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Abstract
Purpose: This study aims to evaluate two distinct approaches for fiber
radius estimation using diffusion-relaxation MRI data acquired in biomimetic
microfiber phantoms that mimic hollow axons. The methods considered are
the spherical mean power-law approach and a T2-based pore size estimation
technique.
Theory and Methods: A general diffusion-relaxation theoretical model for
the spherical mean signal from water molecules within a distribution of cylin-
ders with varying radii was introduced, encompassing the evaluated models as
particular cases. Additionally, a new numerical approach was presented for esti-
mating effective radii (i.e., MRI-visible mean radii) from the ground truth radii
distributions, not reliant on previous theoretical approximations and adaptable
to various acquisition sequences. The ground truth radii were obtained from
scanning electron microscope images.
Results: Both methods show a linear relationship between effective radii esti-
mated from MRI data and ground-truth radii distributions, although some
discrepancies were observed. The spherical mean power-law method overesti-
mated fiber radii. Conversely, the T2-based method exhibited higher sensitivity
to smaller fiber radii, but faced limitations in accurately estimating the radius
in one particular phantom, possibly because of material-specific relaxation
changes.
Conclusion: The study demonstrates the feasibility of both techniques to predict
pore sizes of hollow microfibers. The T2-based technique, unlike the spherical
mean power-law method, does not demand ultra-high diffusion gradients, but
requires calibration with known radius distributions. This research contributes
to the ongoing development and evaluation of neuroimaging techniques for fiber
radius estimation, highlights the advantages and limitations of both methods,
and provides datasets for reproducible research.
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1 INTRODUCTION

Accurately measuring the diameter of axons in vivo has
been a crucial goal in diffusion MRI (dMRI),1-13 because
the axon diameter modulates the speed of action poten-
tials along the axon and may serve as a biomarker of axonal
degeneration.14-17 However, existing dMRI techniques are
affected by a resolution limit, or diameter lower-bound,
below which smaller axons cannot be detected. This
limit is determined by the experimental setup, partic-
ularly the strength of the diffusion encoding gradient
and the SNR.7,18 Unfortunately, dMRI signals collected
in 3T clinical scanners equipped with diffusion gradi-
ents below 80 mT/m have a higher resolution limit,18

allowing only the detection of large axons. For addi-
tional discussions, the reader is referred to Edgar et al,19

Dyrby et al,20 Caminiti et al,21 and Innocenti et al.22,23

As a result, dMRI-based diameter estimation techniques
are primarily implemented in advanced human “Con-
nectom” scanners with stronger diffusion gradients (i.e.,
300 mT/m)24 and preclinical scanners.7 A recent study
has shown that the effective radius—defined as the “ap-
parent” MRI-visible mean axon radius representing the
entire axon radius distribution within a voxel—can be
estimated by eliminating two crucial confounding fac-
tors from the dMRI signal that affected previous stud-
ies: extra-axonal water and axonal orientation dispersion.2
This method is referred to as the spherical mean power-law
approach.

Alternatively, in porous media and tissues, pore and
cell sizes can be estimated using a surface-based T2 relax-
ation model.25-30 This model predicts a linear depen-
dence between the inverse of the intra-pore/cell T2 and
the surface-to-volume ratio of the confining pore/cell
geometry,31 which is proportional to the inverse of the
radius for a cylinder. However, this technique cannot be
directly applied in living tissue to estimate axon radius
because the T2 measured by conventional quantitative
MRI techniques is affected by both the intra-axonal and
extra-axonal water compartments. To overcome this lim-
itation, we recently proposed a new diffusion-relaxation
MRI approach for quantifying axon radii32,33 based on
estimating the intra-axonal T2 relaxation time.34

In practice, both approaches for estimating axon
radii—the spherical mean power-law method2 and the
T2-based pore size estimation technique33—involve col-
lecting a first dMRI dataset using a fixed echo time
(TE> 50 ms) long enough to attenuate the myelin water
dMRI signal,35 and multiple diffusion gradients orienta-
tions with a high b-value (e.g., b≥ 4000–6000 s/mm2 for
in vivo data) to attenuate the extra-axonal dMRI signal.36

This way, the acquisition parameters act as a filter, signifi-
cantly reducing the contribution of water molecules from

all white matter compartments to the measured dMRI sig-
nal, but not the intra-axonal space. The difference between
the two acquisition approaches lies in how the second data
block is acquired. The spherical mean power-law method
requires measuring another dMRI dataset using the same
TE and much higher b-values (e.g., b≥ 10 000 s/mm2 for in
vivo data) with ultra-strong diffusion gradients only avail-
able on specific scanners. This is needed to reduce the
resolution limit.18 On the other hand, the T2-based pore
size estimation method requires collecting another dMRI
dataset using the same b-value used in the first acquisi-
tion block, but using different TEs. In both techniques,
the dimensionality of the data is reduced before fitting the
models by computing the orientation-averaged spherical
mean signal, which is a rotationally invariant metric that
does not depend on the underlying fiber orientation dis-
tribution.37 This strategy effectively reduces the number
of parameters estimated in the diffusion and relaxation
models.

In the spherical mean power-law approach,2 the
intra-axonal radial diffusivity D⊥ is calculated from the
dMRI data acquired with high and ultra-high b-values,
which is then converted into a radius by using the van
Gelderen model based on the Gaussian phase distribu-
tion approximation.38 Conversely, for the T2-based pore
size estimation method,33 the intra-axonal T2 time is
determined from the dMRI data acquired using multiple
TEs, following the approach suggested by McKinnon and
Jensen.34 The intra-axonal T2 is subsequently converted
into a radius using a surface-based relaxation model30,39

that requires a calibration process to determine the T2
surface relaxivity, an unknown parameter that depends
on the relaxation properties of the inner axon surface.33

The main practical disadvantage of the calibration step
is that it requires knowing the ground-truth radius in
some brain regions, which is information that is not
always available.

Although both methods hold great promise for accu-
rate pore/cell size estimation, a systematic evaluation
of these techniques in a controlled setting with a
known ground truth has yet to be conducted. Addi-
tionally, the absence of a comprehensive multi-contrast
diffusion-relaxation model for the spherical mean signal
generated by water molecules within a distribution of pore
sizes (or axon radii) represents a notable limitation that
hinders our ability to elucidate the theoretical relationship
between these techniques.

To overcome these limitations, this study outlines
the following objectives: (1) formulate a theoretical
diffusion-relaxation model capable of encompassing both
the spherical mean power-law and T2-based methods.
This formulation shall be helpful to clarify the main
assumptions underpinning each approach. (2) Evaluate
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CANALES-RODRÍGUEZ et al. 2581

both techniques using diffusion-relaxation MRI data
acquired in biomimetic phantoms where the ground
truth is known. These phantoms consist of co-electrospun
hollow axon-mimicking microfibers with non-circular
cross-sections and different radii distributions. (3) Intro-
duce a novel numerical approach for calculating effective
radius from radius distributions measured via scanning
electron microscopy (SEM). This numerical approach is
necessary to circumvent the limitations associated with
previous approximated analytical expressions, which are
not accurate for the range of pore sizes in the used
phantoms.

2 THEORY

2.1 Intra-pore diffusion-relaxation MRI
model

This section introduces a diffusion-relaxation model for
the spherical mean MRI signal generated by water
molecules filling the intra-pore space of a distribution of
cylinders with different radii. This formulation unifies into
a single model the two techniques evaluated in this study:

S(b,TE) = k
∫ P(r)r2SRel(TE, r)SDiff(b, r)dr

∫ P(r)r2dr
, (1)

where the spherical mean diffusion-relaxation signal
S(b,TE) depends on the b-value and TE, k is a constant
proportional to the total intra-pore volume, r denotes the
radius, P(r) is the radius distribution, and the volumet-
ric correction factor r2 accounts for the volume-weighted
nature of the measured MRI signal (i.e., the signal inten-
sity from each cylinder is proportional to the number of
water molecules inside the cylinder, and therefore, to its
volume).

The T2 relaxation-weighted MRI signal SRel(TE, r) for a
cylinder with radius r is

SRel(TE, r) = exp

(
− TE

Ti
2(r)

)
, (2)

where the intra-pore transversal relaxation time Ti
2

depends on r, according to Brownstein and Tarr,31

Barakovic et al,33 and Zimmerman and Brittin.39

1
Ti

2

= 1
Tb

2

+ 2𝜌2

r
, (3)

where Tb
2 denotes the T2 relaxation time of the bulk (free)

water filling the cylinders and 𝜌2 is the T2 surface relaxivity
depending on the phantom material.

The spherical mean diffusion-weighted signal
SDiff(b, r) from a cylinder with radius r, in Eq. (1), is
modeled as

SDiff(b, r) =
√
𝜋

4
exp(−D⊥(r)b)

erf
(√

b
(

D∥ − D⊥(r)
))

√
b
(

D∥ − D⊥(r)
) ,

(4)

which is the spherical mean signal equation for an
axis-symmetric diffusion tensor,2,13,36,37,40,41 where erf
denotes the error function, and the radial diffusivity D⊥

depends on r according to the van Gelderen model,38

defined in Eq. (A1) in Appendix A.
In the following two subsections, we will examine the

necessary approximations required to derive the T2-based
pore size estimation technique33 and the spherical mean
power-law method2 from the more general model pre-
sented in Eqs. (1–4).

2.2 Intra-pore pure relaxation MRI
model: T2-based estimation technique

When the data is measured using a diffusion gradi-
ent that is not sufficiently strong, the sensitivity of the
diffusion-weighted signal to the cylinder radius is signif-
icantly reduced,18 that is, the diffusion signal becomes
proportional to the signal from a cylinder with infinites-
imal radius, SDiff(b, r) ∝ SDiff(b, r → 0). In such cases,
SDiff(b, r) can be treated as a constant and moved out-
side the integral in Eq. (1). As a result, the general
diffusion-relaxation model becomes a pure relaxation
model:

S(TE) = K
∫ P(r)r2SRel(TE, r)dr

∫ P(r)r2dr
, (5)

where K is a constant to be estimated that absorbed the
diffusion signal. Similar to the spherical mean power-law
method described in the next subsection, the integral in
Eq. (5) is approximated by the relaxation signal from a
single cylinder with an effective radius characterizing the
whole distribution

S(TE) ≈ KSRel(TE, reff-MRI-R). (6)

Notably, the T2-based pore size estimation technique,
as proposed in Barakovic et al,33 relies on the pure relax-
ation model defined in Eq. (6). Note that reff-MRI-R denotes
the effective MRI-visible radius resulting from the relax-
ation process.
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2582 CANALES-RODRÍGUEZ et al.

2.3 Intra-pore pure diffusion MRI
model: Spherical mean power-law

If the relaxation signal SRel(TE, r) can be neglected
in Eq. (1), (e.g., by assuming that Ti

2 is a constant
independent of r) when 𝜌2 → 0, then it can be treated as
a constant term and moved outside the integral. Accord-
ingly, the diffusion-relaxation model is simplified, result-
ing in a pure diffusion model

S(b) ≈ 𝛽
∫ P(r)r2SDiff(b, r)dr

∫ P(r)r2dr
, (7)

where 𝛽 is a constant to be estimated that absorbed the
relaxation signal. The integral in Eq. (7) is approximated
by the spherical mean diffusion signal from a cylinder with
an effective radius:

S(b) ≈ βSDiff(b, reff-MRI-D), (8)

where reff-MRI-D denotes the effective MRI-visible radius
resulting from the diffusion process. Notice that reff-MRI-D
and the effective radius calculated from the relaxation pro-
cess described in the previous subsection reff-MRI-R are not
necessarily equal, as the MRI signals from both modalities
may have different sensitivities to pore size.

It is important to note that the spherical mean
power-law technique for estimating axon radius presented
in Veraart et al2 is based on Eq. (8). In that study, however,
the authors simplified the model by using two additional
approximations (1): the term involving the error function
in Eq. (4) was omitted because it tends to one for the
axon radii found in the brain; and (2) the van Gelderen
model defined by Eq. (A1) relating D⊥ and r was replaced
by the wide pulse approximation derived by Neuman,42

which is valid for small radii and long pulses (Δ >> 𝛿 >>

r2∕D∥); for more details see Eq. (A2) in Appendix A. How-
ever, because these approximations are not valid for large
radii, such as those measured in our phantoms, in this
study we estimated the axon radii using the more general
expressions given by Eqs. (8), (4), and (A1) using the van
Gelderen model, as suggested by Andersson et al.43

For theoretical purposes only, in Appendix A Eq. (A3)
(see also Figure C1 of Appendix C), we introduce a new
approximation for a broader application in the regime of
medium-pulse times, Δ >> 𝛿 >∼ r2∕D∥, which is more
accurate than Neuman’s approximation for both small and
large radii.

2.4 Numerical effective radius

We evaluate the relaxation and diffusion models in Eqs. (6)
and (8) by comparing the effective radii reff-MRI-R and

reff-MRI-D estimated from the MRI data with the actual effec-
tive radius of the biomimetic phantoms determined from
the underlying radius distribution P(r), which was mea-
sured in our study using SEM. However, the method for
estimating the actual effective radius from P(r) has a sig-
nificant limitation. The standard formula for calculating
the effective radius reff ≈

(⟨
r6⟩∕⟨r2⟩)1∕4 from the 6th and

4th moments of P(r)2,44 was derived under the wide pulse
approximation by Neuman. Therefore, it is only valid for
small radii,43 much smaller than the ones measured in
the phantoms. Hence, this formula cannot be used in the
evaluation. For further information, refer to Figure C1 in
Appendix C.

To address this issue, we propose a new numerical
approach to estimate effective radius from P(r), which is
valid for radius distributions with both small and large
radii. This approach generates the synthetic relaxation
SRel-SEM and diffusion SDiff-SEM signals produced by the
actual radius distribution P(r). The synthetic signals are
generated by discretizing the integrals in Eqs. (5) and (7)
using the measured radii, respectively:

SRel-SEM(TE, 𝜌2) ≈ K
∑N

i=1

(
r2

i∑N
𝑗=1r2

𝑗

)
SRel(TE, ri, 𝜌2),

SDiff-SEM(b) ≈ 𝛽
∑N

i=1

(
r2

i∑N
𝑗=1r2

𝑗

)
SDiff(b, ri),

(9)

where {ri, i = 1, … N} denotes the set of N radii measured
per phantom.

By using the same equations used to predict the effec-
tive radius from the MRI data, (i.e., Eqs. [6] and [8]), it
is then possible to estimate the SEM-based effective radii
reff-SEM-R and reff-SEM-D from these synthetic signals for the
assumed relaxation and diffusion models.

Additionally, for the pure relaxation model, we con-
sider a further approximation to estimate the effective
radius by calculating the ratio of the second and first
moments of P(r), reff-SEM =< r2

> ∕ < r >. This approxi-
mation is based on a Taylor expansion of the relaxation
model, presented in Appendix B. Notice that reff-SEM pro-
vides an approximation to the value of reff-SEM-R. It is esti-
mated directly from the radius distribution and does not
involve generating a synthetic relaxation signal.

3 METHODS

3.1 Phantom construction
and characterization

Five phantom samples consisting of micron-scale hollow
fibers mimicking axons in white matter were built using
the co-electrospinning technique45 to produce microfibers
with a different distribution of inner fiber radius per

 15222594, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29991 by B

cu L
ausanne, W

iley O
nline L

ibrary on [08/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CANALES-RODRÍGUEZ et al. 2583

phantom. Each phantom was constructed by concatenat-
ing various phantom samples (layer substrates) created to
have similar distributions of fiber radii.

The inner fiber radii of each phantom were measured
using five SEM images taken from different phantom sam-
ples. The SEM images were captured using a Phenom
ProX desktop SEM (Thermo Fisher Scientific) with an
accelerating voltage of 5 kV. The ImageJ software (imagej
.nih.gov/ij) was used to analyze the SEM images, follow-
ing the methods described in Zhou et al46 and Huang
et al.47 Specifically, for each sample, the SEM images
underwent a process of binarization and thresholding.
Subsequently, the intra-fiber area of each pore was deter-
mined using the “Analyze Particles” feature in ImageJ.
The automated measurements of each intra-fiber area (Ai)
were then transformed into the corresponding inner fiber
radius under the assumption that the cross-section of the
pore is circular. This transformation was achieved through
the formula ri =

√
Ai∕𝜋, where ri represents the inner fiber

radius of each ith measured pore. Therefore, the inner
fiber radius is defined as the radius of a cylinder with the
same cross-sectional area (or volume) as the pore, ensur-
ing that the computed radius reflects the pore’s volumetric
properties.

Phantom 1, 3, 4, and 5 were composed of parallel fibers
with different radii, whereas Phantom 2 comprised two
groups of parallel fibers with an inter-fiber angle of 90◦.
Phantom 1 and Phantom 2 were designed to have similar
distributions of fiber radius.

All phantoms were placed inside 15 mL centrifuge
tubes filled with de-ionized water. An additional con-
trol tube only containing de-ionized free water was also
studied. The control tube was used to estimate the diffu-
sion coefficient and T2 relaxation time of the de-ionized
water.

3.2 Data acquisition

Diffusion-relaxation and multi-shell dMRI data were col-
lected using a 7T Bruker preclinical scanner at the Danish
Research Center for Magnetic Resonance (DRCMR).
Airflow at a controlled room temperature was applied
around the sample to ensure a steady sample temper-
ature during the acquisition. The diffusion-relaxation
protocol used to fit the pure relaxation model (i.e.,
T2-based technique) had the following acquisition
parameters: a b-value of 5000 s/mm2 (diffusion gradient,
G= 166.8 mT/m; diffusion times, Δ/δ= 35/9 ms) acquired
in 48 equidistant diffusion directions distributed over the
unit sphere; a repetition time TR of 6100 ms; a voxel-size
of 2× 2× 2 mm3; and one b= 0 s/mm2 image per TE. The
acquisition was repeated for six TEs: [51, 75, 100, 150, 200,
250] ms.

The multi-shell dMRI acquisition protocol used to fit
the pure diffusion model (i.e., spherical mean power-law)
consisted of using five high b-values: b= [5000, 6000, 7000,
8000, 10 000] s/mm2 with respective diffusion gradients
G= [166.8, 182.7, 197.3, 210.95, 235.85] mT/m. The TE was
set to 51 ms, and one b= 0 s/mm2 (b0) image was acquired
per b-value. The other experimental parameters, such as
TR,Δ, δ, voxel size, and the number of diffusion directions,
were kept the same as in the diffusion-relaxation acquisi-
tion sequence. To evaluate the SNR in our experiments, we
used the following approach. For each voxel, we calculated
the SNR as the ratio of the mean value to the SD across
the set of five b0 images. Subsequently, the mean SNR
was determined from the individual voxelwise SNR values
within a mask comprising the five phantoms, yielding a
mean SNR value of 34. In our experiments, we opted to
use the raw data without preprocessing because the phan-
tom data remained unaffected by motion. Introducing any
denoising step was avoided to prevent unwanted smooth-
ing effects and partial volume contamination, especially
given the small size of the phantoms.

3.3 Estimation

Like in previous studies,34,48-50 we assumed that for
b≥ 5000 s/mm2 the signals originating from water
molecules outside the intra-fiber compartment, which
likely experience larger diffusion displacements, are
highly attenuated. This assumption allows us to focus
on the signals originating within the intra-fiber compart-
ment. We computed the spherical mean signal S(TE, b) by
averaging the signal measurements over all the diffusion
gradient directions37,51-53 for each b-value and TE.

From the diffusion-relaxation data acquired at
different TEs, we estimated the relaxation time
within the intra-fiber compartment Ti

2 by fitting the
mono-exponential relaxation model34,49,50 defined by
Eqs. (6) and (2). To perform the fitting, we used the
non-linear “L-BFGS-B” optimization method available
in Scipy.54 Subsequently, we implemented a calibration
approach to estimate 𝜌2, which enables us to calculate
reff-MRI-R from the intra-fiber Ti

2 times using Eq. (3). The
following subsection provides additional information on
the calibration procedure.

To obtain the effective radius from the pure diffusion
model reff-MRI-D (I.e., spherical mean power-law method)
we fitted Eqs. (8), (4) and (A1) to the multi-shell dMRI
data. In Eq. (10), we included the first m= 18 terms in the
series to capture the diffusion behavior within the fibers
accurately.2

The estimated radii reff-MRI-R and reff-MRI-D were com-
pared with the SEM-based effective radii reff-SEM-R and
reff-SEM-D derived from the underlying radius distributions
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2584 CANALES-RODRÍGUEZ et al.

P(r), respectively. The effective radii reff-SEM-R and reff-SEM-D
were calculated as described in the numerical effective
radius subsection using custom in-house software.

3.4 T2-based calibration to estimate
the surface relaxivity

To predict the fiber radius reff-MRI-R from the intra-fiber
relaxation time Ti

2, it is necessary to determine the values
of Tb

2 and 𝜌2 in Eq. (3). In porous media, the parameter Tb
2

is typically neglected as its value is significantly larger than
Ti

2. In our study, we used the control tube to estimate it and
found Tb

2 ≈ 3s. The surface relaxivity 𝜌2 was calculated for
each phantom by minimizing the mean squared difference
between the measured diffusion-relaxation data S(TE) and
the synthetic relaxation signal SRel-SEM(TE, 𝜌2) generated
by Eq. (9) using the actual radius distribution measured by
SEM.

Once these parameters (Tb
2 and 𝜌2) are computed, the

fiber radius can be estimated. Two approaches were con-
sidered in this study to evaluate the accuracy of the radius
estimation, (1) assuming a constant surface relaxivity for
all phantoms by calculating the mean (𝜌2); and (2) using
the individual optimal surface relaxivity value estimated
for each phantom.

4 RESULTS

4.1 Electron microscopy analysis

The SEM analysis was conducted to examine the morphol-
ogy of the phantom fibers. Figure 1 shows an example of
SEM micrographs, visually representing the fiber struc-
ture. The inner fiber radius distribution for each phan-
tom is depicted in Figure 2, allowing for a comprehensive
understanding of the variations in fiber radii. Although all
phantoms exhibit a significant proportion of fiber radii that
resemble those observed in human brains, it is important
to note the presence of a notable population of larger radii
ranging from 4 to 10 μm.

Table 1 provides quantitative data on the average fiber
radius for each phantom and the sample size, that is, the
number of radii that were measured for the analysis.

4.2 T2-based pore size estimation

The T2-based calibration analysis performed to estimate
the surface relaxivity revealed that most phantoms exhib-
ited a similar surface relaxivity value, with a mean
of 𝜌2 = 3.7± 0.6 nm/ms. However, Phantom 3 showed a
reduced surface relaxivity, 𝜌2 = 2.0 nm/ms, deviating from
the average value observed in the other phantoms.

The comparison between the effective radii reff-MRI-R
calculated from the measured diffusion-relaxation data,
assuming that all the phantoms have the same surface
relaxivity 𝜌2, and the SEM-based effective radii reff-SEM-R is
presented in Figure 3A. The estimates align closely with
the “y= x line of identity”, indicating a nearly perfect lin-
ear relationship, except for Phantom 3, which substantially
differs from this linear trend. The regression line fitted to
the data has an intercept of 0.66 μm and a slope of 0.88.

The correlation coefficient (R) measuring the strength
of the linear relationship between the two radii sets was
not statistically significant, R= 0.66, p= 0.228. However,
excluding Phantom 3 from the analysis made it statistically
significant (R= 0.95, p= 0.046), indicating a strong linear
relationship between the estimated radii for the remaining
phantoms.

Figure 3B shows the measured MRI data and the gen-
erated synthetic signals from the ground truth radii distri-
butions as a function of TE. Overall, there is a close agree-
ment between the two data sets for all phantoms, except
for Phantom 3, which exhibits notable discrepancies.

The analysis considering a different surface relaxiv-
ity for each phantom is presented in Figure 4. Figure 4A
displays the regression line comparing the effective radii,
demonstrating a perfect agreement between the estimated
radii and the radii derived from the SEM-measured distri-
butions. The regression line has an intercept of−0.0046 μm
and a slope of 1.001, indicating a nearly one-to-one corre-
spondence between the two sets of radii. The correlation
coefficient is 1.0, with a significant p-value of 7e–9, con-
firming the strong linear relationship. Figure 4B compares
the measured diffusion-relaxation data and the synthetic
signals generated from the respective SEM-based radii dis-
tributions. The two data sets show excellent agreement,
with close correspondence across the entire range of TE
values.

In Figure 5, the linear relationship between the esti-
mated effective radius reff-MRI-R and the approximated
effective radius derived from the second and first moments
of the radius distribution, reff-SEM =< r2

> ∕ < r >, is
depicted. The regression analysis demonstrates a strong
linear relationship between the radii, as indicated by the
intercept of 0.15 μm and the slope of 0.93. The correlation
coefficient (R= 0.93) indicates a high degree of linear asso-
ciation between reff-MRI-R and reff-SEM, which is statistically
significant, p= 0.0046.

4.3 Diffusion-based pore size
estimation

The diffusion-based pore size estimation analysis is pre-
sented in Figure 6. Figure 6A demonstrates the linear
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CANALES-RODRÍGUEZ et al. 2585

F I G U R E 1 Scanning electron micrographs depicting the microscopic morphology of the biomimetic phantom samples. All phantom
samples are presented on the same length scale (80 μm). Phantom 1 and Phantom 2 are shown together as they were constructed using
similar distributions of fiber radii.

relationship between the fiber radii estimated from
the multi-shell dMRI data using the spherical mean
power-law approach and the radii derived from the SEM
images. The statistically significant correlation coefficient
(R= 0.91, p= 0.031) confirms the strength of this rela-
tionship. The intercept and slope of the regression line
are 2.32 μm and 0.57, respectively. Figure 6B compares

the measured multi-shell dMRI data and the synthetic
diffusion signals generated from the SEM-based radius
distribution. The plot shows the decay rates of the
diffusion signals as a function of the b-value. It is
observed that the synthetic diffusion signals exhibit lower
decay rates compared to the measured data for all
phantoms.
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2586 CANALES-RODRÍGUEZ et al.

F I G U R E 2 Radius
distribution per phantom
estimated using scanning
electron microscopy. Phantom 1
and Phantom 2 are displayed
together as both were built using
similar distributions. The right
tail of each distribution is zoomed
in to visualize the distribution of
the largest fibers. The mean
radius and number of radii
measured for each phantom are
reported in Table 1.

T A B L E 1 Mean radius ⟨r⟩ per phantom, calculated from the
radius distributions depicted in Figure 2.

Phantom ⟨r⟩ 𝛍m N

Phantoms 1 and 2 1.07 11 618

Phantom 3 0.70 11 827

Phantom 4 1.18 9880

Phantom 5 1.21 7246

Note: The number of measured radii N using scanning electron microscopy
is reported.

5 DISCUSSION

We evaluated the spherical mean power-law method2

and the T2-based pore size estimation technique33 using
diffusion-relaxation MRI data acquired in biomimetic
phantoms consisting of hollow axon-mimicking
microfibers with non-circular cross-sections and dif-
ferent radii distributions. While the T2-based pore size
estimation technique requires a single high b-value
and multiple (at least two) TEs, the spherical mean
power-law method relies on a single TE and multiple

(at least two) high b-values with very strong diffusion
gradients. Notably, the T2-based approach has more mod-
est demands on the b-value than the diffusion-based
spherical mean power-law technique. However, the
T2-based estimation approach relies on a calibration
step that requires knowledge of the ground-truth radius
distribution in specific regions to determine its surface
relaxivity.

The linear relationship between the T2-based effec-
tive radii estimated from the diffusion-relaxation MRI data
and the ground truth radius distributions, as depicted in
Figures 3–5, highlights the overall agreement between the
estimates. However, it is worth noting that the estima-
tion approach assuming a constant surface relaxivity for
all phantoms was not accurate for Phantom 3, as evi-
dent from Figure 3A. This deviation is attributed to the
smaller surface relaxivity estimated for Phantom 3. Con-
sequently, the predicted radius for Phantom 3 was con-
siderably higher, leading to a mismatch between the gen-
erated synthetic signal and the measured data, as shown
in Figure 3B. The linear correlation coefficient for the
estimated effective radii was not statistically significant.
However, on removing Phantom 3 from the analysis, the
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CANALES-RODRÍGUEZ et al. 2587

F I G U R E 3 (A) Presents the relationship between the T2-based inner fiber radius (y-axis, reff-MRI-R) predicted using the measured
diffusion-relaxation data with a fixed surface relaxivity of 𝜌2 = 3.7 nm/ms and the effective radius estimated from the synthetic relaxation
signal generated using the radius distribution obtained from scanning electron microscopy (SEM) images (x-axis, reff-SEM-R). The scatter plot
represents the radius estimated from the mean signal for all voxels within each phantom. The regression line compares the estimates,
whereas the reference line (y= x) indicates perfect linear agreement. (B) Displays the logarithm of the measured relaxation MRI (rMRI) data
represented by the mean value and standard deviation across all voxels per phantom, along with the SEM-based generated synthetic signal as
a function of the TE in the whole interval.

F I G U R E 4 (A) Presents the relationship between the T2-based inner fiber radius (y-axis, reff-MRI-R) predicted using the measured
diffusion-relaxation data with the surface relaxivity estimated individually for each phantom, and the effective radius calculated from the
synthetic relaxation signal generated using the radius distribution obtained from scanning electron microscopy (SEM) images (x-axis,
reff-SEM-R). The scatter plot represents the radius estimated from the mean signal for all voxels within each phantom. The regression line
compares the estimates, whereas the reference line (y= x) indicates perfect linear agreement. (B) Displays the logarithm of the measured
relaxation MRI (rMRI) data represented by the mean value and SD across all voxels per phantom, along with the SEM-based generated
synthetic signal as a function of the TE in the whole interval.
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2588 CANALES-RODRÍGUEZ et al.

F I G U R E 5 The linear relationship between the T2-based
inner fiber radius (y-axis, reff-MRI-R) predicted using the measured
diffusion-relaxation data with the surface relaxivity estimated
individually for each phantom (as in Figure 4) and the effective
radius calculated from the moments of the radii distributions
(x-axis, reff-SEM =< r2

> ∕ < r >). The scatter plot represents the
radius estimated from the mean signal across all voxels within each
phantom. In addition to the regression line comparing both
estimates, the reference line (y= x) is provided for visualizing
perfect linear agreement between the two measures.

linear correlation coefficient became statistically signifi-
cant, indicating a strong relationship between the esti-
mated effective radii for the remaining phantoms. The
reason behind the discrepancy in surface relaxivity for
Phantom 3 remains uncertain. One plausible hypothe-
sis is that, at the time of scanning, Phantom 3 under-
went a natural degradation process typical of this type of
material,55 resulting in altered interactions between water
molecules and the pore surface. This hypothesis is further
supported by the observation that, a few weeks after the
MRI acquisitions, the white color of Phantom 3—unlike
the other phantoms—turned to a light white-pink color,
indicating a change in its properties. Despite this issue,
we decided to include the results of Phantom 3 in our
study to provide a comprehensive analysis and present the
complete findings.

The analysis using the individual surface relaxivity
estimated for each phantom revealed a remarkable agree-
ment between the effective radii, as demonstrated in
Figure 4A. Although this type of analysis is not practi-
cally feasible because of the requirement of knowing the

radius distribution for each phantom, it serves as a valu-
able tool for model validation. Validating a model involves
verifying whether the synthetic signal predicted by the
model closely matches the measured data. Although this
criterion alone is insufficient to validate a model, as an
incorrect over-parameterized model can still fit the data, it
provides a necessary condition. In this study, the predicted
synthetic signal for the relaxation model strongly agreed
(Figure 4B) with the measured data. To further explore the
relationship between the T2-based effective radius and the
radius distribution, we conducted an additional analysis
by replacing the effective radius used in Figure 4, estimated
from the synthetic signals, with the effective radius calcu-
lated from the ratio of the second and first moments of the
radius distribution. The results in Figure 5 demonstrate
that this relationship provides a good approximation.

Moreover, the spherical mean power-law method
exhibited a statistically significant linear relationship
between the effective radii estimated from the multi-shell
dMRI data and the ground truth radius distributions, as
demonstrated in Figure 6A, corroborating the sensitivity
of this technique. However, the intercept of the linear
regression line deviated considerably from zero, indicating
an overestimation of the effective radius, particularly for
phantoms with smaller radii. A closer examination of the
synthetic signals generated by this model using the ground
truth radius distributions (Figure 6B) revealed notable dis-
crepancies with the measured dMRI data. Specifically, the
measured signals displayed a faster attenuation (i.e., a
steeper slope of the logarithm of the signal as a function
of the b-value), suggesting the presence of additional pro-
cesses not accounted for in the model, which contributed
to signal attenuation. One possible explanation for this dis-
crepancy is the presence of numerical errors in accurately
measuring the radius distribution used to generate the syn-
thetic signals. However, although numerical errors cannot
be entirely ruled out, they are unlikely to be the main con-
tributor to the observed discrepancies because the SEM
analysis measured several 1000s of fiber radii per phantom
(Table 1).

On comparing the effective radii obtained from the
T2-based and diffusion-based techniques, Figures 3–5 and
6, it is evident that these methods exhibit different sen-
sitivities to spatial scales. Notably, the T2-based approach
demonstrates a higher sensitivity to smaller radii, resulting
in smaller effective radii than the diffusion-based method.
To further support this observation, we refer to Figure C2
in Appendix C, where we present plots of the diffusion
and relaxation signals as a function of the radius for the
specific acquisition protocols used in this study. Consis-
tently with our findings, these plots highlight that the
T2-based method has a lower resolution limit for detecting
small cylindrical fibers than the diffusion-based method.

 15222594, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29991 by B

cu L
ausanne, W

iley O
nline L

ibrary on [08/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CANALES-RODRÍGUEZ et al. 2589

F I G U R E 6 (A) Illustrates the linear relationship between the diffusion MRI (dMRI)-based fiber radius (y-axis, reff-MRI-D) estimated
from the measured multi-shell dMRI data using the spherical mean power-law approach and the effective radius (x-axis, reff-SEM-D) calculated
from the synthetic diffusion signal generated using the radii distributions measured from the scanning electron microscopy (SEM) images.
Each data point represents the radius estimate obtained from the mean signal of all voxels within each phantom. The regression line
compares the estimates from both methods, whereas the “y= x line of identity” is a reference for perfect agreement. (B) Depicts the logarithm
of the measured multi-shell diffusion data (dMRI) and the SEM-based generated synthetic signal as a function of the b-value in the whole
interval. The data points correspond to the mean values and SDs across all voxels within each phantom.

Nevertheless, the radii estimated by the spherical mean
power-law method showed less variability.

Another contribution of this study is the numeri-
cal approach to estimate the effective radius from the
underlying radius distribution. This approach offers sev-
eral advantages as it does not rely on specific theoretical
approximations. It can be applied more universally to dif-
ferent acquisition sequences, MRI contrasts, and materi-
als with varying pore sizes. By comparing the generated
synthetic signals with the measured data, this numeri-
cal approach allows us to assess the ability of the used
relaxation or diffusion models to explain the observed
data. It is worth noting that previous studies proposed
an expression for estimating the effective radius in dMRI
based on the assumptions that the dMRI signal from the
intra-fiber compartment can be approximated by the wide
pulse or Neuman limit and that the diffusion model can
be well-approximated by a first-order Taylor expansion,
resulting in reff-SEM =

(⟨
r6⟩∕⟨r2⟩)1∕4.2,44 However, these

assumptions only hold for a population of microfibers
with radii smaller than 2.5 μm and do not apply to our
study. In Figure C1 of Appendix C, we conducted a supple-
mentary analysis revealing that the signals derived from
these approximations do not align with those predicted by
the van Gelderen model across the entire range of mea-
sured radii in the phantoms. As a result, the new numer-
ical approach proposed in this study becomes crucial for

accurately determining the effective radius from the radius
distribution.

Additionally, we introduced a general diffusion-
relaxation theoretical model for the spherical mean signal
originating from water molecules within a distribution
of cylinders with varying radii. The two evaluated mod-
els are specific cases of this more comprehensive model.
Examining the approximations made by each model pro-
vides valuable insights into their underlying assumptions.
The pure-relaxation model provides a correct approx-
imation for data acquired with high b-values, which
effectively attenuates the extra-fiber signal. However,
the diffusion gradients should not be strong enough to
reduce the sensitivity of the data to the diffusion process
inside the cylindrical pores. This setting may be more
appropriate for clinical scanners with weaker diffusion
gradients (∼<100 mT/m). Conversely, the spherical mean
power-law approach represents the solution to the general
diffusion-relaxation model when the relaxation effect is
neglected. In this case, it is less straightforward to deter-
mine how acquisition parameters should be adjusted to
mitigate the influence of relaxation on the measured sig-
nal. Interestingly, by considering Eqs. (1), (7), and (8) it
is possible to demonstrate that neglecting the relaxation
effect in the spherical mean power-law approach leads to
an effective radius estimate corresponding to a distorted
radius distribution P̃(r), which right-hand tail is inflated,
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2590 CANALES-RODRÍGUEZ et al.

leading to overestimated radii r̃eff-MRI-D. This theoretical
prediction aligns with the findings presented in Figure 6.
For more technical details, see Appendix D.

It is important to mention that this is not the first
study using phantoms of hollow axon-mimicking fibers.
Similar phantoms built with the co-electrospinning tech-
nique45,56-58 have been used previously to validate other
dMRI techniques, including diffusion tensor imaging and
fiber tracking,45,59 microscopic fractional anisotropy using
q-space trajectory encoding,60 anomalous diffusion,61 esti-
mation of pore sizes in tumor tissue phantoms,62,63 as
well as to investigate the stability and reproducibility of
various dMRI-derived parameters,64 the validation of mul-
tidimensional dMRI sequences with spectrally modulated
gradients,65 and to estimate pore sizes in similar complex
microfiber environments using multi-shell dMRI.47

This study has some limitations. First, the inner fiber
radii estimated from SEM images are assumed to be the
ground truth. However, the substrates generated per phan-
tom are heterogeneous because it is not possible to control
the resulting distributions of pore sizes in a precise way.
As a result, different substrates from the same phantom
had different distributions of pore sizes. To tackle this
limitation, various SEM images from different substrates
were used to estimate the mean effective radii per phan-
tom. Accordingly, the effective radius predicted by the
relaxation and diffusion models used the mean signal for
all the voxels in the phantoms, and a voxelwise analy-
sis was not possible. Second, the SEM-based radii were
calculated by approximating intra-fiber pores as cylinders
because of the inherent challenge of accurately repre-
senting irregular pore surfaces using MRI-based meth-
ods. This approximation, although essential, introduces
potential biases. For example, we do not know how the
irregularity of the pore shape can deviate the measured
dMRI data from the signal generated by a cylinder with
the same volume (or cross-sectional surface area). There-
fore, such potential discrepancies might have affected our
results and could explain the signal differences observed
in Figure 6B. However, it is worth noting that this issue is
present in any clinical application of the evaluated meth-
ods. In brain data, there are other factors affecting the
interpretation of results, including the effects of bead-
ing (radius variations along the axon), undulations (local
variations in direction along the axon), and fiber dis-
persion.43,66,67 Addressing these limitations would require
a more comprehensive technique capable of modeling
these factors, which is beyond the scope of our work.
Third, although the used phantoms have a significant
population of fibers with small radii, like those found
in postmortem white matter axons (i.e., <1 μm)21,23,68,69

the proportion of fibers with larger sizes is much higher.
Therefore, our findings should not be considered a strong

demonstration of the validity of the used techniques for
estimating axon radius in brain white matter. Such a
demonstration should require MRI data and histologi-
cal analyses from the same brains. Fourth, as a single
radial diffusivity and intra-fiber T2 were estimated per
phantom, the predicted radius is the effective radius. To
determine the whole radius distribution, future studies
should generalize the used models to estimate distribu-
tions of diffusivities or T2 times, respectively.70-77 Fifth,
all our analyses used raw diffusion-relaxation MRI data
without preprocessing, so the Rician bias78 may partially
affect our results. Nevertheless, we verified that the SNR
of our data was 34 and visually inspected the data to
confirm our images were not dominated by noise. In a
preliminary analysis (results not presented), we denoised
the data using the Marchenko-Pastur Principal Compo-
nent Analysis79 method and attenuated the Rician bias
accordingly. However, we noted that the preprocessed
data were slightly over-smoothed, and the correlation
analysis comparing the estimated radii produced worse
results. Therefore, we opted to use the raw data to avoid
the smoothing effects and prevent contamination of the
diffusion-relaxation MRI signal by voxels outside the
phantoms. Finally, despite our multi-shell dMRI acquisi-
tion protocol used high and well-separated b-values (from
5000 to 10 000 s/mm2) to attenuate the dMRI signals from
the extra-fiber pores significantly and to get “enough”
signal contrast to estimate the intra-fiber radial diffusiv-
ity, these b-values are not necessarily the optimal ones to
assess the fiber radius. For example, in a previous study,
b-values up to 30 000 s/mm2 were used to estimate axon
radii in the human white matter.80 Therefore, our findings
are specific to the implemented acquisition protocols and
should not be extrapolated to other acquisition sequences
and parameters.

6 CONCLUSIONS

This study demonstrates the feasibility of using intra-fiber
T2 times derived from diffusion-relaxation MRI data to
predict the inner pore sizes of hollow axon-mimicking
phantom fibers, as validated against measurements
obtained from SEM images. Additionally, it confirms the
sensitivity of the spherical mean power-law approach in
estimating intra-fiber pore sizes from multi-shell dMRI
data. The T2-based estimation approach relies on a cali-
bration step that requires knowledge of the ground-truth
radius distribution in specific regions (phantoms) to deter-
mine its surface relaxivity. This limitation is absent in
the pure dMRI model. However, the T2-based estimation
technique offers the advantage of using a smaller b-value.
In contrast, the ultra-high diffusion gradients required
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by the dMRI-based approach are only achievable in
preclinical or “Connectom” 3T human scanners.
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APPENDIX A

The van Gelderen model,38 which is based on the Gaus-
sian phase distribution approximation, relates the radial
diffusivity D⊥ and the radius r as:
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where D0 ≡ D∥ is the free diffusion coefficient, which
is equal to the intra-fiber parallel diffusivity when there
is no restriction along the principal axes of the cylin-
ders, 𝛾 denotes the gyromagnetic ratio, 𝛿/Δ/G are the
duration/separation/strength of the diffusion gradient,
respectively, tc = r2∕D∥, b = 𝛾2G2

𝛿
2(Δ − 𝛿∕3), and 𝛼m are

the roots of the derivative of the Bessel function of the first
kind of order 1, J′1(𝛼m) = 0.

In the Neuman limit,42 that is, Δ >> 𝛿 >> r2∕D∥,
Eq. (A1) becomes
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In this work, we derived a new solution with a
less restrictive limit. For Δ >> 𝛿 and 𝛿 ∈

(
0,∼ r2∕D∥

)
,

Eq. (A1) becomes,
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1 − e−𝛼

2
1
𝛿

tc

)]

= 7
48
𝛾

2G2r4

bD∥

[
𝛿 − r2

D∥

12
41

(
1 − e−𝛼

2
1

D∥𝛿

r2

)]
.

(A3)

To derive the previous expression, we used the follow-
ing approximations:

∞∑
m=1

𝛼
2
m

𝛼6
m(𝛼2

m−1) ≈
7

48×4
,

∞∑
m=1

1
𝛼6

m(𝛼2
m−1)e

−𝛼2
m
𝛿

tc ≈ 1
𝛼

6
1(𝛼2

1−1)e
−𝛼2

1
𝛿

tc ,

∞∑
m=1

1
𝛼6

m(𝛼2
m−1) ≈

1
𝛼

6
1(𝛼2

1−1) ≈
7

48×4
× 12

41
.

(A4)

Note that in Eq. (A3), the radial diffusivity is
non-negative D⊥(r) ≥ 0 for all radii satisfying the
condition:

1 − 12
41

r2

D∥𝛿

(
1 − e−𝛼

2
1

D∥𝛿

r2

)
≥ 0. (A5)

It can be shown that the inequality in Eq. (A5) is valid
for all values of r. For instance, in the limit of small r, 𝛿 >>
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tc, Eq. (A3) becomes equal to Eq. (A2). Moreover, in the
limit of large radii, the exponential term in Eq. (A5) can be
expanded using the Taylor series, and we obtain

1 − 12
41

r2

D∥𝛿

(
1 − 1 + 𝛼2

1
D∥𝛿

r2

)
= 1 −

𝛼
2
112
41

= 0.0078, (A6)

fulfilling the inequality D⊥(r) ≥ 0

APPENDIX B

The effective radius can be determined using the following
derivation:

exp
(
− 2TE𝜌2

reff-MRI-R

)
≈
∫ P(r)r2 exp

(
− 2TE𝜌2

r

)
dr

∫ P(r)r2dr

≈
∫ P(r)r2

(
1− 2TE𝜌2

r

)
dr

∫ P(r)r2dr
, for 2TE𝜌2

r
<< 1

= 1 − 2TE𝜌2 ∫ P(r)rdr
∫ P(r)r2dr

≈ exp
(
− 2TE𝜌2 ∫ P(r)rdr

∫ P(r)r2dr

)
.

(B1)

Therefore,

reff-MRI-R ≈
∫ P(r)r2dr
∫ P(r)rdr

=
⟨

r2⟩∕⟨r⟩. (B2)

APPENDIX C

Figure C1 shows the spherical mean diffusion signal
for various models, including the van Gelderen model

F I G U R E C1 Spherical mean diffusion signal as a function of
the radius for the acquisition sequence parameters used in this
study with b= 10 000 s/mm2. Four models are displayed, including
the van Gelderen model (Eqs. [4] and [A1]), the medium-pulse
approximation (Eqs. [4] and [A3]), the Neuman approximation in
the long-pulse limit (Eqs. [4] and [A2]) and the first-order Taylor
expansion of the Neuman model.

F I G U R E C2 Spherical mean diffusion signal and T2

relaxation signal as a function of the radius for the acquisition
sequence parameters used in this study. The diffusion signal was
generated for b= 10 000 s/mm2, and the T2 relaxation signal was
generated for TE= 100 ms, using the parameters 𝜌2 = 3.7 nm/ms
and Tb

2 = 3 s estimated in this study. The resolution limits are shown
for the noise level 𝜎 = 1/100, that is, SNR= 100.

(Eqs. [4] and [A1]), the approximation for medium-pulse
times (Eqs. [4] and [A3]), the Neuman long-pulse limit
(Eqs. [4] and [A2]) and the first-order Taylor approxima-
tion of the Neuman model. Note that for fiber radii larger
than 2.5 μm, the Neuman approximations deviate from
the more accurate van Gelderen model. Conversely, the
approximation for medium-pulse times produced accurate
results.

Figure C2 displays the spherical mean diffusion and
T2 relaxation signals as a function of the fiber radius for
the acquisition parameters used in this study. Moreover,
we plot the resolution limits for both normalized signals,
defined as the minimum radius for which the signal devi-
ates more than one noise SD 𝜎 compared to the signal
generated for r → 0. This definition considers that we can-
not accurately detect signal decays smaller than 𝜎. Note
that the diffusion resolution limit is >1.4 μm, whereas the
T2-based resolution limit is much smaller, <0.2 μm. The
T2-based resolution limit for shorter TEs is even smaller
(result not shown).

APPENDIX D

By considering Eqs. (1), (7), and (8) it is possible to demon-
strate that neglecting the relaxation term in the spherical
mean power-law approach leads to an effective radius esti-
mate that corresponds to a distorted radius distribution
P̃(r),

SDiff
(

b, r̃eff-MRI-D
)
≈
∫ P̃(r)r2SDiff(b, r)dr

∫ P(r)r2dr
, (D1)
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where P̃(r) = P(r) exp
(
−TE∕Ti

2(r)
)

is a distorted version of
P(r) because of the relaxation process not being modeled in
a pure diffusion model. For a constant TE, the signal from
the relaxation term exp

(
−TE∕Ti

2(r)
)

is higher for larger Ti
2

times. As Ti
2 increases with r, the values of P̃(r) for big radii

are more inflated than those with small radii. Hence, this
approximation leads to overestimating the effective radius
calculated by the spherical mean power-law method.

 15222594, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29991 by B

cu L
ausanne, W

iley O
nline L

ibrary on [08/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Pore size estimation in axon-mimicking microfibers with diffusion-relaxation MRI 
	1 INTRODUCTION
	2 THEORY
	2.1 Intra-pore diffusion-relaxation MRI model
	2.2 Intra-pore pure relaxation MRI model: T2-based estimation technique
	2.3 Intra-pore pure diffusion MRI model: Spherical mean power-law
	2.4 Numerical effective radius

	3 METHODS
	3.1 Phantom construction and characterization
	3.2 Data acquisition
	3.3 Estimation
	3.4 T2-based calibration to estimate the surface relaxivity

	4 RESULTS
	4.1 Electron microscopy analysis
	4.2 T2-based pore size estimation
	4.3 Diffusion-based pore size estimation

	5 DISCUSSION
	6 CONCLUSIONS

	Affiliations
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

