Received: 17 October 2023

Revised: 4 December 2023

W) Check for updates

Accepted: 12 December 2023

DOI: 10.1002/mrm.29991

RESEARCH ARTICLE

Magnetic Resonance in Medicine

Pore size estimation in axon-mimicking microfibers with
diffusion-relaxation MRI

Erick J. Canales-Rodriguez!

Muhamed Barakovic®
Geoffrey J. M. Parker*1%!1

Correspondence

Erick J. Canales-Rodriguez, Signal
Processing Laboratory (LTS5),
EPFL-STI-IEL-LTSS5, Station 11, CH-1015
Lausanne, Switzerland.

Email: erick.canalesrodriguez@epfl.ch

Funding information

Wellcome Trust, Grant/Award Numbers:
096646/Z/11/Z,104943/Z/14/Z; EPSRC,
Grant/Award Number: EP/M020533/1;
European Research Council,
Grant/Award Number: 101044180;
Schweizerischer Nationalfonds zur
Forderung der Wissenschaftlichen
Forschung, Grant/Award Number:
PZ00P2_185814; Danmarks Frie
Forskningsfond, Grant/Award Number:
10.46540/3105-00129B; UCL Department
of Medical Physics and Biomedical
Engineering; the NIHR UCLH Biomedical
Research Centre

For affiliations refer to page 2591

| Jean-Philippe Thiran'73
| Tim B. Dyrby?3

| Feng-Lei Zhou**® |
| Derek K. Jones® |

| Marco Pizzolato??

Abstract

Purpose: This study aims to evaluate two distinct approaches for fiber
radius estimation using diffusion-relaxation MRI data acquired in biomimetic
microfiber phantoms that mimic hollow axons. The methods considered are
the spherical mean power-law approach and a T,-based pore size estimation
technique.

Theory and Methods: A general diffusion-relaxation theoretical model for
the spherical mean signal from water molecules within a distribution of cylin-
ders with varying radii was introduced, encompassing the evaluated models as
particular cases. Additionally, a new numerical approach was presented for esti-
mating effective radii (i.e., MRI-visible mean radii) from the ground truth radii
distributions, not reliant on previous theoretical approximations and adaptable
to various acquisition sequences. The ground truth radii were obtained from
scanning electron microscope images.

Results: Both methods show a linear relationship between effective radii esti-
mated from MRI data and ground-truth radii distributions, although some
discrepancies were observed. The spherical mean power-law method overesti-
mated fiber radii. Conversely, the T,-based method exhibited higher sensitivity
to smaller fiber radii, but faced limitations in accurately estimating the radius
in one particular phantom, possibly because of material-specific relaxation
changes.

Conclusion: The study demonstrates the feasibility of both techniques to predict
pore sizes of hollow microfibers. The T,-based technique, unlike the spherical
mean power-law method, does not demand ultra-high diffusion gradients, but
requires calibration with known radius distributions. This research contributes
to the ongoing development and evaluation of neuroimaging techniques for fiber
radius estimation, highlights the advantages and limitations of both methods,
and provides datasets for reproducible research.
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1 | INTRODUCTION

Accurately measuring the diameter of axons in vivo has
been a crucial goal in diffusion MRI (dMRI),!"!* because
the axon diameter modulates the speed of action poten-
tials along the axon and may serve as a biomarker of axonal
degeneration.'*!” However, existing dMRI techniques are
affected by a resolution limit, or diameter lower-bound,
below which smaller axons cannot be detected. This
limit is determined by the experimental setup, partic-
ularly the strength of the diffusion encoding gradient
and the SNR.”!® Unfortunately, dMRI signals collected
in 3T clinical scanners equipped with diffusion gradi-
ents below 80mT/m have a higher resolution limit,'®
allowing only the detection of large axons. For addi-
tional discussions, the reader is referred to Edgar et al,'
Dyrby et al, Caminiti et al,>! and Innocenti et al.???3
As a result, dMRI-based diameter estimation techniques
are primarily implemented in advanced human “Con-
nectom” scanners with stronger diffusion gradients (i.e.,
300mT/m)** and preclinical scanners.” A recent study
has shown that the effective radius—defined as the “ap-
parent” MRI-visible mean axon radius representing the
entire axon radius distribution within a voxel—can be
estimated by eliminating two crucial confounding fac-
tors from the dMRI signal that affected previous stud-
ies: extra-axonal water and axonal orientation dispersion.?
This method is referred to as the spherical mean power-law
approach.

Alternatively, in porous media and tissues, pore and
cell sizes can be estimated using a surface-based T, relax-
ation model.>>3% This model predicts a linear depen-
dence between the inverse of the intra-pore/cell T, and
the surface-to-volume ratio of the confining pore/cell
geometry,>! which is proportional to the inverse of the
radius for a cylinder. However, this technique cannot be
directly applied in living tissue to estimate axon radius
because the T, measured by conventional quantitative
MRI techniques is affected by both the intra-axonal and
extra-axonal water compartments. To overcome this lim-
itation, we recently proposed a new diffusion-relaxation
MRI approach for quantifying axon radii*>** based on
estimating the intra-axonal T, relaxation time.3*

In practice, both approaches for estimating axon
radii—the spherical mean power-law method? and the
T,-based pore size estimation technique**—involve col-
lecting a first dMRI dataset using a fixed echo time
(TE > 50 ms) long enough to attenuate the myelin water
dMRI signal,®> and multiple diffusion gradients orienta-
tions with a high b-value (e.g., b >4000-6000s/mm? for
in vivo data) to attenuate the extra-axonal dMRI signal.3¢
This way, the acquisition parameters act as a filter, signifi-
cantly reducing the contribution of water molecules from

all white matter compartments to the measured dMRI sig-
nal, but not the intra-axonal space. The difference between
the two acquisition approaches lies in how the second data
block is acquired. The spherical mean power-law method
requires measuring another dMRI dataset using the same
TE and much higher b-values (e.g., b > 10 000 s/mm? for in
vivo data) with ultra-strong diffusion gradients only avail-
able on specific scanners. This is needed to reduce the
resolution limit.!® On the other hand, the T,-based pore
size estimation method requires collecting another dMRI
dataset using the same b-value used in the first acquisi-
tion block, but using different TEs. In both techniques,
the dimensionality of the data is reduced before fitting the
models by computing the orientation-averaged spherical
mean signal, which is a rotationally invariant metric that
does not depend on the underlying fiber orientation dis-
tribution.’” This strategy effectively reduces the number
of parameters estimated in the diffusion and relaxation
models.

In the spherical mean power-law approach,’? the
intra-axonal radial diffusivity D, is calculated from the
dMRI data acquired with high and ultra-high b-values,
which is then converted into a radius by using the van
Gelderen model based on the Gaussian phase distribu-
tion approximation.®® Conversely, for the T,-based pore
size estimation method,?® the intra-axonal T, time is
determined from the dMRI data acquired using multiple
TEs, following the approach suggested by McKinnon and
Jensen.>* The intra-axonal T, is subsequently converted
into a radius using a surface-based relaxation model3%*
that requires a calibration process to determine the T,
surface relaxivity, an unknown parameter that depends
on the relaxation properties of the inner axon surface.®’
The main practical disadvantage of the calibration step
is that it requires knowing the ground-truth radius in
some brain regions, which is information that is not
always available.

Although both methods hold great promise for accu-
rate pore/cell size estimation, a systematic evaluation
of these techniques in a controlled setting with a
known ground truth has yet to be conducted. Addi-
tionally, the absence of a comprehensive multi-contrast
diffusion-relaxation model for the spherical mean signal
generated by water molecules within a distribution of pore
sizes (or axon radii) represents a notable limitation that
hinders our ability to elucidate the theoretical relationship
between these techniques.

To overcome these limitations, this study outlines
the following objectives: (1) formulate a theoretical
diffusion-relaxation model capable of encompassing both
the spherical mean power-law and T,-based methods.
This formulation shall be helpful to clarify the main
assumptions underpinning each approach. (2) Evaluate
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both techniques using diffusion-relaxation MRI data
acquired in biomimetic phantoms where the ground
truth is known. These phantoms consist of co-electrospun
hollow axon-mimicking microfibers with non-circular
cross-sections and different radii distributions. (3) Intro-
duce a novel numerical approach for calculating effective
radius from radius distributions measured via scanning
electron microscopy (SEM). This numerical approach is
necessary to circumvent the limitations associated with
previous approximated analytical expressions, which are
not accurate for the range of pore sizes in the used
phantoms.

2 | THEORY

21 |
model

Intra-pore diffusion-relaxation MRI

This section introduces a diffusion-relaxation model for
the spherical mean MRI signal generated by water
molecules filling the intra-pore space of a distribution of
cylinders with different radii. This formulation unifies into
a single model the two techniques evaluated in this study:

[ P(r)r*Sgei(TE, P)Spiss(b, r)dr

S(b, TE) = k
( ) [ P(ryr2dr

. @

where the spherical mean diffusion-relaxation signal
E(b, TE) depends on the b-value and TE, k is a constant
proportional to the total intra-pore volume, r denotes the
radius, P(r) is the radius distribution, and the volumet-
ric correction factor r? accounts for the volume-weighted
nature of the measured MRI signal (i.e., the signal inten-
sity from each cylinder is proportional to the number of
water molecules inside the cylinder, and therefore, to its
volume).

The T, relaxation-weighted MRI signal §R81(TE, r) fora
cylinder with radius r is

Skal(TE. 1) = exp<— Tfi) > )
2

where the intra-pore transversal relaxation time T;
depends on r, according to Brownstein and Tarr,3!
Barakovic et al,3* and Zimmerman and Brittin.3°

2
R 3)

where Té’ denotes the T, relaxation time of the bulk (free)
water filling the cylinders and p; is the T, surface relaxivity
depending on the phantom material.

_ The spherical mean diffusion-weighted signal
Spise(b,r) from a cylinder with radius r, in Eq. (1), is
modeled as

erf< b(Dy-D L(r)))
Spisi(h, ) = \/g exp(—D_ (r)b) ,
b(D” - DJ_(I’))

“4)

which is the spherical mean signal equation for an
axis-symmetric diffusion tensor, 1336374041 where erf
denotes the error function, and the radial diffusivity D}
depends on r according to the van Gelderen model,38
defined in Eq. (A1) in Appendix A.

In the following two subsections, we will examine the
necessary approximations required to derive the T,-based
pore size estimation technique®® and the spherical mean
power-law method? from the more general model pre-
sented in Egs. (1-4).

2.2 | Intra-pore pure relaxation MRI
model: T»-based estimation technique

When the data is measured using a diffusion gradi-
ent that is not sufficiently strong, the sensitivity of the
diffusion-weighted signal to the cylinder radius is signif-
icantly reduced,'® that is, the diffusion signal becomes
proportional to the signal from a cylinder with infinites-
imal radius, §Diff(b, r)o<§Diff(b,r—>0). In such cases,
§Diff(b, r) can be treated as a constant and moved out-
side the integral in Eq. (1). As a result, the general
diffusion-relaxation model becomes a pure relaxation
model:

[ P(r)r2Sgei(TE, r)dr
J P(r)r2dr

S(TE) =K (5)

where K is a constant to be estimated that absorbed the
diffusion signal. Similar to the spherical mean power-law
method described in the next subsection, the integral in
Eq. (5) is approximated by the relaxation signal from a
single cylinder with an effective radius characterizing the
whole distribution

S(TE) ~ KSgel(TE, Feft MRLR)- (6)

Notably, the T,-based pore size estimation technique,
as proposed in Barakovic et al,?* relies on the pure relax-
ation model defined in Eq. (6). Note that regMmrrr denotes
the effective MRI-visible radius resulting from the relax-
ation process.
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2.3 | Intra-pore pure diffusion MRI
model: Spherical mean power-law

If the relaxation signal §Re1(TE, r) can be neglected
in Eq. (1), (e.g, by assuming that T; is a constant
independent of r) when p, — 0, then it can be treated as
a constant term and moved outside the integral. Accord-
ingly, the diffusion-relaxation model is simplified, result-
ing in a pure diffusion model

[ P(r)r*Spjse(b, r)dr
J P(r)r2dr

S(b) ~ p (7)

where f is a constant to be estimated that absorbed the
relaxation signal. The integral in Eq. (7) is approximated
by the spherical mean diffusion signal from a cylinder with
an effective radius:

S(b) ~ PSpitr(b, Tefe-Mr1D), ®)

where re.Mmri.p denotes the effective MRI-visible radius
resulting from the diffusion process. Notice that reg.mr1-D
and the effective radius calculated from the relaxation pro-
cess described in the previous subsection reg.pr1-r are not
necessarily equal, as the MRI signals from both modalities
may have different sensitivities to pore size.

It is important to note that the spherical mean
power-law technique for estimating axon radius presented
in Veraart et al® is based on Eq. (8). In that study, however,
the authors simplified the model by using two additional
approximations (1): the term involving the error function
in Eq. (4) was omitted because it tends to one for the
axon radii found in the brain; and (2) the van Gelderen
model defined by Eq. (A1) relating D, and r was replaced
by the wide pulse approximation derived by Neuman,*
which is valid for small radii and long pulses (A >> § >>
r?/Dy); for more details see Eq. (A2) in Appendix A. How-
ever, because these approximations are not valid for large
radii, such as those measured in our phantoms, in this
study we estimated the axon radii using the more general
expressions given by Egs. (8), (4), and (A1) using the van
Gelderen model, as suggested by Andersson et al.**

For theoretical purposes only, in Appendix A Eq. (A3)
(see also Figure C1 of Appendix C), we introduce a new
approximation for a broader application in the regime of
medium-pulse times, A >> § >~ r? /Dy, which is more
accurate than Neuman'’s approximation for both small and
large radii.

2.4 | Numerical effective radius

We evaluate the relaxation and diffusion models in Egs. (6)
and (8) by comparing the effective radii refmrir and

refimMrI-D €Stimated from the MRI data with the actual effec-
tive radius of the biomimetic phantoms determined from
the underlying radius distribution P(r), which was mea-
sured in our study using SEM. However, the method for
estimating the actual effective radius from P(r) has a sig-
nificant limitation. The standard formula for calculating
the effective radius reg ~ ((r°)/(r?)) 4 from the 6th and
4th moments of P(r)>* was derived under the wide pulse
approximation by Neuman. Therefore, it is only valid for
small radii,** much smaller than the ones measured in
the phantoms. Hence, this formula cannot be used in the
evaluation. For further information, refer to Figure C1 in
Appendix C.

To address this issue, we propose a new numerical
approach to estimate effective radius from P(r), which is
valid for radius distributions with both small and large
radii. This approach generates the synthetic relaxation
E'Re]_SEM and diffusion §Diff_SEM signals produced by the
actual radius distribution P(r). The synthetic signals are
generated by discretizing the integrals in Egs. (5) and (7)
using the measured radii, respectively:

— 2 —
Srel-sEM(TE, p2) ~ Kzliil (r_I>SRe1(TE, ti, P2),

N
il

_ AN ©)]
Spitesem(b) & Y, (ﬁ > Soitt(b, 17),

where {r;,i =1, ... N} denotes the set of N radii measured
per phantom.

By using the same equations used to predict the effec-
tive radius from the MRI data, (i.e., Egs. [6] and [8]), it
is then possible to estimate the SEM-based effective radii
Feft.sEM-R and 7efrspm-p from these synthetic signals for the
assumed relaxation and diffusion models.

Additionally, for the pure relaxation model, we con-
sider a further approximation to estimate the effective
radius by calculating the ratio of the second and first
moments of P(r), refesgm =< r? > / < r >. This approxi-
mation is based on a Taylor expansion of the relaxation
model, presented in Appendix B. Notice that reg.sgy pro-
vides an approximation to the value of regspm-r- It iS esti-
mated directly from the radius distribution and does not
involve generating a synthetic relaxation signal.

3 | METHODS

3.1 | Phantom construction
and characterization

Five phantom samples consisting of micron-scale hollow
fibers mimicking axons in white matter were built using
the co-electrospinning technique® to produce microfibers
with a different distribution of inner fiber radius per
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phantom. Each phantom was constructed by concatenat-
ing various phantom samples (layer substrates) created to
have similar distributions of fiber radii.

The inner fiber radii of each phantom were measured
using five SEM images taken from different phantom sam-
ples. The SEM images were captured using a Phenom
ProX desktop SEM (Thermo Fisher Scientific) with an
accelerating voltage of 5kV. The ImageJ software (imagej
.nih.gov/ij) was used to analyze the SEM images, follow-
ing the methods described in Zhou et al** and Huang
et al.*’ Specifically, for each sample, the SEM images
underwent a process of binarization and thresholding.
Subsequently, the intra-fiber area of each pore was deter-
mined using the “Analyze Particles” feature in Imagel.
The automated measurements of each intra-fiber area (A4;)
were then transformed into the corresponding inner fiber
radius under the assumption that the cross-section of the
pore is circular. This transformation was achieved through
the formula r; = 4/A; /7, where r; represents the inner fiber
radius of each ith measured pore. Therefore, the inner
fiber radius is defined as the radius of a cylinder with the
same cross-sectional area (or volume) as the pore, ensur-
ing that the computed radius reflects the pore’s volumetric
properties.

Phantom 1, 3, 4, and 5 were composed of parallel fibers
with different radii, whereas Phantom 2 comprised two
groups of parallel fibers with an inter-fiber angle of 90°.
Phantom 1 and Phantom 2 were designed to have similar
distributions of fiber radius.

All phantoms were placed inside 15mL centrifuge
tubes filled with de-ionized water. An additional con-
trol tube only containing de-ionized free water was also
studied. The control tube was used to estimate the diffu-
sion coefficient and T, relaxation time of the de-ionized
water.
3.2 | Data acquisition
Diffusion-relaxation and multi-shell dMRI data were col-
lected using a 7T Bruker preclinical scanner at the Danish
Research Center for Magnetic Resonance (DRCMR).
Airflow at a controlled room temperature was applied
around the sample to ensure a steady sample temper-
ature during the acquisition. The diffusion-relaxation
protocol used to fit the pure relaxation model (i.e.,
T,-based technique) had the following acquisition
parameters: a b-value of 5000 s/mm? (diffusion gradient,
G =166.8 mT/m; diffusion times, A/8=35/9 ms) acquired
in 48 equidistant diffusion directions distributed over the
unit sphere; a repetition time TR of 6100 ms; a voxel-size
of 2x 2 x2mm?; and one b=0s/mm? image per TE. The
acquisition was repeated for six TEs: [51, 75, 100, 150, 200,
250] ms.

Magnetic Resonance in Medicine

The multi-shell dMRI acquisition protocol used to fit
the pure diffusion model (i.e., spherical mean power-law)
consisted of using five high b-values: b =[5000, 6000, 7000,
8000, 10000] s/mm? with respective diffusion gradients
G=[166.8,182.7,197.3,210.95,235.85] mT/m. The TE was
set to 51 ms, and one b =0s/mm? (b0) image was acquired
per b-value. The other experimental parameters, such as
TR, A, 8, voxel size, and the number of diffusion directions,
were kept the same as in the diffusion-relaxation acquisi-
tion sequence. To evaluate the SNR in our experiments, we
used the following approach. For each voxel, we calculated
the SNR as the ratio of the mean value to the SD across
the set of five b0 images. Subsequently, the mean SNR
was determined from the individual voxelwise SNR values
within a mask comprising the five phantoms, yielding a
mean SNR value of 34. In our experiments, we opted to
use the raw data without preprocessing because the phan-
tom data remained unaffected by motion. Introducing any
denoising step was avoided to prevent unwanted smooth-
ing effects and partial volume contamination, especially
given the small size of the phantoms.

3.3 | Estimation

Like in previous studies,>**3° we assumed that for
b>5000s/mm? the signals originating from water
molecules outside the intra-fiber compartment, which
likely experience larger diffusion displacements, are
highly attenuated. This assumption allows us to focus
on the signals originating within the intra-fiber compart-
ment. We computed the spherical mean signal S(TE, b) by
averaging the signal measurements over all the diffusion
gradient directions®”-1 for each b-value and TE.

From the diffusion-relaxation data acquired at
different TEs, we estimated the relaxation time
within the intra-fiber compartment T ; by fitting the
mono-exponential relaxation model**#*° defined by
Egs. (6) and (2). To perform the fitting, we used the
non-linear “L-BFGS-B” optimization method available
in Scipy.** Subsequently, we implemented a calibration
approach to estimate p,, which enables us to calculate
refimMrI-R from the intra-fiber T; times using Eq. (3). The
following subsection provides additional information on
the calibration procedure.

To obtain the effective radius from the pure diffusion
model regevmrrp (L., spherical mean power-law method)
we fitted Egs. (8), (4) and (A1) to the multi-shell dMRI
data. In Eq. (10), we included the first m =18 terms in the
series to capture the diffusion behavior within the fibers
accurately.?

The estimated radii revrrr and Fefmrrp Were com-
pared with the SEM-based effective radii regrspmr and
Tefi.sEM-p derived from the underlying radius distributions

25UB017] SUOLUILLIOD SA1IER1D B|ea1dde aU Aq pouanob a1 Sap1Le WO 13N 0 S3INJ 10} ARIGITBUIIUO A3 1A UO (SUOIIPUOD-PUE-SWLB)W0Y" 4B | A2iq]jou|uo//Sd) SUORIPUOD PUe S | a1 39S *[720Z/70/80] U0 AIGIT8UIIUO AB|IM ‘BuUesie] nog AQ T6662 WIW/Z00T OT/I0p/W0Y" A3 Aeiq puljuo//Sdiy WOJ) pepeOjuMOQ ‘9 ‘202 ‘1652225T


http://imagej.nih.gov/ij
http://imagej.nih.gov/ij

CANALES-RODRIGUEZ ET AL.

2584 . . )
—I—Magnetlc Resonance in Medicine

P(r), respectively. The effective radii refrspm.r and 7efesEMD
were calculated as described in the numerical effective
radius subsection using custom in-house software.

3.4 | T,-based calibration to estimate
the surface relaxivity

To predict the fiber radius 7efMmrir from the intra-fiber
relaxation time T;, it is necessary to determine the values
of T% and p; in Eq. (3). In porous media, the parameter T2
is typically neglected as its value is significantly larger than
T;. In our study, we used the control tube to estimate it and
found Té’ ~ 3s. The surface relaxivity p, was calculated for
each phantom by minimizing the mean squared difference
between the measured diffusion-relaxation data S(TE) and
the synthetic relaxation signal ERel,SEM(TE, p2) generated
by Eq. (9) using the actual radius distribution measured by
SEM.

Once these parameters (Té’ and p,) are computed, the
fiber radius can be estimated. Two approaches were con-
sidered in this study to evaluate the accuracy of the radius
estimation, (1) assuming a constant surface relaxivity for
all phantoms by calculating the mean (p,); and (2) using
the individual optimal surface relaxivity value estimated
for each phantom.

4 | RESULTS

4.1 | Electron microscopy analysis
The SEM analysis was conducted to examine the morphol-
ogy of the phantom fibers. Figure 1 shows an example of
SEM micrographs, visually representing the fiber struc-
ture. The inner fiber radius distribution for each phan-
tom is depicted in Figure 2, allowing for a comprehensive
understanding of the variations in fiber radii. Although all
phantoms exhibit a significant proportion of fiber radii that
resemble those observed in human brains, it is important
to note the presence of a notable population of larger radii
ranging from 4 to 10 pm.

Table 1 provides quantitative data on the average fiber
radius for each phantom and the sample size, that is, the
number of radii that were measured for the analysis.

4.2 | T,-based pore size estimation

The T,-based calibration analysis performed to estimate
the surface relaxivity revealed that most phantoms exhib-
ited a similar surface relaxivity value, with a mean
of p, =3.7+0.6 nm/ms. However, Phantom 3 showed a
reduced surface relaxivity, p, = 2.0 nm/ms, deviating from
the average value observed in the other phantoms.

The comparison between the effective radii 7efrmrir
calculated from the measured diffusion-relaxation data,
assuming that all the phantoms have the same surface
relaxivity p,, and the SEM-based effective radii refspm-r 1S
presented in Figure 3A. The estimates align closely with
the “y=x line of identity”, indicating a nearly perfect lin-
ear relationship, except for Phantom 3, which substantially
differs from this linear trend. The regression line fitted to
the data has an intercept of 0.66 pm and a slope of 0.88.

The correlation coefficient (R) measuring the strength
of the linear relationship between the two radii sets was
not statistically significant, R=0.66, p=0.228. However,
excluding Phantom 3 from the analysis made it statistically
significant (R=0.95, p=0.046), indicating a strong linear
relationship between the estimated radii for the remaining
phantoms.

Figure 3B shows the measured MRI data and the gen-
erated synthetic signals from the ground truth radii distri-
butions as a function of TE. Overall, there is a close agree-
ment between the two data sets for all phantoms, except
for Phantom 3, which exhibits notable discrepancies.

The analysis considering a different surface relaxiv-
ity for each phantom is presented in Figure 4. Figure 4A
displays the regression line comparing the effective radii,
demonstrating a perfect agreement between the estimated
radii and the radii derived from the SEM-measured distri-
butions. The regression line has an intercept of —0.0046 pm
and a slope of 1.001, indicating a nearly one-to-one corre-
spondence between the two sets of radii. The correlation
coefficient is 1.0, with a significant p-value of 7e-9, con-
firming the strong linear relationship. Figure 4B compares
the measured diffusion-relaxation data and the synthetic
signals generated from the respective SEM-based radii dis-
tributions. The two data sets show excellent agreement,
with close correspondence across the entire range of TE
values.

In Figure 5, the linear relationship between the esti-
mated effective radius regmrir and the approximated
effective radius derived from the second and first moments
of the radius distribution, regspm =<r?>/<r>, is
depicted. The regression analysis demonstrates a strong
linear relationship between the radii, as indicated by the
intercept of 0.15 pm and the slope of 0.93. The correlation
coefficient (R =0.93) indicates a high degree of linear asso-
ciation between reg.mr1-r @nd 7efr-sgm, Which is statistically
significant, p = 0.0046.

4.3 | Diffusion-based pore size
estimation

The diffusion-based pore size estimation analysis is pre-
sented in Figure 6. Figure 6A demonstrates the linear
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80 pm

Scanning electron micrographs depicting the microscopic morphology of the biomimetic phantom samples. All phantom

samples are presented on the same length scale (80 pm). Phantom 1 and Phantom 2 are shown together as they were constructed using

similar distributions of fiber radii.

relationship between the fiber radii estimated from
the multi-shell dMRI data using the spherical mean
power-law approach and the radii derived from the SEM
images. The statistically significant correlation coefficient
(R=0.91, p=0.031) confirms the strength of this rela-
tionship. The intercept and slope of the regression line
are 2.32pum and 0.57, respectively. Figure 6B compares

the measured multi-shell dMRI data and the synthetic
diffusion signals generated from the SEM-based radius
distribution. The plot shows the decay rates of the
diffusion signals as a function of the b-value. It is
observed that the synthetic diffusion signals exhibit lower
decay rates compared to the measured data for all
phantoms.
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TABLE 1 Mean radius (r) per phantom, calculated from the
radius distributions depicted in Figure 2.

Phantom (r) pm N
Phantoms 1 and 2 1.07 11618
Phantom 3 0.70 11827
Phantom 4 1.18 9880
Phantom 5 1.21 7246

Note: The number of measured radii N using scanning electron microscopy
is reported.

5 | DISCUSSION

We evaluated the spherical mean power-law method?
and the T,-based pore size estimation technique*® using
diffusion-relaxation MRI data acquired in biomimetic
phantoms consisting of hollow axon-mimicking
microfibers with non-circular cross-sections and dif-
ferent radii distributions. While the T,-based pore size
estimation technique requires a single high b-value
and multiple (at least two) TEs, the spherical mean
power-law method relies on a single TE and multiple

(at least two) high b-values with very strong diffusion
gradients. Notably, the T,-based approach has more mod-
est demands on the b-value than the diffusion-based
spherical mean power-law technique. However, the
T,-based estimation approach relies on a calibration
step that requires knowledge of the ground-truth radius
distribution in specific regions to determine its surface
relaxivity.

The linear relationship between the T,-based effec-
tive radii estimated from the diffusion-relaxation MRI data
and the ground truth radius distributions, as depicted in
Figures 3-5, highlights the overall agreement between the
estimates. However, it is worth noting that the estima-
tion approach assuming a constant surface relaxivity for
all phantoms was not accurate for Phantom 3, as evi-
dent from Figure 3A. This deviation is attributed to the
smaller surface relaxivity estimated for Phantom 3. Con-
sequently, the predicted radius for Phantom 3 was con-
siderably higher, leading to a mismatch between the gen-
erated synthetic signal and the measured data, as shown
in Figure 3B. The linear correlation coefficient for the
estimated effective radii was not statistically significant.
However, on removing Phantom 3 from the analysis, the
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(B) rMRI signal vs SEM-based signal
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(A) Presents the relationship between the T,-based inner fiber radius (y-axis, ref.mri-r) predicted using the measured

diffusion-relaxation data with a fixed surface relaxivity of p, = 3.7 nm/ms and the effective radius estimated from the synthetic relaxation
signal generated using the radius distribution obtained from scanning electron microscopy (SEM) images (x-axis, 7ef-sem-r)- The scatter plot

represents the radius estimated from the mean signal for all voxels within each phantom. The regression line compares the estimates,
whereas the reference line (y =x) indicates perfect linear agreement. (B) Displays the logarithm of the measured relaxation MRI (rMRI) data
represented by the mean value and standard deviation across all voxels per phantom, along with the SEM-based generated synthetic signal as

a function of the TE in the whole interval.
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(A) Presents the relationship between the T,-based inner fiber radius (y-axis, reg.mrrr) predicted using the measured

diffusion-relaxation data with the surface relaxivity estimated individually for each phantom, and the effective radius calculated from the

synthetic relaxation signal generated using the radius distribution obtained from scanning electron microscopy (SEM) images (x-axis,

Fef.sEM.r)- The scatter plot represents the radius estimated from the mean signal for all voxels within each phantom. The regression line

compares the estimates, whereas the reference line (y =x) indicates perfect linear agreement. (B) Displays the logarithm of the measured

relaxation MRI (rMRI) data represented by the mean value and SD across all voxels per phantom, along with the SEM-based generated

synthetic signal as a function of the TE in the whole interval.
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FIGURE 5 The linear relationship between the T,-based

inner fiber radius (y-axis, reg.mrrr) predicted using the measured
diffusion-relaxation data with the surface relaxivity estimated
individually for each phantom (as in Figure 4) and the effective
radius calculated from the moments of the radii distributions
(x-axis, rer.sgm =< ? > / < r >). The scatter plot represents the
radius estimated from the mean signal across all voxels within each
phantom. In addition to the regression line comparing both
estimates, the reference line (y =x) is provided for visualizing
perfect linear agreement between the two measures.

linear correlation coefficient became statistically signifi-
cant, indicating a strong relationship between the esti-
mated effective radii for the remaining phantoms. The
reason behind the discrepancy in surface relaxivity for
Phantom 3 remains uncertain. One plausible hypothe-
sis is that, at the time of scanning, Phantom 3 under-
went a natural degradation process typical of this type of
material,> resulting in altered interactions between water
molecules and the pore surface. This hypothesis is further
supported by the observation that, a few weeks after the
MRI acquisitions, the white color of Phantom 3—unlike
the other phantoms—turned to a light white-pink color,
indicating a change in its properties. Despite this issue,
we decided to include the results of Phantom 3 in our
study to provide a comprehensive analysis and present the
complete findings.

The analysis using the individual surface relaxivity
estimated for each phantom revealed a remarkable agree-
ment between the effective radii, as demonstrated in
Figure 4A. Although this type of analysis is not practi-
cally feasible because of the requirement of knowing the

radius distribution for each phantom, it serves as a valu-
able tool for model validation. Validating a model involves
verifying whether the synthetic signal predicted by the
model closely matches the measured data. Although this
criterion alone is insufficient to validate a model, as an
incorrect over-parameterized model can still fit the data, it
provides a necessary condition. In this study, the predicted
synthetic signal for the relaxation model strongly agreed
(Figure 4B) with the measured data. To further explore the
relationship between the T,-based effective radius and the
radius distribution, we conducted an additional analysis
by replacing the effective radius used in Figure 4, estimated
from the synthetic signals, with the effective radius calcu-
lated from the ratio of the second and first moments of the
radius distribution. The results in Figure 5 demonstrate
that this relationship provides a good approximation.

Moreover, the spherical mean power-law method
exhibited a statistically significant linear relationship
between the effective radii estimated from the multi-shell
dMRI data and the ground truth radius distributions, as
demonstrated in Figure 6A, corroborating the sensitivity
of this technique. However, the intercept of the linear
regression line deviated considerably from zero, indicating
an overestimation of the effective radius, particularly for
phantoms with smaller radii. A closer examination of the
synthetic signals generated by this model using the ground
truth radius distributions (Figure 6B) revealed notable dis-
crepancies with the measured dMRI data. Specifically, the
measured signals displayed a faster attenuation (i.e., a
steeper slope of the logarithm of the signal as a function
of the b-value), suggesting the presence of additional pro-
cesses not accounted for in the model, which contributed
to signal attenuation. One possible explanation for this dis-
crepancy is the presence of numerical errors in accurately
measuring the radius distribution used to generate the syn-
thetic signals. However, although numerical errors cannot
be entirely ruled out, they are unlikely to be the main con-
tributor to the observed discrepancies because the SEM
analysis measured several 1000s of fiber radii per phantom
(Table 1).

On comparing the effective radii obtained from the
T,-based and diffusion-based techniques, Figures 3-5 and
6, it is evident that these methods exhibit different sen-
sitivities to spatial scales. Notably, the T,-based approach
demonstrates a higher sensitivity to smaller radii, resulting
in smaller effective radii than the diffusion-based method.
To further support this observation, we refer to Figure C2
in Appendix C, where we present plots of the diffusion
and relaxation signals as a function of the radius for the
specific acquisition protocols used in this study. Consis-
tently with our findings, these plots highlight that the
T,-based method has a lower resolution limit for detecting
small cylindrical fibers than the diffusion-based method.
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(A) Tllustrates the linear relationship between the diffusion MRI (AMRI)-based fiber radius (y-axis, re.mr1.p) €Stimated

from the measured multi-shell dMRI data using the spherical mean power-law approach and the effective radius (x-axis, ref.sem-p) calculated
from the synthetic diffusion signal generated using the radii distributions measured from the scanning electron microscopy (SEM) images.
Each data point represents the radius estimate obtained from the mean signal of all voxels within each phantom. The regression line
compares the estimates from both methods, whereas the “y =x line of identity” is a reference for perfect agreement. (B) Depicts the logarithm
of the measured multi-shell diffusion data (AMRI) and the SEM-based generated synthetic signal as a function of the b-value in the whole
interval. The data points correspond to the mean values and SDs across all voxels within each phantom.

Nevertheless, the radii estimated by the spherical mean
power-law method showed less variability.

Another contribution of this study is the numeri-
cal approach to estimate the effective radius from the
underlying radius distribution. This approach offers sev-
eral advantages as it does not rely on specific theoretical
approximations. It can be applied more universally to dif-
ferent acquisition sequences, MRI contrasts, and materi-
als with varying pore sizes. By comparing the generated
synthetic signals with the measured data, this numeri-
cal approach allows us to assess the ability of the used
relaxation or diffusion models to explain the observed
data. It is worth noting that previous studies proposed
an expression for estimating the effective radius in dMRI
based on the assumptions that the dMRI signal from the
intra-fiber compartment can be approximated by the wide
pulse or Neuman limit and that the diffusion model can
be well-approximated by a first-order Taylor expansion,
resulting in regesem = ((r°)/ (r2>)1/ * 244 However, these
assumptions only hold for a population of microfibers
with radii smaller than 2.5pm and do not apply to our
study. In Figure C1 of Appendix C, we conducted a supple-
mentary analysis revealing that the signals derived from
these approximations do not align with those predicted by
the van Gelderen model across the entire range of mea-
sured radii in the phantoms. As a result, the new numer-
ical approach proposed in this study becomes crucial for

accurately determining the effective radius from the radius
distribution.

Additionally, we introduced a general diffusion-
relaxation theoretical model for the spherical mean signal
originating from water molecules within a distribution
of cylinders with varying radii. The two evaluated mod-
els are specific cases of this more comprehensive model.
Examining the approximations made by each model pro-
vides valuable insights into their underlying assumptions.
The pure-relaxation model provides a correct approx-
imation for data acquired with high b-values, which
effectively attenuates the extra-fiber signal. However,
the diffusion gradients should not be strong enough to
reduce the sensitivity of the data to the diffusion process
inside the cylindrical pores. This setting may be more
appropriate for clinical scanners with weaker diffusion
gradients (~<100 mT/m). Conversely, the spherical mean
power-law approach represents the solution to the general
diffusion-relaxation model when the relaxation effect is
neglected. In this case, it is less straightforward to deter-
mine how acquisition parameters should be adjusted to
mitigate the influence of relaxation on the measured sig-
nal. Interestingly, by considering Egs. (1), (7), and (8) it
is possible to demonstrate that neglecting the relaxation
effect in the spherical mean power-law approach leads to
an effective radius estimate corresponding to a distorted
radius distribution 1~’(r), which right-hand tail is inflated,
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leading to overestimated radii 7egrmrrp. This theoretical
prediction aligns with the findings presented in Figure 6.
For more technical details, see Appendix D.

It is important to mention that this is not the first
study using phantoms of hollow axon-mimicking fibers.
Similar phantoms built with the co-electrospinning tech-
nique*>6-3% have been used previously to validate other
dMRI techniques, including diffusion tensor imaging and
fiber tracking,*>>° microscopic fractional anisotropy using
g-space trajectory encoding,®® anomalous diffusion,®! esti-
mation of pore sizes in tumor tissue phantoms,®>% as
well as to investigate the stability and reproducibility of
various dAMRI-derived parameters,% the validation of mul-
tidimensional dMRI sequences with spectrally modulated
gradients,® and to estimate pore sizes in similar complex
microfiber environments using multi-shell dMRI.#

This study has some limitations. First, the inner fiber
radii estimated from SEM images are assumed to be the
ground truth. However, the substrates generated per phan-
tom are heterogeneous because it is not possible to control
the resulting distributions of pore sizes in a precise way.
As a result, different substrates from the same phantom
had different distributions of pore sizes. To tackle this
limitation, various SEM images from different substrates
were used to estimate the mean effective radii per phan-
tom. Accordingly, the effective radius predicted by the
relaxation and diffusion models used the mean signal for
all the voxels in the phantoms, and a voxelwise analy-
sis was not possible. Second, the SEM-based radii were
calculated by approximating intra-fiber pores as cylinders
because of the inherent challenge of accurately repre-
senting irregular pore surfaces using MRI-based meth-
ods. This approximation, although essential, introduces
potential biases. For example, we do not know how the
irregularity of the pore shape can deviate the measured
dMRI data from the signal generated by a cylinder with
the same volume (or cross-sectional surface area). There-
fore, such potential discrepancies might have affected our
results and could explain the signal differences observed
in Figure 6B. However, it is worth noting that this issue is
present in any clinical application of the evaluated meth-
ods. In brain data, there are other factors affecting the
interpretation of results, including the effects of bead-
ing (radius variations along the axon), undulations (local
variations in direction along the axon), and fiber dis-
persion.*366:67 Addressing these limitations would require
a more comprehensive technique capable of modeling
these factors, which is beyond the scope of our work.
Third, although the used phantoms have a significant
population of fibers with small radii, like those found
in postmortem white matter axons (i.e., <1 pm)?1:23-68.69
the proportion of fibers with larger sizes is much higher.
Therefore, our findings should not be considered a strong

demonstration of the validity of the used techniques for
estimating axon radius in brain white matter. Such a
demonstration should require MRI data and histologi-
cal analyses from the same brains. Fourth, as a single
radial diffusivity and intra-fiber T, were estimated per
phantom, the predicted radius is the effective radius. To
determine the whole radius distribution, future studies
should generalize the used models to estimate distribu-
tions of diffusivities or T, times, respectively.””’ Fifth,
all our analyses used raw diffusion-relaxation MRI data
without preprocessing, so the Rician bias’® may partially
affect our results. Nevertheless, we verified that the SNR
of our data was 34 and visually inspected the data to
confirm our images were not dominated by noise. In a
preliminary analysis (results not presented), we denoised
the data using the Marchenko-Pastur Principal Compo-
nent Analysis’”® method and attenuated the Rician bias
accordingly. However, we noted that the preprocessed
data were slightly over-smoothed, and the correlation
analysis comparing the estimated radii produced worse
results. Therefore, we opted to use the raw data to avoid
the smoothing effects and prevent contamination of the
diffusion-relaxation MRI signal by voxels outside the
phantoms. Finally, despite our multi-shell dMRI acquisi-
tion protocol used high and well-separated b-values (from
5000 to 10 000 s/mm?) to attenuate the dMRI signals from
the extra-fiber pores significantly and to get “enough”
signal contrast to estimate the intra-fiber radial diffusiv-
ity, these b-values are not necessarily the optimal ones to
assess the fiber radius. For example, in a previous study,
b-values up to 30000s/mm? were used to estimate axon
radii in the human white matter.8° Therefore, our findings
are specific to the implemented acquisition protocols and
should not be extrapolated to other acquisition sequences
and parameters.

6 | CONCLUSIONS

This study demonstrates the feasibility of using intra-fiber
T, times derived from diffusion-relaxation MRI data to
predict the inner pore sizes of hollow axon-mimicking
phantom fibers, as validated against measurements
obtained from SEM images. Additionally, it confirms the
sensitivity of the spherical mean power-law approach in
estimating intra-fiber pore sizes from multi-shell dMRI
data. The T,-based estimation approach relies on a cali-
bration step that requires knowledge of the ground-truth
radius distribution in specific regions (phantoms) to deter-
mine its surface relaxivity. This limitation is absent in
the pure dMRI model. However, the T,-based estimation
technique offers the advantage of using a smaller b-value.
In contrast, the ultra-high diffusion gradients required
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by the dMRI-based approach are only achievable in
preclinical or “Connectom” 3T human scanners.
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APPENDIX A

The van Gelderen model,3® which is based on the Gaus-
sian phase distribution approximation, relates the radial
diffusivity D, and the radius r as:

272G t
D, =
* bDy mzzlafn(afn -1)

2 a2 «

2 5 2 5
_ A _ ap;, (A-6) _ aj, (A+6)
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c
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X

where Dy =D is the free diffusion coefficient, which
is equal to the intra-fiber parallel diffusivity when there
is no restriction along the principal axes of the cylin-
ders, y denotes the gyromagnetic ratio, 6/A/G are the
duration/separation/strength of the diffusion gradient,
respectively, t. = r*/Dy, b = y>G*6*(A — 5/3), and a, are
the roots of the derivative of the Bessel function of the first
kind of order 1, J] () = 0.

In the Neuman limit,** that is, A >> & >>r?/D,
Eq. (A1) becomes

7 }/2G251’4
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In this work, we derived a new solution with a
less restrictive limit. For A >>§and s € (0,~ r?/Dy),
Eq. (A1) becomes,
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To derive the previous expression, we used the follow-
ing approximations:

(A3)
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Note that in Eq. (A3), the radial diffusivity is
non-negative D,(r) >0 for all radii satisfying the
condition:

2 Dy 6
1= 127 (1 a0 (A5)
41 Dy6

It can be shown that the inequality in Eq. (A5) is valid
for all values of r. For instance, in the limit of smallr, § >>
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t., Eq. (A3) becomes equal to Eq. (A2). Moreover, in the
limit of large radii, the exponential term in Eq. (A5) can be
expanded using the Taylor series, and we obtain

2
1_Ei 1—1+a2% :1_(1112
41 Dys L2 41

fulfilling the inequality D, (r) > 0

=0.0078, (A6)

APPENDIX B

The effective radius can be determined using the following
derivation:

2TEp, [ P(ryr? exp(— @ )dr
exp( — ~
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APPENDIX C

Figure C1 shows the spherical mean diffusion signal
for various models, including the van Gelderen model
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FIGURE C1
the radius for the acquisition sequence parameters used in this

Spherical mean diffusion signal as a function of

study with b= 10000 s/mm?. Four models are displayed, including
the van Gelderen model (Egs. [4] and [A1]), the medium-pulse
approximation (Egs. [4] and [A3]), the Neuman approximation in
the long-pulse limit (Eqgs. [4] and [A2]) and the first-order Taylor
expansion of the Neuman model.
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FIGURE C2
relaxation signal as a function of the radius for the acquisition

Spherical mean diffusion signal and T,

sequence parameters used in this study. The diffusion signal was
generated for b=10000s/mm?, and the T, relaxation signal was
generated for TE = 100 ms, using the parameters p, = 3.7 nm/ms
and T’Z’ =3 s estimated in this study. The resolution limits are shown
for the noise level o =1/100, that is, SNR = 100.

(Egs. [4] and [A1]), the approximation for medium-pulse
times (Egs. [4] and [A3]), the Neuman long-pulse limit
(Egs. [4] and [A2]) and the first-order Taylor approxima-
tion of the Neuman model. Note that for fiber radii larger
than 2.5pum, the Neuman approximations deviate from
the more accurate van Gelderen model. Conversely, the
approximation for medium-pulse times produced accurate
results.

Figure C2 displays the spherical mean diffusion and
T, relaxation signals as a function of the fiber radius for
the acquisition parameters used in this study. Moreover,
we plot the resolution limits for both normalized signals,
defined as the minimum radius for which the signal devi-
ates more than one noise SD ¢ compared to the signal
generated for r — 0. This definition considers that we can-
not accurately detect signal decays smaller than ¢. Note
that the diffusion resolution limit is >1.4 pm, whereas the
T,-based resolution limit is much smaller, <0.2 um. The
T,-based resolution limit for shorter TEs is even smaller
(result not shown).

APPENDIX D

By considering Egs. (1), (7), and (8) it is possible to demon-
strate that neglecting the relaxation term in the spherical
mean power-law approach leads to an effective radius esti-
mate that corresponds to a distorted radius distribution
P(r),

[ B(r)r*Spise(b, r)dr

[ P(rdr (D)

St (b, FefeMri-D ) ~
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where P(r) = P(r) exp(—TE/TL(r)) is a distorted version of
P(r) because of the relaxation process not being modeled in
a pure diffusion model. For a constant TE, the signal from
the relaxation term exp(—TE/T.(r)) is higher for larger T}

times. As T; increases with r, the values of P(r) for big radii
are more inflated than those with small radii. Hence, this
approximation leads to overestimating the effective radius
calculated by the spherical mean power-law method.
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