) as covariates, we 

introduced class of successive brood size manipulation treatments in year X1 and year X2 (Class of 

successive treatments, i.e. enlarged-enlarged; reduced-reduced; enlarged-reduced and reduced-

enlarged) and rearing male coloration as independent variables, plus the two-way interaction between 

both variables. To investigate colour-specific variation in offspring quality, we performed a mixed-

model ANCOVA including nestling body mass (i.e. just before they fledged) as dependent variable. 

We introduced time when nestlings were captured (Hour of the day), nestling wing length (Nestling 

wing length) and gender (Nestling sex) as covariates. As independent variables, we entered nestling 

cross-fostering status (Cross-fostered, i.e. whether nestlings were raised by biological or foster 

parents), brood size manipulation treatment (Brood size manipulation) and rearing male coloration 

(Father colour), plus all possible interactions between these three variables.  

Finally, we tested whether fledgling recapture rate (as breeding adult in following years) 

covaries with plumage coloration of the rearing father. We performed a GLMM model including 

recapture rate per brood (i.e. number of recaptured individuals reared in the same brood weighted by 

the number of nestlings that fledged from this brood) as dependent variable. Mean body mass of 

fledglings (per brood) and hatching date were introduced as covariates, while brood size manipulation 

(BSM) and coloration of the rearing father (Father colour) were entered as independent variables, plus 

the two-way interaction between both variables.  

For each mixed-model, we controlled for pseudoreplication by introducing year and male 

identity as random factors. We ran full factorial models and then dropped non-significant terms 



Chapter 1 
	  

39 

(starting with non-significant interactions) in a stepwise manner in order to produce minimum 

adequate final models. Statistical tests are two-tailed, and significance level is set to 0.05. In all 

models, residuals were normally distributed, and variances were homogeneous between treatments. 

Mixed-models were performed using JMP IN 8.0 and SAS 9.1.3. 

 

RESULTS & DISCUSSION 

Colour-specific survival 

According to the most parsimonious model structure that kept survival constant across sexes 

and years and allowed the recapture rates to vary over the years and between the sexes (Model 7 in 

Table 1.1), survival was 0.69 (se = 0.02). Interestingly, the addition of colour scores to this 

parsimonious model resulted in a better fit, indicating that dark melanic individuals survived better 

than light-melanic ones (Models 1 to 3 in Table 1.1; and Figure 1.1). We found no evidence that the 

brood manipulation experiment affected survival, either directly (Model 4 in Table 1.1) or through 

interactions with colour or sex (Models 5 and 8 in Table 1.1).  

 

Figure 1.1: Adult annual survival rate in relation to melanin-based plumage coloration |  Survival 
estimates are derived capture-mark-recapture techniques (model 1 in Table 1.1). 
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Colour-specific reproductive success 

Alternative survival rates may thus promote colour-specific life history strategy in our local 

population, particularly with respect to the resolution of the trade-off between offspring number and 

quality. Accordingly, we found that the effect of father (but not mother) coloration on reproductive 

success (i.e. number of fledglings) differed between enlarged and reduced broods (Model A in Table 

1.2: F1,238.5 = 4.57, P = 0.034). In enlarged broods, light melanic fathers produced more fledglings than 

darker melanic ones (Model B in Table 1.2: F1,88.34 = 5.135, P = 0.026), while in the reduced treatment 

number of fledglings was not significantly associated with male coloration (Model C in Table 1.2: 

F1,95.77 = 1.07, P = 0.30; Figure 1.2). 

 

Figure 1.2: Number of offspring in relation to father melanin-based coloration in experimentally enlarged and 
reduced broods in the tawny owl |  Values are derived from models B and C of Table 1.2. Significant linear 
regressions are illustrated by straight regression line, whereas non-significant linear regressions are 
illustrated by dashed regression line. 
 

 

When we considered males for which we manipulated their brood in two successive years, the 

interaction between the category of successive treatments and father coloration on the number of 

fledglings produced in the second year (i.e. after males experienced two consecutive experimental 

treatments) was strong (Model A in Table 1.3; F3,20 = 6.78, P = 0.0025). Light melanic males produced 

more fledglings than darker melanic ones after having raised an enlarged brood in two consecutive 
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years (Model B in Table 1.3; F1,6.376 = 20.75, P = 0.003; Figure 1.3), while the opposite was true when 

raising a reduced brood in two consecutive years (Model C in Table 1.3; F1,5.454 = 11.55, P = 0.017; 

Figure 1.3). This analysis shows that light melanic males better cope with two consecutive energy-

demanding breeding seasons (i.e. two consecutive enlarged treatments), while darker melanic males 

better manage two consecutive reduced broods (and thereby potentially lower energy-demanding 

reproductive effort). Of particular interest, the additive effect of the brood size manipulation provides 

strong evidence of the flexible and constant life-history strategy of light and dark melanic male tawny 

owls, respectively. Light melanic males seem to increase their parental investment to maximize 

offspring productivity when necessary (e.g. enlarged-enlarged treatment), while skipping some 

breeding seasons (Roulin et al. 2003) or reducing parental care when broods were smaller (e.g. 

reduced-reduced treatment; Figure 1.3). In contrast, dark melanic males tend to keep a constant 

strategy with respect to parental investment in offspring productivity, regardless of the reproductive 

conditions. Indeed, whatever the brood size treatment, dark melanic males produced about 2-3 

fledglings, whereas light melanic males produced on average 0.75 fledglings when brood was 

experimentally reduced and 5 when enlarged (Figure 1.3). 
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Figure 1.3: Number of fledglings in relation to melanin-based coloration of the father and brood size 
manipulation experiment in the tawny owl |  We considered number of fledglings produced after two 
years of having manipulated brood size for the same breeding males. Enlarged-Enlarged: number of 
fledglings in year 2 for males with their brood size enlarged in years 1 and 2 (linear regression, n= 10, P = 
0.003), Reduced-Reduced: with their brood size reduced in years 1 and 2 (linear regression, n= 9, P = 
0.017), Reduced-Enlarged: with their brood size reduced in year 1 and enlarged in year 2 (linear 
regression, n=11, P = 0.24), and Enlarged-Reduced: with their brood size enlarged in year 1 and reduced 
in year 2 (linear regression, n= 12, P = 0.89). Significant linear regressions are illustrated by straight 
regression line, whereas non-significant linear regressions are illustrated by dashed regression line. 

 

Colour-specific offspring quality 

The observation that light melanic males produce more offspring than dark melanic ones in 

experimentally enlarged broods should come at a cost in terms of offspring quality. In agreement with 

previous study (Roulin et al. 2004), we detected a significant interaction between the brood size 

manipulation experiment and coloration of the rearing male on fledging body mass (F1,341.4 = 12.25, P 

= 0.0005; Table 1.4), independently of nestling origin (i.e. ‘Cross-fostered’ factor was not significant, 
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alone or in interaction with coloration of foster father and/or the brood size manipulation, P-values > 

0.10). In the enlarged treatment, dark melanic males produced fewer offspring that were heavier than 

light melanic ones, whereas no relationship between offspring body mass and father coloration was 

detected in the reduced treatment (Figure 1.4 and Table 1.4). 

 

 

Figure 1.4: Fledging body mass in relation to father melanin-based coloration and brood size manipulation 
experiment in the tawny owl |  For this graph, but not for the analyses, we calculated mean offspring body 
mass for each male, while controlling for sex, wing length, time of the day and year (i.e. residual body 
mass). The relationship is significant in experimentally enlarged broods (Pearson’s correlation: r = -0.23, n 
= 123 different males, P = 0.008) but not in experimentally reduced broods (r = 0.10, n = 115 different 
males, P = 0.28). Significant linear regressions are illustrated by straight regression line, whereas non-
significant linear regressions are illustrated by dashed regression line. 
 

 

Colour-specific recruitment rate 

To further investigate whether dark melanic males produce offspring in better condition than 

lighter melanic conspecifics, we examined whether the likelihood of being recruited in the local 

breeding population is associated with father coloration. Accordingly, we found a significant 

interaction between brood size manipulation experiment and coloration of the rearing male on 

weighted recapture rate per brood (Model A in Table 1.5: F1,37 = 5.39, P = 0.031), independently of the 

mean offspring body mass (P = 0.96, Table 1.5) Nestlings raised by dark reddish males were more 
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frequently recruited when experiencing an experimentally reduced brood (Model C in Table 1.5, F1,8 = 

8.38, P = 0.02), whereas in the enlarged treatment there was no relationship between father coloration 

and the probability of producing at least one recruit (Model B in Table 1.5, F1,12 = 0.2, P = 0.66). Note 

here that this outcome is not a consequence of colour-specific dispersal behaviour, the dispersal 

distance per recruited fledgling (i.e. distance between nest of fledging and nest of recapture as 

breeding adult) being independent of recruit coloration (F1,95 = 1.16, P = 0.28) or the coloration of the 

male that reared them (F1,93 = 0.38, P = 0.54). Given the finding that nests of dark reddish males were 

less often depredated (Da Silva et al. in prep., Annexe 1), all these outcomes argued for greater 

offspring quality in broods reared by dark melanic male tawny owls compared to light melanic 

conspecifics. 

 

Implications on the evolution of colour-specific paces of life 

 The hypothesis that individuals differ in their pace of life implies that they should also differ in 

a suite of behavioural, ecological and physiological attributes to sustain either a fast or slow pace of 

life (Ricklefs & Wikelski 2002; Reale et al. 2010). The finding that dark melanic tawny owls have a 

higher survival prospect than lighter conspecifics suggests that the former individuals have a slower 

pace of life than the latter. If this hypothesis holds, life-history theory states that individuals have to 

allocate optimally resources among life-history traits (MacArthur & Wilson 1967; Stearns 1992), a 

decision rule that can differ between individuals (Pianka 1970; Mcleod et al. 1981). In this context, 

dark melanic owls should adopt rather K-life history strategy and lighter melanic owls a rather r-life 

history strategy (Pianka 1970). In line with this prediction, the resolution of the trade-off between 

offspring number and quality differed between dark and light melanic male tawny owls. Dark melanic 

males showed a slow-pace of life, characterized by the production of few high quality offspring that 

were more often recruited in the local breeding population than offspring of light melanic males. 

These findings are also concordant with previously published results. Indeed, we already showed that 

light melanic owls are better able to cope with stressful environmental (Piault et al. 2009; Karell et al. 

2011a; Karell et al. 2011b) and reproductive conditions (Roulin et al. 2003; Roulin et al. 2008b; 

Roulin et al. 2011c), an energy-demanding strategy that allows individual to be constantly adapted to 
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the prevailing environmental conditions. When the environment permits (e.g. high food availability), 

these light-coloured males are able to increase their parental investment to maximize offspring 

production (i.e. r-selected traits), but at the expense of offspring quality. However, when 

environmental conditions deteriorate, they are likely to reduce their parental care (e.g. nest defence 

behaviour (Da Silva et al. in prep., Annexe 1)) or occasionally skip reproduction (Roulin et al. 2003). 

In contrast, dark melanic males adopt a slower, but more homogenous strategy, taking good care of a 

limited number of high-quality offspring (i.e. K-selected traits), which facilitates resource investment 

in maintenance traits (Gasparini et al. 2009a) and, in turn, survival.  

 Although flexibility in behaviour should allow organism to finely track changes in their 

environment, behavioural plasticity as shown by light coloured males can entail substantial costs 

(DeWitt et al. 1998). Behaving optimally in any situation implies the allocation of resources by trying 

some suboptimal behaviour, especially if there is little information about the environment. A game 

theoretic model (McElreath & Strimling 2006) demonstrates that situations where individuals have 

noisy information about environmental conditions, combined with differences in individual state (e.g. 

morphological differences such as melanin-based coloration), can lead to evolutionarily stable 

strategies within a single population. Depending on environmental stochasticity in habitat quality, 

individuals better perform by displaying alternative behaviours, especially those affecting life history 

decisions. Adopting a fixed behavioural tactic, as shown by dark melanic males, can be the best 

solution rather than trying to predict and adapt to all situations as performed by lighter melanic 

conspecifics (Sih et al. 2004; Bell 2007; Wolf et al. 2007). This proposition is consistent with our 

findings that dark melanic males survive longer and produce more recruits than light melanic ones. 

Here, we suggest that different genetically-inherited colour variants can be maintained within 

populations because of temporal fluctuations between r- and K- selective regimes (Hedrick 1986), 

induced by environmental fluctuations in food availability. When food is abundant, the carrying 

capacity of the population is likely to be higher than the total number of breeding pairs in our 

population of tawny owls, a context favouring fast-r strategists (i.e. light melanic males). When food 

is scarce, the carrying capacity of the population is drastically reduced, favouring the competitive 

slow-K strategists (i.e. dark melanic males). Interestingly, the outcomes rising from our intra-
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population study seem also applicable at higher taxonomic level. In line with the colour-specific fast-r 

and slow-K life histories observed in our population, a recent study suggested that light melanic owl 

species are adapted to cold climates and dark melanic ones to warmer climates (Roulin et al. 2011b). 

Climatic amplitudes are more pronounced in northern rather than southern climes, resulting in stronger 

stochastic variation that are favourable for light melanic organisms and their fast and flexible life-

history strategy. In a context of global warming, the observed increase in reddish morph frequency 

(Karell et al. 2011b) is not surprising since warmer temperatures are expected to stabilize the 

environmental conditions. This may lead to directional selection favouring the slow, but stable life-

history strategy adopted by dark melanic individuals. 
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TABLES 

 

Table 1.1: Selection of capture-mark-recapture models of annual survival in relation to melanin-based 
coloration and experimental brood size manipulation treatments in adult tawny owls |  The models 
consisted in two features, namely the modelling survival (φ) and the modelling recapture rates (P). We 
examined the effects of year, sex, coloration (col) and brood size treatment (treat), either as main effects 
only (symbolised by ‘+’) or as main effects and interactions (*). The different treatments were brood size 
enlargement, reduction, or not manipulated, which were entered as time-varying covariates. Broods of 
owls that were not captured were not manipulated. Model selection was based on Akaike’s Information 
Criterion. Akaike weights give the relative support a particular model has in relation to the others. K is 
the number of estimated parameters. 
 

 Model ∆AICc 
Akaike 
Weights K Deviance 

1 φ (col)P(year+sex) 0.000 0.361 9 1471.54 
2 φ (sex*col)P(year+sex) 0.586 0.269 11 1468.01 
3 φ (sex+col)P(year+sex) 0.938 0.226 10 1470.42 
4 φ (col+treat)P(year+sex) 3.215 0.072 11 1470.64 
5 φ (sex*col*treat)P(year+sex) 5.460 0.024 19 1456.21 
6 φ ()P(year+sex+col) 6.327 0.015 9 1477.87 
7 φ ()P(year+sex) 6.924 0.011 8 1480.51 
8 φ (col*treat)P(year+sex) 7.110 0.010 13 1470.4 
9 φ (sex)P(year+sex) 7.919 0.007 9 1479.46 
10 φ (sex)P(year) 9.280 0.003 8 1482.87 
11 φ (year*sex)P(year) 17.072 0.000 17 1472.02 
12 φ (year*sex)P(year*sex) 22.538 0.000 22 1466.94 
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Table 1.2: Number of fledglings in relation to father melanin-based coloration of the father and brood size 
manipulation experiment in the tawny owl |  In Model A the significant interaction between father 
coloration and brood size manipulation is explained by light melanic males producing more fledglings in 
experimentally enlarged broods (Model B), while in reduced broods male colour was not associated with 
number of fledglings (Model C). Brood size was manipulated one or two days after hatching and the 
number of fledglings was defined as the number of 25 days old nestlings. Mother plumage coloration was 
initially entered as explanatory variable in the mixed-model, but was not significant. 
 
    
        
Number of fledglings in year 1 F df P 
    
        
A. Full model including 247 males (197 different individuals) rearing enlarged or reduced broods in year 1 
    
Final model    
Hatching date 10.28 1,173.2 0.0016 
Brood size at hatching 184.67 1,237.7 <0.0001 
Father colour 0.82 1,155.9 0.37 
Brood size manipulation in year 1 221.41 1,238 <0.0001 
Father colour*Brood size manipulation in year 1 4.57 1,238.5 0.034 
    
Rejected terms    
Mother colour 0.13 1,154.7 0.72 
Mother colour*Brood size manipulation in year 1 1.66 1,233.5 0.20 
Father colour*Mother colour 0.04 1.182.3 0.84 
Father colour*Mother colour*Brood size manipulation in year 1 0.85 1,232.5 0.36 
    
B. Model including 126 males (109 different individuals) rearing an enlarged brood in year 1 
    
Hatching date 1.53 1,107.7 0.22 
Brood size at hatching 127.28 1,117.7 <0.0001 
Father colour 5.13 1,88.34 0.026 
    
C. Model including 121 males (105 different individuals) rearing a reduced brood in year 1 
    
Hatching date 12.79 1,49.96 0.0008 
Brood size at hatching 67.36 1,107.8 <0.0001 
Father colour 1.07 1,95.77 0.30 
    
       
Mixed models ANCOVAs with year and male identity as two random variables. Mother identity was initially 
entered as random factor in model A, but was removed from the model. The final model A shows significant 
terms and terms involved in significant interactions, whereas rejected terms were not significant. More offspring 
fledged early than late in the season (term hatching date) and in nests with a larger number of hatchlings before 
broods were manipulated (term brood size at hatching). 
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Table 1.3: Number of fledglings in relation to father melanin-based coloration and brood size 
manipulation experiment carried out in two successive years in the tawny owl |  The significant interaction 
between father coloration and class of successive brood size treatments in Model A is explained by dark 
melanic males producing more fledglings than light melanic ones after having reared an experimentally 
reduced brood in two successive years (model B) and by light melanic males producing more fledglings 
than dark melanic ones after having reared an experimentally enlarged brood in two successive years 
(model C). 
 
    
        
Number of fledglings in year 2 F df P 
    
        
A. Mixed model ANCOVA including 42 males (31 different individuals) rearing experimentally manipulated 
broods in two consecutive years 
    
Hatching date in year 2 1.32 1,28.91 0.26 
Brood size at hatching in year 2 38.82 1,15.98 <0.0001 
Father colour 12.49 1,32.47 0.0013 

Class of successive treatments 10.06 3,23.74 0.0002 
Father colour*Class of successive treatments 6.78 3,20 0.0025 
    
B. Multiple regression analysis including 10 different males rearing an enlarged brood in year 1 and an 
enlarged brood in year 2 
    
Brood size at hatching in year 2 4.54 1,6.871 0.07 
Father colour 20.75 1,6.376 0.003 
 
C. Multiple regression analysis including 9 different males rearing a reduced brood in year 1 and a reduced 
brood in year 2 
    
Brood size at hatching in year 2 11.71 1,4.701 0.021 
Father colour 11.55 1,5.454 0.017 
    
D. Multiple regression analysis including 11 different males rearing a reduced brood in year 1 and an 
enlarged brood in year 2 
    
Brood size at hatching in year 2 7.11 1,8 0.029 
Father colour 1.74 1.5.519 0.24 
    
E. Multiple regression analysis including 12 different males rearing an enlarged brood in year 1 and a 
reduced brood in year 2 
    
Brood size at hatching in year 2 1.56 1,8.888 0.24 
Father colour 0.02 1,7.334 0.89 
    
        

Mixed models ANCOVAs with year and male identity as two random variables in model A and year as single 
random variable in model B, C, D and E. The final model A shows significant terms and terms involved in 
significant interactions, whereas rejected terms were not significant. More offspring fledged early than late in the 
season (term hatching date) and in nests with a larger number of hatchlings before broods were manipulated 
(term brood size at hatching). 
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Table 1.4: Fledgling body mass in relation to father melanin-based coloration and brood size 
manipulation experiment in the tawny owl |  The significant interaction between father coloration and 
treatment in Model A is explained by dark melanic males producing heavier fledglings than light melanic 
males in experimentally enlarged broods (Model B) while in the reduced treatment male colour was not 
associated with fledging body mass. Brood size was manipulated one or two days after hatching and 
fledglings were counted as the number of 25 days old nestlings. 
 
        
    
Fledglings body mass F df P 
        
    
A. Full model including 837 fledglings reared in 128 enlarged and 114 reduced broods in year 1 
    
Final model  
Hour of the day 22.38 1,537.9 <0.0001 
Wing length 68.43 1,828.9 <0.0001 
Sex 360.84 1,783.6 <0.0001 
Father colour 0.0004 1,171 0.98 
Brood size manipulation in year 1 2.18 1,328.8 0.14 
Father colour*Brood size manipulation in year 1 12.25 1,341.4 0.0005 
    
Rejected terms    
Cross-fostered 0.12 1,735.3 0.73 
Cross-fostered*Brood size manipulation in year 1 2.65 1,750 0.10 
Cross-fostered*Father colour 1.91 1,739.3 0.17 
Cross-fostered*Father colour*Brood size manipulation in year 1 0.27 1,745.4 0.60 
    
B. Model including 508 fledglings reared in 128 enlarged broods in year 1 
    
Hour of the day 10.28 1,256.7 0.0015 
Nestling wing length 69.31 1,493.2 <0.0001 
Nestling sex 276.98 1,435 <0.0001 
Father colour 4.11 1,106.1 0.045 
    
C. Model including 329 fledglings reared in 114 reduced broods in year 1 
    
Hour of the day 5.82 1,176.8 0.0081 
Nestling sex 165.4 1,303.7 <0.0001 
Father colour 0.47 1,1.885 0.57 
Nestling wing length 22.68 1,1.367 0.17 

    
        

Mixed models ANCOVAs with year and foster brood identity as random variables. The final model A shows 
significant terms and terms involved in significant interactions, whereas rejected terms were not significant. In 
an initial model (not presented), the terms ‘hatching date’ and ‘brood size at hatching’ were not significant. 
Offspring were heavier when sampled early than late during the day (term ‘Hour of the day’), when their wings 
were long rather than short (term ‘Nestling wing length’, i.e. a reliable estimator of nestling age; F1,6464 = 
68893.0; P < 0.0001). Female nestlings were also heavier (mean ± sd = 362.2 ± 31.3) than male nestlings (mean 
± sd = 324.6 ± 27.3; term ‘Nestling sex’). 
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Table 1.5: Weighted recapture rate per brood in relation to father melanin-based coloration and brood 
size manipulation experiment in the tawny owl |  The recapture rate per brood was estimated as the 
number of recaptured individuals reared in the same brood weighted by the number of nestlings that 
fledged from this brood. The significant interaction between father coloration and treatment in Model A is 
explained by a higher recapture rate of fledglings reared by reddish males when the brood was 
experimentally reduced (Model C), whereas no difference in recapture rate was found in the enlarged 
treatment (Model B). 
 
    
        
Number of fledgling recaptured, weighted by the number of 
fledglings F df P 
    
        
A. Full model including the number of fledglings recaptured in 217 broods  
    
Final model  
Father colour 6.31 1,37 0.017 
Brood size manipulation in year 1 5.92 1,37 0.02 
Father colour* Brood size manipulation in year 1 5.39 1,37 0.031 
    
Rejected terms    
Mean body mass of fledglings 0.00 1,37 0.96 
Hatching date 2.03 1,37 0.16 
    
B. Model including 116 enlarged broods     
    
Father colour 0.2 1,12 0.66 
    
C. Model including 101 reduced broods     
    
Father colour 8.38 1,8 0.02 

    
        

Mixed models ANCOVAs with year and male identity as random variables. The final model A shows significant 
terms and terms involved in significant interactions, whereas rejected terms were not significant. 
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ABSTRACT 

Oxidative stress is known to increase with reproductive effort. Yet, it is poorly understood 

whether individuals from the same population vary in their oxidative status under different 

reproductive conditions. We investigated this issue in relation to melanin-based plumage coloration in 

adult tawny owls (Strix aluco). We manipulated brood size in 94 nests in order to induce differences in 

reproductive investment, and in turn variation in oxidative stress assessed with red blood cell (RBC) 

markers. Our results show that light melanic males (the sex assuming offspring food provisioning) 

produced more reactive oxygen species (ROS) than darker conspecifics, but only when rearing an 

enlarged brood. We also found that in both sexes light melanic individuals have a larger pool of 

intracellular antioxidant glutathione (tGSH) than darker owls under relaxed reproductive conditions 

(i.e. reduced brood), but not when investing substantial effort in current reproduction (enlarged brood). 

Finally, male and female oxidative status was differently affected by the brood size manipulation 

experiment (i.e. RBC resistance to free radicals), but independently of plumage coloration. We 

conclude that under stressful reproductive conditions lighter melanic owls overproduced ROS 

(especially among males) and were not able to generate large GSH pool as observed when rearing 

reduced brood. This suggests that differently melanic tawny owls differentially resolve the trade-off 

between current reproduction and maintenance, at least with respect to antioxidant response. However, 

according to RBC resistance to free radicals, these strategies developed by dark and light melanic owls 

appear to be equally successful, since they equally suffered from oxidative damage in the two brood 

size treatments. 
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INTRODUCTION 

Cell respiration is fundamental to ensure survival, but generates simultaneously reactive 

oxygen species (ROS), which can induce physiological damages (Frisard & Ravussin 2006; 

Schallreuter et al. 2011). For example, ROS can cause DNA point mutations (Twigg et al. 1998), cell 

membrane rupture (Halliwell 1992) and oxidation of amino acids (Halliwell & Gutteridge 1989). 

Aerobe organisms have developed various defence systems to counter the deleterious effects of ROS. 

The ratio between ROS production and these antioxidant defence mechanisms is critical as an over-

production of ROS exposes organisms to the so-called oxidative stress (Finkel & Holbrook 2000). Cell 

oxidative status therefore depends on numerous factors such as ROS production, tissue susceptibility 

to free radicals and strength of the defence and repair systems (Frisard & Ravussin 2006).  

Despite the growing interest in the role of oxidative stress in mediating reproductive 

investment (Cohen et al. 2008; Monaghan et al. 2009; Metcalfe & Alonso-Alvarez 2010; Isaksson et 

al. 2011), the oxidative reaction norms of individuals adopting different reproductive strategies remain 

unclear (see for instance Garratt et al. 2011). Inter-individual variation in oxidative balance can be a 

direct consequence of genetic and environmental factors, but can also arise from alternative life 

history strategies, highlighting the diversity in trade-off resolutions between reproductive effort and 

oxidative equilibrium (Monaghan et al. 2009). In the zebra finch (Taeniopygia guttata) for instance, 

parents experiencing higher parental investment were more exposed to oxidative stress compared to 

those experiencing lower investment (Alonso-Alvarez et al. 2004; Wiersma et al. 2004). The sign and 

the magnitude of this complex link between the oxidative balance and life history traits can vary 

according to the species considered (Cohen et al. 2008), the sex of individuals (Sullivan et al. 2007; 

Bize et al. 2008), their age (Beckman & Ames 1998; Ashok & Ali 1999; Devevey et al. 2010) or the 

environmental conditions (Beaulieu et al. 2010). Thus, a central issue is to identify how different 

genotypes or phenotypes cope with oxidative stress, a key information to apprehend the evolution of 

individual-specific life history strategies. 

Inherited inter-individual variation in the deposition of eumelanin (grey to black) and 

pheomelanin (yellowish to reddish) pigments in the integuments is common in the animal kingdom 

(Majerus 1998; Roulin 2004). Variation in coloration is often associated with behavioural and life 
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history traits (Roulin 2004), but also with physiological processes such as resistance to oxidative stress 

(Galvan et al. 2010; Roulin et al. 2011a), the sign and magnitude of these covariations differing 

between environments (e.g. Roulin et al. 2008b; Piault et al. 2009; Vergara & Fargallo 2011). This 

suggests that coloration can advertise either different physiological reaction norms depending on 

specific environmental conditions (e.g. Roulin et al. 2011c), or alternative life history strategies 

according to the environmental circumstances. This highlights the need of experimental studies where 

the environmental conditions (e.g. rearing conditions) experienced by individuals are manipulated to 

clearly identify the adaptive value of a specific colour pattern. For instance, if melanin-based 

coloration covaries with oxidative balance only when environmental conditions are poor, one can 

deduce that individuals displaying a given colour trait are particularly adapted to cope with stressful 

factors. Under this scenario, these individuals would outcompete conspecifics mainly when 

environmental conditions deteriorate.  

In the tawny owl (Strix aluco), a species characterized by a continuous variation in melanin-

based coloration (from light to dark reddish, 68% of the total variance in plumage coloration is due to 

pheomelanin and 21% to eumelanin; Gasparini et al. 2009a), the least reddish (hereafter referred to as 

‘light melanic’) individuals better cope with stressful reproductive conditions than darker conspecifics, 

as demonstrated by their nestling growth (Roulin et al. 2008b; Piault et al. 2009) and parental 

investment (Roulin et al. 2011c), or survival under harsh environmental conditions (Karell et al. 

2011b). This species is thus a prime model organism to investigate the complex links between 

heritable melanin-based coloration, oxidative balance and environmental conditions. Given these 

colour-specific strategies to cope with stressful conditions, we propose herein that differently coloured 

individuals differentially regulate their oxidative balance according to the environmental conditions. 

To test this hypothesis, we manipulated brood size in order to induce differences in the level of 

parental workload and thereby oxidative balance (Alonso-Alvarez et al. 2004; Wiersma et al. 2004; 

Christe et al. 2011). We evaluated oxidative status of adults rearing an experimentally enlarged or 

reduced brood through three quantitative measurements performed on red blood cells (RBC), namely 

ROS production, total intracellular GSH levels (tGSH, a major intracellular antioxidant; Reddy et al. 

1982; Halliwell & Gutteridge 1989) and resistance of cell membrane to free radicals. 
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METHODS 

Model organism 

The present study was conducted in 2010 on a population of tawny owls located in western 

Switzerland. This nocturnal species preys mainly upon small rodents and passerines in woodlands. 

This monogamous and territorial owl is sexually dimorphic in size (with females 20% bigger than 

males), with a strong partition of the reproductive roles between sexes. The female incubates the 

clutch during 28 days, and then remains in the nest to guard her hatchlings and to distribute among 

them prey items collected by the male. Once owlets are thermo-independent at 15-20 days of age, the 

female patrols around the nest to protect her offspring from potential predators, while helping her 

partner with provisioning food to the brood. Nestling growth rate and survival strongly depend on prey 

availability, especially wood mice (Roulin et al. 2009). Offspring leave the nest at 25–30 days of age 

but are fed by their parents until 90-120 days of age (Sunde 2008). 

Experimental design 

In 2010, females produced between two and seven eggs (mean ± sd: 5.13 ± 0.94), which 

hatched between February 21 and May 31 (mean ± sd: March 31 ± 13.3 days). On the basis of similar 

hatching dates, 94 nests were matched into pairs to decrease (reduced broods) or increase (enlarged 

broods) parental investment of breeding parents as described in a previous study (Roulin et al. 2011c). 

Among pairs of nests, brood sizes were randomly manipulated, leading to an exchange of 1.74 

nestlings on average (sd = 0.6) from nest E (experimentally enlarged, n = 47) and placed in nest R 

(experimentally reduced, n = 47), while 2.74 hatchlings on average (sd = 0.6) underwent the opposite 

exchange (i.e. from nest R to nest E). Each family was thus composed of nestlings from two origins, 

disrupting thereby the potential covariation between brood size and parental genotype and phenotype. 

This brood size manipulation (BSM) treatment had the intended effect on reproductive effort and 

subsequently rearing conditions (ANCOVA accounting for initial brood size: F1,141 = 141.9, P < 

0.0001); parents assigned to the enlarged brood treatment were rearing a larger number of 10-day-old 

owlets than those assigned to the reduced brood treatment (mean ± SE number of owlets per enlarged 

vs. reduced brood: 4.92 ± 1.27 vs. 3.47 ± 1.11). When nestlings were 10 days of age, we captured both 

parents to investigate the consequences of the brood size manipulation experiment on their body 
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condition and oxidative balance. Females were captured in the nest box during daylight (8am – 6pm, n 

= 94), while males were captured at night when provisioning their brood (10pm – 6am, n = 88). Note 

that 90 females and 24 males were already captured once during egg incubation (i.e. before 

performing the brood size manipulation). Because of the complexity of capturing male due to their 

fearful behaviour, we were able to recapture only two out of 24 males (i.e. before and after the brood 

size manipulation experiment). However, male capture procedure, either before or after experimental 

manipulation, was not biased with respect to melanin-based coloration (Student’s t-test: t83 = 0.83, P > 

0.4). Upon capture, each adult was weighed to the nearest g, their left wing length measured to the 

nearest 1mm and left tarsus to the nearest 0.1mm. We found no differences between the two brood 

size treatments in adult wing length and tarsus length (Student’s t-tests, P > 0.42). From the wing vein, 

we collected 60-200ul of blood in EDTA tubes for ROS production and free radicals resistance 

analyses and in heparin tubes for tGSH analysis. For each sample, 16μl of whole blood collected in 

EDTA tube were immediately diluted in 584μl of KRL buffer and stored at 4°C before further 

analyses, which occurred within 24 hours after blood collection. EDTA tubes were then centrifuged to 

separate red cells from blood plasma, the latter being collected in microtubes. Heparin, centrifuged 

EDTA and microtubes were finally frozen in dry ice in the field and transferred at -80°C within 12 

hours until later analyses in the laboratory. 

Assessment of plumage coloration 

Although tawny owls vary continuously in the degree of reddishness, this species is usually 

considered as colour polymorphic in the literature (Glutz von Blotzheim & Bauer 1980; Galeotti 2001; 

Brommer et al. 2005) and hence we also employ this terminology. Scores of adult plumage coloration 

were determined either visually in the field or through spectrophotometric analysis in the laboratory. 

The visual scoring method, based on five distinct colour morphs (Roulin et al. 2005) is a reliable 

approach, evidenced by high inter-annual repeatability of colour scores visually assigned to the same 

individuals between 2005 and 2010 (r = 0.89 ± 0.02, F174,383 = 13.76, P < 0.0001; Lessells & Boag 

1987). In parallel, three feathers collected on the back of adult tawny owls were stuck together on 

black paper to capture reflectance spectra at four distinct positions using the S2000 spectrophotometer 

(Ocean Optics, Dunedin, FL) and a dual deuterium and halogen 2000 light source (Mikropackan, 



	   Chapter 2 
	  

59 

Mikropack, Ostfildern, Germany). From these spectra, we calculated a mean brown chroma score for 

each individual as described by Montgomerie (2006). In the collected data, both scoring methods were 

tightly correlated (Pearson’s correlation: r = -0.84, n = 270 individuals, P < 0.0001), comforting us to 

consider only visual coloration scores in the present study. This choice is based on the fact that visual 

colour scores provide a better overall estimation of plumage coloration (as already explained by 

Brommer et al. 2005) than brown chroma, which is assessed with only three back feathers of adult 

tawny owls, an approach that does not necessarily reflect entire body coloration.  

Adult plumage coloration was neither associated with hatching date of the first egg, nor with 

brood size before and after the manipulation (Student’s t-tests, P–values > 0.38). Although randomly 

assigned with respect to female coloration (78 out of 80 females being already captured once before 

their brood size was manipulated, Student’s t-test, t78 = -0.66, P = 0.51), it appeared that males rearing 

a reduced brood tended to be darker melanic than those rearing an enlarged brood (brood sizes was 

manipulated without prior knowledge of male plumage coloration, t58 = 2.14, P = 0.04). This is 

however not a major problem for the present study, since our aim is to correlate oxidative balance with 

coloration within the two brood size treatments. Within pairs of experimental nests, foster and 

biological parents did not resemble each other with respect to plumage colour scores (Pearson’s 

correlations: -0.16 < r < -0.03, P-values > 0.49). Pairing with respect to male and female coloration 

was not assortative in both treatments (enlarged nests: r = 0.025, n = 32, P = 0.89; reduced nests: r = -

0.18, n = 28, P = 0.34). Note also that we failed to detect an effect of the BSM (alone or in interaction 

with plumage coloration) on adult body mass, the latter depending primarily on the two-way 

interaction between sex and colour morph (F1,123.9 = 4.67, P = 0.03). This interaction was mainly 

explained by the negative relation between body mass and plumage coloration in females (light 

melanic females being heavier than darker ones; estimate ± SE = - 9.76 ± 4.48, F1,70 = 4.7, P = 0.03), 

but not in males (estimate ± SE = 3.4 ± 2.9, F1,56 = 1.4, P = 0.24; Figure 2.1). Note also that adult wing 

and tarsus lengths were not associated with coloration in both sexes (Student’s t-test, P-values > 0.12). 
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Figure 2.1: Illustration of the mixed-model results testing the relation between male (open circles and 
dash regression line; estimate ± SE = 3.4 ± 2.9, F1,56 = 1.4, P = 0.24) and female body mass (closed circles 
and straight regression line; estimate ± SE = - 9.76 ± 4.48, F1,70 = 4.7, P = 0.03) and melanin-based 
coloration in breeding tawny owls. 
 

Oxidative stress measurements 

Focusing on one tissue sample, namely red blood cells (RBC), our measurements of three 

distinct markers of oxidative stress provided an overall estimation of RBC oxidative status. 

Endogenous production of ROS by RBC mitochondria was analyzed by flow cytometry in 

combination with the MitoSOX™ Red mitochondrial superoxide indicator (Invitrogen). For each 

individual (55 males and 69 females), 420μl of KRL-diluted whole blood was centrifuged at 300 rpm 

and 4°C for 4 minutes. After removing the supernatant, we added 400μl of KRL buffer and 1μl of 

probe MitoSOX Red. Samples were incubated at 37°C for 30 minutes and finally analyzed by flow 

cytometry using a BD FACS Calibur, with excitation at 582 nm (FL2). Data were acquired and 
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analyzed with the software FACSDiva and CellQuest Pro (Olsson et al. 2009). For each sample, the 

mean fluorescence for all 50'000 cells was determined using CellQuest Pro. 

Total intracellular GSH concentration (tGSH) was assessed using the DetectX® Glutathione 

Colorimetric Detection Kit (Arbor Assays) with some modifications. For each sample (60 males and 

80 females), 25μl of blood collected in heparin tubes was diluted with 100μl of 5% metaphosphoric 

acid, stored for 15 minutes on ice and then centrifuged at 14'000 rpm and 4°C for 15 minutes to collect 

the supernatant. From this extraction, 6μl of the sample was diluted with 114μl of ‘Sample Diluent’ 

and loaded in duplicates on a 96 wells microplate, prior to the distribution of 25μl of ‘Colourimetric 

Detection Reagent’ and 25μl of ‘Reaction Mix’ per well. As mentioned in the protocol, optical 

densities (OD) were measured at a wavelength of 405nm after 20 minutes. Computed OD was finally 

box-cox transformed before statistical procedures, to enable the use of models with a Gaussian-

distributed error. 

RBC resistance to free radicals provides a general assessment of the full range of antioxidants 

present in the blood to counter this free radical attack (Blache & Prost 1992; Pieri et al. 1996; Stocker 

et al. 2003), and thus not only GSH. Accordingly, inter-individual variation in such resistance is likely 

to reflect aspects of individual genetic quality and/or phenotypic quality (Bize et al. 2008; Kim et al. 

2011). We assessed this measurement as the time required to haemolyse 50% of RBC exposed to a 

controlled free-radical attack (Alonso-Alvarez et al. 2006), using the KRL bioassay (Brevet Spiral 

V02023, Courernon, France) adapted to avian physiological parameters (see Bize et al. 2008). Loaded 

in duplicates on a 96 wells microplate (intra-plate repeatability: r = 0.99, P < 0.0001), 90μl of KRL-

diluted whole blood (58 males and 74 females) was submitted to a ROS attack at 40°C by adding a 

solution of 150mM of 2,2'-azobis-(aminodinopropane) hydrochloride diluted in 153μl of KRL buffer 

(Bize et al. 2008). The lyses of red blood cells were monitored with a microplate reader device as the 

decrease of optical density at the wavelength of 540nm. Note that the time between blood collection 

and measurements of ROS production (mean ± sd = 10h37 ± 6.2, range = [2h – 22h15]) or RBC 

resistance to free radicals (mean ± sd = 10h04 ± 6.2, range = [1h30 – 22h])) was neither associated 

with the brood size manipulation (P-values > 0.78), nor with male or female plumage coloration (P-

values > 0.2). 
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Statistical procedure 

We performed two-tailed statistical analyses using the statistical software JMP IN 8.0. 

Preliminary analyses on potential inter-connection between the three oxidative stress markers revealed 

no significant pairwise correlations (after Bonferroni adjustment for multiple testing, Table 2.1). This 

lack of significance validates the use of separate statistical models to investigate the influence of BSM 

and plumage coloration on these measurements of oxidative stress. In three separate linear mixed-

models, mitochondrial ROS production, intracellular tGSH levels and RBC membrane resistance to 

free radicals were entered as response variables. BSM, sex of the corresponding parent and its 

plumage coloration were entered as explanatory variables, plus all possible interactions between these 

three variables. Apart from one marginal relationship (heavier individuals showing lower tGSH levels, 

P = 0.07), time of blood sampling (in hours), body mass (corrected for wing length) and age or age2 of 

each individual (in years) did not significantly covary with our oxidative measurements (P-values > 

0.2) and were finally removed from our mixed-models. Moreover, hatching date of the first egg and 

brood size before BSM were introduced as covariates in preliminary analyses, but did not modify our 

conclusions. For this reason, we removed them from the analyses presented in the result section for the 

sake of clarity. 

In each mixed model, we controlled for the effect of the nesting site on the response variable 

by including nest identity as random factor. Starting with full models, a backward stepwise procedure 

was used to sequentially remove non-significant terms (P > 0.05), starting with the least significant 

higher order interactions, until we obtained the best-fitting models. For each model, we verified that 

the distributions of errors were homogenous and normally distributed. 
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RESULTS 

Oxidative balance prior to manipulation of brood size 

During the incubation period, 24 male and 90 female tawny owls were already captured and 

blood-sampled once, most of them experiencing the brood size manipulation afterwards (2 males and 

78 females). Initial measurements of mitochondrial ROS production, intracellular tGSH levels and 

RBC membrane resistance to free radicals performed on these blood samples did not covary with adult 

plumage coloration (linear mixed-models, P-values > 0.31). This lack of significant covariation 

indicates that the following relationships found between melanin-based coloration and measurements 

of adult oxidative stress when owlets were 10 days old resulted from colour-specific reaction norms to 

the BSM experiment.  

Colour-specific ROS production 

As expected, ROS production was significantly affected by the manipulation of parental 

workload. When comparing initial and post-BSM measurements, we found that breeding pairs rearing 

an enlarged brood increased significantly more their ROS production (mean difference of both parents 

± se = 0.6 ± 0.1) than the breeding pairs rearing a reduced brood (mean difference of both parents ± se 

= 0.27 ± 0.1; F1,76 = 5.04, P = 0.028). More importantly, ROS production, measured in adults when 

their offspring were 10-day-old, was significantly explained by the interaction between BSM, sex and 

colour (linear mixed model: F1,115.7 = 8.03, P = 0.005; Table 2.2A). Follow-up analyses performed 

separately for each sex and each brood size treatment showed that this interaction resulted mainly 

from differences in males rather than females. Light melanic males produced significantly more ROS 

than dark melanic ones when rearing an enlarged brood (linear mixed model: colour effect, estimate ± 

SE = -0.38 ± 0.11, F1,21 = 11.8, P = 0.003), but not when rearing a reduced brood (another linear mixed 

model: estimate ± SE = 0.03 ± 0.1,  F1,30 = 0.07, P = 0.8; Figure 2.2). 
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Figure 2.2: Endogenous production of reactive oxygen species (ROS) by red blood cell (RBC) 
mitochondria, in relation to melanin-based coloration in male tawny owls raising an experimentally 
reduced (open circles and dash regression line; linear mixed-model, estimate ± SE = 0.06 ± 0.1, F1,28 = 
0.41, P = 0.53) or enlarged brood (closed circles and straight regression line; another linear mixed-model, 
estimate ± SE = -0.39 ± 0.11, F1,19 = 12.1, P = 0.003). 
 

Colour-specific tGSH production 

Box-cox transformed tGSH levels were significantly explained by the two-way interaction 

between BSM and colour (linear mixed model: F1,133.8 = 5.13, P = 0.025; Table 2.2B); no effect of 

factor sex was observed, neither alone, nor in interaction with BSM. Models performed separately for 

each treatment group showed that adult tGSH levels significantly covaried with the degree of plumage 

melanism when tawny owls were rearing an experimentally reduced brood (another linear mixed 

model: estimate ± SE = -49.5 ± 23.7, F1,65.97 = 4.4, P = 0.04), but not an experimentally enlarged brood 

(another linear mixed model: estimate ± SE = 41.6 ± 29.3, F1,63.89 = 2.0, P = 0.16; Figure 2.3). 
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Figure 2.3: Box-cox transformed total intracellular glutathione (tGSH) levels (μM), in relation to 
melanin-based coloration in breeding tawny owls raising an experimentally reduced (open circles and 
dash regression line; linear mixed-model, estimate ± SE = -49.5 ± 23.7, F1,65.97 = 4.4, P = 0.04) or enlarged 
brood (closed circles and straight regression line; another linear mixed-model, estimate ± SE = 41.6 ± 
29.3, F1,63.89 = 2.0, P = 0.16). 
 

Sex-specific resistance to free radicals 

RBC membrane resistance to free radicals was significantly explained by the two-way 

interaction between BSM and sex (linear mixed model: F1,75.58 = 8.85, P = 0.004, Table 2.2C); no 

effect of factor ‘Colour’ was observed, neither alone, nor in interaction with BSM. Models performed 

separately for each sex showed that the significant BSM by sex interaction was due to RBC 

membranes being significantly more vulnerable to oxidative stress in females rearing an enlarged 

rather than reduced brood (another linear mixed model: F1,72 = 11.76, P = 0.001), whereas no 
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significant difference was found in males rearing an enlarged or reduced brood (another linear mixed 

model: F1,56 = 1.36, P = 0.25; Figure 2.4). 

 

 

Figure 2.4: Red blood cell (RBC) resistance to an exogenous free radical attack, in relation to the brood 
size manipulation in adult tawny owls. Males rearing an enlarged brood (grey box-plot) showed no 
difference in their RBC resistance than those rearing a reduced brood (empty box-plot, n = 58, P = 0.25). 
By contrast, RBC resistance to free radicals was lower in females rearing an enlarged (grey box-plot), 
rather than a reduced brood (empty box-plot, n = 74, P = 0.001). 
 

DISCUSSION 

We investigated the relationship between melanin-based coloration and oxidative stress in 

adult tawny owls rearing experimentally reduced or enlarged broods. As expected, we found that our 

experimental manipulation of parental investment affected tawny owl oxidative balance, the 

expression of RBC oxidative biomarkers also depending on the sex of individuals and/or their 

plumage coloration. In males, ROS production was significantly higher in light compared to dark 

melanic owls, but only when rearing an enlarged brood. In both sexes, intracellular tGSH levels were 

significantly higher in light compared to dark melanic adults, but this time when rearing a reduced 
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brood. Although we found that light and dark melanic birds underwent different levels of oxidative 

stress, as measured by ROS production, and differentially regulated one antioxidant component (i.e. 

tGSH), we nevertheless found that resistance to a standardized oxidative attack was not associated 

with plumage coloration. Hereafter, we discuss how colour-specific adaptation to heterogeneous 

environments and sex-specific reproductive tasks may shape the oxidative status of adult tawny owls. 

Colour-specific oxidative balance 

Melanin-based coloration displays tight and complex links with the oxidative balance (i.e. 

antioxidant properties of melanin pigments, pleiotropic effects of the melanocortin system or the 

biochemical role of tGSH in melanogenesis). These effects raised the hypothesis of colour-specific 

strategy in the regulation of tawny owl oxidative balance according to environmental conditions.  

To our knowledge, the present study is the first to reveal a covariation between ROS production and 

adult melanin-based coloration. Light melanic males produced more ROS than dark melanic ones 

when rearing enlarged broods, while no significant difference was found between differently coloured 

males rearing a reduced brood. Previous works on this species provided empirical evidences that light 

melanic individuals better cope with stressful environmental conditions caused either by an 

experimental brood enlargement or by food deprivation (Roulin et al. 2005; 2008b; Piault et al. 2009; 

Roulin et al. 2011c). As a consequence of this adaptive strategy, light melanic individuals are likely to 

suffer from physiological costs. In adults for instance, food provisioning to larger broods can increase 

male metabolic rate (Nilsson 2002), such constraint leading to an increase of ROS production 

(Robinson et al. 1997; Domenicali et al. 2001). Although, we did not specifically measure paternal 

investment in the two brood size treatments, seven years of population monitoring revealed that light 

melanic males invest more effort than darker conspecifics when their brood was experimentally 

enlarged (Emaresi et al. in prep, Chapter 1). Higher ROS production observed in light melanic males 

rearing enlarged broods may be therefore a by-product of their specific life history strategy. 

Intracellular antioxidants such as GSH have a key role in scavenging reactive oxygen species, 

but can also interact biochemically within important molecular pathways such as pheomelanogenesis 

(Ozeki et al. 1997). This dual role has led to the hypothesis that melanocytes, in which 

eumelanogenesis prevails at the expanse of pheomelanogenesis, suffer higher oxidative stress since 
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they require low thiol group conditions, and thereby low tGSH concentrations (Ito 2003; Galvan & 

Solano 2009). Observations from experimental studies on great tits (Parus major) and red-legged 

partridges (Alectoris rufa) were consistent with this hypothesis (Galvan & Alonso-Alvarez 2008; 

2009); nestlings with experimentally reduced tGSH levels expressed eumelanic traits to a larger 

degree, sometimes at the expense of pheomelanic traits (Galvan & Alonso-Alvarez 2009). These 

outcomes suggested close associations between the production of melanin pigments and tGSH (Galvan 

& Solano 2009). However, it remained unclear whether these inter-individual variations in coloration 

were the consequence of drastic experimental inhibition of intracellular tGSH levels or whether similar 

relationship between melanin-based coloration and tGSH could also occur under natural situations 

(across a natural range of tGSH variation; see for instance Galvan et al. 2010). The present study was 

designed in this sense, investigating if tawny owl melanic plumage (mainly due to deposition of 

pheomelanin) revealed resistance abilities against oxidative stress in different circumstances, as a 

potential consequence of colour-specific tGSH expression. Given their adaptive abilities to perform in 

stressful reproductive or environmental conditions (Roulin et al. 2008b; Piault et al. 2009), we 

expected light melanic individuals to express more tGSH to counter the detrimental effects induced by 

their ROS production (as observed when rearing enlarged broods). Our results confirmed this 

assumption, tGSH levels significantly covarying with melanin-based coloration. A closer look at the 

models performed separately for each treatment revealed that light melanic owls exhibited higher 

levels of tGSH than darker conspecifics when rearing an experimentally reduced brood, whereas such 

covariation was not significant for tawny owls rearing an experimentally enlarged brood. Due to the 

lack of strong trends in both treatment groups, these results need to be interpreted with caution. 

However, due to the adaptive strategy of light melanic individuals to cope with stressful reproductive 

conditions as it can be the case when rearing an enlarged brood (see also Roulin et al. 2003; 2008b; 

Piault et al. 2009; Emaresi et al. 2011; Karell et al. 2011b), one can raise the hypothesis that these 

individuals are likely to endure physiological constraints, such as ROS overproduction (especially in 

males, the sex assuming offspring food provisioning in this species). And because of the trade-off 

resolution between current reproduction and antioxidant response (Monaghan et al. 2009), their 

energy-demanding strategy is also likely to decrease their larger GSH pool under stressful conditions, 
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but not under prime rearing conditions such as when we reduced brood size. This may explain why 

light melanic individuals produced more tGSH than dark melanic conspecifics only under relaxed 

rearing conditions. Nevertheless, our measurements on RBC resistance to free radicals RBC 

resistance, a marker assessing the full range of antioxidants present in the blood to counter a free 

radical attack (Blache & Prost 1992; Pieri et al. 1996; Stocker et al. 2003), suggested that differently 

coloured tawny owls were likely to suffer from similar oxidative damage. This outcome advocates for 

a larger consumption of GSH by light melanic tawny owls to counter the detrimental effects of their 

ROS overproduction. This hypothesis points out the central issue of GSH expression and expenditure. 

The global pool of GSH (tGSH) being composed in two forms, namely redGSH (amount of available 

antioxidants) and oxGSH (amount of tGSH recently used), the percentage of each fraction may indeed 

covary with melanin-based coloration, an issue that needs to be addressed in future studies. 

Sex-specific links between oxidative balance and life histories 

Tawny owl parents display clear division of duties during reproduction. Males deliver food to 

their offspring and partner (Sasvari et al. 2009), while females guard the brood and distribute the prey 

items among the progeny. Our brood size manipulation experiment is primarily expected to increase 

male parental effort and reduce female food resources. Thus, this treatment is likely to differentially 

affect male and female oxidative status in this species. An important consequence of an increase in 

parental investment in males (i.e. increased food supply) is an increase in metabolic rate (Nilsson 

2002) and potentially in ROS production (Halliwell & Gutteridge 1989; Finkel & Holbrook 2000). In 

the present study, we partly verified this scenario, ROS production mainly differing among males of 

different plumage coloration. Yet, we did not measure daily variation in metabolic rate of males 

rearing reduced and enlarged broods and studies are still needed to demonstrate a clear association 

between increased metabolic rate and ROS production in the tawny owl. 

Concordant with experimental studies on zebra finch (Wiersma et al. 2004; Alonso-Alvarez et 

al. 2006), our experiment also showed a significant decrease in RBC membrane resistance in females 

(but not in males) rearing an enlarged, rather than reduced brood, independently of coloration. 

Because of their brooding behaviour, females could suffer from reduced food intake until owlets are 

thermo-independent at 15-20 days of age, especially when rearing an enlarged brood. Therefore, they 
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could have experienced a shift in their diet that lowered their acquisition of antioxidants (i.e. uric acid, 

carotenoids, vitamin E; Cohen et al. 2009). Both processes are likely to induce higher oxidative stress 

to females rearing enlarged broods, as suggested in this study by the observed decline in RBC 

resistance to free radicals after their brood had been enlarged. The exact proximate mechanisms 

driving the evolution of these sex-specific differences remain poorly understood. One mechanism 

could be the opposite action of sex steroids on oxidative balance, namely the positive and negative 

effect of testosterone and oestrogen, respectively (Gupta & Thapliyal 1985; Vina et al. 2005; Tobler & 

Sandell 2009). Another hypothesis is the effect of body mass on oxidative status, individuals 

generating more free radicals as a consequence of higher basal metabolic rate imposed by larger body 

mass. This hypothesis is however not supported by our data, since we failed to detect a relationship 

between body mass (corrected for wing length) and ROS production or RBC resistance to free radicals 

in adult tawny owls (pers. comm., but see  Marko et al. 2011 for similar results in the collared 

flycatcher Ficedula albicollis). 

Conclusion 

The present study demonstrated that oxidative balances of males and females were differently 

affected by experimental manipulation of their parental effort. In agreement with previous studies, our 

results revealed that the adaptation of light melanic tawny owls to stressful reproductive conditions 

(i.e. brood enlargement) leads them to overproduce ROS, but are likely to afford it by consuming 

larger amount of redGSH (and potentially other antioxidants that we did not measure). Unlike barn owls 

(Roulin et al. 2011a), our results suggested that light melanic tawny owls were likely to suffer from 

similar oxidative damages than dark melanic conspecifics, but potentially at the expense of survival 

(e.g. Karell et al. 2011b). Finally, this experiment pointed out the complexity of formulating general 

predictions on the link between the production of melanin pigments, and hence melanin-based 

coloration, tGSH levels and oxidative stress. As suggested herein, the oxidative balance and melanin-

based coloration were not necessarily directly linked, but could be indirectly related via alternative 

colour-specific life history strategies. 
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TABLES 

 

Table 2.1: Pearson’s correlation coefficients between the three measures of oxidative stress, with respect 
to the sex of an individual and the brood size manipulation treatment in adult tawny owls (to account for 
the fact that covariations between measurements of oxidative stress can differ between sexes and 
treatment groups). Scores of the Reduced treatment are in italics above the diagonal, while scores of the 
Enlarged treatment are below the diagonal. The significant pairwise P-value is given in bold, but is no 
more significant after Bonferroni adjustment for multiple testing. 
 

Female    
Enlarged vs. Reduced treatment  
 Resistance ROS production GSH levels 
Resistance   0.36 0.15 
ROS production -0.12   0.17 
GSH levels -0.09 0.23   
Male    
Enlarged vs. Reduced treatment  
 Resistance ROS production GSH levels 
Resistance   -0.04 -0.04 
ROS production 0.23   -0.1 
GSH levels -0.007 -0.1   
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Table 2.2: Results of linear mixed models for adult tawny owls, investigating the effects of the brood size 
manipulation, sex of individuals, plumage coloration and their interactions on (a) endogenous production 
of ROS by RBC mitochondria, (b) box-cox transformed total intracellular GSH levels, and (c) RBC 
resistance to free radicals. We controlled for the effect of the nesting site on each response variable by 
including its identity as a random factor in each mixed model. Starting with full models, a backward 
stepwise procedure was used to sequentially remove non-significant terms (P > 0.05), starting with the 
least significant higher order interactions, until we obtained the best-fitting models (considered variables 
are given in bold). 
 

Source of variation               
      n estimate se df F P 
         
A. Ros production        
         
 BSM[E]  124 0.02 0.06 1,56.64 0.10 0.75 
 Sex[F]   -0.15 0.06 1,58.12 5.74 0.02 
 BSM[E] : Sex[F]  -0.01 0.06 1,58.12 0.01 0.93 
 Colour   -0.09 0.06 1,115.8 2.78 0.10 
 BSM[E : Colour  -0.05 0.06 1,115.8 0.67 0.42 
 Sex[F] : Colour  0.09 0.06 1,115.7 2.64 0.11 
 BSM[E] : Sex[F]: Colour  0.16 0.06 1,115.7 8.03 0.005 
         
         
B. Box-cox transformed total GSH levels     
         
 BSM[E]  140 -16.63 20.41 1,69.71 0.66 0.42 
 Colour   -3.60 18.71 1,133.8 0.04 0.85 
 BSM[E] : Colour  42.36 18.71 1,133.8 5.13 0.025 
 Sex[F]   -27.29 23.11 74.5 1.39 0.24 
 BSM[E] : Sex[F]  -9.63 23.20 73.26 0.17 0.68 
 Sex[F] : Colour   10.67 19.88 129.7 0.29 0.59 
 BSM[E] : Sex[F]: Colour  19.69 19.94 129.9 0.97 0.33 
        
         
C. RBC membrane resistance to free radicals     
         
 BSM[E]  132 -0.51 0.53 1,75.88 0.93 0.34 
 Sex[F]   -1.50 0.53 1,75.58 8.04 0.006 
 BSM[E] : Sex[F]  -1.57 0.53 1,75.58 8.85 0.004 
 Colour   -0.60 0.46 1,127 1.71 0.19 
 BSM[E] : Colour  0.53 0.46 1,126 1.30 0.26 
 Sex[F] : Colour   0.20 0.48 1,124.8 0.17 0.68 
 BSM[E] : Sex[F]: Colour  0.27 0.49 1,123.8 0.30 0.59 
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ABSTRACT 

A fundamental trade-off resolution in living organism is the resource allocation between 

reproduction and somatic self-maintenance traits, such as antioxidant response. Glutathione (GSH) is a 

major component of the intracellular antioxidant defence, scavenging for instance deleterious by-

products of oxygen consumption, i.e. reactive oxygen species (ROS). Interestingly, recent studies 

pointed out the plausible role of intracellular GSH levels in melanin synthesis, suggesting therefore a 

trade-off resolution in GSH allocation between oxidative stress and melanin production. To better 

understand and capture how intracellular GSH is expressed and used between differently coloured 

individuals and at different life stages, we report here an experimental study where we measured the 

global pool of GSH produced (tGSH), but also the accurate amount of GSH already consumed (oxGSH) 

and remaining (redGSH) in adult and nestling tawny owls, a species displaying continuous variation in 

pheomelanin-based coloration and colour-specific life history strategies. Based on the idea of GSH 

dependence of pheomelanin-based colour traits, we expected a greater consumption of GSH (i.e. 

higher oxGSH levels) in dark melanic nestlings. However, this was not the case, suggesting that the 

expression of melanin-based coloration is independent of the pool of GSH available in this species. 

However, we found that tGSH levels and marginally redGSH levels quantified in adult tawny owls were 

associated with melanin-based coloration, light melanic individuals showing higher levels than dark 

melanic ones. This latter covariation is likely to arise due to adaptive response of light melanic tawny 

owls to an oxidative challenge induced by their energy-demanding life history strategy and their 

adaptation to stressful environmental conditions. 
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INTRODUCTION 

Living organisms are constantly confronted to environmental sources of stress, such as 

parasites and predators, harsh climate conditions or food depletion. These organisms can adapt their 

strategy to these stressful conditions through sophisticated metabolic or physiological changes (e.g. 

enzymatic or hormonal activities), but which entails a redistribution of resources allocation in certain 

trade-off resolutions. Under certain circumstances, these adaptations can trigger negative 

consequences for other traits. For instance, individuals investing heavily in reproduction have fewer 

resources for maintenance mechanisms, highlighting the trade-off between survival and reproduction 

(Partridge et al. 2005; Harshman & Zera 2007). Accordingly, insights on the origin of variation in 

animal physiology are therefore particularly interesting to better understand the capacity of given 

genotypes/phenotypes to cope with heterogeneous environments, and potentially the evolution of life 

history strategies (Monaghan et al. 2009). 

In this context, a prime candidate mechanism that gains increasing attention in animal 

physiology is the oxidative balance, i.e. the homeostasis between the productions of deleterious 

reactive oxygen species (ROS) and antioxidant defence systems. This ratio is critical as an excessive 

ROS production over antioxidants expose organism to oxidative stress and important intracellular 

damages, such as DNA point mutations (Twigg et al. 1998), cell membrane rupture (Halliwell 1992) 

and oxidation of amino acids in proteins (Halliwell & Gutteridge 1989). In this context, reproductive 

strategies in current reproduction are traded-off against somatic self-maintenance and repair 

mechanism of oxidative balance (Cohen et al. 2010; Isaksson et al. 2011; Kim et al. 2011). In the 

same example, individuals investing heavily in reproduction are likely to produce more ROS, 

constraining them either to suffer from oxidative stress, or to adopt a strong antioxidant response, both 

strategy leading to negative impact on survival. The major component of the intracellular antioxidant 

defences is glutathione (i.e. redGSH, Reddy et al. 1982; Halliwell & Gutteridge 1989). Found in 

relatively high cellular concentration in most organisms, this tripeptide of glutamic acid, cysteine, and 

glycine (Hopkins 1929) is known to scavenge ROS in a reaction catalyzed by the glutathione 

peroxidase (GPx, Meister 1994). This redox process leads to the formation of glutathione disulfide 

(GSSG), derived from two oxGSH molecules. Hence, the global pool of intracellular glutathione 
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(tGSH) is composed by reduced and oxidized GSH fractions (i.e. tGSH = redGSH + oxGSH), both 

providing an accurate estimation of cellular redox state. redGSH gives information on the amount of 

available antioxidants, while oxGSH sheds in light how much tGSH was recently used either to 

scavenge ROS or in alternative metabolic or biochemical processes (e.g. protein turnover and 

pheomelanogenesis; see below). In healthy mammalian tissues, the tGSH pool is composed by more 

than 90% of redGSH and less than 10% of oxGSH (Pastore et al. 2003). Although GSH synthesis 

requires the action of two distinct enzymes, i.e. glutamate cysteine ligase and GSH synthase (Meister 

& Anderson 1983; Anderson 1998; Lu 2000), its production can be physiologically limited by the 

conditionally essential amino acid cysteine (Meister & Anderson 1983). Accordingly, one can raise 

the hypothesis that the production of intracellular GSH is genetically controlled (Board et al. 1974; 

Rizzi et al. 1988; Krogmeier et al. 1993), but also condition-dependent due to the need of acquiring 

cysteine from the diet (Lu 2000). Surprisingly, very few studies investigated the genetic versus 

environmental determinism of intracellular GSH regulation. Specifically, our knowledge of how 

different genotypes or phenotypes adjust their overall GSH pool (i.e. tGSH), especially in terms of 

recent (i.e. oxGSH) and future (i.e. redGSH) expenditures, remains surprisingly scarce in wild 

populations. 

In this context, melanin-based coloration is a promising system to consider the relationship 

between genotype and phenotype for important ecological or physiological traits, such as variation in 

GSH antioxidant response. This widespread pigmentation system (Majerus 1998) is composed by two 

types of pigment, namely eu- (grey to black) and pheomelanin (yellow to reddish-brown) and their 

synthesis is under strong genetic control (Roulin 2004; Hoekstra 2006; Ducrest et al. 2008). 

Interestingly, recent studies pointed out the plausible role of intracellular GSH levels in the synthesis 

of melanin pigments (Benedetto et al. 1981; Ozeki et al. 1997). Within melanocytes, the concentration 

of sulfhydryl compounds, in particular GSH, can modulate tyrosinase activity (Benedetto et al. 1981; 

1982; Land & Riley 2000), which is the key enzyme controlling the switch between eu- and 

pheomelanogenesis (Barsh 1996; Ito et al. 2000). This biochemical link led researchers to formulate 

extensive predictions on the expression of GSH in relation to melanin-based coloration. For instance, 

they expect dark pheomelanic individuals to present higher GSH levels than lighter pheomelanic (but 
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darker eumelanic) morphs due to the fact that GSH can be used as substrate during pheomelanogenesis 

(Galvan & Solano 2009). In line with this hypothesis, melanocytes have lower intracellular levels of 

GSH when producing eumelanin, rather than pheomelanin pigments (Benathan et al. 1999). Moreover, 

experimental inhibitions of GSH levels in nestling great tits (Parus major), red-legged partridges 

(Alectoris rufa) or greenfinches (Carduelis chloris) induced the production of smaller eumelanin-

based plumage traits and conversely larger pheomelanic ones (Galvan & Alonso-Alvarez 2008; 2009; 

Horak et al. 2010). The observation that natural variations in the degree of eu- and pheomelanin-based 

coloration can be associated with resistance to oxidative stress (Roulin et al. 2011a) is suggestive that 

GSH may be implicated in both the oxidative balance and melanin synthesis. This stimulated 

researchers to propose that the use of GSH in the production of melanin pigments is traded-off against 

resistance to oxidative stress (e.g. Galvan & Alonso-Alvarez 2008). However, even if GSH is 

implicated in melanogenesis, associations between GSH, melanin-based coloration and oxidative 

stress are not necessarily the outcome of trade-off resolution in GSH allocation. Indeed, differently 

coloured individuals may adopt alternative life history strategies, each requiring specific levels of 

antioxidant defences. Accordingly, melanin-based polymorphism is frequently reported to covary with 

life history strategies (Roulin 2004), and more recently with variation in resistance to oxidative stress 

(Roulin et al. 2011a). Under this scenario, one can predict that, if melanin-based coloration signals 

alternative life history strategies, variation in GSH levels between eu- and pheomelanic morphs could 

be the outcome of alternative need for antioxidant defences rather than vice versa (i.e. variation in 

GSH availability between eu- and pheomelanic morphs engendering alternative life history strategies). 

Both scenarios illustrate the complexity of predicting whether the relationship between eu- and 

pheomelanin-based coloration and GSH levels should be positive or negative. Indeed, the sign of this 

relationship will depend on five factors, i.e. (1) the nature of the colour polymorphism (eu- vs. 

pheomelanin-based coloration), (2) if there is a genetically-based polymorphism in the production of 

GSH, some individuals being programmed to produce more GSH than others, (3) if the production of 

GSH is condition-dependent (i.e. more GSH produced when needed to resist oxidative stress), (4) if 

there is a trade-off in GSH allocation between melanin colour traits and resistance to oxidative stress, 

and finally (5) if differently coloured individuals adopt alternative GSH-independent life history 
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strategies that generate various levels of oxidative stress. These factors being non-mutually exclusive 

and their relative importance unknown, it is extremely difficult to propose a priori predictions 

regarding how melanin-based coloration should covary with GSH. Descriptive studies where 

coloration and GSH is measured under natural conditions (i.e. without drastic manipulation of GSH 

levels) are therefore needed (see Galvan et al. 2010 for an example, although the colour polymorphism 

in this study remains unclear). Particular attention on the global pool of GSH produced (tGSH), and 

specifically on the amount of GSH that has already been consumed (oxGSH) versus the amount of 

GSH still available (redGSH), should help improving our understanding of the role and the use of GSH 

in differently coloured individuals (with respect to their life histories), an approach that has not yet 

been considered. 

Herein, we examined this issue in the colour polymorphic tawny owl (Strix aluco). This owl 

shows continuous variation in the degree of plumage reddishness (from light to dark), which is 

positively correlated to the amount of pheomelanin pigments and to a lesser extent to eumelanin 

pigments (Gasparini et al. 2009a). This colour polymorphism is segregated in accordance with 

Mendelian’s law of inheritance (Karell et al. 2011b) and is therefore highly heritable (Gasparini et al. 

2009a). There is accumulating evidences that, in the tawny owl, inter-individual variation in melanin-

based coloration is associated with indices of individual performance, such as immunocompetence 

(Galeotti & Sacchi 2003; Gasparini et al. 2009a) or offspring growth (Roulin et al. 2004; 2008b; Piault 

et al. 2009), potentially signalling alternative physiological strategies or metabolic needs to cope with 

heterogeneous environments (Galeotti & Cesaris 1996; Brommer et al. 2005; Emaresi et al. 2011; 

Karell et al. 2011b). Of particular interest, recent findings indicated that variation in plumage 

coloration in breeding male tawny owls was associated with differences in ROS production and in red 

blood cell tGSH levels (Emaresi et al. submitted, Chapter 2). Since 2011 was characterized by harsher 

rearing environmental conditions (i.e. decreased food availability, unpublished data), we decided to 

replicate the same design as in Emaresi et al. (submitted, Chapter 2; i.e. brood size manipulation 

experiment), but addressing here complementary issues. We specifically focused on GSH levels (i.e. 

tGSH, redGSH and oxGSH) of non-moulting adults and their cross-fostered nestlings (rather than 

considering exclusively tGSH in breeding adults), two life stages characterized by low and high 
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melanogenic activities, respectively, in this species. The main objectives of this study were (i) to 

establish whether inter-individual intracellular GSH levels are genetically inherited or environmentally 

mediated, and (ii) to determine the sign of the potential relationship between GSH levels and 

coloration in both breeding adults and growing nestlings. To test for genetic GSH inheritance, we 

performed a cross-fostering experiment where eggs or hatchlings were swapped between randomly 

chosen nests in order to allocate genotypes randomly among different rearing environments. In 

addition, we manipulated brood size to induce various levels of oxidative stress (e.g. Wiersma et al. 

2004; Christe et al. 2011), individuals raised (i.e. nestlings) or rearing (i.e. parents) an experimentally 

enlarged broods experiencing higher levels of stress than individuals allocated to experimentally 

reduced broods. Because environmentally-induced covariation between coloration and GSH levels 

could be due to condition-dependent expression of coloration and/or GSH levels, we first tested 

whether the expression of melanin-based coloration is indeed not condition-dependent in our local 

population of tawny owls. To this end, we investigated whether coloration of breeding adults rearing 

an experimentally enlarged brood changes differently compared to adults rearing an experimentally 

reduced brood (Griffith 2000). This test was possible because we performed brood size manipulation 

experiments since 2005, providing therefore a large dataset to investigate change in coloration 

between two successive breeding seasons. We also investigated whether nestling colour traits were 

affected by the brood size manipulation experienced during their early growth (see Piault et al. in 

press for similar test in the kestrel). 

 

METHODS 

The tawny owl is a medium-sized bird, commonly found in woodlands across Eurasia 

(Galeotti 2001). It is a monogamous and philopatric nocturnal species, living up to 20 years. Females 

are 16-20% larger than males (Baudvin & Dessolin 1992), both sexes showing a strong partition of the 

reproductive roles (Sunde et al. 2003b). Females incubate their clutch during 28 days and remain 

inside the cavity with their owlets until they are thermo-independent at 15-20 days of age. Then, the 

mother stays around the nest, protecting the offspring against potential predators. Males are primarily 

engaged in supplying food to their brood. Nestling growth rate and survival strongly depend on prey 
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availability, especially wood mice (Apodemus sp.; Roulin et al. 2009). In our 911 km2 Swiss study 

area, 2011 was characterized by a small number of breeding pairs (n = 57) compared to 2007 (n = 125) 

or 2010 (n = 139). Clutches were composed of 1-5 eggs (2.7 eggs ± 0.77), deposited between March 3 

and April 22 (mean ± sd = March 19 ± 12 days), while the mean number of nestlings that fledged per 

breeding pair was small (mean ± sd = 1.36 fledglings ± 1.34). Offspring leave the nest at 25–30 days 

of age, but are fed by their parents until 90-120 days of age (Sunde 2008). 

Experimental design 

To test experimentally whether the expression of melanin-based coloration is sensitive to 

investment in reproductive activities (Griffith 2000) or to rearing conditions experienced at the 

nestling stage (see Piault et al. in press for example), we manipulated brood size between 2005 and 

2010. As previously shown, this experimental approach has significant effect on adult (e.g. Roulin et 

al. 2011c) and nestling body condition (e.g. Roulin et al. 2008b). 

In 2011, we repeated the same brood size manipulation experiment to test whether the 

covariation between GSH and coloration differs between rearing environments. We matched 42 nests 

in pairs based on the criteria that clutches were initiated on a similar date (Pearson’s correlation: r = 

0.92, P < 0.0001). Among pairs of nests, brood sizes were randomly manipulated, leading to an 

exchange of 2.11 hatchlings or eggs on average (sd = 0.6) from nest E (experimentally enlarged) and 

placed in nest R (experimentally reduced), while 3.11 hatchlings or eggs on average (sd = 0.6) 

underwent the opposite exchange (i.e. from nest R to nest E). Out of the 42 manipulated broods, eight 

broods were predated leading to a small imbalance between the two treatments (16 experimentally 

reduced broods vs. 18 experimentally enlarged broods). As expected, this brood size manipulation 

(BSM) had the intended effect on brood size soon after hatching and thereby on rearing conditions; 

parents assigned to the enlarged brood treatment were rearing a larger number of nestlings than those 

assigned to the reduced brood treatment (mean ± SE number of nestlings per enlarged vs. reduced 

brood: 3.17 ± 0.13 vs. 2.37 ± 0.14; Student’s t-test: t32 = -4.07, P = 0.0003). As previously described 

(Emaresi et al. submitted, Chapter 2), adults and their offspring were captured post-manipulation, 

when nestlings were 10 days of age (mean ± sd = 9.73 ± 2.7). Females and their offspring were 

captured in the nest box during daylight (8am – 6pm), while males were captured at night (when 
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provisioning their brood; 10pm – 6am). Individual body mass, tarsus length, and wing length were 

measured to the nearest 0.1 g, 0.1 mm, and 1 mm, respectively. Adult wing length and tarsus length 

were not significantly associated with the brood size manipulation experiment (Student’s t-tests, P > 

0.3). For each individual, we collected 60-200ul of whole blood from the brachial vein, using heparin 

microtubes, which were immersed in dry ice in the field and transferred at -80°C within 8 hours until 

later analyses in the laboratory. 

Assessment of plumage coloration 

Although tawny owls vary continuously in the degree of reddishness, this species is usually 

considered as colour polymorphic in the literature (Glutz von Blotzheim & Bauer 1980; Galeotti 2001; 

Brommer et al. 2005), and hence we also employ this terminology. Adults were classified into one of 

five colour morphs (from light to dark reddish; Roulin et al. 2005), based on plumage coloration from 

different body areas (i.e. breast, flanks, back, head, wings). This visual determination of adult plumage 

coloration is a highly reliable scoring method (r = 0.89 ± 0.02, F174,383 = 13.76, P < 0.0001; Emaresi et 

al. submitted, Chapter 2), providing a good estimation of overall coloration (Brommer et al. 2005). 

Moreover, colour scores assigned visually were found to be strongly correlated with brown chroma 

scores derived from spectrometric measurements (Pearson’s correlation: r = -0.84, n = 270, P < 

0.0001; Emaresi et al. submitted, Chapter 2). At the nestling stage, plumage coloration is much less 

variable, which makes difficult the classification of nestling plumage coloration into one of five colour 

morphs. For this reason, nestling plumage coloration was assessed by spectrometric measurements. To 

this end, three feathers collected on the back of each nestling were overlaid on black paper to capture 

reflectance spectra at four distinct positions using the S2000 spectrophotometer (Ocean Optics, 

Dunedin, FL) and a dual deuterium and halogen 2000 light source (Mikropackan, Mikropack, 

Ostfildern, Germany). Based on these spectra, a mean brown chroma score was calculated for each 

nestling as described by Montgomerie (2006).  

Adult plumage coloration was neither associated with clutch size, brood size before or after 

the manipulation (Student’s t-tests, P-values > 0.39), nor with the experimental treatment (Student’s t-

test by gender, P > 0.59). Moreover, adult wing and tarsus lengths were not associated with coloration 

in both sexes (Student’s t-test, P-values > 0.3). Pairing with respect to plumage coloration was 
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random, since there was no correlation between male and female coloration within breeding pairs (r = 

0.01, n = 28, P = 0.96). Within pairs of experimental nests, foster and biological parents did not 

resemble each other with respect to plumage colour scores (females: r = -0.02, n = 20, P = 0.94; 

males: r = -0.58, n = 9, P = 0.1). Nestling body mass was unaffected by the experimental treatment 

(F1,8.7 = 0.56, P = 0.47) and did not covary with plumage coloration (F1,45.3 = 1.28, P = 0.26; Appendix 

3.1A). By cons, our brood size manipulation experiment influenced adult body mass, owls rearing a 

reduced brood being significantly heavier than those rearing an enlarged brood (F1,31.03= 9.01, P = 

0.005), but independently of plumage coloration (F1,45.63 = 0.2, P = 0.66; treatment by coloration 

interaction: F1,39.77 = 1.29, P = 0.26; Appendix 3.1B). 

GSH measurements 

We measured intracellular total and oxidized intracellular glutathione levels (tGSH and oxGSH, 

respectively) in red blood cells using the Glutathione Colorimetric Detection Kit (Arbor Assays), 

following instructions provided by the kit manufacturer. For each blood sample (i.e. 58 adults and 75 

cross-fostered nestlings), a minimum of 10μl of blood collected in heparin tube was diluted with an 

equal volume of 5-sulfosalicylic acid dihydrate (SSA) solution at 5% weight/volume (1g of SSA per 

20 mL of water) to remove protein. After 15 minutes of incubation on ice, the diluted samples were 

centrifuged at 14'000 rpm and 4°C for 15 minutes to collect the supernatant. This latter solution was 

then diluted 1:2.5 with Assay Buffer and stored in two aliquots for final analyses. After a final dilution 

of 1:20 with Sample Diluent, 50 μL of extracted samples from the first aliquot were loaded in 

duplicates on a 96 wells microplate to assess total glutathione concentrations (i.e. tGSH). The second 

aliquot of SSA-diluted samples was treated with 2-Vinylpyridine to block any free GSH (5 μL of 2VP 

solution for every 250 μL of sample) and incubated at room temperature for one hour. This solution 

was then diluted 1:20 with Sample Diluent, loaded in duplicates on 96 wells microplates to assess 

oxidized glutathione concentrations (i.e. oxGSH). Based on best standard curves, optical densities (OD) 

were measured at a wavelength of 405nm after 10 minutes. tGSH and oxGSH concentrations were 

finally calculated from OD data using the standard dilution curve, while redGSH levels were simply 

obtained by subtracting tGSH and oxGSH values. Inter-plate repeatability of tGSH and oxGSH scores 
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demonstrated the reliability of this colorimetric assay (tGSH : r = 0.97 ± 0.005, F12,29 = 96.95, P < 

0.0001; oxGSH : r = 0.99 ± 0.0005, F12,29 = 955.6, P < 0.0001; Lessells & Boag 1987).  

Statistical analyses 

In adults, based on data collected between 2005 and 2011, we tested whether plumage colour 

traits changed between consecutive breeding seasons, as a consequence of rearing a reduced or 

enlarged brood. Using an ANCOVA model with visual coloration scores as response variable 

(‘ColourMorph’), we entered adult gender, coloration scores determined the year before 

(‘ColourMorphX-1’) and the brood size manipulation experienced the year before (‘BSMX-1’) as 

explanatory variables, plus the interaction between both factors. In this model, we controlled for year, 

individual identity and nest site by including them as random variables. In nestlings, we tested whether 

rearing conditions affected their plumage colour traits on the basis of data collected between 2008 and 

2011. In this ANCOVA model, we entered nestling brown chroma (‘Brownchroma’) as response 

variable, while brood size manipulation treatment (hereafter BSM), nestling gender, wing length (i.e. a 

reliable estimator of nestling age; F1,73 = 470.65; P < 0.0001) and residual body mass before fledging 

(i.e. corrected for wing length; F1,73 = 261.8; P < 0.0001) were added as explanatory variables. We 

controlled for an effect of the foster nest site and year by including both variables as random factors. 

After preliminary statistical exploration in which we performed full mixed-models, we 

decided to simplify our statistical procedure for the sake of clarity. Melanin-based coloration being 

neither associated with date and time of the day when individuals were sampled (Pearson’s 

correlations: -0.14 < r < 0.08, P-values > 0.29), nor with brood size before treatment, individual age 

(in years for adults and in days for nestlings) or wing length (Student’s t-tests, P-values > 0.39), these 

factors could not confound or blur our results and were removed from the mixed-models. 

Consequently, our linear mixed models contained only explanatory variables of interest, i.e. 

coloration, brood size manipulation (plus their interaction). Although its effect was negligible in 2010 

(Emaresi et al. submitted, Chapter 2), tawny owl body mass is likely to be related to GSH expression 

in 2011, as a consequence of stronger selective pressure due to environmental conditions (i.e. 

decreased food availability, unpublished data). Accordingly, we also entered residual body mass 

(corrected for gender in adults and wing length in nestlings) as covariate in specific mixed-models. 



 

	  86 

Note here that the parsimonious mixed-models gave similar results as with the full mixed-models (i.e. 

involving all covariates). 

To test for genetic and environmental components of GSH expression, we compared GSH 

concentrations measured in cross-fostered nestlings with the levels of their biological (i.e. effect of 

origin probably explained by genetic inheritance) and foster parents (i.e. environmental effect). 

Preliminary statistical examination revealed that tGSH, oxGSH or redGSH levels of biological parents 

were not correlated with those of foster parents (Pearson’s correlations: -0.42 < r < 0.57, P-values > 

0.14). In separate linear mixed models, we introduced thus nestling tGSH, oxGSH or redGSH levels as 

response variables, while BSM and GSH values of either biological (i.e. tGSH, oxGSH or redGSH levels 

of Genetic Father and Genetic Mother) or foster parents (i.e. tGSH, oxGSH or redGSH levels of Foster 

Father and Foster Mother) were entered as explanatory variables, plus the two-way interactions 

between these variables. In these models, we controlled for the effect of the genetic (models with 

biological parents) or foster nest site (models with foster parents) by including either genetic or foster 

brood identity as random factor. Note that we could not implement values of biological and foster 

parents in the same analyses because of the limited number of available broods. However, given that 

their values were not related (see above), a relationship between GSH values found in the offspring 

and their biological parents is unlikely to be inflated by the values measured in their foster parents and 

vice versa. 

To investigate the link between melanin-based coloration and the concentrations of tGSH, 

oxGSH and redGSH, we first tested whether GSH levels measured in a given individual are correlated 

with its own coloration (within-individual comparisons). Then, we performed parent-offspring 

comparisons, investigating whether GSH levels measured in nestlings are associated with coloration 

scores of their biological (i.e. colour-genetic determinism) or foster parents (environmental 

determinism). For the within-individual comparisons, we performed separate ANCOVA models with 

either adult or cross-fostered nestling tGSH, oxGSH and redGSH levels as response variables. In addition 

of residual body mass (corrected for gender in adults and wing length in nestlings) as covariate, we 

entered BSM and adult or nestling plumage coloration (i.e. ‘ColourMorph’ or ‘Brownchroma’, 

respectively) as explanatory variables, plus the interaction between both variables. In these six mixed-
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models, we controlled for the effect of the breeding site by including nest identity as random factor. 

For the parent-offspring comparisons where nestling GSH levels were the response variables, plumage 

coloration of their genetic parents (‘GFatherMorph’ and ‘GMotherMorph’) or foster parents 

(‘FFatherMorph’ and ‘FMotherMorph’) were entered as explanatory variables in separate linear 

mixed-models, plus the three-way interactions between these variables. In these models, we included 

nestling residual body mass as covariate and we controlled for the effect of the nest of origin or of 

rearing by including genetic or foster brood identity as random factor. 

Starting with full models, a backward stepwise procedure was used to sequentially remove 

non-significant terms (P > 0.05), starting with the least significant higher order interactions, until 

obtaining best-fitted models. For each model, we visually inspected that the distribution of errors was 

homogenous and normally distributed. Statistical analyses were performed using JMP IN 8.0. 

 

RESULTS 

 Adult and nestling tawny owls presented slight differences in the intensity of their GSH 

response, breeding parents showing larger amounts of GSH than their offspring (Figure 3.1). Adults 

had on average 1578.5 µM of tGSH (sd: 488.5 µM, range: [555.5 - 2702.0]), divided in 683.9 µM of 

oxGSH (sd: 189.8 µM, range: [228.8 - 1120.1]) and 910.0 µM of redGSH (sd: 366.9 µM, range: [326.7 - 

2050.6]). Nestlings had on average 1290.6 µM of tGSH (sd: 376.0 µM, range: [197.0 - 2127.4]), 

divided in 466.2 µM of oxGSH (sd: 162.2 µM, range: [97.0 - 1051.7]) and 825.5 µM of redGSH (sd: 

251.9 µM, range: [100.1 - 1339.1]). The proportions of tGSH levels in the oxidized form (i.e. 

oxGSH/tGSH) were higher than expected (Pastore et al. 2003) and differed between adults and 

nestlings (Student’s t-test, t126 = -5.2, P < 0.0001), with oxGSH constituting 43.3% of tGSH levels in 

adults (redGSH: 56.7%) and 36.1% of tGSH levels in nestlings (redGSH: 63.9%). 

 



 

	  88 

 

Figure 3.1: Corresponding concentrations (µM) of oxGSH (white bar) and redGSH (black bar) levels in 
adult and nestling tawny owls. Accordingly, tGSH pool is composed on average by 43.3% and 36.1% of 
oxGSH in adult and nestling tawny owls, respectively. 
 

Expression of melanin-based coloration is not condition-dependent 

Based on data collected between 2004 and 2011, adult plumage coloration scores were closely 

associated with those determined the year before (i.e. ColourMorphX-1; n = 228, F1,226 = 825.27, P < 

0.0001), independently of gender (F1,225 = 1.28, P = 0.26) and the brood size manipulation treatment 

experienced the year before (BSMX-1; F1,199 = 0.4, P = 0.53). The two-way interaction between 

ColourMorphX-1 and BSMX-1 was not significant (F1,198 = 2.2, P = 0.14). In the same vein, nestling 

coloration scores were independent of gender (n = 329, F1,306.9 = 0.94, P = 0.33), wing length (F1,320.4 = 

0.36, P = 0.55) and brood size manipulation treatment experienced during growth (F1,190.1 = 1.12, P = 

0.29). There was a slight tendency for heavier nestlings to be more darkly melanic (F1,325.5 = 3.0, P = 

0.08). Altogether, these results suggest that in the tawny owl the expression of melanin-based 

coloration is not or only weakly sensitive to environmental effects. 

Comparison between parental and offspring GSH levels 

tGSH levels measured in cross-fostered nestlings were significantly and positively related to 

tGSH levels of their genetic father (estimate ± se = 0.29 ± 0.12, F1,15.43 = 6.07, P = 0.03; Table 3.1A; 

Figure 3.2A) and both foster parents (father: estimate ± se = 0.38 ± 0.11, F1,20.65 = 6.83, P = 0.02 ; 

mother: estimate ± se = 0.16 ± 0.11, F1,18.69 = 5.37, P = 0.03 ; Table 3.1B, Figure 3.2B). Note here that 

we found also a significant relationship between nestling tGSH levels and the average tGSH levels of 
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foster parents (n = 54, F1,19 = 13.64, P = 0.002), but not with the average levels of genetic parents 

(F1,8.353 = 0.76, P = 0.41).  

 

 

Figure 3.2: Relationship between nestling tGSH levels and those of their (A) genetic father (closed circles and 
straight regression line; n = 48, estimate ± se = 0.29 ± 0.12, F1,15.43 = 6.07, P = 0.03) and mother (open circles 
and dash regression line; n = 46, estimate ± se = -0.02 ± 0.17, F1,11.48 = 0.01, P = 0.91) or (B) foster father 
(closed circles and straight regression line; n = 60, estimate ± se = 0.38 ± 0.11, F1,20.65 = 6.83, P = 0.02) and 
mother (open circles and dash regression line; n = 66, estimate ± se = 0.16 ± 0.11, F1,18.69 = 5.37, P = 0.03). 
 

Similarly, oxGSH levels measured in these nestlings were significantly associated with oxGSH 

levels of their genetic father (estimate ± se = 0.32 ± 0.13, F1,13.54 = 5.92, P = 0.03; Table 3.1C, Figure 

3.3A) and foster father (estimate ± se = 0.35 ± 0.13, F1,25.85 = 7.15, P = 0.01; Table 3.1D, Figure 3.3B).  
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Figure 3.3: Relationship between nestling oxGSH levels and those of their (A) genetic father (closed circles and 
straight regression line; n = 49, estimate ± se = 0.32 ± 0.13, F1,13.54 = 5.92, P = 0.03) and mother (open circles 
and dash regression line; n = 43, estimate ± se = 0.16 ± 0.3, F1,10.66 = 1.23, P = 0.29) or (B) foster father (closed 
circles and straight regression line; n = 61, estimate ± se = 0.35 ± 0.13, F1,25.85 = 7.15, P = 0.01) and mother 
(open circles and dash regression line; n = 62, estimate ± se = -0.24 ± 0.17, F1,18.66 = 0.45, P = 0.51). 
 

However, no significant relation was found when considering the average oxGSH levels of 

genetic and foster parents (P-values > 0.28). Finally, redGSH levels measured in these nestlings were 

significantly associated with redGSH levels of their foster mother (estimate ± se = 0.27 ± 0.08, F1,22.5 = 

11.41, P = 0.003; Table 3.1F, Figure 3.4B), but not with redGSH levels of their foster father (F1,19.18 = 

0.94, P = 0.34), nor those of their genetic parents (Table 3.1E, Figure 3.4A).  
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Figure 3.4: Relationship between nestling redGSH levels and those of their (A) genetic father (closed circles 
and straight regression line; n = 48, estimate ± se = 0.13 ± 0.11, F1,19.18 = 1.34, P = 0.26) and mother (open 
circles and dash regression line; n = 43, estimate ± se = 0.05 ± 0.14, F1,11.57 = 0.01, P = 0.91) or (B) foster 
father (closed circles and straight regression line; n = 60, estimate ± se = 0.21 ± 0.11, F1,19.18 = 0.94, P = 
0.34) and mother (open circles and dash regression line; n = 62, estimate ± se = 0.27 ± 0.08, F1,22.5 = 11.41, P 
= 0.003). 
 

When considering the average redGSH values of genetic and foster parents, our model revealed 

a significant relation between nestling redGSH levels and the average redGSH levels of foster parents (n 

= 52, F1,18.23 = 10.59, P = 0.004), but not with the average levels of genetic parents (F1,10.23 = 0.16, P = 

0.70). Apart from one marginal relationship (nestlings showed higher levels of oxGSH when 

experiencing enlarged rather than reduced broods, P = 0.06; Table 3.1D), we found no evidence that 

brood size manipulation experiment influenced nestling tGSH, oxGSH and redGSH levels (P-values > 

0.26; Table 3.1). 

Covariation between melanism and GSH levels: within-individual comparison 

Nestling tGSH, oxGSH and redGSH levels were not significantly related to plumage coloration 

(tGSH: F1,44.01 = 1.93, P = 0.17; oxGSH: F1,42.67 = 0.98, P = 0.33; redGSH: F1,47.93 = 1.59, P = 0.21; Table 

3.2 A-C). There was however tight association between nestling GSH concentrations and body mass 

(tGSH: F1,56.87 = 9.84, P = 0.003; oxGSH: F1,55.24 = 8.70, P = 0.005; redGSH: F1,62.95 = 6.33, P = 0.015), 

with heavier nestlings having higher levels of tGSH, oxGSH and redGSH (Figure 3.5). 
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Figure 3.5: Nestling residual body mass (corrected for wing length) in relation to their tGSH (closed 
circles and straight regression line; r2 = 0.02, n = 73, F1,56.87 = 9.84, P = 0.003), oxGSH (open circles and 
small dash regression line; r2 = 0.004, n = 74, F1,55.24 = 8.70, P = 0.005) and redGSH (gray circles and long 
dash regression line; r2 = 0.02, n = 73, F1,62.95 = 6.33, P = 0.015). 
 

In adults, tGSH levels were significantly explained by their plumage coloration, light melanic 

breeding adults showing higher tGSH levels than darker melanic ones (F1,52.69 = 4.35, P = 0.04; Table 

3.2D, Figure 3.6). Interestingly, we found that adult melanin-based coloration was not significantly 

associated with oxGSH levels (F1,48.97 = 0.49, P = 0.49; Table 3.2E, Figure 3.6), but marginally with 

redGSH levels (F1,51.99 = 3.80, P = 0.057; Table 3.2F, Figure 3.6). Note also that we did not find any 

effect of the BSM experiment (alone or in interaction with coloration, P-values > 0.09; Table 3.2), 

even when removing residual body mass from these models. 
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Figure 3.6: Plumage reddishness in relation to tGSH (closed circles and straight regression line; r2 = 
0.077, n = 56, F1,52.69 = 4.35, P = 0.04), oxGSH (open circles and small dash regression line; r2 = 0.01, n = 54, 
F1,48.97 = 0.49, P = 0.49) and redGSH levels (gray circles and long dash regression line; r2 = 0.075, n = 54, 
F1,51.99 = 3.80, P = 0.057) in adult tawny owls. 
 

Covariation between melanism and GSH levels: parent-offspring comparison 

Plumage coloration of the biological mother was not associated with tGSH levels measured in 

their cross-fostered offspring (linear mixed-model, F1,15.39 = 0.16, P = 0.70), but we found a marginal 

trend for higher tGSH levels in nestlings born from light melanic males (F1,18.25 = 3.10, P = 0.10, 

Appendix 3.2A). However, we found no covariation between coloration of both biological parents and 

nestling oxGSH (another linear mixed-model, father: F1,18.58 = 1.99, P = 0.17; mother: F1,16.5 = 0.02, P = 

0.88) and redGSH levels (another linear mixed-model, father: F1,19.5 = 2.85, P = 0.11; mother: F1,15.92 = 

0.31, P = 0.59; Appendix 3.2A-C). Note also that no relationships were found when considering the 

mean coloration of both genetic parents in these models (P-values > 0.38). Similarly, plumage 
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coloration of the foster parents was neither related to nestling tGSH (linear mixed-model, father: F1,22.88 

= 0.005, P = 0.95; mother: F1,25.93 = 1.97, P = 0.17), nor to oxGSH (another linear mixed-model, father: 

F1,22.72 = 0.08, P = 0.78; mother: F1,25.93 = 2.37, P = 0.14) and redGSH levels (another linear mixed-

model, father: F1,23.77 = 0.01, P = 0.91; mother: F1,28.17 = 1.29, P = 0.26; Appendix 3.2D-F). Again, no 

relationships were found between GSH concentrations and the mean coloration of both foster parents 

(P-values > 0.56). As mentioned above, nestling GSH levels were primarily dependent on their body 

mass, but were unaffected by the BSM (alone or in interaction with parental colour scores, P-values > 

0.1; Appendix 3.2). 

 

DISCUSSION 

Although not questioning its genetic basis, our study demonstrated that the expression of GSH 

response was condition-dependent in our local population of tawny owls, conversely to melanin-based 

coloration. Indeed, we showed that nestling tGSH, oxGSH and redGSH levels were strongly related to 

body mass, while nestling tGSH and redGSH levels were mainly shaped by foster rearing conditions. 

Based on the idea of GSH dependence of pheomelanin-based colour traits, we expected a greater 

consumption of GSH (i.e. higher oxGSH levels) in dark melanic nestlings, which were producing 

melanic feathers at the time when we blood-sampled them. This was however not the case. In contrast, 

we found that in adults, which were not moulting and hence not in a state of intense melanisation, 

melanin-based coloration was negatively correlated with tGSH and redGSH levels, dark melanic 

individuals showing lower tGSH and redGSH concentrations. In the following, we discuss potential 

mechanisms leading to covariations between adult tGSH and redGSH levels and their plumage 

coloration. 

Genetic vs. environmental determinism of GSH expression 

Covariations between melanin-based coloration and GSH may arise because of condition-

dependent expression of either coloration and/or GSH. Our results in adult and nestling tawny owls 

revealed that the expression of melanin-based coloration was not or only weakly sensitive to 

environmental effects. This points out that the sign or the magnitude of a covariation between 
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coloration and GSH levels is more likely to be shaped by the condition-dependence of the GSH 

response in this species.  

To sustain adequate levels, GSH is synthesized by a two-step biosynthetic pathway (Meister & 

Anderson 1983; Anderson 1998; Lu 2000), raising the hypothesis of strong genetic inheritance of 

GSH expression (Board et al. 1974). In Holstein cows (Bos taurus) for instance, heritability of GSH 

concentration in erythrocytes was estimated at 0.61 ± 0.16 in red blood cell samples and at 0.67 ± 0.17 

in whole blood samples (Krogmeier et al. 1993). But this antioxidant response is also physiologically 

dependent on cysteine availability, which is partly regulated by food intake (Lu 2000). Yet, there are 

(to our knowledge) very few evidences of genetic or environmental determinism of GSH expression. 

The present study aimed to estimate the proportion of variation explained by these two types of 

determinism in the tawny owl. Despite the lack of influence of the brood size manipulation experiment 

on adult or nestling GSH levels, our results revealed that nestling tGSH, oxGSH and redGSH levels were 

strongly associated with body mass. Heavier nestlings were in better condition and probably more 

active, leading them to increase their metabolic rate and, in turn, their GSH concentrations. Despite the 

suggestive existence of a genetic basis (e.g. significant relation between nestling and genetic father 

tGSH levels), average GSH concentrations measured in parents nevertheless emphasized that nestling 

tGSH and redGSH levels were primarily associated with those of their foster parents, highlighting the 

strong influence of foster rearing conditions on nestling GSH expression. In this context, food supply 

by the foster male is likely to play an essential role in the regulation of GSH expression, especially 

during poor breeding season like in 2011. First, because it provides resources (or energy) that can be 

allocated to different maintenance traits, favouring thereby their overall condition. Second, because it 

enables the replenishment of nestling GSH pool by increasing cysteine availability, a limiting factor in 

the GSH biosynthesis. In line with this hypothesis, a recent laboratory study showed that rat supplied 

with fish oil complements (i.e. a source of cysteine) presented higher levels of GSH in their brain 

(Denny Joseph & Muralidhara 2012), attenuating thereby the oxidative stress and mitochondrial 

dysfunctions induced by a neurotoxicant. Moreover, in humans, a restricted dietary supply of 

methionine and cysteine mixture slowed the rate of whole blood GSH synthesis (Lyons et al. 2000). 

Nevertheless, the role and expenditure of dietary cysteine in GSH expression still need to be tackled 
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further in natural systems, with experimental manipulations of either food supply or dietary cysteine 

levels (see for instance Badaloo et al. 2002).  

Covariation between melanin-based coloration and GSH expression 

Eu- and pheomelanogenesis are principally mediated by the binding of key peptides of the 

melanocortin system (i.e. α-MSH) and their antagonists (i.e. Agouti) to the Melanocortin-1-Receptor 

(MC1R), a transmembrane G-protein-coupled receptor expressed at high levels in melanocytes. These 

bindings up- or down-regulate the production of intracellular cAMP and thereby the activity of 

tyrosinase, leading to the production of eumelanin or pheomelanin, respectively (Barsh 1996; Ito et al. 

2000). Because of its sulfhydryl compounds, key cysteine-containing GSH plays an important 

regulatory role in tyrosinase activity (Benedetto et al. 1981; 1982; Land & Riley 2000), and, in turn, in 

the switch between eu- and pheomelanogenesis (Ozeki et al. 1997). Given the covariations observed 

between melanin-based coloration and resistance to oxidative stress (Roulin et al. 2011a), one can 

raise the assumption that GSH allocation in melanin-based coloration is traded-off against resistance 

to oxidative stress (e.g. Galvan & Alonso-Alvarez 2008; Galvan et al. 2010). Although not 

contradicting this trade-off resolution (especially in nestlings that are producing large amounts of 

pigments), we believe that an association between GSH, melanin-based coloration and oxidative 

balance can also occur as a consequence of colour-specific life histories. In the tawny owl, colour 

morphs differ in their life-history strategies (Roulin et al. 2003; Roulin et al. 2004; Roulin et al. 2005; 

Roulin et al. 2008b; Gasparini et al. 2009a; Piault et al. 2009; Emaresi et al. 2011), potentially leading 

them to differentially resolve the trade-off between current reproduction vs. antioxidant response 

(Emaresi et al. submitted, Chapter 2). In this context, it is particularly difficult to predict whether eu- 

and pheomelanin-based coloration should be positively or negatively related to GSH levels, the sign 

and the magnitude of this relationship depending on too many factors (e.g. species and life stage 

considered, trade-off in GSH allocation, alternative GSH-independent life history strategies or 

polymorphism in GSH production). To better understand and capture how intracellular GSH is 

expressed and used between differently coloured individuals and at different life stages (i.e. when 

producing little or large amounts of pigments), we report here an experimental study where we 
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measured the global pool of GSH produced (tGSH), but also the accurate amount of GSH already 

consumed (oxGSH) and remaining (redGSH) in adult and nestling tawny owls.  

In agreement with previous study (Emaresi et al. submitted, Chapter 2), we found that tGSH 

levels and marginally redGSH levels quantified in adult tawny owls were associated with melanin-

based coloration, light melanic individuals showing higher levels than dark melanic ones. This 

indicated that light melanic breeding tawny owls generated greater GSH pool and had more GSH 

reserved for future use (i.e. redGSH levels) compared to dark melanic ones. However, it is of particular 

interest to note that the different colour morphs were using similar amounts of GSH (i.e. oxGSH levels) 

during this breeding season. Whereas we expected to find a greater GSH consumption (i.e. higher 

oxGSH levels) in dark reddish nestlings because of the GSH dependence of pheomelanogenesis, we 

found no significant covariations between nestling tGSH, oxGSH and redGSH levels and melanin-based 

coloration (with respect to their own plumage coloration or those of their genetic parents), 

contradicting the strong claim that such an association should be universal (Galvan & Alonso-Alvarez 

2008; Galvan & Alonso-Alvarez 2009; Galvan & Solano 2009). This latter outcome suggests that the 

expression of melanin-based coloration is not dependent on the pool of GSH available (redGSH) and 

does not require specific amount of GSH (oxGSH) in this species. Altogether, our results pointed out 

the GSH-independence of pheomelanogenesis in nestling tawny owls, but colour-specific differences 

in tGSH and redGSH concentrations in adults. Although we did not measure adult ROS production in 

2011, greater tGSH levels in light melanic adults are likely to be an adaptive response to an oxidative 

challenge. Because of their energy-demanding life history strategies (Emaresi et al. in prep, Chapter 

1) and their adaptation to stressful environmental or reproductive conditions (Roulin et al. 2003; 2004; 

2008b; Piault et al. 2009; Emaresi et al. 2011), these individuals are more likely to face stronger 

metabolic constraints, as suggested by adult ROS production (Emaresi et al. submitted, Chapter 2), 

forcing them to develop a stronger antioxidant response. Another hypothesis is that differently 

coloured individuals own different physiological strategies or metabolic rates, which require specific 

protein turnover. GSH being involved in protein metabolism as a source of cysteine, colour-specific 

difference in tGSH and/or redGSH concentrations may thus arise because of different needs in cysteine 

availability rather than antioxidant activity. Finally, another interesting hypothesis is the role of GSH 
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reductase (i.e. GR) in regenerating redGSH from oxGSH molecules. Under specific conditions, 

differently coloured tawny owls may have different patterns of GR expression, leading to colour-

specific rates of GSH regeneration. If true, one can raise the idea that the colour morph regenerating 

faster its redGSH stock may require consequently a smaller GSH pool (tGSH levels). Additional studies 

are called to further investigate these alternative, but non-mutually exclusive hypotheses on the 

proximate reasons leading to colour-specific variations in GSH expression. 

Conclusion 

In this study, we highlighted the complexity of predicting the link between eu- and 

pheomelanin-based coloration and intracellular GSH response. The sign and the magnitude of this 

relation may differ according to the species considered, and hence the nature of the colour 

polymorphism (eu- vs. pheomelanin-based coloration), the life stage considered (individuals 

producing little or large amount of pigments), genetically-based polymorphism in the production of 

GSH or conversely the condition-dependence of the GSH response, and finally colour-specific 

differences in physiological constraints (e.g. various levels of oxidative stress or protein turnover). 

These factors being non mutually exclusive, it is extremely difficult to propose a priori predictions 

without a complete knowledge of the biology of the model species. 
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TABLES 

Table 3.1: Results of linear mixed models testing the genetic and environmental components of GSH expression in nestling tawny owl. In separate models, we 
investigated the relationship between tGSH, oxGSH or redGSH levels of cross-fostered nestlings and the levels of their biological (i.e. tGSH, oxGSH or redGSH levels of 
Genetic Father and Genetic Mother, models A,C,E) and foster parents (i.e. tGSH, oxGSH or redGSH levels of Foster Father and Foster Mother, models B,D,F). In all 
models, we also tested for an effect of the brood size manipulation treatment (BSM) on nestling GSH concentrations, plus the two-way interactions between BSM 
and corresponding parental GSH levels. We controlled for an effect of the genetic (models with biological parents) or foster nest site (models with foster parents) by 
including either genetic or foster brood identity as random factor. Backward stepwise procedure was used to remove non-significant terms (P > 0.05), until 
obtaining best-fitted models (bold values).  
 
Source of variation            
  n df F P    n df F P 
             
A. Nestling tGSH levels      D. Nestling oxGSH levels     
 tGSH GeneticMale 48 1,15.43 6.07 0.03   oxGSH FosterMale 61 1,25.85 7.15 0.01 
 BSM   1,16.15 0.84 0.37   BSM   1,24.49 3.94 0.06 
 tGSH GeneticFemale  1,11.48 0.01 0.91   oxGSH FosterFemale  1,18.66 0.45 0.51 
 BSM x tGSH GeneticMale  1,10.86 2.96 0.11   BSM x oxGSH FosterFemale  1,18.09 1.38 0.25 
 BSM x tGSH GeneticFemale  1,11.14 0.07 0.8   BSM x oxGSH FosterMale  1,17.21 0.001 0.98 
             
B. Nestling tGSH levels      E. Nestling redGSH levels     
 tGSH FosterMale 54 1,20.65 6.83 0.02   redGSHGeneticMale 48 1,19.18 1.34 0.26 
 tGSH FosterFemale  1,18.69 5.37 0.03   BSM   1,17.3 0.16 0.69 
 BSM   1,19.68 0.79 0.38   redGSH GeneticFemale  1,11.57 0.01 0.91 
 BSM x tGSH FosterMale  1,20.32 0.69 0.42   BSM x redGSH GeneticFemale  1,9.54 1.73 0.22 
 BSM x tGSH FosterFemale  1,17.54 0.18 0.68   BSM x redGSH GeneticMale  1,14.18 0.48 0.5 
             
C. Nestling oxGSH levels      F. Nestling redGSH levels     
 oxGSH GeneticMale 49 1,13.54 5.92 0.03   redGSH FosterFemale 62 1,22.5 11.41 0.003 
 BSM   1,14.05 1.38 0.26   redGSH FosterMale  1,19.18 0.94 0.34 
 oxGSH GeneticFemale  1,10.66 1.23 0.29   BSM  1,17.35 0.01 0.92 
 BSM x oxGSH GeneticMale  1,10.21 1.12 0.31   BSM x redGSH FosterFemale  1,15.51 2 0.18 
 BSM x oxGSH GeneticFemale  1,9.047 0.01 0.91   BSM x redGSH FosterMale  1,15.06 1.24 0.28 
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Table 3.2: Within-individual linear mixed models investigating the link between melanin-based coloration and the levels of tGSH, oxGSH and redGSH in nestling (A-
C) and adult (D-F) tawny owls. In addition of residual body mass (corrected for wing length in nestlings and gender in adults) as covariate, we entered BSM and 
nestling or adult plumage coloration (i.e. ‘Brownchroma’ in models A-C and  ‘ColourMorph’ in model D-F or, respectively) as explanatory variables, plus the two-
way interaction between both variables. We controlled for the effect of the breeding site by including nest identity as random factor. Backward stepwise procedure 
was used to remove non-significant terms (P > 0.05), until obtaining best-fitted models (bold values). 
 
Source of variation            
  n df F P    n df F P 

A. tGSH levels in nestlings      D. tGSH levels in adults     
 Residual Mass 73 1,56.87 9.84 0.003   ColourMorph 56 1,52.69 4.35 0.04 
 Brownchroma  1,44.01 1.93 0.17   BSM  1,23.75 3.15 0.09 
 BSM   1,23.92 0.34 0.56   Residual Mass  1,48.44 0.01 0.91 
 BSM x Brownchroma  1,52.37 0.02 0.89   ColourMorph x BSMA  1,47.95 0.02 0.9 
             

B. oxGSH levels in nestlings      E. oxGSH levels in adults     
 Residual Mass 74 1,55.24 8.7 0.005   ColourMorph 54 1,48.97 0.49 0.49 
 Brownchroma  1,42.67 0.98 0.33   Residual Mass  1,40.43 0.13 0.72 
 BSM   1,22.96 0.57 0.46   BSM  1,21.45 0.02 0.9 
 BSM x Brownchroma  1,51.65 0.31 0.58   ColourMorph x BSMA  1,44.36 0.34 0.56 
             

C. redGSH levels in nestlings      F. redGSH levels in adults     
 Residual Mass 73 1,62.95 6.33 0.015   ColourMorph 54 1,51.99 3.8 0.057 
 Brownchroma  1,47.93 1.59 0.21   BSM  1,26.45 2.93 0.1 
 BSM   1,24.84 0.13 0.72   Residual Mass  1,46.99 0.13 0.72 
 BSM x Brownchroma  1,53.72 0.02 0.88   ColourMorph x BSMA  1,45.72 0.03 0.85 
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APPENDIX 

 
Appendix 3.1: Results of linear mixed models investigating the effects of the brood size manipulation and 
plumage coloration and their interactions on (A) nestling and (B) adult body mass. In all models, we 
entered individual gender (Sex) and wing length (Wing), date and time of the blood sampling (i.e. (Date 
and Hour), and brood size before treatment (Brood size) as covariates to control for mass variability. 
Backward stepwise procedure was used to remove non-significant terms (P > 0.05), until obtaining best-
fitted models (bold values). 
	  

	  
	  Source of variation       

  n df F P 
      
A. Nestling body mass    
 Wing 75 1,28.48 262.05 <.0001 
 Brood size  1,10.3 7.97 0.02 
      
 Sex  1,58.9 2.95 0.09 
 Hour  1,10.38 1.09 0.32 
 BSM  1,8.7 0.56 0.47 
 Brownchroma 1,45.3 1.28 0.26 
 BSM x Brownchroma 1,43.25 2.88 0.10 
 Date  1,15.86 0.83 0.38 
 Sex x BSM  1,38.71 0.93 0.34 
 Sex x Brownchroma 1,34.72 0.0006 0.98 
 Sex x BSM x Brownchroma 1,35.1 0.52 0.48 
      
B. Adult body mass   
 Hour 55 1,47.51 13.33 0.0007 
 Sex  1,43.19 70.40 <.0001 
 BSM  1,31.03 9.01 0.005 
      
 Date  1,50 3.63 0.06 
 Sex x BSM  1,32.47 3.11 0.09 
 Brood size 1,30.28 1.45 0.24 
 ColourMorph  1,45.63 0.20 0.66 
 Sex x ColourMorph 1,44.55 0.18 0.68 
 Wing  1,40.95 1.11 0.30 
 ColourMorph x BSM 1,39.77 1.29 0.26 
 Sex x ColourMorph x BSM 1,38.92 1.80 0.19 
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Appendix 3.2: Results of linear mixed models investigating the link between adult plumage melanin-based coloration and the levels of tGSH, oxGSH and redGSH in 
nestling tawny owls. In addition of nestling residual body mass (corrected for wing length) as covariate, we entered BSM and coloration scores of their genetic 
(‘GFatherMorph’ and ‘GMotherMorph’, models A-C) or foster parents (‘FFatherMorph’ and ‘FMotherMorph’, models D-F) as explanatory variables, plus the 
three-way interactions between these variables. We controlled for an effect of the nest of origin or of rearing by including genetic or foster brood identity as random 
factor. Backward stepwise procedure was used to remove non-significant terms (P > 0.05), until obtaining best-fitted models (bold values). 
	  

Source of variation            
  n df F P    n df F P 
A. tGSH levels in nestlings      D. tGSH levels in nestlings     
           
 Residual Mass 73 1,56.87 9.84 0.003   Residual Mass 73 1,56.87 9.84 0.003 
 GFatherMorph  1,18.25 3.1 0.1   FMotherMorph  1,25.93 1.97 0.17 
 GMotherMorph  1,15.39 0.16 0.7   BSM  1,24.78 1.39 0.25 
 GFatherMorph x GMotherMorph 1,16.37 3.88 0.07   FFatherMorph  1,22.88 0.005 0.95 
 BSM  1,15.35 1.56 0.23   BSM x FMotherMorph 1,22.48 1.85 0.19 
 GMotherMorph x BSM 1,14.93 0.17 0.68   FFatherMorph x FMotherMorph 1,20.69 0.14 0.71 
 GFatherMorph x BSM  1,12.53 0.07 0.8   BSM x FFatherMorph 1,21.8 0.01 0.94 
 GFatherMorph x GMotherMorph x BSM 1,12.41 0.23 0.64   BSM x FFatherMorph x FMotherMorph 1,19.66 1 0.33 
           
B. oxGSH levels in nestlings      E. oxGSH levels in nestlings     
           
 Residual Mass 74 1,55.24 8.7 0.005   Residual Mass 74 1,55.24 8.7 0.005 
 GFatherMorph  1,18.58 1.99 0.17   FMotherMorph  1,25.93 2.37 0.14 
 GMotherMorph  1,16.5 0.02 0.88   BSM  1,24.55 2.86 0.1 
 GFatherMorph x GMotherMorph 1,16.4 2.25 0.15   FFatherMorph  1,22.72 0.08 0.78 
 BSM  1,15.34 1.5 0.24   BSM x FMotherMorph 1,22.45 2.29 0.14 
 GMotherMorph x BSM 1,14.65 0.24 0.63   FFatherMorph x FMotherMorph 1,20.36 1.73 0.2 
 GFatherMorph x BSM  1,12.71 0.23 0.64   BSM x FFatherMorph 1,21.49 0 1 
 GFatherMorph x GMotherMorph x BSM 1,12.38 1.05 0.32   BSM x FFatherMorph x FMotherMorph 1,19.62 2.16 0.16 
           
C. redGSH levels in nestlings      F. redGSH levels in nestlings     
           
 Residual Mass 73 1,62.95 6.33 0.015   Residual Mass 73 1,62.95 6.33 0.015 
 GFatherMorph  1,19.5 2.85 0.11   FMotherMorph  1,28.17 1.29 0.26 
 GMotherMorph  1,15.92 0.31 0.59   BSM  1,26.37 0.42 0.52 
 GFatherMorph x GMotherMorph 1,18.02 3.54 0.08   FFatherMorph  1,23.77 0.01 0.91 
 BSM  1,16.68 0.88 0.36   BSM x FMotherMorph 1,23.13 1.1 0.31 
 GMotherMorph x BSM 1,16.73 0.06 0.8   BSM x FFatherMorph 1,23.67 0.07 0.8 
 GFatherMorph x BSM  1,13.01 0 0.98   FFatherMorph x FMotherMorph 1,19.52 0.06 0.81 
 GFatherMorph x GMotherMorph x BSM 1,13.08 0 0.99   BSM x FFatherMorph x FMotherMorph 1,19.62 0.32 0.58 
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ABSTRACT 

Knowledge of the hormonal pathway controlling genotype-specific norms of reaction would 

shed light on the ecological factors to which each genotype is adapted. Environmentally-mediated 

changes in the sign and magnitude of covariations between heritable melanin-based coloration and 

fitness components are frequent, revealing that extreme melanin-based phenotypes can display 

different physiological states depending on the environment. Yet, the hormonal mechanism underlying 

this phenomenon is poorly understood. One novel hypothesis proposes that these covariations stem 

from pleiotropic effects of the melanocortin system. Melanocortins are post-translationally modified 

bioactive peptides derived from the POMC prohormone that are involved in melanogenesis, anti-

inflammation, energy homeostasis and stress responses. Thus, differential regulation of fitness 

components in relation to environmental factors by pale and dark melanic individuals may be due to 

colour-specific regulation of the POMC prohormone. Accordingly, we found that the degree of 

reddish melanic coloration was negatively correlated with blood circulating levels of the POMC 

prohormone in female tawny owls (Strix aluco) rearing a brood for which the size was experimentally 

reduced but not when enlarged, and in females located in rich but not in poor territories. Our findings 

support the hypothesis that the widespread links between melanin-based coloration and fitness 

components may be mediated, at least in part, by the melanocortin system.  
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INTRODUCTION 

Organisms usually experience temporal and spatial variation in environmental conditions. This 

phenomenon generates fluctuating selective pressures, potentially favouring different genotypes that 

vary in their phenotypic response to environmental changes, denoted norms of reaction or genotype by 

environment interaction (Hedrick 2006). Norms of reactions are shaped by key regulators such as 

hormones (e.g. sex steroids: Shahjahan et al. 2010) that are adjusted throughout the life cycle 

according to environmental conditions. Thus, our understanding of the proximate basis of reaction 

norms requires the measurement, along an environmental gradient, of candidate hormones. In the 

present study, we adopt such an approach to investigate the proximate basis of the adaptive function of 

melanin-based coloration. We consider this phenotypic trait because the biochemistry of 

melanogenesis is well known (Sturm 2006). As for most multigenic phenotypic traits, several genes 

and hormones known to alter melanogenesis can explain inter-individual variation in coloration (e.g. 

127 loci in mice; Silvers 1979; Bennett & Lamoreux 2003). Here, we focus only on one set of genes 

belonging to the melanocortin system. 

From a proximate perspective, the melanocortin system is involved in the regulation of 

multiple physiological functions, and may thus underlie covariations between melanin-based 

coloration and other phenotypic traits such as energy homeostasis, immunity, aggressiveness, sexual 

behaviour, resistance to oxidative stress and activation of the stress response and its further 

modulation (reviewed in Ducrest et al. 2008). Melanocortins are peptides derived from the 

proopiomelanocortin gene (POMC), which is translated to a POMC prohormone. This molecule 

undergoes a series of cell-specific proteolytic cleavages and modifications that result in the generation 

of several peptides, namely the melanocortins (α-, β- and γ-melanin-stimulating-hormones MSH, the 

adrenocorticotropic hormones ACTH), and the endorphins (Pritchard et al. 2002). In vertebrates, the 

POMC gene is mainly expressed in the pituitary gland, but also in the central nervous system; in most 

peripheral tissues, neural and pituitaric melanocortins act as neurocrine and endocrine factors (Cone 

2006), whereas peripherally produced melanocortins have paracrine and autocrine functions 

(Slominski et al. 2000).  
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Feather melanisation occurs during growth in chicks and moulting in adults. Melanin 

coloration is generated by the deposition of mixed eu- (brown/black to grey) and pheomelanin (yellow 

to reddish brown) pigments. In the first of three steps of melanogenesis, the rate-limiting enzyme 

tyrosinase oxidases L-tyrosine to produce dopaquinone that is further transformed to cysteinyldopa in 

the presence of cysteine derivatives. In a second step, pheomelanin is produced and in the last stage 

when cysteine donors are depleted eumelanin polymers are synthesized (Ito & Wakamatsu 2008). 

Therefore, the quantity and the ratio of eu- to pheomelanin depend primarily on the activity of 

tyrosinase and the presence of substrates cysteine and tyrosine in the melanosomes. Two major 

regulators of melanogenesis, namely the melanocortins and the Agouti protein (ASIP) control the level 

and activity of the tyrosinase via binding to the melanocortin 1 receptor (MC1R Ito & Wakamatsu 

2010; Walker & Gunn 2010). Binding of melanocortins, particularly α-MSH, to MC1R induces 

transcription and activity of eumelanic genes such as MITF, tyrosinase, TRP1 and DCT, and therefore 

increases the production of black/brown eumelanin. In contrast, the inverse-agonist/antagonist ASIP 

blocks the transcription of eumelanic genes (Le Pape et al. 2009) and hence switches the balance 

between eumelanogenesis towards pheomelanogenesis (Lin & Fisher 2007). 

The different melanocortin peptides not only bind the MC1R but four other melanocortin 

receptors that regulate morphological, physiological and behavioural traits. Because of the numerous 

pleiotropic effects of the POMC gene, we predict an association between the different traits regulated 

by the melanocortins binding to the different MCRs (Ducrest et al. 2008). Hence, in species in which 

melanocortins account for part of the inter-individual variation in coloration, eumelanin- and 

pheomelanin-based coloration may be correlated positively and negatively, respectively, with the 

levels of the POMC prohormone and the levels of melanocortins that bind to MC2-5Rs. 

Interestingly, recent studies showed that covariations between the degree of melanic coloration 

and other phenotypic traits are more easily detected under specific environmental conditions (Roulin 

et al. 2008b; Piault et al. 2009; Roulin 2009). In the tawny owl (Strix aluco), for instance, we found 

that nestlings produced by pale and dark reddish melanic females have different reaction norms. 

Among nestlings raised by foster parents, nestlings born from dark reddish mothers grew faster than 
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those born from paler reddish mothers when brood size was experimentally reduced but not when it 

was experimentally enlarged with dark and pale individuals growing at similar rates (Roulin et al. 

2008b). Thus, in the tawny owl the genetic correlation between melanic coloration and offspring 

growth was stronger in some environments than in others. Because in the tawny owl the expression of 

reddish melanism is strongly heritable and not or weakly condition-dependent (Gasparini et al. 2009a), 

this observation is likely to be the result of the action of some genes involved in growth trajectories 

and for which offspring born from differently coloured mothers should display either distinct alleles or 

different expression levels in relation to rearing conditions.  

To test whether regulation of the POMC prohormone is colour-specific, we performed a brood 

size manipulation experiment in breeding female tawny owls (i.e. these females raised a brood for 

which we either added or removed one hatchling) in order to induce changes in the level of parental 

workload and thus modify the level of stress experienced by parents. Assuming that melanocortin 

hormones mediate colour-specific growth patterns found in previous experiments (Roulin et al. 2008b; 

Piault et al. 2009), we measured the levels of blood circulating POMC prohormone (Barna et al. 1998; 

Bell et al. 2005; Myers et al. 2005) in these breeding females. We thus investigated whether the levels 

of the POMC prohormone covary with the degree of reddish melanic coloration differentially in 

females rearing an experimentally reduced or enlarged brood. Interestingly, beechnut (Fagus 

sylvatica) production was particularly pronounced (pers. obs.), a food source for wood mice 

(Apodemus sp.) and bank voles Clethrionomys glareolus (Abt & Bock 1998; Margaletic et al. 2005), 

the staple prey species in the study area (Roulin et al. 2008a). Thus, beechnut densities should be 

proportional to prey densities. As a consequence, we examined whether the levels of the POMC 

prohormone covaries with the degree of reddish coloration differently in females rearing a progeny 

located in rich and poor territories with respect to beech density. 

The present study is a first step towards the understanding of the potential role played by 

melanocortins in generating reaction norms. Significant results should stimulate more detailed studies 

on the pleiotropic effects of the melanocortin system, its importance in generating covariations 

between melanin-based coloration and other phenotypic traits, and more generally why environmental 
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heterogeneity can promote the evolution of local adaptation (Kawecki & Ebert 2004). Our aim is 

therefore not to test whether inter-individual variation in reddish coloration is the result of the 

melanocortin system, but whether differently coloured owls differentially regulate the POMC 

prohormone in relation to environmental factors.  

 

METHODS 

The study was carried out in 2007 in western Switzerland, where we installed 366 nest boxes 

in forests located within a 911 km2 area, at a mean altitude of 672 m (range: 458-947 m). Nest boxes 

were hung up on trees in forest patches of at least 4’000 m2; the mean distance between two nest boxes 

was 627 m with a minimal distance of 500 m. The landscape consists of managed forests (26.6%) and 

farmland (55.5%), with 116 villages of 100 to 1’000 inhabitants dispersed on the whole area. Forest 

patches ranged from 0.0038 km2 to 32 km2 and were composed mainly of beeches followed by oaks 

(Quercus spp.), pure spruce (Picea abies), European silver fir (Abies alba) and common ash (Fraxinus 

excelsior). Farmlands consist mainly in cereal fields, pastures, truck farming, fruit orchards and 

fallows. In 2007, the 54 breeding females for which we measured levels of the POMC prohormone 

laid between 2 and 7 eggs (mean ± SD: 4.8 ± 1.0) from 1 February to 8 March (mean ± SD: 24 

February ± 7 days). Ninety-one percent of the eggs hatched and 1 to 7 nestlings per nest took their first 

flight (mean ± SD: 4.2 ± 1.4). Nestlings grow rapidly and leave their nest at 25-30 days of age 

(Galeotti 2001). 

Measurement of reddish coloration 

For each breeding female, we collected three feathers located on their back 5 cm below the 

neck. Feathers were then stuck with adhesive tape onto a black paper, placed in a black box equipped 

with a fluorescent tube (8w/20-640 bl-super), and individually photographed with a digital camera 

(Dimage A200, Konika Minolta) fixed at a distance of 27 cm to the feather. Pictures were imported in 

the software Adobe Photoshop to measure individual spectral hues, saturation and brightness. For each 

individual we calculated a mean value over the three feathers and then extracted the first component 

(PCA1) of a principal components analysis, which explained 72% of the total variance. We multiplied 

PCA1 values with -1 to obtain a scale from pale to dark reddish, a methodology that we did not use in 
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previous papers. Measurements of coloration (i.e. PCA1) were shown to be repeatable, and strongly 

correlated with colour scores obtained with a spectrophotometer, and colour morph estimated in the 

field (Pearson’s correlation: r = 0.80, n = 54, P < 0.0001). The concentration of pheomelanin pigments 

stored in feathers accounts for 68% of the total variance in reddish coloration and eumelanin pigment 

concentrations for only 21% (Gasparini et al. 2009a). Additional analyses based on the data collected 

by these authors showed that the ratio of pheomelanin/eumelanin feather content and the total amount 

of melanins contained in feathers are associated with PCA1 (r = 0.57, n = 15, P = 0.027 and r = 0.87, 

n = 15, P < 0.0001, respectively).  

Experimental procedure 

In 2007, we matched 90 nests in pairs with similar hatching date (Pearson’s correlation, P < 

0.0001) and manipulated brood sizes by exchanging hatchlings between nests of the same pair; we 

took on average 2.4 nestlings from a nest E (enlarged) and brought them in another nest R (reduced) 

where we took on average 3.4 hatchlings to be brought in nest E. Each family was thus composed of 

nestlings from two origins with half of the nests being experimentally enlarged by one nestling and the 

other half of the nests experimentally reduced by one nestling. Out of the 90 initial nests, we were able 

to collect a blood sample to measure POMC prohormone in adult females in 27 of the reduced nests 

and 27 of the enlarged nests. Age of the offspring when their mother was blood sampled did not differ 

between the two treatments (14 ± 3.7 days, range: 9-21; Student’s t-test: t52 = 1.19, P = 0.24). Clutch 

size of enlarged and reduced nests was similar (t52 = 0.70, P = 0.49). Breeding females from the two 

brood size treatments did not differ in wing, tail and tarsus lengths, body mass at the time of blood 

sampling and plumage coloration (Student’s t-tests, P-values > 0.30). Within pairs of experimental 

nests foster and biological mothers did not significantly resemble each other with respect to reddish 

coloration (r = -0.13, n = 35, P = 0.46) and pairing with respect to coloration was not significantly 

disassortative in both the reduced and enlarged brood size treatment (Pearson’s correlation comparing 

coloration of female and male partners: r = -0.13, n = 27, P = 0.53 vs. r = -0.09, n = 27, P = 0.67). We 

successfully created broods with a different number of nestlings, as at the time when we blood 

sampled breeding females their nest contained significantly more nestlings in the enlarged than 

reduced treatment (mean ± SE, 4.9 ± 0.2 vs. 3.6 ± 0.2; Student’s t-test: t52 = 3.88, P = 0.0002). To 
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investigate the long-term effect of the brood size manipulation experiment, we captured breeding 

individuals in 2008 and examined whether females rearing an enlarged brood in 2007 were less likely 

to breed in 2008 than females rearing a reduced brood in 2007.  

Because beechnut production was very high in the autumn 2006, we recorded the proportion of 

beech trees during the winter 2006-2007, walking 75 m in the four cardinal points around each nest 

box. This proportion (mean is 32%, range: 0-92%) was log10+1 transformed to obtain a normal 

distribution. In 2007, owls bred earlier in forests where beeches were more abundant (r = -0.25, n = 

95, P = 0.015) indicating that abundance in beeches is an appropriate surrogate of some aspects of 

territory quality in the study year. The proportion of beech trees in territories of experimentally 

enlarged and reduced broods was similar (P = 0.17). Within each brood size treatment female plumage 

coloration was not significantly correlated with female body size (i.e. wing, tail, tarsus and mass) and 

nestling age when females were blood sampled (Pearson’s correlations, P-values > 0.18) nor with the 

proportion of beeches (ANCOVA: colour: F1,50 = 0.95, P = 0.33; treatment: F1,50 = 2.21, P = 0.14; 

interaction: F1,50 = 2.90, P = 0.10).  

Assessment of blood circulating levels of the POMC prohormone 

Blood sample of each of the 54 breeding females was collected in tubes containing EDTA, 

immediately centrifuged to separate the plasma from the blood cells, and frozen in liquid nitrogen in 

the field until placed on the same day in the laboratory at –80°C. We quantified the amount of blood 

circulating POMC prohormone using the human OCTEIA POMC ELISA kit (IDS Ltd, Boldon, UK). 

We carried out the analyses using 50 µl of plasma. This kit consists of a sandwich assay using two 

antibodies, which bind to POMC prohormone accordingly to its relative concentration. The sensitivity 

of the assay is 8 pmol/l, the inter-assay precision is 10% and the cross-reactivity for ACTH is 3.6% 

and for α-MSH 2.2%. We box-cox transformed POMC prohormone values to normalize the dataset. 

POMC prohormone levels were not correlated with time of the day when blood samples were 

collected (mean is 1245 hours; range: 0745 and 1745 hours) (r = 0.04, n = 54, P = 0.79), the time 

taken between capture and blood sampling (mean is 3.2 min; range: 0.1 and 4.3 min; r = 0.10, n = 54, 

P = 0.49) and nestling age (r = -0.12, n = 54, P = 0.37). These variables were therefore not considered 

in further analyses. In six females and one male we collected two blood samples on two occasions. 
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POMC prohoromone levels measured on these two occasions were strongly correlated (r = 0.82, n = 7, 

P = 0.025). To avoid pseudo-replication we calculated mean values over the two measurements. 

Finally, it is worth noting that the level of POMC prohormone we measured is not the amount of 

melanocortins directly involved in melanogenesis, since the feathers collected for colour assessment 

were not growing anymore.  

Statistics 

We performed statistical analyses using JMP IN 7.0.0. We used a stepwise ANCOVA 

including the box-cox transformed levels of POMC prohormone as the dependent variable, and brood 

size treatment (‘treatment’), proportion of trees that were beeches (‘beeches’) and reddish coloration 

measured as PCA1 (‘colour’) as three independent variables, plus all possible interactions. Non-

significant interactions were subsequently removed from the final model. The analyses are two-tailed 

and significance level is set to 0.05. In all models, residuals were normally distributed, and variances 

were homogeneous between treatments.  

 

RESULTS 

The brood size manipulation experiment had the intended effect on breeding females. Out of the 

27 females rearing an experimentally enlarged brood in 2007 only eight (29.6%) of them were 

breeding in 2008, whereas 16 out of 27 (59.3%) females rearing an experimentally reduced brood in 

2007 were breeding in 2008 (chi-square test: χ2 = 4.80, P = 0.028). Mean concentration in the POMC 

prohormone was 68.5 pmol/l (SD = 85.4; range = 6 and 346.7). After stepwise backward 

simplification of the model, the interactions ‘treatment’ by ‘colour’ and ‘beeches’ by ‘colour’ were 

both significant (Table 4.1).  
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Table 4.1. Analysis of covariance testing POMC prohormone levels (box-cox transformed) in relation to 
brood size manipulation experiment and the proportion of trees that were beeches (an index of food 
abundance) in breeding female tawny owls. The term ‘colour’ refers to the degree of reddish coloration, 
‘treatment’ to the brood size manipulation experiment (enlarged vs. reduced broods), and ‘beeches’ to the 
proportion of trees that were beeches in forests where nest boxes were erected. We removed from the final 
model the triple interactions and the two-way interaction ‘Treat x beeches’ which were not significant (P-
values > 0.40).  
 
 

        
 Test statistics  
Source of variation F df P 
    
Colour 2 1, 48 0.16 
Treatment 0.09 1, 48 0.84 
Beeches 0.11 1, 48 0.74 
Colour x Beeches 4.48 1, 48 0.039 
Colour x Treatment 4.8 1, 48 0.033 
    

 

When brood size was experimentally reduced, darker reddish females showed lower levels in 

the POMC prohormone than pale reddish females (multiple regression analysis, colour: F1,24 = 4.90, P 

= 0.037; beech: F1,24 = 0.51, P = 0.48), whereas there was no relationship between coloration and 

levels of the POMC prohormone in the enlarged treatment (multiple regression analysis, colour: F1,24 = 

0.02, P = 0.88; beech: F1,24 = 0.99, P = 0.33; Figure 4.1).The interaction ‘beeches’ by ‘colour’ was 

significant because darker reddish females had lower levels of the POMC prohormone when their 

territory was located in a forest where beeches were abundant (territories with proportion of beeches 

above the median, ANCOVA, colour as covariate: F1,25 = 5.57, P = 0.026; treatment as factor: F1,25 = 

0.12, P = 0.73) but not when relatively rare (territories with proportion of beeches below the median, 

ANCOVA, colour as covariate: F1,23 = 0.03, P = 0.87; treatment as factor: F1,23 = 0.37, P = 0.55).  
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Figure 4.1: Relationship between POMC prohormone levels (box-cox transformed) in relation to reddish 

coloration in breeding female tawny owls raising an experimentally reduced (closed circles and straight 

regression line; r = -0.48, n = 27, P = 0.012) or enlarged brood (open circles and broken regression line; r 

= 0.01, n = 27, P = 0.95).  

 

DISCUSSION 

The POMC gene is mainly expressed in the pituitary gland and also in the brain and in 

peripheral tissues. The POMC mRNA is translated to the POMC prohormone, which through tissue-

specific processing results in the different melanocortins (α-, β-, and γ-MSH, ACTH as well as α-, β-, 

and γ-endorphins) that exert neurocrine, endocrine and paracrine actions (Pritchard et al. 2002; 

Boswell & Takeuchi 2005). Because these different melanocortins are able to bind to five distinct 

melanocortin receptors (MC1-5Rs), controlling melanogenesis but also behavioural and physiological 

traits, a recent genetic model (Ducrest et al. 2008) proposed the hypothesis that the melanocortin 

system generates phenotypic correlations between melanin-based coloration and other attributes. This 

hypothesis assumes that the level of melanocortin activity in one tissue is proportional to activity in 

other tissues. Connections between the different tissues, particularly between the pituitary and the skin 

may exist through endocrine and neurocrine circuits. Homozygous knockout mice for Tpit (a Tbox 

transcription factor) that is restrictively expressed and regulates the pituitary development, used as a 
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model for isolated ACTH defect, exhibit a yellowish belly (Pulichino et al. 2003) as POMC KO mice 

(Yaswen et al. 1999) and POMC deficient human (Krude et al. 1998). This suggests that in mice 

pituitaric α-MSH circulates in the blood stream and regulates melanogenesis in skin. Based on this 

kind of observation, we predict that the baseline level of circulating POMC prohormone may be 

correlated with the baseline activity of the melanocortin bioactive peptides that regulate the degree of 

melanin-based coloration.  

We found that darker reddish female tawny owls had lower levels of the POMC prohormone 

than paler reddish females when rearing an experimentally reduced (but not enlarged) brood and when 

they were located in forests where the proportion of beech trees was high (but not when low), an 

indirect measure of the abundance of their staple prey. In the following, we discuss the potential 

physiological effects of circulating POMC prohormone, why the levels of circulating POMC 

prohormone can be associated with coloration in prime environments, whether covariation between 

coloration and levels of POMC prohormone is adaptive, and how future studies should proceed. 

Potential physiological effects of the circulating POMC prohormone 

The level of the circulating POMC prohormone in the tawny owl was 68.5 pmol/l (range: 6 

and 346.7), a value of similar order of magnitude to the values reported in dogs (range: 15-108 pmol/l) 

and sheeps (40-75 pmol/l) using the same assay (Granger 2004; Bell et al. 2005). To investigate the 

physiological effects of circulating melanocortins, researchers administrated these hormones or their 

analogues orally, subcutaneously, intraperitoneally, intravenously or intracerebrally. Systemic 

injection of melanocortins resulted in the darkening of skin (Lerner & McGuire 1979; Ugwu et al. 

1997), in a reduction of inflammatory reactions, septic shock and fever (Chiao et al. 1996; Gonindard 

et al. 1996; Grabbe et al. 1996; Huang et al. 1998; Getting 2006) as well as stress-induced 

corticosterone levels (Daynes et al. 1987), and an increase in sexual behaviour (Van der Ploeg et al. 

2002; Wessells et al. 2003) and aggressiveness (Morgan & Cone 2006). As indicated above 

melanocortin peptides control many important physiological pathways, suggesting that these active 

peptides should be tightly regulated at the levels of their activity (acetylation, amidation, 

phosphorylation), their processing by convertases (PC1, PC2, carboxypeptidase E, PAM; Wilkinson 

2006), and expression of the POMC prohormone.  
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Proximate mechanisms underlying covariation between the levels of blood circulating POMC 

prohormone, coloration and stress 

Melanin pigments account for a large part of the variation in animal coloration. The synthesis of 

melanin is controlled, in part, by melanocortins produced and processed in the skin (paracrine and 

autocrine; Slominski et al. 2000; Rousseau et al. 2007; Schallreuter et al. 2008). Endocrine 

melanocortin control of coloration cannot be excluded, since stress stimulates a release of plasma 

POMC-derived polypeptides in man (Meyerhoff et al. 1988), or increases plasma levels of α-MSH, 

ACTH and further induces skin darkening in the arctic charr (Salvelinus alpinus; Hoglund et al. 2000). 

Moreover, mice deficient for Tpit, a transcription factor that regulates pituitary development, exhibit a 

yellowish belly fur (Pulichino et al. 2003). 

Since melanocortins are involved in the control of important physiological pathways such as 

stress control via the hypothalamic-pituitary-adrenocortical axis (HPA) through the action of ACTH, 

which is derived from the POMC prohormone, it is expected that POMC expression and in turn the 

POMC prohormone are environmentally-regulated. Accordingly, stress induced through a week of 

immobilization induced an increase in pituitaric POMC mRNA, plasma ACTH and corticosterone in 

rats (Noguchi et al. 2006). In near-term ovine fetus long-term hypoxia increased plasma POMC 

prohormone and ACTH but reduced the ratio POMC prohormone to ACTH compared to control sheep 

(Myers et al. 2005). 

In tawny owls, pale reddish females decreased their level of plasma POMC prohormone when 

experiencing a higher level of stress (i.e. experimentally enlarged broods), whereas dark reddish 

females produced POMC prohormone independently of the brood size manipulation treatment. 

Different scenarios can account for this observation. Firstly it is possible that, under stressful 

conditions, more ACTH is necessary and more plasma POMC prohormone are processed to ACTH 

(Myers et al. 2005) resulting in a reduction of plasma POMC prohormone in pale reddish owls. 

Secondly, certain stress such as fasting induces a reduction in pituitaric POMC mRNA. Experiments 

carried out in laboratory animals showed that fasting usually induces a decrease in the expression of 

the POMC gene (Dallman et al. 1999; Bertile et al. 2003; Sanchez et al. 2004; Myers et al. 2005; 

Schwartz & Porte 2005). Accordingly, pale melanic females may decrease the level of POMC gene 
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expression because melanocortins may induce too many costly activities, which would be detrimental 

when resources are scarce.  

Another scenario is based on the assumption that the POMC prohormone and ACTH levels 

needed under stressful conditions are colour-specific, with differently coloured individuals requiring 

different amount of ACTH to withstand a stressful situation, as shown for feeding behaviour in 

different rat strains, where fasting reduces hypothalamic POMC mRNA in Brown Norway rats and 

induces POMC mRNA in Fisher rats (Kappeler et al. 2004). As different sources of stress induce an 

increased or reduced expression level of the POMC gene (Noguchi et al. 2006; Chen et al. 2008), pale 

reddish individuals had lower levels of POMC prohormone under stressful conditions, i.e. when 

rearing an enlarged brood compared to when rearing a reduced brood (Figure 4.1) and dark reddish 

females may increase POMC prohormone levels under stressful conditions. 

Studies on the proximate mechanisms occurring under stressful conditions are rapidly 

expanding but little is known about spatial and temporal variation in POMC gene expression, PC1/2 

activation and ACTH and α-MSH levels between different colour morphs, along an environmental 

gradient (e.g. different intensity and type of stress). However, these different scenarios stem for 

stronger covariations between coloration and the levels of the POMC prohormone under prime 

environmental conditions. A number of biochemical factors regulate POMC gene expression, 

translation and further processing and modification. Such factors include steroids, glucocorticoids, 

cytokines, prostaglandines, cathecholamine and other neurotransmitters (Slominski et al. 2004; 

Schallreuter et al. 2008) potentially allowing individuals to adjust melanocortin levels in relation to 

environmental or social factors but also to life stages (Ellis et al. 2008; Palermo et al. 2008). 

Knowledge of the identity of these factors, their effect on melanocortin levels and physiological traits, 

and of how they are themselves regulated is key to determine when individuals switch on/off the 

expression of the POMC gene. 
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Are life history strategies of dark and pale reddish tawny owls mediated by melanocortins? 

From an ultimate point of view, why did the POMC prohormone circulate at higher levels in 

pale reddish owls raising a reduced compared to an enlarged brood? Furthermore, why did 

melanocortin precursors circulate in the blood stream at relatively constant levels in dark reddish owls, 

while in paler owls levels were more variable? A likely explanation is that the net benefit of 

circulating POMC prohormone is higher in situations of low than high stress, particularly in pale 

individuals. Given the numerous physiological effects of melanocortins, their overproduction may lead 

individuals to invest resources into a wide range of activities, which in turn could be detrimental under 

stressful conditions. Interestingly, even under weakly stressful situations dark reddish birds also 

showed low levels of POMC prohormone suggesting that they avoid investing into too many activities 

regulated by melanocortins. Dark reddish individuals may thus invest resources in traits regulated by 

melanocortins relatively independently of changes in the environment, while pale conspecifics 

regulate these traits more finely in relation to variation in environmental factors. Accordingly, various 

studies showed that pale and dark reddish tawny owls invest resources differentially into various traits 

including body growth and maintenance, immunity and reproduction. Pale birds seem to adopt less 

risky strategies than dark conspecifics: when conditions are poor they skip reproduction more often 

(Roulin et al. 2003), invest less effort in mounting a strong immune response following an immune 

challenge to limit body mass loss (Gasparini et al. 2009a; Gasparini et al. 2009b), and produce 

nestlings that are better able to maintain body mass under low food supply (Piault et al. 2009). If pale 

individuals are better able to buffer variation in environmental factors by finely regulating 

melanocortin levels, dark reddish birds may have some other advantages such as offspring growing 

faster in body mass when preys are provided ad libitum (Roulin et al. 2008b; Piault et al. 2009), and 

when challenged with antigens they maintain a stronger level of antibody for a longer period of time 

compared to pale individuals (Gasparini et al. 2009a). 
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Conclusion and perspectives  

Melanin-based coloration is a multigenic trait and inter-individual variation in the degree of 

melanism may be caused in part by melanocortins. Regardless of the exact role played by 

melanocortins in generating variation in coloration, our study demonstrates that differently melanic 

female tawny owls differentially regulate the POMC prohormone in relation to environmental factors. 

Because in the tawny owl the expression of reddish coloration is strongly heritable and not or weakly 

condition-dependent (Gasparini et al. 2009a), an environmentally-induced change in the magnitude of 

the covariation between coloration and the levels of the POMC prohormone must be due to a change 

in the level of the POMC prohormone but not to a change in coloration. 

The present study is a first step into an understanding of the potential role of hormones in 

generating norms of reaction (Boswell & Takeuchi 2005; Ducrest et al. 2008), and hence our 

reasoning goes beyond the melanocortin system. Knowledge of the regulators of phenotypic 

correlations is helpful to predict how their sign and magnitude can change along an environmental 

gradient. In this context, melanin-based coloration is a promising model system, and the present study 

raises a number of issues to tackle the ecological role of the melanocortin system. First, we intend to 

measure expression levels of the POMC gene in relation to coloration in several tissues. The idea is to 

investigate whether expression levels of this gene are coordinated across organs, which is plausible 

given that melanocytes have a neuroendocrine regulatory function (Slominski 2009). This is an 

important issue because melanin production is determined, in part only, by the expression of the 

POMC gene found in feather buds, whereas many phenotypic traits that covary with melanin-based 

coloration are influenced by POMC gene copies found in the pituitary gland that control for instance 

energy homeostasis (Coll et al. 2004). Second, our aim is to assess the levels of prohormone 

convertases (PC1/2) processing the POMC prohormone and the levels of the resulting melanocortin 

bioactive peptides, especially under the stress experienced with the brood size manipulation. The final 

step will be an experimental injection of melanocortins to confirm their role in generating inter-

individual colour variation and to investigate whether they generate covariations between melanin-

based coloration and other phenotypic traits. Furthermore, the inverse-agonist/antagonist agouti 
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protein (ASIP) should also be considered in future studies as it may play another key role in the 

balance between pheo- and eumelanogenesis, and thus may determine coloration and regulation of 

many other traits (Ducrest et al. 2008). A thorough study of the melanocortin system should provide a 

proximate explanation as to how norms of reaction are regulated by differently melanic individuals, 

and help understand the adaptive function of variation in melanin-based coloration. It may also 

provide an appropriate system to tackle issues about genotype by environment interactions.  
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ABSTRACT 

 The adaptive function of melanin-based coloration is a long-standing debate, principally 

because of limited knowledge of the underlying proximate mechanism. A recent genetic model 

suggested that the melanocortin system could account for covariations observed between melanin-

based coloration and behavioural, morphological, physiological or life history traits. In the present 

study, we adopted a candidate gene approach to explore the genetic architecture of the melanocortin 

system in the tawny owl (Strix aluco), a species characterized by continuous variation in the degree of 

plumage reddishness (from light to dark). To this end, we collected developing feather in nestling 

tawny owls, a life stage characterized by the production of melanin pigments. After screening for SNP 

sites in the coding sequence of nine melanogenic genes and examined how feather bud expression of 

eu- and pheomelanogenesis-related genes covaries with plumage coloration in interaction with a brood 

size manipulation experiment. While we failed to detect non-synonymous mutations in the coding 

sequence of these melanogenic genes, we found interesting age-, sex- and colour-specific patterns of 

gene expression in the growing feather buds. Even though we could not show colour-specific pattern 

of the proopiomelanocortin (POMC) gene expression, we demonstrated that prohormone convertase 1 

(PC1) gene was more expressed in offspring born from light rather than dark melanic tawny owls. 

Accordingly, offspring born from light melanic parents are likely to have a greater capacity of POMC 

processing to melanocortin peptides (i.e. ACTH and α-MSH). This raises the hypothesis that PC1 

gene expression may be a potential proximate mechanism regulating the pleiotropic effects of 

melanocortins in the tawny owl. 

 



Chapter 5 
	  

123 

INTRODUCTION 

Variation in coloration is very common throughout the animal and plant kingdoms (Jones 

1977; Majerus 1998; Shine et al. 1998; Hoffman & Blouin 2000; Warren & Mackenzie 2001). The 

adaptive function of colour patterns can be diverse. Empirical studies highlighted a role of coloration 

in camouflage (Endler 1988), thermoregulation (Margalida et al. 2008) or social interaction (Endler 

1988; Andersson 1994; Hill 2006; Bond 2007; Roulin & Bize 2007). In many species, coloration 

signals phenotypic or genetic attributes to potential mates in order to enhance mating success (Møller 

1990; Shutler & Weatherhead 1990; Olson & Owens 1998; Smiseth & Amundsen 2000; Roulin 2004; 

Caro 2005; Weiss 2006; Kemp & Rutowski 2007). The exact individual qualities that a colour trait 

conveys are still debated as well as the underlying mechanisms linking quality to coloration. Two 

broad categories of mechanisms can be advanced. First, the expression of coloration is condition-

dependent so that only individuals in prime condition can afford to pay the costs of producing the 

brightest colour trait. Condition being considered as a multifactorial trait, covariations between 

coloration and its associated qualities are likely to be regulated by a multitude of genes (Rowe & 

Houle 1996). Second, the expression of coloration is not or only weakly sensitive to condition, but 

strongly heritable, as it is the case in the so-called colour polymorphic species. In this case, 

covariations between coloration and physiological processes or behaviours could be due to a limited 

number of genes that may pleiotropically regulate other phenotypic traits (Strand 1999; Millington 

2006; Ducrest et al. 2008). Identifying the proximate genetic mechanism underlying this type of 

covariation is not trivial and requires appropriate model systems. 

 Melanin-based coloration is a promising framework to investigate the proximate basis of the 

adaptive function of coloration. Although the adaptive values of melanic attributes remains a long-

standing debate (Gray 1996; Hill & McGraw 2006; Gray & McKinnon 2007), the finding that 

melanin-based coloration frequently covaries with morphological, behavioural, physiological or life-

history traits raised the hypothesis that variation in these colour traits can signal to conspecifics 

alternative strategies adapted to specific environmental or reproductive conditions (Roulin 2004; 

Roulin & Altwegg 2007; Roulin et al. 2007; Forsman et al. 2008; Galvan & Alonso-Alvarez 2009; 

Galvan et al. 2010; Jacquin et al. 2011). Since these covariations are often more easily detected under 
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specific environmental conditions (Roulin et al. 2008b; Piault et al. 2009; Roulin 2009; Roulin et al. 

2011c), natural selection can locally and temporally favour alternative genotypes that differ in their 

phenotypic response to environmental conditions, also known as norms of reaction (Hedrick 1986; 

2006). Recently, a genetic model suggested that the melanocortin system can account for these 

covariations (Ducrest et al. 2008). This system includes α-, β-, γ-melanocyte-stimulating-hormone 

(MSH) and adrenocorticotropic hormone (ACTH), posttranslational bioactive peptides derived from 

the cleavage of the proopiomelanocortin gene (POMC; Gantz & Fong 2003; Slominski et al. 2004; 

Millington 2006) by two prohormone convertases (PC1 and PC2; Bell et al. 1998; Laurent et al. 2004; 

Helwig et al. 2006; Pritchard & White 2007). In human anterior lobe of the pituitary, PC1 cleaves 

POMC prohormone to ACTH and β-lipotropin (β-LPH), whereas, in the intermediate pituitary, PC2 

cleaves ACTH and β-LPH to produce α-, γ–MSH and β-endorphin, respectively (Pritchard & White 

2007; Wardlaw 2011). Here, it is noteworthy that POMC processing by PC1 and PC2 also occurs in 

rodent and human epidermal tissues (Mazurkiewicz et al. 2000; Rousseau et al. 2007). Inverse agonist 

and antagonist of melanocortins are Agouti-signalling- and related-proteins (ASIP and AGRP), two 

proteins encoded by pheomelanogenesis-related Agouti genes in epidermal and brain tissues, 

respectively (Ito 1993; Barsh et al. 2000; Abdel-Malek et al. 2001; Bonilla et al. 2005; Mundy & 

Kelly 2006; Lin & Fisher 2007; Lightner 2009). Of particular interest, bindings of the melanocortins 

and the antagonists to the five melanocortin-receptors (MC1-5R; Schioth 2001; Butler & Cone 2002), 

a family of transmembrane G-protein-coupled receptors well conserved among vertebrates (Schioth et 

al. 2005), can modulate numerous physiological and behavioural functions, such as stress response, 

energy homeostasis, anti-inflammatory response, sexual activity, resistance to oxidative stress and 

aggressiveness (Cone 1999; Fan et al. 2000; Schioth 2001; Tatro & Sinha 2003; Slominski et al. 2004; 

Boswell & Takeuchi 2005; da Silva et al. 2005; Fan et al. 2005; Bertile & Raclot 2006; Butler 2006; 

Cone 2006; Hillebrand et al. 2006; Maaser et al. 2006; Millington 2006; Lin & Fisher 2007; Garruti et 

al. 2008; Page et al. 2011). In this context, a fundamental pursuit in the field of evolutionary genetics 

is to infer the exact genetic mechanisms responsible for variation in specific melanin-based coloration 

(e.g. nucleotide diversity or patterns of gene expression or still posttranslational modification; 
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Hoekstra 2006; Mundy 2006; Hoekstra & Coyne 2007). 

 Hair, skin and feather colour patterns are the result of a mixture of polymers of (grey-black) 

eumelanin and (reddish-brown) pheomelanin. Genetic pathways leading to the production of both 

melanins have been intensively studied (Jackson 1994; Mishima 1994; Bennett & Lamoreux 2003; 

Hoekstra 2006; Mundy 2006; Hoekstra 2010). In epidermal tissues, binding of α-MSH to MC1R, 

promotes eumelanogenesis (Slominski et al. 2004; Pritchard & White 2007; Walker & Gunn 2010). 

This binding activates indeed the production of intracellular cAMP, a second messenger that up-

regulates microphthalmia-associated transcription factor (MITF; Aksan & Goding 1998; Goding 2000; 

Vachtenheim & Borovansky 2010; Wan et al. 2011), and, by extension, the eumelanogenic activity of 

tyrosinase (TYR) and tyrosinase-related-protein 1 (TYRP1; Kobayashi et al. 1995; Barsh et al. 2000; 

Ito et al. 2000; Slominski et al. 2004; Lin & Fisher 2007; Spencer & Schallreuter 2009) within 

melanocyte. Rate limiting enzyme tyrosinase catalyses the first two-steps of melanin production: the 

hydroxylation of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA) and the subsequent oxidation of 

5,6-dihydroxyindole (DHI) to L-dopaquinone (Slominski et al. 1991; Ozeki et al. 1997; Ito et al. 

2000; Land & Riley 2000; Park et al. 2009; Ito & Wakamatsu 2010; Schallreuter et al. 2011). 

However, binding of inverse agonist and antagonist ASIP to MC1R can block α-MSH binding, 

leading to the production of pheomelanin at the expense of eumelanin (Suzuki et al. 1997; Gantz & 

Fong 2003; Lin & Fisher 2007). Moreover, the switch between eu- and pheomelanogenesis depends 

also the presence of thiol groups resulting from cysteine depletion in melanosomes (del Marmol et al. 

1996; Ito & Wakamatsu 2010). In absence of thiols, dopaquinone undergoes intramolecular 

cyclization, resulting in the formation of eumelanin, whereas thiol intervention promotes the 

transformation of dopaquinone in cysteinyldopas, which is further oxidized to produce pheomelanin 

(Ito et al. 2000).  

 To date, more than 150 genetic loci with well-characterized melanin-based phenotypes were 

identified in laboratory mice (Bennett & Lamoreux 2003; Hoekstra 2006). Although strongly 

conserved across vertebrates (Boswell & Takeuchi 2005; Schioth et al. 2005), numerous attempts to 

unravel the genetic architecture of melanin-based coloration revealed nucleotide polymorphisms in the 

coding sequence of melanogenic genes in non-model organisms (e.g. MC1R (Valverde et al. 1995; 
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Theron et al. 2001; Mundy & Kelly 2003; Rosenblum et al. 2004; Hoekstra et al. 2006; Rosenblum et 

al. 2010), ASIP (Mundy & Kelly 2006; Nadeau et al. 2008; Kingsley et al. 2009), TYRP1 (Gratten et 

al. 2007; Nadeau et al. 2007)), based on genetic variations uncovered in model organisms (i.e. 

candidate gene approach). Whereas some studies failed to detect covariation between nucleotide 

variation in pigmentation genes and melanin-based coloration (MacDougall-Shackleton et al. 2003; 

Hull et al. 2010), others pointed out that alternative patterns of gene expression may account for inter-

individual colour variation rather than non-synonymous mutations in the coding sequence of candidate 

genes (e.g. ASIP gene in deer mice (Peromyscus sp.); Linnen et al. 2009; Manceau et al. 2011). Evo-

devo theory also predicts the evolution of alternative phenotypes through different expression or 

posttranslational modifications of functionally conserved genes or proteins, respectively, rather than 

key mutation sites in the coding sequence of these genes (Carroll 2005; Hoekstra & Coyne 2007; 

Carroll 2008). These findings illustrate the complexity and the non-uniform picture of the genetic 

architecture underlying variation in phenotypic variation among wild organisms. 

 The colour polymorphic tawny owl (Strix aluco) is a promising system to investigate the 

pleiotropic effects of the melanocortin system. This species exhibits continuous variation in the degree 

of plumage reddishness (from light to dark), which is mainly due to the deposition of pheomelanin and 

to a lesser extent to eumelanin (Gasparini et al. 2009a). This inter-individual variation in tawny owl 

plumage coloration is highly heritable (h2 = 0.72-0.93; Brommer et al. 2005; Gasparini et al. 2009a). 

Of particular interest, empirical studies highlighted colour-specific norms of reaction to reproductive 

(Roulin et al. 2004; Emaresi et al. in prep, Chapter 1) and rearing conditions (Roulin et al. 2008b), 

food supply (Piault et al. 2009), pathogens (Galeotti & Sacchi 2003; Gasparini et al. 2009a; Karell et 

al. 2011a) and climatic conditions (Galeotti & Cesaris 1996; Karell et al. 2011b), leading to 

differences in recruit production (Brommer et al. 2005; Emaresi et al. in prep, Chapter 1), probability 

of skipping reproduction (Roulin et al. 2003) and adult survival rate (Brommer et al. 2005; Karell et 

al. 2011b). Moreover, we demonstrated that differently coloured female tawny owls adjust their level 

of circulating POMC prohormone according to the reproductive and environmental conditions (Roulin 

et al. 2011c). Dark melanic females had lower circulating levels of POMC prohormone than light 

melanic ones when rearing experimentally reduced (but not enlarged) brood and when located in forest 
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patches with high (but not low) density of beech trees, an environmental feature positively correlated 

with prey abundance. In this study, we proposed that POMC prohoromone and ACTH levels needed 

under stressful conditions are colour-specific, suggesting thus colour-specific post-translational 

modifications of POMC prohormone via alternative patterns of expression of the convertase PC1 

and/or PC2. These findings call for an integrative study that establishes the exact genetic mechanism 

underlying covariation between coloration and physiological reaction norms. A first step is to 

determine the genetic architecture of tawny owl melanin-based coloration, by identifying single-

nucleotide polymorphism (SNP) sites in key melanogenic genes and especially the melanocortin 

system. A second complementary step is to measure in differently coloured tawny owls the expression 

levels of melanogenesis-related genes, with a particular focus on prohormone convertases PC1 and 

PC2 responsible for POMC prohormone processing to ACTH and α-MSH (Roulin et al. 2011c). We 

adopted this two-step approach by collecting developing feather in nestling tawny owls, a life stage 

characterized by the production of melanin pigments to be stored in feathers.  

 Given that POMC prohormone regulation was associated with experimentally manipulated 

brood size in adult tawny owl (Roulin et al. 2011c), we replicated a brood size manipulation 

experiment to modify the level of stress experienced by nestlings. We first screened for SNP sites in 

the coding sequence of melanocortin genes (i.e. ASIP, MC1R, POMC). Potential source of variation in 

the downstream molecular cascade also needed to be considered, leading us to screen for SNP sites 

also in key (i.e. PC1, PC2, TYR, TYRP1) or secondary (i.e. MITF (Otreba et al. 2012) or cystine-

glutamate transporter SLC7A11 (Chintala et al. 2005)) regulators of eu- and pheomelanin molecular 

pathways. Then, we examined how feather bud expression of eumelanogenesis-related (i.e. MC1R, 

POMC, TYRP1 and to a certain extent TYR) and pheomelanogenesis-related genes (i.e. ASIP), and key 

regulators of both molecular pathways (i.e. MITF, PC1, PC2 and SLC1A11), covaries with plumage 

coloration in interaction with the brood size manipulation experiment. 
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METHODS 

Model species, brood size manipulation and sample collection 

The present study was conducted in a 911km2 study area. In 2010, we monitored an important 

number of breeding pairs (n = 139). Clutches were composed of 2-7 eggs (mean ± sd: 5.13 ± 0.94), 

which hatched between February 21 and May 31 (mean ± sd: March 31 ± 13.3 days), leading to 1-7 

fledglings per brood (n = 107 successful broods, mean ± sd: 3.92 ± 1.42). On the criteria that clutches 

were initiated on a similar date, 94 nests were matched into pairs to perform a partial cross-fostering 

combined with a brood size manipulation experiment (Emaresi et al. submitted, Chapter 2). Among 

pairs of nests, brood sizes were randomly manipulated, leading to an exchange of 1.74 nestlings on 

average (sd = 0.6) from nest E (experimentally enlarged, n = 47) and placed in nest R (experimentally 

reduced, n = 47), while 2.74 hatchlings on average (sd = 0.6) were exchanged from nest R to nest E. 

Nestlings were thus raised by randomly chosen foster parents and experienced different brood size 

manipulation treatment, disrupting thereby the confounded environmental effect of being born and 

reared in the same ‘genetic’ nest. The objective of the brood size manipulation experiment was to 

investigate whether the relationship between coloration and expression levels of candidate genes is 

condition-dependent, the experimental addition of one nestling yielding stronger sibling rivalry and 

hence higher intrinsic stress in the tawny owl (Roulin et al. 2008b; Roulin et al. 2011c).  

When nestlings were 10 days of age, breeding females were captured in the nest box during 

daylight (8am – 6pm, n = 94), while males were captured at night when provisioning their brood 

(10pm – 6am, n = 88). Note here that extra-pair offspring are rare in the tawny owl (Saladin et al. 

2007), and thereby individuals born in a nest are assumed to be sired by the captured male. No 

differences in adult wing and tarsus lengths were observed between the two brood size treatments 

(Student’s t-tests, P > 0.42). To estimate growth rate, nestlings were recaptured every five days until 

they fledged (mean ± sd: 4.74 ± 1.55 captures per nestling). Upon capture (mean timing of the 

sampling ± sd: 12:30 ± 2:25; range: [09:00 – 18:00]), each nestling was weighed to the nearest g, their 

left wing length measured to the nearest 1 mm and left tarsus to the nearest 0.1 mm. Note however that 

we could not detect an effect of the brood size manipulation experiment on nestling body mass 

(ANCOVA mixed-model controlling for an effect of age and sex on body mass, F1,41.23 = 0.54, P = 
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0.47), probably because food resources were particularly abundant in 2010 (unpublished data). At two 

different ages (Age Class 1: mean ± sd = 11.0 days old ± 2.1; Age Class 2: mean ± sd = 24.7 days old 

± 2.9), three developing feathers (i.e. buds) were plucked from their dorsum. These samples were 

collected in 1.5 ml Eppendorf tubes, immediately frozen in dry ice in the field and transferred at -80°C 

within 12 hours until later genetic analyses. 

Assessment of coloration 

Despite its continuous variation in the degree of reddishness, the tawny owl is generally 

considered as colour polymorphic (Glutz von Blotzheim & Bauer 1980; Galeotti 2001; Brommer et al. 

2005), leading us to employ the same terminology. Accordingly, each adult was assigned to one of 

five colour morphs (1 = reddish, 2 = reddish-brown, 3 = brown, 4 = grey-brown, 5 = grey), as 

described in previous studies (Roulin et al. 2003; Roulin et al. 2005). This visual scoring method is 

highly reliable between years (Emaresi et al. submitted, Chapter 2) and strongly correlated with 

brown chroma measured with a spectrophotometer (Emaresi et al. submitted, Chapter 2). However, 

visual colour scores better account for overall plumage coloration compared to brown chroma, which 

is based on only three back feathers, an approach that does not necessarily reflect entire body 

coloration (Brommer et al. 2005; Emaresi et al. submitted, Chapter 2). Here, it is noteworthy that 

adult plumage coloration was neither associated with hatching date of the first egg (Pearson’s 

correlation, P = 0.14), nor with brood size before manipulation (Student’s t-tests, P = 0.8). Moreover, 

within pairs of experimental nests, foster and biological parents did not resemble each other with 

respect to plumage colour scores (Pearson’s correlations: -0.16 < r < -0.03, P > 0.49). Pairing with 

respect to male and female coloration was random in both treatments (enlarged nests: r = 0.025, n = 

32, P = 0.89; reduced nests: r = -0.18, n = 28, P = 0.34). 

Nestlings are covered in whitish buff down feathers with dark melanic bands. Fledgling 

feathers (i.e. at approximately 25 days old) have less distinctive colour patterns compared to feathers 

collected on the same individuals at adulthood. Accordingly these feathers show lower colour 

variation than in adults, which makes difficult the classification of nestling plumage coloration into 

one of five morphs. For this reason, nestling plumage coloration was assessed only by spectrometric 

measurements. We collected three downy feathers from the dorsum of each nestling (when nestling 
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feathers were more developed at approximately 25 days of age). These feathers were overlaid on black 

paper to capture reflectance spectra at four distinct positions using the S2000 spectrophotometer 

(Ocean Optics, Dunedin, FL) and a dual deuterium and halogen 2000 light source (Mikropackan, 

Mikropack, Ostfildern, Germany). Based on these spectra, a mean brown chroma score was calculated 

for each nestling as described by Montgomerie (2006). Note here that brown chroma scores were 

positively correlated with the average plumage coloration of biological parents (Pearson’s correlation, 

r  = -0.28, P = 0.002).  

RNA extractions 

Nestling age at which developing feathers were sampled was not associated with plumage 

coloration of the biological parents (Pearson’s correlation, r  = 0.01, P = 0.84). Total RNA samples (n 

= 325) were extracted from one or two feather buds of 163 nestlings at two different ages (in 52 

distinct broods), using the Qiagen Rneasy Mini Kit (Qiagen, Hombrechtikon, Switzerland) with some 

modifications. In new Eppendorf tube, one bud was frozen with liquid nitrogen to facilitate their 

grinding with plastic pestles. We added 300 µl of RLT buffer to remove pestles without sample loss. 

Then we added again 300 µl of RLT with β-mercaptoethanol (β-ME, at a concentration twice as high 

as mentioned in the RNeasy Mini kit hand book), before heating the samples at 56°C for two minutes. 

These heated samples were then filtered through a Qiaschredder® (Qiagen, Hombrechtikon, 

Switzerland) to remove bud residues. At the end of the extraction, we quantified the amount of RNA 

with the Qubit® 2.0 Fluorometer (Life Technologies, Zug, Switzerland). Prior reverse transcription, 

total RNA samples were treated with DNase I. One µg of total RNA was incubated in 10 µl with 5U 

DNase I (Roche diagnostics Ltd, Basel, Switzerland) in 10 mM Tris-HCl pH 8.0, 0.5 mM MgCl2, 1 

mM dithiotreitol, 20U RNasin Ribonuclease Inhibitor (Promega, Dübendorf, Switzerland) for 30 

minutes at 37°C, followed by 10 minutes at 75°C to inactivate the enzyme. Finally, 1µg of DNase I 

treated total RNA was reverse-transcribed in a final volume of 20 µl, using 250 ng of Random 

Hexamer, 40U of RNasin Ribonuclease Inhibitor (Promega, Dübendorf, Switzerland) and 200 U of 

Superscript III reverse transcriptase (Life Technologies, Zug, Switzerland). cDNA samples were 10-

fold diluted in Tris 10 mM pH 8.0 and finally stored at -20°C before further genetic analyses. 
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Sequence analysis 

Although well conserved across vertebrates (Boswell & Takeuchi 2005; Schioth et al. 2005), 

we screened for SNPs in the coding sequence of nine melanogenic candidate genes, using cDNA of at 

least two individuals displaying extreme colour morphs (light and dark melanic). On the basis of 

mRNA sequences edited in Genbank (e.g. chicken (Gallus gallus), Japanese quail (Coturnix japonica) 

and zebra finch (Taeniopygia guttata)), we designed our primers on conserved exonic regions of ASIP, 

MC1R, MITF, PC1, PC2, POMC, SLC7A11, TYR, TYRP1 and two reference genes (i.e. EEF1A1 and 

GAPDH). BLASTN searches were performed to control primer specificity prior being ordered from 

Microsynth AG (Balgach, Switzerland). Following annealing temperature optimization for each pair 

of primers (Table 5.1), polymerase chain reaction (PCR) amplifications were performed in a thermal 

cycler (Biometra TProfessional 96) in 20 µl total volume containing 0.4 U Taq DNA polymerase 

(Qiagen), 1 X PCR Buffer (Qiagen), 2.5 mM MgCl2 (Qiagen), 200 µM dNTP, 250nM of each primer 

and 2 µl of cDNA. Cycling parameters were as follows: 95°C for 5 min followed by 35 cycles at 95 °C 

for 30 s, primer specific temperature for 30 s and 72°C for 30 s to one min, and a final extension step 

at 72 °C for 5 min. Primers and dNTPs were removed from amplified products using the Promega 

purification kit (Promega, Dübendorf, Switzerland). In some cases (see Table 5.1), TA cloning was 

performed using the pGEM-T easy vector system (Promega, Dübendorf, Switzerland). Sequencing of 

PCR products and plasmid clones were performed on both strands by cycle sequencing using Big 

Dye® V 3.1 terminator chemistry (Life Technologies, Zug, Switzerland) and reactions were run on 

ABI3130XL Genetic Analyzer (Life Technologies, Zug, Switzerland). Gene sequences were edited 

and aligned in CodonCode Aligner (CodonCode Corporations). 

Quantitative PCR 

Specific qPCR primers were designed on the basis of edited and aligned sequences described 

above, with the assistance of Primer Express® software 2.0 (Life Technologies, Zug, Switzerland). 

BLASTN searches were performed to control primer specificity prior being ordered from Microsynth 

AG (Balgach, Switzerland). Final primer pairs were selected based on amplification efficiency (i.e. 

slope of standard curve generated by serial dilutions of genomic DNA and R2), dissociation curve and 

negative controls (i.e. water sample and RT-PCR negative control). Quantitative PCR reactions were 
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performed using an ABI Prism® 7900HT Sequence Detection System (Life Technologies, Zug, 

Switzerland) in a final volume of 10µl containing 5ng of diluted cDNA mixed with optimized primers 

(Table 5.2.1) and SYBR® Green PCR Master Mix (Life Technologies, Zug, Switzerland). Due to very 

low POMC gene expression in the skin (Slominski et al. 2000), we optimized our procedure for this 

gene as following. First, we increased cDNA concentrations of the diluted samples through an ethanol 

precipitation with one volume of ammonium acetate 5M. The resulting pellet was resuspended in 15 

µl of TE 1x (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA). These samples were then pre-amplified using 

the POMC, GAPDH and EEF1A1 primers and TaqMan probes, using the PreAmp Master Mix kit 

(Life Technologies, Zug, Switzerland). Five µl of concentrated cDNA was preamplified in a thermal 

cycler (Biometra TProfessional 96 engine) with 14 cycles and then diluted 10 fold with TE 1x. POMC 

specific qPCRs were performed using an ABI Prism® 7900HT Sequence Detection System (Life 

Technologies, Zug, Switzerland) in a final volume of 10µl containing 5ng of pre-amplified cDNA 

mixed with optimized primers and probes (Table 5.2.2) and TaqMan Universal PCR Master Mix (Life 

Technologies, Zug, Switzerland). For each qPCR, cycling conditions were 50°C for 2 min (UNG 

activation), 95°C for 10 min (enzyme activation), 40 cycles of 95°C for 15 s and 60°C for 1 min, and a 

final dissociation stage (i.e. dissociation curve analysis). Three technical replicates were performed per 

cDNA sample. Reactions were performed in 384-well optical reaction plates, assembled with a Tecan 

Freedom Evo® liquid handler (Tecan group Ltd.). Quantification cycle (hereafter CT) values were 

recorded with SDS software 2.3. CT values larger than 35 were considered beyond the limit of 

detection and thus removed from further analyses.  

CT scores were imported into qBasePLUS software 1.3 (Biogazelle). Inter-plate covariation was 

checked according to inter-run calibrators (i.e. IRC). To correct for any variation in cDNA content and 

enzymatic efficiencies, CT scores of the candidate genes were normalized using the two reference 

genes: GAPDH and EEF1A1 (showing a variation (CV) of 0.12; (Vandesompele et al. 2002)). 

Technical replicates with less than 0.5 CT variation were at 99.2%, mean RQs (relative quantities) for 

each sample were calculated and analyzed with the geNorm software 3.4 (Vandesompele et al. 2002). 

These relative scores were finally box-cox transformed before statistical procedures, to enable the use 

of models with a Gaussian-distributed error. 
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Statistical procedure 

After preliminary statistical exploration, expression levels of the nine melanogenic genes (i.e. 

ASIP, MC1R, MITF, PC1, PC2, POMC, SLC7A11, TYR, TYRP1) were not significantly affected by 

two covariates, i.e. time of the day when individuals were sampled (linear mixed-models, P > 0.20) 

and whether nestlings were raised by biological or foster parents (i.e. ‘Cross-fostering’ factor, alone or 

in interaction with colour score of biological parents in linear mixed-models, P > 0.24). Moreover, 

nestling residual body mass (corrected for wing length, t1,299 = 28.52, P < 0.0001) was not associated 

with nestling brown chroma (linear mixed-models, F1,127.7 = 0.002, P = 0.96) or average colour score of 

biological parents (linear mixed-models, F1,37.75 = 0.29, P = 0.59). Consequently, these three factors 

were not included in final analyses, in which we considered only nestling sex (‘Sex’) and the date of 

the sampling (‘Date’) as covariates. In preliminary statistical exploration, we considered plumage 

nestling brown chroma or colour scores of both biological parents (43 fathers and 44 mothers) as 

independent explanatory variables. The resulting models owned the disadvantage of reduced statistical 

power, due to either lower colour discrimination in the case of brown chroma or highly complex 

statistics (i.e. four-way interactions) regarding colour scores of both biological parents. To simplify 

our statistical models, we considered the most parsimonious models involving the average coloration 

of both biological parents (‘MeanGenetic’) as explanatory variable. This approach is justified by the 

facts that melanin-based coloration is strongly heritable (Brommer et al. 2005; Gasparini et al. 2009a) 

and not sexually dimorphic in the tawny owl (Baudvin & Dessolin 1992; Galeotti & Cesaris 1996). 

To investigate colour-specific patterns of gene expression, we ran linear mixed-models on the 

whole dataset (i.e. involving the 325 measurements) by entering each candidate gene as response 

variable. We included nestling sex (i.e. factor ‘Sex’) and sampling date (i.e. factor ‘Date’) as 

covariates and nestling age classes (‘Age Class’), brood size manipulation treatment (hereafter ‘BSM’) 

and average colour scores of both biological parents (‘MeanGenetic’) as explanatory variables, plus all 

possible interactions between these three variables. Because we sampled twice individuals from the 

same nest, we included the identity of the biological brood and nestling ring number (nested in 

biological brood identity) as two random factors. Starting with full models, a backward stepwise 

procedure was used to sequentially remove non-significant terms (P > 0.05), starting with the least 
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significant higher order interactions, until obtaining best-fitted models. Statistical analyses were 

performed using JMP IN 8.0. 

 

RESULTS 

Gene sequencing 

Using cDNA of at least two extreme coloured tawny owls (i.e. light and dark melanic), we 

genotyped most of the whole coding sequence of nine candidate genes (i.e. ASIP, MC1R, MITF, PC1, 

PC2, POMC, SLC7A11, TYR, TYRP1) and two reference genes (i.e. EEF1A1 and GAPDH). Edited 

and aligned sequences revealed no key mutation, potentially affecting the amino acid sequence of 

candidate peptides or proteins.  

Age- and sex-specific patterns of gene expression 

All statistics can be found in Table 5.3. Based on the whole dataset, we found strong age-

specific patterns of gene expression during the rearing period. Indeed, the factor ‘Age Class’ was 

significantly associated with levels of expression of pheomelanogenesis- (i.e. ASIP and SLC7A11 

levels of expression were higher at an early rather than an old age) and eumelanogenesis-related genes 

(MC1R, PC1, TYR and TYRP1 levels of expression were higher at an old rather than an early age; 

Figure 5.1), but not with levels of MITF, PC2 and POMC.  
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Figure 5.1: Mean expression levels of the nine candidate genes in relation to nestling age class |  We 
investigated age-specific expression levels in pheomelanogenesis-related (i.e. ASIP) and eumelanogenesis-
related genes (i.e. MC1R, POMC, TYRP1 and to a certain extent TYR) or in key regulators of both 
molecular pathways (i.e. MITF, PC1, PC2 and SLC1A11). For this graph, but not for the analyses, we 
calculated mean expression levels (i.e. mean RQs) of the nine candidate genes for each nestling age class. 
Significant relations (*, ** or ***) are derived from Table 5.3. 
 

Similarly, we found sex-specific patterns of expression for PC1, PC2, TYRP1 and to a lesser 

extent for ASIP. Apart from the ASIP specific case (females expressing slightly more ASIP than 

males), males were expressing higher levels of PC1, PC2 and TYRP1 than females (Figure 5.2). 

Finally, we also found that MC1R and MITF levels of expression increased along the season. 
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Figure 5.2: Expression levels of the nine candidate genes in relation to nestling sex |  Significant relations (*, 
** or ***) are derived from Table 5.3. 
 

Colour-specific patterns of gene expression 

 Complete models performed on the whole dataset (i.e. involving both age classes) are reported 

in Table 5.3 (same analyses as the ones presented above for age- and sex-specific effects). MC1R 

expression levels were significantly associated with the average colour score of the biological parents 

(alone or in interaction with either ‘Age Class’ or ‘BSM’ factors, Table 5.3).  
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Figure 5.3: Nestling patterns of MC1R gene expression in relation to average melanin-based coloration of 
their biological parents and their age class |  The relationship is significant at an early (i.e. Age Class 1: 
closed circles and straight regression line; Pearson’s correlation: r = -0.22, n = 136 nestlings, P = 0.01) 
rather than older age (i.e. Age Class 2: open circles and dashed regression line; Pearson’s correlation: r = 
0.04, n = 143 nestlings, P = 0.65). 
 

Offspring of darker melanic biological parents expressed MC1R at higher levels than offspring 

of light melanic biological parents, especially at an early age (F1,42.95 = 5.9, P = 0.02, Figure 5.3) or 

when experiencing an enlarged broods (F1,33.65 = 9.3, P = 0.005, Figure 5.4). Interestingly, PC1 

expression levels were also significantly associated with the average colour score of the biological 

parents (alone or in interaction with ‘Age Class’, Table 5.3).  
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Figure 5.4: Nestling patterns of MC1R gene expression in relation to average melanin-based coloration of 
their biological parents and the brood size manipulation experiment |  The relationship is significant in 
experimentally enlarged broods (closed circles and straight regression line; Pearson’s correlation: r = -
0.18, n = 167 nestlings, P = 0.02), but not in experimentally reduced broods (open circles and dashed 
regression line; Pearson’s correlation: r = 0.1, n = 112 nestlings, P = 0.28). 
 

In this case, offspring of light melanic biological parents expressed PC1 at higher levels than 

offspring of dark melanic biological parents, especially at an early age (F1,46.69 = 6.81, P = 0.01, Figure 

5.5). Finally, regarding expression patterns of POMC and TYRP1 genes, we also found significant 

interactions between parental coloration and Age Class or BSM, respectively (Table 5.3). However, 

post-hoc analyses revealed that, within each age class (i.e. POMC gene) or each treatment (i.e. TYRP1 

gene), the relationships between coloration and POMC or TYRP1 expression levels were not 

significant (P-values > 0.1). 
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Figure 5.5: Nestling patterns of PC1 gene expression in relation to average melanin-based coloration of 
their biological parents and their age class |  The relationship is significant at an early (i.e. Age Class 1: 
closed circles and straight regression line; Pearson’s correlation: r = 0.22, n = 146 nestlings, P = 0.008) 
rather than older age (i.e. Age Class 2: open circles and dashed regression line; Pearson’s correlation: r = 
0.05, n = 143 nestlings, P = 0.55). 
 

DISCUSSION 

 In the present study, we explored the genetic architecture of the melanocortin system in the 

tawny owl, as a potential proximate mechanism underlying the expression of melanin-based coloration 

and in turn colour-specific reaction norms. To this end, we searched for SNPs in the coding sequence 

of melanogenic genes (i.e. ASIP, MC1R, MITF, PC1-2, POMC, SLC7A11, TYR, TYRP1) and for 

colour-specific patterns of gene expression in growing feathers of nestlings. We failed to detect non-



 

	  140 

synonymous mutations in the coding sequence of important melanogenic genes. By cons, we found 

interesting age-, sex- and colour-specific patterns of gene expression in the growing feather buds. 

Pheomelanogenesis- and eumelanogenesis-related genes were up- and down-regulated, respectively, at 

an early age, while the reverse was true at an older age. Moreover, males expressed higher levels of 

PC1, PC2 and TYRP1 genes than females. Finally, we demonstrated that MC1R and PC1 patterns of 

expression in young (rather than old) nestlings covaried with the mean colour score of their biological 

parents (a proxy of their own coloration given the very strong heritability of this trait). Hereafter, we 

discuss the key role of PC1 in processing the POMC prohormone and other important prohormones 

(e.g. proinsulin and proglucagon; (Ugleholdt et al. 2006)), a potential proximate mechanism 

modulating the pleiotropic effects of melanocortins, and potentially leading to colour-specific reaction 

norms in the tawny owl.  

Age- and sex-specific patterns of expression in pheomelanogenesis- and eumelanogenesis-related 

genes 

 Animal melanocytes can produce two types of pigments, eu- and pheomelanin. The switch 

between eu- and pheomelanogenesis is strongly dependent on tyrosinase activity and thiol 

concentration (mainly through cysteine). Empirical studies emphasized that pheomelanin is likely to 

occur early in neonatal stage (Lightner 2009), at the expense of eumelanogenesis, due to high thiol 

concentrations, eumelanin pigments being synthesized once thiol compounds were consumed by 

pheomelanin synthesis (Ito 1993). In laboratory mice for instance, juvenile tyrosinase activity was low 

at 3-4 days of age, leading to yellow first coat of hair as a consequence of increased proportion of 

pheomelanin (Burchill et al. 1993). Western immunoblotting also revealed a decreased expression of 

TYRP1 in follicular melanocytes of newborn agouti mice, exactly the time at which pheomelanin is 

produced predominantly (Kobayashi et al. 1995). In agreement with these studies, we found that 

pheomelanogenesis-related genes (i.e. ASIP and SLC7A11) were up-regulated early in the 

development of nestling tawny owl compared to eumelanogenesis-related genes (i.e. MC1R, TYR or 

TYRP1). Interestingly, the reverse was true at an older age, supporting the hypothesis that 

pheomelanogenesis takes place as long as cysteine is present and that eumelanogenesis is initiated 

once thiol concentrations is low enough. 
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 Laboratory studies also highlighted that expression of some melanogenic genes can differ 

between males and females. Although PC1 and PC2 genes are not located on sexual chromosomes in 

mammals (chromosomes 13 and 2 in Mus musculus, respectively; Genbank references: NC_000079.6 

and NC_000068.7, (Church et al. 2009; Church et al. 2011)), female mice frequently have higher 

expression of PC1 and PC2 than male mice (Beinfeld et al. 2005), potentially as a consequence of 

trans-regulatory elements mapped along mammalian X chromosome, an issue that still need to be 

tackled further. In birds, PC1 and TYRP1 genes are located on sexual Z chromosome (PC1 Genbank, 

sequences: AB121969.1, NC_011493.1; TYRP1 Genbank, sequence: NC_006127.3, (Bellott et al. 

2010)), while PC2 is located on chromosome 3 (Genbank, sequence: AB121970.1). Thus, we expected 

sex-specific patterns of PC1 (but not PC2) and TYRP1 expression in nestling tawny owls. In line with 

this prediction, we found that males expressed higher levels of PC1 and TYRP1 than females, but also 

higher levels of PC2. This outcome suggests first that nestling male tawny owls have a higher 

eumelanogenic potential than females (through TYRP1 gene expression), but also a greater capacity of 

POMC processing (through PC1 and PC2 activities) to give rise to ACTH or α- and γ-MSH (Bell et 

al. 1998; Laurent et al. 2004; Helwig et al. 2006; Pritchard & White 2007), key peptides of the 

melanocortin system responsible for numerous pleiotropic effects (Ducrest et al. 2008). Although 

hypothetical, the higher male than female potential to produce ACTH or α- and γ-MSH to bind 

MC3R, MC4R and MC5R during the breeding season may enable them to increase their energy 

expenditure, sexual activity and aggressiveness, respectively (Ducrest et al. 2008). Accordingly, sex-

specific patterns of PC1, PC2 and TYRP1 genes could be one proximate mechanism underlying the 

strong partition of reproductive tasks between sexes in the tawny owl (Sasvari et al. 2009; Emaresi et 

al. submitted, Chapter 2). 

Colour-specific patterns of gene expression 

 The melanocortin system is implicated in the expression of melanin-based coloration, but also 

pleiotropically regulate important phenotypic traits, such as stress response, energy homeostasis, anti-

inflammatory response, sexual activity, resistance to oxidative stress and aggressiveness (Cone 1999; 

Fan et al. 2000; Schioth 2001; Tatro & Sinha 2003; Slominski et al. 2004; Boswell & Takeuchi 2005; 

da Silva et al. 2005; Fan et al. 2005; Bertile & Raclot 2006; Butler 2006; Cone 2006; Hillebrand et al. 
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2006; Maaser et al. 2006; Lin & Fisher 2007; Page et al. 2011). These observations led evolutionary 

biologists (Ducrest et al. 2008; Roulin & Ducrest 2011) to propose that the melanocortin system can 

be a proximate mechanism underlying the widespread covariations between melanin-based coloration 

and other important physiological and behavioural traits (Roulin 2004). Due to the complexity of this 

genetic network across species, a thorough understanding of the mechanism responsible for variation 

in melanin-based coloration requires insights on genetic variation at both levels, i.e. nucleotide 

sequences and gene expression. This is a key aspect for understanding the role played by coloration in 

social interactions (Roulin & Ducrest 2011). In the present study, we adopted such an approach in the 

colour polymorphic tawny owl, a species characterized by alternative adaptive responses to 

reproductive conditions (Roulin et al. 2004; Roulin et al. 2008b; Emaresi et al. in prep, Chapter 1), 

food supply (Piault et al. 2009), pathogens (Galeotti & Sacchi 2003; Gasparini et al. 2009a; Karell et 

al. 2011a) and climatic conditions (Galeotti & Cesaris 1996; Karell et al. 2011b). Of particular 

interest, we provided experimental evidence that, in breeding tawny owl females, colour morphs 

differently expressed circulating POMC prohormone according to environmental and reproductive 

conditions (Roulin et al. 2011c), dark melanic individuals having lower levels of blood-circulating 

prohormone than light melanic ones when rearing experimentally reduced (but not enlarged) brood 

and when located in forest patches with high (but not low) density of beech trees, an indirect measure 

of prey abundance (note that these females were not moulting at the time of sampling suggesting that 

melanogenesis was not taking place). From a proximate point of view, this outcome raised different 

scenarios in melanocortin regulation, such as an overexpression of POMC gene or a down-regulated 

PC1 activity in red blood cells of adult tawny owls. In this context, a precise understanding of the 

relationships between melanogenic genes and their relative expression is imperative. To this end, it is 

particularly relevant to examine patterns of melanogenic gene expression during the production of eu- 

and pheomelanin, i.e. in nestlings. 

We failed to detect consistent SNPs in the coding sequence of nine candidate genes (ASIP, 

MC1R, MITF, PC1-2, POMC, SLC7A11, TYR, TYRP1). This is not so surprising since variation in 

melanin-based coloration in nestling tawny owl is a continuous (rather than discrete) trait, which is 

hence more likely to result from different levels of gene expression rather than SNPs in nucleotide 
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sequence. In line with this hypothesis, we demonstrated that MC1R and PC1 patterns of expression in 

young nestlings (i.e. approximately 10 days of age) covaried with the mean colour score of their 

biological parents (a proxy of their own coloration). The finding that MC1R gene was more expressed 

in offspring born from dark rather than light melanic tawny owls are not astonishing since this gene is 

a key regulator of eumelanogenesis pathway. However, the fact that this trend was only significant in 

nestlings experiencing enlarged broods is more surprising. Although weakly sensitive to 

environmental factors (Roulin & Dijkstra 2003; Gasparini et al. 2009a), a prediction confirmed by 

non-significant ‘BSM’ terms in other candidate genes, MC1R patterns of expression suggests that part 

of melanin-based coloration (i.e. eumelanin colour traits) could be condition-dependent. Of particular 

interest, no colour-specific patterns of POMC gene expression were highlighted, while PC1 gene was 

more expressed in offspring born from light rather than dark melanic tawny owls. This cleaving 

enzyme is responsible for the post-translational processing of POMC prohormone into mature ACTH, 

β-Lipotropin (β-LPH) and N-terminal peptide (N-POMC; Slominski et al. 2000; Helwig et al. 2006; 

Pritchard & White 2007; Rousseau et al. 2007) and, by extension, related to melanogenesis. Because 

energy balance-regulating neuropeptides are derived from larger biologically inactive precursors, 

which need post-translational processing (e.g. POMC prohormone), PC1 expression is frequently 

associated with important regulatory effects on energy balance (Jackson et al. 1997; Sanchez et al. 

2004; Helwig et al. 2006; Wardlaw 2011). Even though we could not highlight colour-specific 

patterns of POMC gene expression in nestling tawny owls, offspring born from light melanic parents 

are likely to have a greater capacity of POMC processing to ACTH pool through their higher PC1 

gene expression. If true, their larger ACTH pool may enable them by extension a greater processing to 

α-MSH (Pritchard & White 2007; Rousseau et al. 2007), despite the fact that we found no colour-

specific patterns of PC2 gene expression (PC2 cleaving essentially ACTH and not the POMC 

prohormone). ACTH peptide is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis, 

mainly involved in stress response. Upon release into the systemic circulation, ACTH reaches the 

adrenal gland and binds to MC2R to stimulate the production of stress response effectors, namely 

glucocorticoids (e.g. corticosterone or cortisol; Slominski et al. 2000; Slominski et al. 2005), to 

counteract the effect of stress and buffer tissue damage. Note here that similar functional HPA axis is 
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likely to play a role in the skin, ACTH production up-regulating cortisol release in epidermal tissues 

(Ito et al. 2005). These corticoids are known to have powerful effects on foetal development (Bolt et 

al. 2001; Simamura et al. 2011) and potent anti-inflammatory and immunosuppressive properties 

(Slominski et al. 2000; Franchimont 2004). Of particular interest, glucocorticoids can also strongly 

influence metabolic traits (e.g. gluconeogenesis or fat break down in adipose tissue; (Macfarlane et al. 

2008)), potentially explaining why nestlings born from light melanic females converted food less 

efficiently into body mass when fed ad libitum than nestlings born from dark melanic mothers, but 

suffered less from food restriction (Piault et al. 2009). Moreover, binding of ACTH to MC2R can also 

increase sexual steroid production in adrenal glands, leading to enhanced fertility, female sexual 

receptivity and male sexual motivation and performance (Shadiack et al. 2007). Altogether, our result 

raise the hypothesis that regulation of PC1 gene expression may be a potential proximate mechanism 

modulating the pleiotropic effects of melanocortins in the tawny owl, indirectly regulating important 

physiological functions such as foetal development, immune system, energy balance and sexual 

activity. 

Conclusion 

Tawny owl melanin-based coloration frequently covaries with important physiological and 

behavioural traits, such as body mass, growth rate, life-history traits, immune system, and oxidative 

stress. To date, our knowledge of proximate mechanisms leading to the evolution of these covariations 

was scarce. In this study, we investigated the adaptive function of the melanocortin system in 

generating the colour-specific reaction norms observed in a wild population of tawny owls. Our 

candidate gene approach did not reveal colour-specific nucleotide divergence in the coding sequence 

of melanogenesis-related gene, but showed colour-specific patterns of gene expression in young 

nestlings. Of particular interest, PC1 pattern of expression is a promising starting point for further 

investigation into the developmental basis of melanocortin-based covariations. Additional molecular 

studies are called to enhance our understanding of the POMC processing through prohormone 

convertases under different environmental or reproductive conditions. In this context, a central issue is 

to improve our knowledge of cis-acting elements regulating prohormone convertase gene expression, 

such as 5’UTR or 3’UTR (i.e. untranslated region), located upstream or downstream, respectively, on 



Chapter 5 
	  

145 

the same chromosome. Indeed, their specific nucleotide sequences and structures can dramatically 

influence mRNA half-life and processing, which have in turn important effects on protein translation 

and therefore melanin production (Rouzaud et al. 2010). Other issues that need to be addressed in 

future studies are the central roles of ACTH and α-MSH in shaping colour-specific norms of reaction 

in non-model organisms like the tawny owl. 
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TABLES 

Table 5.1: Specific information on pairs of primers used to sequence the nine candidate loci in the tawny owl. For each locus (‘Gene’), Genbank reference sequences 
(and the corresponding species) used to design primers, the number of individuals sequenced (‘N’), the amplification method used prior sequencing (Method), the 
forward and reverse primer sequences (5’ -> 3’), the annealing temperature used in the corresponding PCR (‘Ta’), the amplicon size (‘Length’) and its position in 
the coding sequence (‘Coding sequence’) are given. 
 
          Primer         
Gene Reference species Genbank references N Methods Forward (5' - 3') Reverse (5' - 3') Ta Length Coding sequence 

ASIP Gallus gallus NM_001115079.1; 
BU337545. ; BU206868.1  15 Cloning AGG TTT TGA CCG ACT TTG G TTA GCA CTT TGG GTT TAA CAT T 50 440 exons 2-4 

 Coturnix japonica AB304510.1; AB304509.1; 
AB304511.1        

EEF1A1 Gallus gallus NM_204157.2; NM_204157.2  1 PCR TTG TGC TGT CCT GAT TGT TGC T ATT CTG TGA CAG ATT TTT GGT CAA 55 1300 exons 3-6 
 Xenopus Laevis NM_001087442 2 Cloning      
 Taeniopygia guttata XM_002190770        
GAPDH Gallus gallus NM-204305 3 Cloning AGT CGG AGT CAA CGG ATT TG  CAT CAA AGG TGG AGG AAT GG 55 875 Data of prof. N. Mundy 
 Taeniopygia guttata AF255390        
MITF Gallus gallus NM_205029, XM_00219313 4 Cloning TGA CCT CAC GAA TCC TGC TAC G AAC GTA TTT GCC ATT TGC AAG G 55 600 exons 2-4 
 Coturnix Japonica AB005229 3 Cloning CCG GCT CTG AAT ACC CAC TC CTC CGC CTG CTA CTC GTT TT 55 900 exons 3-9 
 Taeniopygia guttata XM_002193131 2 PCR      

PC1 Gallus gallus XR_026679, 
ENSGALT00000023658 8 PCR ATG GCT TGG AGT GGA ATC AC TTC CAT CTT TTG GGA TCA GC 55 869 exons 4-10 

 Taeniopygia guttata XM_002187938, 
ENSTGUG00000006229 2 Cloning      

PC2 Gallus gallus XM_419332 2 PCR GCC GTC TAC ACC AAC CAG TTC T GCC ATC TTA ACC ATT GCT CCT G 55 1210 exon 2-10 
 Taeniopygia guttata XM_002197408        
POMC Gallus gallus NM_001031098 12 PCR TCC TAC TCC ATG GAG CAT TTC C CTG ACC CTT CTT GTA GGC GC 58 340 exon 3 
   2 Cloning ATG CCG CTG TGG AGC AGC C TTT TGA TGA TGG CGT TTT TGA AG 65 750 exons 2-3 
   3 Cloning GAG TTA AAT CTG GCT GCT TGG GAA AGA G GGC CAA ACT TGT TCC AGC GAA AGT GG 65 2000 exons 2-3 
SLC7A11 Gallus gallus XM_426289 11 PCR CTT CAT CTC TCC CAA AGG CAT C GCA GGA ACT CCA GTC AGG GTT A 55 1203 exons 1-11 
 Taeniopygia guttata XM_002191554_1 4 PCR TGT GCC CAC GGT CTC TAA TG AAG CAG GTA ATG GGC CAA AG 57 352 exons 1-2 
   2 Cloning GCT GGC ATC TTC ATC TCT CC ATG ACA GCT GGC AGA GGA GT 57 932 exons 1-9 
   2 Cloning GCC TTT TCA GGG AAT GAT GC AGG CAG GAA CTC CAG TCA GG 55 721 exons 5-11 
TYR Gallus gallus NM_204160.1, AB023291 2 Cloning TTG CTG AGG AAR GAG TGC T CCA CAG CAG CAG AAA AGC ACG AT 55 533 exon 1 
 Coturnix japonica AB024278 2 Cloning GTC CTG CCA GAA CAT CCT TC GGC TTG CTC AAG GTA GGG TA 57 1256 exons 1-5 
TYRP1 Gallus gallus  1 Cloning CTC AGT TCC CTC GCC AGT TGC TGG CTA CAG GTA GGT C 55 302 exon 1 
   2 Cloning CTG AGG AGC GGC ATG TGT T ACT GGT CAG TAA GAA GAG GCT GA 57 1450 exons 1-6 

MC1R Gallus gallus 
AB201629.1; AB2016630.1; 
AB2016631.1; 
NM_001031462.1 

2 PCR CTT GTT GAC GCA GGG ACC ATG T CTA CCA GGA GCA CAA CAC CAC CT 59 970 exon 1 
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Table 5.2.1: Specific information on qPCR pair of primers used with SYBR SYBR® Green PCR Master Mix. For each locus (‘Gene’), the sequence of forward and 
reverse primers (5’ -> 3’), their relative concentrations (‘Conc Fw’ and ‘Conc Rev’), the amplicon size (‘Length’), the slope of standard curve generated by serial 
dilutions of genomic DNA or specific plasmids (‘Slope’), the related coefficient of determination (‘R2’) and the calculated efficiency of the qPCR (‘E’) are given. 
 

Gene Sequence Fw (5'-3') Sequence Rev (5'-3') Conc Fw Conc Rev Length Slope R2 E 

ASIP GCT CCT TGA CAG GTT GCA TTC  GTT TGC TCA GAG CTG CCA ATT  150 300 67 -3.12 0.99 1.09 
EEF1A1 GAT TGA TCG TCG TTC TGG CA GCA GCA TCT CCG GAT TTC AG 300 300 66 -3.05 0.99 1.12 
GAPDH TTT TCC AGA CGG CAG GTC A TGG AAT GGC TTT CCG TGT G 300 300 66 -3.2 0.91 1.05 
MC1R GTC CGG CAC ATG GAC AAT G GAA GGA GAG GGA GGA CAC GAC 300 150 87 -3.46 0.99 0.95 
MITF GCC TTT GCT CCC CTG ATA TG GGT TGC AGT TGT CCA GCA CA 200 200 66 -3.45 0.99 0.95 
PC1 ACG GGC TGG AAA TTC AGG AT AAC CCA AAT CGG CTG TTG AC 300 150 66 -3.28 0.95 1.02 
PC2 GCT GGG ATA CAC AGG GAA GG CAT AGC TGG CTT TGG CAT TG 200 200 103 -3.48 0.99 0.94 
SLC7A11 TGT GCT TGC GGA CAT GAA TC TCT TCG TTG CAT CCC GTG A 300 300 66 -3.36 0.99 0.98 
TYR AAA GAA CAC CCC TAG CCA GGA GGG TTG GAG CCA TTG TTC AT 300 150 72 -3.24 0.99 1.03 
TYRP1 TTT GTC CTC CTG TCC CAT TCA ACG ACC CAG CAG TTC GAA GT 300 150 66 -3.31 0.987 1.01 
                  

 

Table 5.2.2: Specific information on qPCR pair of primers and TaqMan probes used with PreAmp Master Mix kit. For each locus (‘Gene’), the sequence of forward 
and reverse primers and TaqMan probe (5’ -> 3’), their relative concentrations (‘Conc Fw’, ‘Conc Rev’ and ‘Conc Probe’), the amplicon size (‘Length’), the slope 
of standard curve generated by serial dilutions of genomic DNA or specific plasmids (‘Slope’), the related coefficient of determination (‘R2’) and the calculated 
efficiency of the qPCR (‘E’) are given. 
 

Gene Sequence Fw (5'-3') Sequence Rev (5'-3') TaqMan Probe  (5'-3') Conc Fw Conc Rev Conc Probe Length Slope R2 E 

POMC TTC ATG ACC TCG GAG CAC AG TCG AGA CTT TTG ATG ATG GCG CCA GAC CCC TCT AGT GAC TCT CTT CAA 900 900 300 71 -3.36 0.99 0.98 
EEF1A1 CTC CTC TCG GTC GTT TTG CAG CCT TCT TGT CAA CTG ATG ACA CCA ACA GCA ACC GT 900 900 300 100 -3.32 0.99 1.00 
GAPDH TGC CAA CCC CCA ATG TCT C AGC AGC CTT CAC TAC CCT C GTG GAC TTG ACC TGC CGT CTG GAA AAA 900 900 300 81 -3.23 0.99 1.04 
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Table 5.3: Results of linear mixed-models investigating the effects of the brood size manipulation (‘BSM’), nestling age (‘Age Class’) and average plumage 
coloration of their biological parents coloration (‘MorphGenetic’) on nestling expression levels of nine candidate genes, plus all possible interactions between these 
three variables. In these models, we considered nestling sex (‘Sex’) and the date of the sampling (‘Date’) as covariates. Since several individuals of the same nest 
were sampled at two different ages, we included the identity of the biological brood and nestling ring number (nested in biological brood identity) as two random 
factors. 
 

Source of variation ASIP   PC1   SLC7A11 

 n df F P   n df F P   n df F P 

Age Class 293 1,149.6 110.77 <.0001  Sex 289 1,136 65.49 <.0001  Age Class 293 1,144.7 60.91 <.0001 
      Age Class  1,143.8 3.85 0.05       
Sex  1,147.6 3.51 0.06  MorphGenetic  1,45.01 4.34 0.04  BSM  1,121.4 3.02 0.09 
BSM  1,132.6 0.84 0.36  Age Class x MorphGenetic  1,146.6 5.66 0.02  Date  1,88.04 0.72 0.40 
Date  1,63.1 0.79 0.38        Sex  1,132.1 0.68 0.41 
MorphGenetic  1,43.52 0.26 0.62  BSM  1,121 0.65 0.42  MorphGenetic  1,45.21 0.41 0.53 
Age Class x BSM  1,147.4 0.45 0.50  Age Class x BSM  1,143 3.32 0.07  Age Class x MorphGenetic  1,143 1.55 0.22 
BSM x MorphGenetic   1,129.3 0.75 0.39  Date  1,66.28 2.91 0.09  Age Class x BSM  1,141 1.19 0.28 
Age Class x MorphGenetic  1,148.8 0.11 0.75  BSM x MorphGenetic  1,123.7 0.0001 0.99  BSM x MorphGenetic   1,120.4 0.0003 0.99 
Age Class x BSM x MorphGenetic  1,148.6 0.50 0.48  Age Class x BSM x MorphGenetic  1,145 0.14 0.71  Age Class x BSM x MorphGenetic  1,141.4 0.16 0.69 
                 
 MC1R   PC2   TYR 
 n df F P   n df F P   n df F P 

Date 279 1,57.72 4.27 0.04  Sex 266 1,128.3 7.42 0.007  Age Class 283 1,145.6 49.52 <.0001 
Age Class  1,182.3 16.67 <.0001             
BSM  1,251.2 0.09 0.76  MorphGenetic  1,43.93 1.89 0.18  MorphGenetic  1,40.64 2.25 0.14 
Age Class x BSM  1,139.9 0.87 0.35  Date  1,144.4 0.06 0.81  Age Class x MorphGenetic  1,143.2 3.50 0.06 
MorphGenetic  1,91.3 5.78 0.02  Age Class  1,178.2 0.24 0.63  Date  1,56.82 2.10 0.15 
Age Class x MorphGenetic  1,142.7 5.28 0.02  BSM  1,114 0.05 0.82  BSM  1,125.9 0.03 0.87 
BSM x MorphGenetic   1,120.5 5.51 0.02  BSM x MorphGenetic  1,113.6 2.50 0.12  Sex labdet  1,139 0.01 0.92 
      Age Class x BSM  1,138.3 0.20 0.66  BSM x MorphGenetic  1,124.8 2.88 0.09 
Sex  1,127.2 0.001 0.98  Age Class x MorphGenetic  1,138 0.06 0.81  Age Class x BSM  1,141.3 0.91 0.34 
Age Class x BSM x MorphGenetic  1,142.7 0.02 0.88  Age Class x BSM x MorphGenetic 1,136.8 0.07 0.79  Age Class x BSM x MorphGenetic  1,141.4 0.002 0.97 
                 
 MITF   POMC   TYRP1 
 n df F P   n df F P   n df F P 

Date 293 205.3 9.35 0.003  Age Class 258 1,123.8 1.03 0.31  Sex 271 1,134.1 5.44 0.02 
      MorphGenetic  1,46.95 0.25 0.62  Age Class  1,139 105.11 <.0001 
Sex  1,134.6 3.24 0.07  Age Class x MorphGenetic  1,126.6 5.82 0.02  BSM  1,111.4 0.05 0.83 
BSM  1,118.6 2.38 0.13        MorphGenetic  1,38.05 0.01 0.91 
MorphGenetic  1,39.7 1.17 0.29  Date  1,69.05 0.61 0.44  BSM x MorphGenetic  1,114.2 5.33 0.02 
Age Class  1,130.4 0.05 0.82  Sex  1,121.8 0.06 0.80       
Age Class x MorphGenetic  1,147 2.00 0.16  BSM  1,109.9 0.10 0.75  Date  1,52.12 0.74 0.39 
BSM x MorphGenetic  1,118.4 0.43 0.51  Age Class x BSM  1,123 1.07 0.30  Age Class x MorphGenetic  1,138.8 1.70 0.19 
Age Class x BSM  1,143.9 0.23 0.63  BSM x MorphGenetic   1,110.2 0.00 0.98  Age Class x BSM  1,136.1 0.20 0.66 
Age Class x BSM x MorphGenetic  1,145.4 0.06 0.81  Age Class x BSM x MorphGenetic  1,123.8 0.14 0.70  Age Class x BSM x MorphGenetic  1,137.7 0.02 0.88 
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ABSTRACT 

Nest defence is risky and jeopardize future reproduction. Here, we investigated individual 

variation in nest defence behaviour in the tawny owl (Strix aluco) because adults defend their nest 

vigorously against any potential predator including humans. Females are larger than males but on 

average similarly coloured, with birds varying from dark to light reddish melanic. Since dark and light 

melanic individuals evolved alternative life history strategies, we propose the hypothesis that 

coloration also signals nest defence behaviour. We examined several predictions using both correlative 

and experimental approaches. When the offspring were old enough so that their parents were naturally 

sleeping outside the nest, we found that during daylight hours our presence induced females to fly 

around us, eventually attacking us, more often when they were dark than light reddish, while we 

hardly saw males. Furthermore, a playback experiment during daylight hours showed that darker 

females defended their nest more intensely when we broadcasted territorial calls of a male tawny owl. 

A similar playback experiment performed at night the following year showed that the stronger nest 

defence by dark than light reddish birds is not restricted to females but also applies to males. Finally, 

irrespectively of their colour breeding females responded more vigorously to dark than light reddish 

stuffed tawny owl placed beside their nest. We conclude that dark reddish individuals are more 

aggressive and also represent a greater threat than light coloured individuals. The bolder behaviour of 

dark than light reddish individuals is likely to increase their current reproductive success, which is in 

agreement with our long-term dataset on tawny owl breeding biology showing that dark males suffer 

lower nest predation rates than light males. In this polymorphic bird, melanin-based coloration 

therefore signals anti-predator strategies and is used in social interactions. 
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INTRODUCTION 

Anti-predator behaviour is critical to organisms because predation is one of the major causes 

of reproductive failure in many species (Orians & Janzen 1974), including birds (Martin 1995). 

Parental defence behaviour is therefore likely to be linked with key life-history trade-offs between 

offspring quality vs. number and between current offspring vs. future reproduction (Wolf et al. 2007). 

In Ural owls (Strix uralensis) for instance, increased nest defence by parents was associated with 

higher recruitment rate of their offspring (Hayssen et al. 2002). This adaptive, but risky behaviour 

against predators or competitors is likely to evolve in parents that invest more energy in the production 

of high quality offspring. In this case, the direct costs incurred by this defence behaviour through 

higher adult mortality caused by predators (Montgomerie & Weatherhead 1988) and indirect costs due 

to aggressive behaviour, such as the cost of increased testosterone levels (Marler & Moore 1988) 

should be lower than the benefits generated by rearing high-quality offspring. The cost/benefit ratio of 

anti-predator behaviour is likely to differ between individuals (Montgomerie & Weatherhead 1988) 

and therefore we could expect that individuals signal investment in anti-predator behaviour to 

conspecifics of the same (intraspecific sexual selection) or different sex (interspecific sexual selection; 

e.g. Reyer et al. 1998). 

Life history theory proposes that individuals optimally allocate resources among energy-

demanding and time-consuming life history traits (Stearns 1992). Some of the best known life history 

trade-offs are resource allocation in reproduction vs. maintenance, in offspring number vs. quality, and 

in current vs. future reproduction (Stearns 1989). If for instance past investment in reproduction was 

made at the expense of maintenance, it will reduce adult survival and also negatively affect the value 

of current offspring (Williams 1966; Roff 1992). Assuming that information about the competitors 

intentions is available, several evolutionary stable strategies to resolve such trade-offs can 

theoretically coexist in single populations, for instance through a hawk-dove game (Johnstone 2001), 

where it pays off to always be a hawk or a dove. Different behavioural types may also evolve through 

slight differences in investment in current or future reproduction (Wolf et al. 2007). The latter model 

was designed to understand how different degrees of boldness in front of a predator can coexist in a 

single population. It revealed that differences in risk taking behaviour evolved since individuals with 
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higher future expectations have more to lose and are thus more risk-avoiding. Only few studies report 

natural populations exhibiting such strategies, though . Examples are colour-specific mating strategies 

in male ruffs (Philomachus pugnax; Rhijn 1973; Lank et al. 1995) or reproductive strategies in the 

white-throated sparrow (Zonotrichia albicollis; Tuttle 2003).  

Melanin-based coloration is an appropriate phenotypic marker of potential genetic strategies in 

trade-off resolutions in life history traits within a single population. Indeed, inherited variation in the 

deposition of melanin pigments (grey-black eumelanin and reddish-brown pheomelanin) is frequently 

reported to covary with morphological, physiological, behavioural or life history traits (Roulin 2004), 

such as resistance to stress, sexual activity and aggression (Ducrest et al. 2008). In the common 

buzzard (Buteo buteo) for instance, melanin-based coloration covaries with aggressiveness (against 

both predators and conspecific competitors) and fitness components (Boerner & Kruger 2009). Such 

covariations may be due to pleiotropic effects of key regulators of the melanogenesis (Ducrest et al. 

2008). Melanocortins derived from the proopiomelanocortin gene (POMC) can induce 

eumelanogenesis by binding to the MC1 receptor and promote aggressiveness by binding to the MC5 

and MC4 receptors (Morgan et al. 2004). Melanin-based coloration can thus be associated with 

alternative behavioural (e.g. boldness, aggressiveness) and life history strategies, involved in specific 

trade-off resolutions such as investment in current vs. future reproduction. 

In long-lived species, conspecifics are likely to differ in the resolution of fundamental life 

history trade-offs (Amat et al. 1996), because they have the choice to invest in the current offspring or 

decide to wait for another breeding season. Therefore, we decided to investigate whether melanin-

based coloration is associated with differences in nest defence behaviour in the tawny owl (Strix 

aluco). This owl displays large inter-individual variation in the deposition of melanin pigments, which 

was found to covary with physiological, behavioural and life history traits in several European 

populations (Galeotti & Sacchi 2003; Roulin et al. 2003; Roulin et al. 2004; Brommer et al. 2005; 

Roulin et al. 2005; Roulin et al. 2008b; Gasparini et al. 2009a; Piault et al. 2009; Karell et al. 2011a; 

Roulin et al. 2011c). Light coloured females breed less often than dark reddish ones, skipping 

sometimes one breeding season, but compensate this cost by producing more offspring during prime 

breeding seasons (Emaresi et al. in prep, Chapter 1). In contrast, reddish individuals seem less 
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flexible, adopting a constant reproductive investment (Piault et al. 2009; Roulin et al. 2011c) and 

produce fewer but higher quality offspring (Becker 1984; Roulin et al. 2008b; Emaresi et al. in prep, 

Chapter 1). Accordingly, darker reddish individuals may be more aggressive and bolder during nest 

defence to increase the survival of their offspring. To test this prediction, we began with an analysis of 

nest defence in a long-term dataset with records of nest visits. The tawny owl is a paradigmatic species 

for nest defence as it can attack humans who approach their nest too closely (e.g. Leifert et al. 2004). 

We thus predict that dark reddish individuals display bolder behaviour than light coloured ones. In 

addition, we manipulated parental workload during these years, by performing a brood size 

manipulation experiment. We were thus able to study whether differently coloured individuals 

experiencing experimentally reduced or enlarged broods (i.e. current reproduction) responded in 

different ways regarding nest defence. 

Male and female tawny owls have distinct reproductive tasks: males deliver food to their 

offspring and partner (Sunde 2008; Sasvari et al. 2009), while females distribute the prey items among 

the progeny. Because of their 5-10% larger size and 20-25% greater body mass (Glutz von Blotzheim 

& Bauer 1980), females are also responsible for nest defence (Wallin 1987), whereas, in territorial 

disputes, males and females were found to be equally active (Sunde & Bolstad 2004). Since tawny 

owls remain territorial during the breeding season (Glutz von Blotzheim & Bauer 1980), we 

performed playback experiments in two consecutive breeding seasons, during daylight and at night 

respectively. In the second experimental year we simulated a tawny owl intrusion in different 

territories by combining the playback experiment with the presence of mounted model of stuffed owls 

(either dark or light reddish), a procedure that enabled us to test whether tawny owl response differed 

according to the colour of intruder (i.e. stuffed bird) or defender. Previous studies already reported 

associations between anti-predator behaviour and melanin-based coloration in related species, i.e. 

marsh harriers (Circus aeruginosus; Sternalski & Bretagnolle 2010), common buzzards (Buteo buteo; 

Boerner & Kruger 2009), barn owls (Tyto alba; Van den Brink et al. 2012) and European kestrels 

(Falco tinnunculus; Van den Brink et al. in press). Based on the hypothesis that reddish coloration acts 

as a signal of boldness, a darker reddish stuffed owl might be considered a greater threat to a breeding 

pair and elicit a stronger defensive response. 
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METHODS 

Study species and site  

The tawny owl is one of the most common owl species in Eurasia. It is a long-living, mostly 

monogamous and philopatric species that can live up to 20 years (Glutz von Blotzheim & Bauer 1980; 

Galeotti 2001). Brood sizes vary between one and eight eggs, which hatch between February and the 

end of May (Galeotti 2001). Nestlings leave the nest-box as soon as they are able to fly, at an age of 

25-30 days but parents continue to feed and protect them until they are about two months old (Sunde 

2008). The reddish coloration is independent of age and sex and is highly heritable (h2 = 0.72-0.80, 

Brommer et al. 2005; Gasparini et al. 2009a; Karell et al. 2011b). The variance in coloration is 

explained by a mix of pheomelanin (68%) and eumelanin (21%), feathers of darker reddish individuals 

containing more pheomelanin and eumelanin; no carotenoids have been recovered in the feathers 

(Gasparini et al. 2009a). Our study was carried out in a forested area of 911 km2 situated in western 

Switzerland, at a mean altitude of 672 m (range 400-950 m). In this area, 377 nest-boxes were set up 

within forest patches of at least 4000 m2. The mean distance between two nest-boxes was 627 m, with 

a minimal distance of 500 m (Roulin et al. 2011c). 

Colour measurements 

Males and females were measured, weighed and assigned to one of five colour morphs (1 = 

dark reddish brown, 2 = reddish-brown, 3 = brown, 4 = brown-grey, 5 = grey Roulin et al. 2003; 

Roulin et al. 2005) providing a good estimation of overall coloration (Roulin et al. 2005). Between- 

and within-year visual assessments of individual coloration were found to be significantly repeatable 

for both females (280 individuals, r = 0.86 ± 0.023 SE, F279,613 = 11.37, P < 0.0001) and males (226 

individuals, r = 0.88 ± 0.025 SE, F225,354 = 12.59 P< 0.0001; Lessells & Boag 1987). 

Brood size manipulation experiment 

Based on the criterion that clutches were laid on similar dates (r = 0.92, P < 0.0001), between 

2005 and 2011 we matched 388 out of 545 successfully hatched pairs of nests to decrease (R) or 

increase (E) parental investment of breeding pairs. This resulted in a reduced body mass in E parents 

compared to R parents, demonstrating the increase in clutch size represents an increased parental 

effort (Roulin et al. 2011c). Brood sizes were manipulated by exchanging on average 2 hatchlings or 
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eggs from a nest E to a nest R and on average 3 hatchlings or eggs from a nest R to a nest E. Pairs of 

nests were randomly selected and colour characteristics of the biological and foster parents were not 

correlated to each other, neither same sex nor opposite sex (all P-values > 0.19). Adult plumage 

coloration was not associated with clutch size and brood size before or after the manipulation 

(Pearson’s correlations; P-values > 0.11). We found no evidence for assortative mating within 

breeding pairs (r = 0.05, n = 383, P = 0.28). Note that sample sizes might differ from total nest 

numbers, since we were not always able to capture both partners. 

Long-term analyses of female nest-defence during daylight hours 

Between 2005 and 2010 we examined whether plumage coloration of the parents was 

associated with their anti-predator behaviour. We considered 1555 brood visits performed in 318 nests 

during daylight hours when nestlings were old enough to be thermo-independent (mean ± SE = 20.2 ± 

0.2 days of age). At this time, parents do not rest in the nest anymore (Glutz von Blotzheim & Bauer 

1980), but usually in a tree nearby, so that they can detect and react to potential predatory threats. We 

only used those observations where no parent was captured inside the nest-box and we further 

restricted our analyses to females (1039 observations), because males were rarely seen (357 times). 

Moreover, preliminary analysis in males revealed no significant effect of colour on presence (P = 

0.39), as expected if nest defence is the main responsibility of females (Wallin 1987). We then 

proceeded to focus on females. We determined sex either visually based on the sexual dimorphism in 

size (Baudvin & Dessolin 1992) or the type of alarm calls (Galeotti & Pavan 1991). 

Nest predation 

During this period we also recorded breeding success or failure during both egg and nestling 

phase. Main avian predators are goshawk (Accipiter nisus), eagle owl (Bubo bubo) and buzzard (Buteo 

buteo; Mikkola 1976). Mammalian predation also occurs, mostly by mustelids, and after fledging by 

red foxes (Vulpes vulpes; Sunde et al. 2003a). We distinguished between abandoned nests, successful 

fledging and predation. During the incubation phase, if eggs were missing, or we found shell remains 

in the nest, this was considered predation; cold eggs left in a nest without the parents being present 

were considered abandoned. In the nestling phase, if the nestlings were missing long before they 

should have fledged at 30-35 days, this was also considered predation. If non-injured nestlings were 
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found dead in the nest, we considered this abandonment by the parents. Predation and abandonment in 

the egg phase are difficult to distinguish and therefore we limited our analysis to the nestling phase. 

Playback experiment during daylight hours in 2010 

In 2010, after the size of broods had been manipulated, we studied 26 enlarged and 25 reduced 

broods of the same mean hatching date (Student’s t-test, t49 = 0.56, P = 0.52). Foster and biological 

parent’s colour was not correlated with each other (Pearson’s correlations, all P-values > 0.30). 

Between April 21 and May 18, when nestlings were 26 ± 0.6 SE days old, we performed a playback 

experiment during daylight hours (range: 8h50 – 15h50). Male and female coloration was not 

significantly associated with time of the day and date of playback (Pearson’s correlations, P-values > 

0.08). To this end, we placed a stereo CD player at 10 m from the nest-box and played territorial calls 

of a male tawny owl during five minutes. This recording was a series of male hoots (3 per minute) 

from a single male originating from a breeding population in the UK, unknown to all owls in our local 

population. During the playback we retreated to approximately 20 meters from the nest, visually 

recording tawny owl presence or absence and a proxy of tawny owl presence, specifically passerine 

alarm calls. Passerines are known to actively mob raptors (Hogstad 1995) and in particular owls as 

passerines are a possible prey to them (McPherson & Brown 1981). Passerine alarm is therefore an 

efficient proxy of movement of tawny owls, because usually during the day tawny owls are not 

moving, but hiding in order to avoid being mobbed by passerines. We saw the breeding female in 24% 

of the playback experiments but we heard passerines alarming in 55% of cases. When we saw a tawny 

owl, we also heard passerines 10 out of the 13 times (77%).  

Playback experiment at night in 2011 

In 2011, we performed a playback experiment at night when nestlings were 17.6 ± 0.4 days 

old and a second time when they were 21.1 ± 0.4 days old, with an average of 3.2 ± 0.3 days between 

visits. The playback experiment took place at night (mean time 23:15h ± 12 min, range: 21h15 – 

01h15)), since we expect the owls to be more active at this time and hence we could obtain a measure 

of the intensity of their alarm calls. We obtained data of 31 nests that were visited twice between April 

19 and May 23. We placed a recorder (Marantz PMD 661) at 10 metres from the front of the nest box, 

and the microphone (Beyerdynamic MC 930) at 10 meters from the recorder. The researchers retreated 
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to a location at 10 meters away, perpendicularly from the microphone. Because longer playbacks are 

believed to increase owl response (Redpath 1994), we played 19 (instead of five as in 2010) minutes 

of the same male tawny owl territorial call as used in the 2010 experiment (3 hoots per min). Eight 

nest boxes that were occupied in 2010 were also used in 2011, 5 by the same pair, 2 by the same 

female and 1 by the same male. A loudspeaker was placed close to the nest box and we started a 

playback sequence of eight minutes (three minutes of calls followed by five minutes of silence) after 

an initial three minutes of silence as an acclimation period. We repeated the sequence twice. The same 

recording was used for all nests, to have a uniform treatment for all nests, which allowed us to 

eliminate variance caused by the specific recording used (McGraw et al. 2003). Note that coloration of 

both parents was unknown at the time of the experiment. In addition, we presented next to the 

loudspeakers a stuffed owl of either dark or light reddish morph. The stuffed owl was placed next to 

the loudspeaker when setting up the speakers and was covered under a black sheet until we 

broadcasted calls. A single mount was randomly allocated to each nest to simulate an intruder. The 

colour of parents did not differ between nests assigned the two different mounted owls (Student’s t-

tests: males, t28 = 1.68, P = 0.1; females, t29 = 0.02, P = 0.99).  

We recorded a number of variables in breeding males and females, all related to nest defence 

and aggression; males and females were distinguished by the type of calls. These were the time before 

a response was given after we started to broadcast calls (latency in seconds) and frequency of the 

response calls during the entire 18-minutes long playback experiments, the distance (metres) between 

the location of the mounted owl and each breeding owl when it emitted its first response call as well as 

the minimal distance (metres) of all responses, and the number of flights an individual was seen 

making during the entire 18-minutes long playback experiments. Because the experiment was carried 

out during the night, we were not always able to see individual birds and therefore we recorded the 

distance and the number of flights by listening to the calls or the sound of leaves made during 

movement. 
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Statistical procedure 

All analyses were performed using JMP 9.0.2 and SAS 9.1. Final models were obtained by 

eliminating non-significant variables, non-significant interactions first. All tests were two-tailed and P-

values smaller than 0.05 are considered significant, values are reported as means ± standard error. 

Long-term analyses of female nest-defence during daylight hours 

We used a generalized linear mixed model (GLMM) with a logit link function and a binomial 

response variable for whether or not the female was seen during our nest visits. We incorporated 

female identity, and year as two random factors to account for individuals breeding in more than one 

year (only 20 out of 212 females were only seen breeding in one year) and for more than one visit to 

the same nest in the same year. As independent variables we introduced female colour morph, brood 

size manipulation treatment (enlarged or reduced), time of the day (mean: 14h05 ± 35min, range: 6h-

21h), date (i.e. number of days after the 1st of January; range: 4 Feb-24 June) and initial 

unmanipulated brood size (mean: 3.9 ± 0.04, range: 1-7 nestlings). In the initial model, we 

incorporated two-way interactions between female coloration and time of the day, date, brood size and 

nestling age. 

Nest predation 

To investigate possible differences in predation risk between individuals of different colour 

that might be associated with different nest defence strategies, we compared brood predation rates 

during the nestling rearing stage between 2005 and 2010. We performed a generalized linear mixed 

model with a logit link function and presence/absence of predation on nestlings as binomial response 

variable. We included year and nest identity as random variables. Factors included in the model as 

explanatory variables were adult coloration, sex, brood size manipulation, hatching date and two-way 

interactions between adult coloration and brood size manipulation. 

Playback experiment during daylight hours in 2010 

We used passerine alarm calls as a proxy for the presence of an adult tawny owl and with this 

we constructed a logistic regression model with passerine alarm as a binomial response variable (i.e. 

presence or absence). The variables included in the initial model were date, age of the nestlings, brood 
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size manipulation treatment, colour morph of the mother and all two-way interactions with colour 

morph. 

Playback experiment at night in 2011 

Compared to the statistical models for the data collected in 2010, we considered a number of 

extra parameters: frequency of alarm calls, distance to the stuffed owl at first response, minimum 

distance to the stuffed owl during response, number of times moved and the latency until the first 

response. Since these parameters were often correlated with each other (Pearson’s correlations, 0.77 > 

|r| > 0.33, P < 0.027), we performed a principal components analysis (PCA) on the correlation matrix. 

Males and females were analysed separately because they differed in their responses (females 

responded faster (Mann-Whitney U test, z = -3.21, P = 0.005), more often (71% vs. 27%, chi-square 

test: χ² = 21.8, P < 0.001) and with a higher call frequency (z = -5.36, P = 0.005) compared to males. 

We thus decided to analyse the response of each gender in separate models. For both females and 

males we retained only those two principal components with eigenvalues larger than one (Quinn & 

Keough 2002). Both components explained 46.3% and 20.9% of the variation in female response, with 

eigenvalues of 2.32 and 1.04, and 48.7% and 24.6% of the variation in male response, with 

eigenvalues of 2.44 and 1.23, respectively. After inspection of the loadings for the females, we found 

that alarm frequency and number of flights contributed negatively to PC1 (respectively -0.78 and -

0.65), whereas log latency of response, the distance to the stuffed owl of first response and minimum 

distance contributed positively (respectively 0.50, 0.60 and 0.83). Thus, a negative value for PC1 

indicates a stronger reaction to intrusion as mimicked by our playback experiment and stuffed owl 

placed beside the nest. For PC2, log latency of response (-0.70), distance to the stuffed owl at the first 

response (0.49) and the minimum distance (0.44) contributed importantly. The alarm frequency 

contributes (0.35) and number of flights (0.07) had weaker loadings. Therefore, we conclude that a 

higher value for PC2 indicates a quicker and more intense response to our playback experiment and 

stuffed owl. 

In males, a higher value of PC1 indicates a greater distance of first response (loading: 0.56) 

and minimum distance to the mounted owl (0.95), while it also indicates fewer alarm calls (-0.57) and 

fewer flights (-0.93). The second component is only influenced strongly by the latency (0.98), with 
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weaker contributions for the distance at first response (-0.38) and frequency of calls (0.28). Thus, the 

most intense reactions are found for negative values of PC1 and positive values of PC2. 

PC1 and PC2 were used as response variables in separate general linear mixed models for 

males and females. This resulted in four different models. As random variables we included individual 

identity and individual nested in replicate to account for repeated measures. Fixed effects were the 

colour morph of the individual, date, time of the night, clutch size, age of the nestlings, colour of the 

stuffed owl used and brood size manipulation treatment. We included two-way interactions of the 

colour morph of the breeding individual with clutch size, brood size manipulation and the model owl 

that was used.  

Three males and 16 females responded in both replicates, therefore we could only assess 

change in response and repeatability of behaviour in female individuals. The chance of obtaining a 

response did not increase for females between the first and the second replicate (chi-square test, d.f = 

1, χ2 = 0.08, P = 0.78). We tested repeatability by using one-way Analyses of variance on the PC1 and 

PC2 values with individual identity as factor and if there was a significant effect of individual identity 

by then calculating repeatability values (Becker 1984; Lessells & Boag 1987). 

 

RESULTS 

Long-term analyses of female nest-defence during daylight hours 

Female tawny owls were more likely to fly around us, vocalise or attack us when they were 

dark rather than light reddish (F1,1270 = 4.80, P = 0.029), when the number of nestlings was large rather 

than small (F1,1270 = 17.06, P < 0.0001), in the morning rather than afternoon (F1,1270 = 14.50, P < 

0.0001) and late rather than early in the season (F1,1270 = 92.06, P < 0.0001). 

Predation 

We found that sex (F1,80 = 7.2, P = 0.009) and the interaction between sex and colour (F1,80 = 

3.96, P = 0.049) showed a significant relationship with predation at the nestling stage. Closer 

inspection revealed a strong trend for lower predation in darker reddish males (F1,20 = 4.02, P = 0.06). 

For females no significant relation was found between female plumage coloration and predation (F1,9 = 

0.48, P = 0.5). 
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Playback experiment during daylight hours in 2010 

The probability that passerines alarmed was significantly associated with female plumage 

coloration in interaction with the brood size manipulation experiment (logistic regression analysis: 

female coloration: χ1 = 3.02, P = 0.08; brood size manipulation: χ1 = 3.25, P = 0.07; interaction: χ1 = 

10.2, P = 0.001). Upon closer inspection we can see that passerines were more likely to alarm when 

the female was dark reddish and rearing a reduced (χ1 = 9.79, P = 0.002) rather than an enlarged brood 

(χ1 = 1.43, P = 0.23; Figure A.1). 

 

 

Figure A.1: Relation between passerine alarm and colour of female tawny owls depending on brood size 
manipulation. Data from the playback experiment carried out in 2010. Stars indicate significant 
differences. 

 

Playback experiment at night in 2011 

Response of breeding females  

The final model for PC1 (i.e. reaction to intrusion) showed no significant influence of any of 

the variables on the intensity of the response. The final model for PC2 (i.e. intensity of the response to 

intrusion) showed that females responded more intensely to a dark than light reddish mounted owl 
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(F1,28.05 = 7, P = 0.01; Figure A.2). In this model, the reaction of females rearing a reduced brood 

tended to be more intense than that of females with an enlarged brood (F1,24.59 = 3.6, P = 0.07). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.2: Strength of the response of 
female individuals (measured as latency 
to respond and frequency of alarm calls in 
principal component 2 of a principal 
components analysis) to a dark or light 
reddish mounted tawny owl. 

 

Both PC1 and PC2 were not repeatable within individuals (ANOVA, with individual as factor, 

all p-values > 0.34). However, if we look at the individual variables, the latency (F25, 40 = 3.4, P = 

0.007, r = 0.57 ± 0.02) and frequency of calls (F25, 40 = 3.8, P = 0.005, r = 0.50 ±0.04) were repeatable, 

whereas minimum distance, distance at first response and number of flights were not significantly 

repeatable (P-values > 0.65). 

Response of breeding males 

The final model for males with PC1 (i.e. distance of first response, minimum distance and 

calls) showed that the intensity of the response was higher in darker reddish males (F1,10 = 21.65, P = 

0.0009; Figure A.3). Males showed a stronger response when rearing fewer offspring (F1,10 = 5.56, P = 

0.04) and later in the season (F1,10 = 14.1, P = 0.004). The model with PC2 (i.e. latency time) showed 

no significant effects (all P-values > 0.26). 
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Figure A.3: strength of reaction by male individuals in relation to their colour morph, measured as 
principal component 1 (PC1; call frequency, latency to respond, number of lights and distance to the 
intruder) in a general linear model analysis. A negative value for PC1 indicates a stronger reaction. 
 

DISCUSSION 

Our results show that differently coloured tawny owls differ in their response to intruders. The 

long-term dataset revealed that compared to light reddish females, darker ones are present more often 

when a human intruder approaches their nest site. The daytime playback experiment has produced a 

similar result, with the extra merit of a brood size manipulation experiment that allowed us to 

manipulate the number of offspring to protect against potential predators. This experiment showed that 

passerines alarmed more frequently in situations where the tawny owl female was dark than light 

reddish and when rearing an experimentally reduced brood; in contrast light reddish females induced a 

less intense response in passerines whatever the brood size treatment. This result suggests that our 

presence around nests and broadcasted male calls induce owls to move from their hiding place 

particularly when the female is dark rather than light reddish and mainly when brood size is small. It 

also demonstrates that (reddish) parents invest more in defending few, presumably high quality 

offspring, rather than many, lower quality offspring. The long-term dataset indicates the reverse, 
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however, with larger broods being defended more intensely. An experimentally increased brood might 

not reflect the quality of offspring accurately, but rather the response to parents to an increased 

workload. In a natural situation parents that rear many young are better able to do so than parents 

rearing only few nestlings and might then also have better quality nestlings to defend. 

 A similar playback experiment carried out this time at night has brought complementary 

information on the association between melanin-based colour morphs and nest defence. First, in 

response to broadcasted male calls, darker reddish individuals were more aggressive. Second, a dark 

reddish tawny owl mount induced more intense nest protection than a light one. Altogether, our results 

demonstrate that dark reddish males and females invest more effort to protect their nest than light 

coloured conspecifics and that a darker reddish intruder represents a higher threat (at least for females) 

than a light reddish intruder. This is consistent with the finding of our long-term survey of the 

breeding biology of owls in the same area showing that light reddish owls tend to suffer more 

predation than dark reddish conspecifics. 

The use of a single male for our broadcast calls could have biased our results, as it could be 

the reaction to this specific male (colour, size, or other information contained in its song) that is 

measured. All our data, both experimental and observational are congruent with each other, however, 

making us confident that our results are robust and biologically relevant.  

Colour, reproductive success and survival 

Colour is not selectively neutral in tawny owls as results from a Finnish population showed 

that light reddish individuals of both sexes produce about 33% more offspring during their lifetime 

than dark reddish ones and have a longer breeding career (Brommer et al. 2005). The lighter reddish 

owls from that population also recruit more than twice as much (Brommer et al. 2005) and have a 

higher survival in cold winters (Karell et al. 2011b). Even though the selective pressures might not 

necessarily be the same for the Finnish and our Swiss population, selection pressures in different parts 

of the tawny owl range appear to select for alternative colour-specific behavioural, physiological and 

life history strategies. Dark reddish individuals are affected by parasites more often in Italy (Galeotti 

& Sacchi 2003), although not at the cost of reproduction. In Finland, occurrence of parasites is similar 

in light and dark coloured owls, but dark reddish females lose more body mass during breeding if 
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infected (Karell et al. 2011a). In Switzerland, light reddish individuals invest more in the number of 

offspring in good years, whereas darker individuals produce fewer, higher quality offspring in these 

years (Emaresi et al. in prep, Chapter 1). Furthermore, lighter reddish individuals lose less weight 

after an immune challenge (Gasparini et al. 2009a) and skip more often reproduction during bad years 

(Roulin et al. 2003), therefore saving energy. Given the fewer but higher quality offspring of darker 

reddish individuals, it would pay off for them to invest more in nest defence, as each nestling 

represents a greater value to them than the lower quality nestlings of a lighter reddish individual do. 

The trend for higher nest predation in lighter reddish males is in line with our observations of less 

intense nest defence and suggest that colour might serve as a signal of the reproductive strategies of 

individual tawny owls. We find no assortative mating for colour in our population (similar to results 

found in a population in Finland, Brommer et al. 2005), which could mean that partners do not select a 

mate with necessarily similar or dissimilar nest defence or parental care strategies. 

Aggression and melanin 

Nest defence is a costly and risky behaviour, particularly in terms of survival and injuries 

(Wallin 1987), which is why the larger and heavier female might be more active in this part of parental 

care (Wiklund & Stigh 1983). However, it might allow dark reddish individuals to recruit more of 

their offspring into the population, by being bolder and more aggressive, since nest predation usually 

ends in all nestlings of a clutch being killed. The survival of nestlings in the first year is one of the 

most important traits for fitness (Francis & Saurola 2002) and this might be improved by increased 

nest defence of the parents, possibly at the cost of their own survival. 

The more aggressive behaviour we observed from darker reddish individuals and of all 

individuals towards dark reddish individuals (in the form of the stuffed owls) could occur because they 

might also be perceived as more dangerous by breeding females. In the buzzard (Buteo buteo) 

different coloured individuals are more aggressive towards a lure that has the same colour (Boerner & 

Kruger 2009). In marsh hariers (Circus aeruginosis, Sternalski & Bretagnolle 2010) colour morphs 

react differently to predators. Colour might then signal such an agonistic behaviour, like the black 

badges in the siskin (Carduelis spinus, Senar & Camerino 1998), the house sparrow (Passer 

domesticus, Moller 1987) or Gouldian finch (Erythruria gouldiae, Pryke & Griffith 2009). 
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Coloration as signal of personality 

Bold individuals habitually form routines quickly and can have a selective advantage in stable 

environments, whereas shy individuals are better able to adapt quickly to a changing environment 

(Reale et al. 2007). Such a relation between melanic coloration and proactivity/reactivity has already 

been demonstrated in other species such as the Herman’s tortoise (Testudo hermanni, Mafli et al. 

2011). There is also evidence for an association between melanin-based coloration and nest defence 

intensity in great tits (Parus major, Quesada & Senar 2007), male American Robins (Turdus 

migratorius, Row & Weatherhead 2011) and house sparrows (Klvanova et al. 2011). 

The differences in individual behaviour we observed lead us to think that light reddish 

individuals are more flexible and reactive, whereas darker reddish individuals are more proactive and 

may form fixed routines, in line with the active/proactive or bold/shy behavioural types (Tuttle 2003), 

normally measured in traits such as aggression, risk-taking, fear, exploration and reaction to 

environmental changes (Sih et al. 2004). The Pace of Life Syndrome (Reale et al. 2010) could explain 

most of the trade-offs observed in our tawny owl population, where the inflexible, aggressive reddish 

individuals might choose different reproductive strategies than the flexible, less aggressive light 

reddish individuals. The direction and underlying mechanisms for relationships between physiology, 

behaviour and life history traits do not have to be similar in all species (Reale et al. 2010). 

Melanocortin system as potential proximate explanation 

For selection to act on the colour as signal of boldness, a genetic basis for both antipredator 

behaviour and plumage coloration need to be present, as well as genetic correlation between those two 

traits via pleiotropic genes or genetic linkages. Although evidence is accumulating that adult 

antipredator behaviour (Bize et al. 2012) and melanin-based coloration can be inherited (e.g. Bize et 

al. 2006; Gasparini et al. 2009a), we still know very little about the existence and nature of genetic 

correlation between those two traits. A candidate is the melanocortin system. In this system, 

pheomelanic red coloration is caused by the binding of a melanocortin antagonist (i.e. the Agouti 

signalling protein, ASIP) to the receptor responsible for skin pigmentation, which then switches from 

producing eumelanin to pheomelanin. In tawny owls, eumelanin and pheomelanin both play a role in 

reddish coloration (Gasparini et al. 2009a) and thus an increase in reddish coloration coincides with an 
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increase in eumelanin, which is associated with aggression (Ducrest et al. 2008). Thus, our 

observation of increased nest defence, a measure of aggression, is consistent with predictions. 

When experimentally experiencing stressful (enlarged brood) conditions, light reddish tawny 

owls were able to reduce circulating levels of POMC (proopiomelanocortin, a part of the melanocortin 

system) prohormone in their blood, whereas dark reddish individuals have a more constant level 

(Roulin et al. 2011c). Given the effects the melanocortin system has on various physiological and 

behavioural traits (Ducrest et al. 2008) this might help explain the different levels of aggression found 

in differently coloured individuals. We could have expected light reddish individuals to have higher 

levels of aggression than dark reddish individuals in relaxed conditions, as the level of POMC in their 

blood were higher. We do not know how the level in the blood translates into a link with aggression 

and thus it is clear that much of the mechanisms of interplay between the melanocortin system and 

behaviour remain to be unravelled. There is however some evidence of a link between the 

melanocortin system and aggressive behaviour in deer mice (Peromyscus maniculatus) and rats 

(Rattus norvegicus) where the most pheomelanic individuals were found the most aggressive, the most 

difficult to handle and the most active (Hayssen 1997).  

Although the precise mechanisms remain to be determined, the melanocortin system could 

thus be involved in both coloration and aggression, here measured in nest defence against predators 

and competitors. Future work needs to demonstrate if the melanocortin system is causing the relation 

between coloration and behavioural traits, as a proximate mechanism underlying the maintenance of 

polymorphism in tawny owls and perhaps, given the results in deer mice, other vertebrates. 
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SUMMARY OF MAIN RESULTS 

The emergence and maintenance of variation in physical attributes, such as melanin-based 

coloration, is a long-standing debate (Darwin 1872; Wallace 1913; Galeotti et al. 2003; Roulin 2004; 

Bond 2007; Gray & McKinnon 2007). Whereas the evolution of carotenoid-based coloration seems 

obvious according to the handicap principle (Zahavi 1975) and the idea that these colour traits can 

honestly signal individual qualities in wild populations (Baker & Parker 1979; Hill 1990, 1991; Olson 

& Owens 1998; Faivre et al. 2003; Peters et al. 2004; Preault et al. 2005; Hill 2006), the adaptive 

significance of melanin-based coloration remains largely unsolved. Although the commonest 

pigmentation system used in animal kingdom (Majerus 1998), its colour patterns are under strong 

genetic control (Chapter 5; Mundy & Kelly 2003; Roulin & Dijkstra 2003; Bize et al. 2006; Hoekstra 

2006) and weakly sensitive to environmental conditions (Chapter 3; Roulin et al. 1998; Gonzalez et al. 

1999; McGraw & Hill 2000; McGraw et al. 2002). But the finding that melanin-based coloration 

covaries with morphological, physiological, behavioural or life history traits (Galeotti et al. 2003; 

Jawor & Breitwisch 2003; Roulin 2004) raised the idea that melanin-based colour patterns can signal 

alternative strategies and, by extensions, individual qualities. Recently, a review of genetic and 

pharmacological studies proposed that pleiotropic effects of the melanocortin system could account for 

the observed covariations between melanin-based traits and other important phenotypic traits (Ducrest 

et al. 2008). The melanocortin system regulated numerous physiological functions, such as melanin-

based coloration, HPA axis and resistance to stressors, sexual behaviour and aggressiveness, energy 

balance, resistance to oxidative stress and immunity (Ducrest et al. 2008). As a consequence of the co-

regulation of these traits by the same set of peptides, the expression of these traits according to a 

specific melanic colour trait is likely to be predictable. Dark melanic individuals are expected to be 

more resistant to stressful factors (i.e. inducing a glucocorticoid response) or to oxidative stress, have a 

reduced inflammatory responses and higher proliferation of B cells and regulatory T cells, better 

regulated the balance between food intake and energy expenditure and are sexually more active 

(Roulin & Ducrest 2011). In this context, experimental studies are needed to further test these colour-

specific predictions, while laboratory studies need to investigate the proximate mechanisms underlying 



Conclusion 
	  

171 

these covariations (e.g. nucleotide diversity, patterns of gene expression, posttranslational 

modification; Hoekstra 2006; Mundy 2006; Hoekstra & Coyne 2007). 

In my PhD thesis, I first experimentally tested whether the degree of tawny owl melanism was 

associated with life history or physiological strategies, which may confer fitness-related benefits, but 

also entail costs to differently coloured individuals in different environments. Accordingly, I 

performed brood size manipulation treatments to induce changes in the levels of parental workload 

and/or in the levels of sibling competition for prey items. In both cases, I modified the levels of stress 

experienced by the parents or the nestlings. In Chapter 1, I specifically investigated whether tawny 

owl colour morphs have a different pace of life. Based on capture-recapture data collected during eight 

consecutive years, I showed that light melanic owls have lower survival compared to dark melanic 

conspecifics. This finding suggests that the former individuals have a slower pace of life than the 

latter. If this hypothesis holds, life-history theory states that individuals have to allocate optimally 

resources among life-history traits (MacArthur & Wilson 1967; Stearns 1992), a decision rule that can 

differ between individuals (Pianka 1970; Mcleod et al. 1981). Concordant with previously published 

results, I demonstrate that dark melanic males had a slow-pace of life, characterized by the production 

of few high quality offspring that were more often recruited in the local breeding population than 

offspring of light melanic males. In line with this hypothesis, I also showed, in Annexe 1, that dark 

reddish individuals are bolder and more aggressive in terms of nest defence compared to light reddish 

conspecifics, potentially explaining why they suffered lower predation rate in our population. This 

result demonstrates that reddish parents invest more in defending few, presumably high quality 

offspring, rather than many, lower quality offspring. 

Because oxidative stress is closely associated with individual pace of life, and specifically its 

reproductive strategy (Cohen et al. 2008; Monaghan et al. 2009; Metcalfe & Alonso-Alvarez 2010; 

Isaksson et al. 2011), I tested, in Chapter 2, whether these colour-specific trade-off resolutions 

between offspring number and quality induce, in turn, alternative trade-off resolutions between the 

production of deleterious reactive oxygen species (ROS) and antioxidant defence mechanisms, such as 

glutathione (GSH), a molecule that potentially plays a role also in pheomelanogenesis. In agreement 

with previous studies, I revealed that the adaptation of light melanic tawny owls to stressful 
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reproductive conditions (i.e. brood enlargement) leads them to overproduce ROS, but which was 

compensated by larger levels of tGSH. This outcome advocates for a larger consumption of GSH by 

light melanic tawny owls to counter the detrimental effects of their ROS overproduction. This 

hypothesis points out the central issue of GSH expression and expenditure. The global pool of GSH 

(tGSH) being composed of two forms, namely redGSH (amount of available antioxidants) and oxGSH 

(amount of tGSH recently used), the percentage of each fraction may indeed covary with melanin-

based coloration. Accordingly, and because GSH can be used either as an antioxidant to counter by-

products of metabolism (Reddy et al. 1982; Halliwell & Gutteridge 1989) or as a source of cysteine in 

pheomelanogenesis (Benedetto et al. 1981; Ozeki et al. 1997), I specifically focused, in Chapter 3, on 

the relationships between GSH levels and melanin-based coloration in breeding adults (and their 

colour-specific reproductive strategy) and growing nestlings (that potentially need cysteine to produce 

pheomelanin pigments). Based on the idea of GSH dependence of pheomelanin-based colour traits, we 

expected a greater consumption of GSH (i.e. higher oxGSH levels) in dark melanic nestlings. This was 

however not the case. In contrast, we found that in adults, which were not moulting and hence not in a 

state of intense melanisation, melanin-based coloration was negatively correlated with tGSH and 

redGSH levels, light melanic individuals showing higher tGSH and redGSH concentrations. Because of 

their energy-demanding life history strategies (Chapter 1) and their adaptation to stressful 

environmental and reproductive conditions (Roulin et al. 2003; 2004; 2008b; Piault et al. 2009; 

Emaresi et al. 2011), these individuals are more likely to face stronger metabolic constraints (e.g. ROS 

production in Chapter 2), forcing them to develop a stronger antioxidant response (i.e. higher tGSH 

and redGSH concentrations).  

In a proximate perspective, the second main objective of my PhD thesis was to infer the exact 

genetic mechanism leading to the covariations between melanin-based coloration and other important 

phenotypic traits. Based on the assumption that POMC gene plays a key role in the observed colour-

specific reaction norms (Roulin et al. 2008b; Piault et al. 2009), I measured, in Chapter 4, the levels 

of circulating POMC prohormone in breeding females rearing manipulated broods (i.e. different 

parental workload). Interestingly, I found that light melanic females decreased their level of plasma 

POMC prohormone when experiencing a higher level of stress (i.e. experimentally enlarged broods), 
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whereas dark melanic females produced POMC prohormone independently of the brood size 

manipulation treatment. One plausible scenario is that, under stressful conditions, high levels of 

ACTH are necessary, which imply stronger processing of plasma POMC prohormone (Myers et al. 

2005), a constraint that can lead light melanic owls to reduce plasma POMC prohormone in such 

conditions. In this context, a thorough understanding of the mechanism responsible for variation in 

melanin-based coloration (and by extension covariations with other physiological traits) requires 

insights on genetic variation at both levels, i.e. nucleotide sequences and gene expression. To this end, 

the study of melanogenic gene expression in nestling tawny owls (for which tissue sampling is easier 

than in adults) was of particular interest (Chapter 5), especially genes related to POMC prohormone 

processing (i.e. genes encoded prohormone convertases PC1 and PC2). Although I could not detect 

nucleotide polymorphism in the coding sequence of nine candidate genes (ASIP, MC1R, MITF, PC1-

2, POMC, SLC7A11, TYR, TYRP1), I demonstrated that MC1R and PC1 patterns of expression in 

young nestlings (i.e. approximately 10 days of age) covaried with the mean colour score of their 

biological parents (a proxy of their own coloration). Because no colour-specific patterns of POMC 

gene expression were highlighted, the finding that PC1 gene was more expressed in offspring born 

from light rather than dark melanic tawny owls suggests that owlets born from light melanic parents 

are likely to have a greater capacity of POMC processing to ACTH, a key regulator of the 

hypothalamic-pituitary-adrenal (HPA) axis, mainly involved in stress response. This result raises the 

hypothesis that regulation of PC1 gene expression may be a potential proximate mechanism 

modulating the pleiotropic effects of melanocortins in the tawny owl, indirectly regulating important 

physiological functions such as foetal development, immune system, energy balance and sexual 

activity for instance. 
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CONCLUSION 

In a general background, the main questioning of my PhD thesis was to understand why 

different colour morphs coexist in our local population of tawny owl. What are the main selective 

forces enabling the maintenance of these alternative colour variants? Similarly, what are the proximate 

mechanisms responsible for colour polymorphism in this species?  

From an ultimate point of view, variation in genetically-inherited melanin-based coloration 

can be maintained under different non-mutually exclusive scenario (see also Box 3 in Introduction). 

First, under frequency-dependent selection, the adaptive value of a given phenotype depends on its 

frequency. Under negative frequency-dependent selection, a rare genotype is relatively favoured by 

selection and will increase in frequency. As it becomes more common, its fitness decreases and may 

be no longer favoured. At that point, the adaptive values of alternative genotypes are equal and natural 

selection enables them to stay at equilibrium, maintaining, in turn, genetic polymorphism in the 

population (Ridley 2004). Under apostatic selection for instance (Clarke 1962), individuals displaying 

a new coloration enjoy the advantage of being less rapidly detected by preys or predators compared to 

other colour morphs (Bond 2007). A classical example is the emergence and maintenance of the 

melanic colour morph in Moths Biston betularia (Grant 2004). Due to the industrial revolution in 

Britain during the last 150 years, smoke and soot produced by industrial factories caused a darkening 

of tree trunks in urban areas. While trunks were originally covered with light-coloured lichens, 

favouring initially (light-coloured) peppered moths rather than rare melanic ones, the darkening of 

trunks drastically increased the adaptive value of melanic moths, since they were less exposed to 

predation. Another well-known example is the maintenance of colour polymorphism in the pea aphid 

(Acyrthosiphon pisum; Losey et al. 1997). Green colour variant suffers from stronger parasite load 

than red colour variant, but which suffers from higher predation rate compared to green conspecifics. 

Therefore, colour morphs adopt alternative life-history strategies, both being maintained through 

balancing density and/or frequency selections. A second scenario is called ’heterosis’, ‘heterozygote 

advantage’, or ‘heterotic balancing selection’. In this case, individuals known or assumed to be 

heterozygote at a specific locus enjoy greater fitness benefits than those known or assumed to be 

homozygote at the same locus. Two examples are the maintenance of colour polymorphism in a wild 
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population of butterfly Danaus chrysippus (Smith 1980) or in the common buzzard Buteo buteo 

(Kruger & Lindstrom 2001). A third scenario is linked to heterogeneous and fluctuating habitats due to 

stochasticity in environmental conditions. Because natural selection often varies in space (i.e. 

heterogeneous habitats), such divergent selection enables genetically-inherited phenotypes (e.g. colour 

morphs) to interact with their environment. Genotype x environment (GxE) interactions lead local 

population (or deme) to evolve traits that provide fitness advantage under local environmental 

conditions (Kawecki & Ebert 2004). This local adaptation process can occur within a single 

population (Kassen 2002; Galeotti et al. 2003; Roulin 2004; Sgro & Hoffmann 2004; Byers 2005; 

Chunco et al. 2007). Since environmental conditions can also fluctuate over time, the GxE interactions 

developed by locally adapted phenotypes can be favoured at different period of time (e.g. seasonality). 

Indeed, models including age- or stage-specific selective regimes revealed that temporal fluctuations 

in environmental conditions can promote the maintenance of genetic variants (Ellner & Hairston 

1994). When the strategy of one morph is favoured during a specific period of time, the strategy of the 

other morph still enables them to persist until a more favourable period. According to the observed 

covariations between melanin-based coloration and important behavioural, physiological or life 

history traits, which selective force can be involved in the maintenance of variation in melanin-based 

coloration in the tawny owl? 

Although absence of evidence does not mean evidence of absence (pers. comm. Dr. Romain 

Piault), it appears that evolution and maintenance of alternative colour variants in our population does 

not necessarily involve direct selection on melanic colour traits, since we were not able to identify 

adaptive function of coloration itself in our population. Although this questioning was out of the scope 

of this PhD thesis, preliminary results reveal that colour morphs are randomly distributed across 

environmental variables (types of forest, vegetation covert, undergrowth density, altitude, latitude or 

temperatures; Master projects of Adrian Moriette and César Metzger, unpublished results), unlike 

other studies performed on larger and less heterogeneous study areas (Galeotti & Cesaris 1996; Karell 

et al. 2011b). These trends suggest that colour morphs do not derive specific advantages in terms of 

crypsis by exploiting territories that enable them to blend into the environmental background or 

conceal their shape (Endler 1988; Bond 2007). Moreover, the finding that variation in melanin-based 
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coloration was not associated with altitudinal or latitudinal gradients in our study area suggests that 

dark melanic individuals do not benefit from specific advantages in terms of thermoregulation. 

Altogether, these results also suggest that colour morphs are unlikely to be locally adapted in our study 

area. Nevertheless, and despite the fact that we did not find assortative mating in our local population, 

it is worth noting that melanin-based coloration can still play a direct signalling function in social 

interactions (Rohwer 1975; 1977; see also Chapter 4). Additional studies are thus needed to clearly 

demonstrate whether or not melanin-based coloration is directly under selective regimes. 

In this context, the emergence and maintenance of colour variants in the tawny owl (at least in 

our population) is more likely to involve selective process on traits that are correlated to melanin-

based coloration. Covariations between melanic coloration and aspects of individual quality due to 

pleiotropy suggest that colour morphs may undergo correlational selection (Sinervo & Svensson 

2002). This force of selection favour particular combinations of traits expressed together, a process 

favouring in turn covariance due to linkage disequilibrium or pleiotropy (Lande 1980). In our highly 

heterogeneous landscape, characterized by important environmental stochasticity within and between 

years (e.g. food availability), selected suites of traits resulting in colour-specific strategies may be 

favoured at different periods of time. Light melanic individuals are selected to perform particularly 

well under stressful conditions, as suggested by their capacity to produce large number of fledgling 

when conditions permit (Chapter 1) or nestling ability to resist to food deprivation (Piault et al. 2009) 

or brood enlargement (Roulin et al. 2008b). This strategy is likely to induce some physiological 

constrains, such as ROS overproduction (Chapter 2), forcing them to produce larger antioxidant 

response (Chapters 2 & 3). In these circumstances, light melanic tawny owls need to be more flexible 

in their decisions, as suggested by limited offspring ability to gain body mass in rich environments 

(Roulin et al. 2008b; Piault et al. 2009), short-lasting immune response in adults (Gasparini et al. 

2009a), lower investment in specific life history traits (e.g. skipping some reproductive events, 

producing fledglings of lower quality (Chapter 1) or reducing nest defence behaviour (Annexe 1)) or 

fluctuating levels of POMC prohormone according to the environment (Chapter 4). Conversely, dark 

reddish individuals are selected to perform particularly well under relaxed conditions, probably 

because they allocate resources equally among the different activities, such as immune response 
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(Gasparini et al. 2009a; Gasparini et al. 2009b), offspring ability to gain body mass in rich 

environments (Roulin et al. 2008b; Piault et al. 2009), life history traits (i.e. adult survival, production 

of few but high quality offspring (Chapter 1) or nest defence (Annexe 1)), GSH production and 

consumption (Chapters 2 & 3), or constant production of circulating POMC prohormone 

independently of changes in the environment (Chapter 4). Although speculative, one can temptingly 

define dark melanic owls as adopting a ‘specialist’ strategy, whereas lighter coloured owls adopt a 

more ‘generalist’ strategy (Wilson & Yoshimura 1994). Specialist morphs (i.e. dark reddish owls) are 

characterized by good performance under relaxed environmental conditions (e.g. reduced broods), 

precisely because these conditions enable them to invest optimally in the whole suites of behavioural, 

physiological, or life history traits. Conversely, stress-resistant generalist morphs (i.e. light reddish 

owl) adopt a versatile strategy that enables them to perform particularly well in harsher environmental 

conditions. These theoretical models (Wilson & Yoshimura 1994) emphasized that temporally varying 

environments such as seasonal fluctuations and stochastic variation are thought to favour generalists, 

since they are more flexible in their decisions. Nevertheless, the same models also demonstrated that 

both strategists can coexist by the adaptive switching behaviour (or strategy) of generalists, which can 

temporally reduces variation in habitat conditions experienced by specialists. For instance, the 

skipping behaviour of generalist (i.e. light melanic) tawny owls leads to lower competition for 

resources during poor breeding seasons. Thus, specialist (i.e. dark melanic) tawny owls are likely to 

face less stressful habitats during these breeding seasons, a situation that enables them to allocate 

resources equally among the different activities. 

Mechanistically, my PhD thesis provides important insights in the central role of the 

melanocortin system in modulating covariations between melanin-based coloration and important 

phenotypic traits in the tawny owl. Indeed, the capacity of light melanic adult tawny owl to modulate 

the levels of circulating POMC prohormone (Chapter 4) and the finding that offspring born from light 

melanic parents expressed higher levels of prohormone convertase 1 (PC1; Chapter 5) supported the 

hypothesis that POMC gene expression, and its processing by prohormone convertases, are potential 

proximate mechanisms underlying the observed colour-specific reaction norms. Through the 

regulation of POMC prohormone and PC1, light melanic individuals can physiologically better cope 
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with stressful conditions since they are likely to produce higher levels of ACTH, a key component of 

the HPA axis and thus a central regulator of organism response to biological stress. As previously 

mentioned, POMC gene expression and the activity of prohormone convertases in species displaying 

variation in melanin-based coloration are promising starting points for further investigation into 

developmental basis of melanocortin-based covariations. Of particular interest, future studies need to 

address the central issue of POMC prohormone processing into α-, β-, γ-MSH and ACTH. A first step 

would be the measurement of POMC, PC1 and PC2 gene expressions in different tissues, to test 

whether patterns of expression are proportional across tissues. Although complex to measure, a 

particularly interesting step would be the assessment of melanocortin levels (especially α-MSH and 

ACTH peptides) in different tissues (i.e. organs vs. skin) of non-model species (i.e. wild populations), 

especially under different environmental or reproductive conditions, since different colour variants 

display alternative physiological or life history strategies. This approach would provide strong insights 

in the proximate mechanism underlying the adaptive function of melanin-based coloration. Nowadays, 

recent advances in the development of next generation sequencing techniques allow us to quickly 

identify regions of the genome associated with particular phenotypic traits. A genome wide association 

study (GWAS) could thus help us to identify QTLs involved in melanic colour patterns and 

behavioural, physiological or life history traits. 
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