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Abstract
The objective of the current study was to comprehensively compare the genomic profiles in the
breast of parous and nulliparous postmenopausal women to identify genes that permanently
change their expression following pregnancy.

The study was designed as a two-phase approach. In the discovery phase, we compared breast
genomic profiles of 37 parous with 18 nulliparous postmenopausal women. In the validation
phase, confirmation of the genomic patterns observed in the discovery phase was sought in an
independent set of 30 parous and 22 nulliparous postmenopausal women. RNA was hybridized to
Affymetrix HG_U133 Plus 2.0 oligonucleotide arrays containing probes to 54,675 transcripts;
scanned and the images analyzed using Affymetrix GCOS software. Surrogate variable analysis,
logistic regression and significance analysis for microarrays were used to identify statistically
significant differences in expression of genes. The False Discovery Rate (FDR) approach was
used to control for multiple comparisons. We found that 208 genes (305 probe sets) were
differentially expressed between parous and nulliparous women in both discovery and validation
phases of the study at a FDR of 10% and with at least a 1.25-fold change. These genes are
involved in regulation of transcription, centrosome organization, RNA splicing, cell cycle control,
adhesion and differentiation. The results provide persuasive evidence that full-term pregnancy
induces long-term genomic changes in the breast. The genomic signature of pregnancy could be
used as an intermediate marker to assess potential chemopreventive interventions with hormones
mimicking the effects of pregnancy for prevention of breast cancer.
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Introduction
It is well-established that a pregnancy completed to term at a young age reduces the risk of
breast cancer later in life. This long-term reduction in risk has been attributed to the early
differentiation of breast tissue, which otherwise remains undifferentiated and susceptible to
carcinogenic insults (1, 2). Because a first full-term pregnancy (FTP) and ensuing
breastfeeding are the most significant physiological events which transform the breast from
an immature to a fully mature organ, Russo et al. hypothesized that having completed at
least one FTP would result in a specific, detectable genomic signature in the breast (3–6).
Only one study to date has examined gene expression in the healthy breast and it was limited
to 64 genes (7).

Identification of a specific genomic fingerprint of pregnancy would open up a broad set of
opportunities for understanding, and possibly preventing, breast cancer. We therefore
undertook to compare the gene expression profiles in breast biopsy specimens of healthy
parous and nulliparous volunteers from the general population, using a genome-wide
approach. Because we were interested in long-term genomic changes associated with FTP,
the study was focused on postmenopausal women.

Materials and Methods
Study Design

The study was designed to include two phases, a discovery phase and a validation phase
with a total target sample size of 120 women (40 parous and 20 nulliparous in each phase).
Recruitment was conducted without interruption between the two phases of the study, using
the same source population. The parity distribution was reviewed after every group of 10
eligible volunteers. If the nulliparous to parous ratio differed from 1:2, recruitment was
limited to the underrepresented group (usually nulliparous) until the ratio reached the 1:2
target.

Reproducibility Study
To assess within- and between-laboratory reproducibility of gene expression profiles in
replicate experiments, we conducted a sub-study prior to the start of the discovery and
validation phases. Breast tissue samples from four subjects were processed and their gene
expression profiles were analyzed at three independent laboratories (Fox Chase Cancer
Center Breast Cancer Research Laboratory of Dr. Jose Russo; University of Memphis
Genomic Laboratory of Dr. Thomas Sutter; and Fox Chase Cancer Center Genomic
Laboratory) using identical procedures. Data were preprocessed for each of the three
laboratories separately using the methods described in the statistical methods section.
Supplemental Table 1 shows concordance correlation coefficients (8) and Pearson’s
correlation coefficients for within- and between-laboratory comparisons. The within-
laboratory correlations were very high (Pearson’s and concordance correlation coefficients
>97%) and very similar to those reported by others (9). The between-laboratory correlations
were also high (Pearson’s and concordance correlation coefficients >92%).
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Study Population and Eligibility Criteria
Study subjects were recruited at the Sunderby Hospital in Luleå, Sweden among women
who have had a normal mammogram within the year prior to enrollment. Postmenopausal
women (defined as lack of menstrual periods for the previous 12 months) between the ages
of 50 and 69 were approached by a research nurse who explained the study procedures and
provided informed consent forms. Volunteers who signed informed consent to participate in
the study and to donate biological samples for research were scheduled for an interview.

Women who reported a history of any cancer, the use of any hormonal medications in the 6
months preceding their visit, prior breast biopsy or breast implants were excluded. In the
discovery phase it became apparent that women with fatty breast (transparent
mammograms) had to be excluded because of low RNA yield. As a consequence, women
with similarly fatty breast were considered ineligible for biopsy in the validation phase of
the study. The project was approved by the Regional Ethical Review Board for Northern
Sweden at the University of Umeå, Sweden.

Data and Sample Collection
The study nurse obtained anthropometrical measures (height, weight) and administered the
study questionnaire to eligible and consented women. The collected data included a detailed
reproductive history, medical history, first-degree family history of breast cancer, smoking,
and use of oral contraceptives (OC), hormone replacement therapy (HRT), and other
medications.

An experienced intervention radiologist performed all breast biopsies with a Bard
Monopty® (C. R. BARD Inc., USA) automated core biopsy instrument (14 Gauge, 10 cm
long, 22 mm penetration depth) through a single small skin incision after the puncture site
had been sterilized and anaesthetized (Xylocain and Adrenalin solution, 10mg/mL + 5
microg/mL, Astrazeneca). Several (3 to 5) random biopsies were taken from the upper outer
quadrant of one breast. One biopsy specimen was placed in 70% ethanol for
histopathological analysis and the remaining ones were immediately placed in RNAlater®
(Ambion) solution.

The study pathologist has reviewed all tissues to make sure that research biopsies were free
of atypia or cancer using criteria published previously (10). This review resulted in the
exclusion of one study subject (see Supplemental Figure 1).

Sample and Data Blinding
Prior to sending the samples and data to laboratory at the Fox Chase Cancer Center,
Philadelphia, all samples were stripped of any personal identifiers and assigned random
numbers. The link between the subject’s random number and subject’s identifiable
information was accessible only by the authorized personnel in Sweden. The laboratory
personnel at the Fox Chase Cancer Center were blinded to samples’ parity status and other
personal information.

RNA isolation
Total RNA from the core biopsy samples was isolated using the Qiagen Allprep RNA/DNA
Mini Kit according to the manufacturer’s instructions (Qiagen, Alameda, CA, USA). Total
RNA was eluted in a final volume of 60 μl (H2O) and stored at −80 °C until further
processing. RNA quantity and quality was assessed by means of the Agilent 2100
Bioanalyzer (Agilent Technologies, CA, USA). The amount of total RNA yielded from the
core biopsies ranged from 150 ng to 4 μg depending on the ratio of stroma to epithelial
tissue.

Belitskaya-Lévy et al. Page 3

Cancer Prev Res (Phila). Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Affymetrix Microarray Gene Analysis
The GeneChip Expression 3′-Amplification Two-Cycle cDNA Synthesis Kit was used
(Affymetrix, Santa Clara, CA). Double-stranded cDNA was synthesized from 100 ng of
total RNA. An in vitro transcription (IVT) reaction was then done to produce biotin-labeled
cRNA from the cDNA. The cRNA was fragmented before hybridization. A hybridization
cocktail, which included the fragmented target, was prepared. The hybridization cocktail
was then hybridized to Affymetrix HG_U133 Plus 2.0 oligonucleotide arrays containing
probes to 54,675 transcripts. Standard Affymetrix quality control measures (average
background, scale factors, percent present calls) were applied to assess the quality of RNA
samples and their subsequent labeling and hybridization, and chips that did not pass the
quality control criteria were rejected. Additionally, graphical criteria based on probe-level
model (PLM) analysis were applied.

Statistical Methods
Data pre-processing—Raw data from array scans were pre-processed and analyzed
using the R language for statistical computing (11) and Bioconductor (12), an open source
software for bioinformatics. The data were pre-processed using the Robust Multi-chip
Analysis method (RMA) implemented in the Bioconductor package that includes
background correction, quantile normalization and summarization of expression values (13–
15). Probes for which the proportion of Present Calls was less than 75% and the difference
in the proportion of present calls between parous and nulliparous women was less than 25%
were filtered out. Probes with low coefficient of variation across samples (below 1st quartile)
were also removed. These filtering criteria left 19,028 probes for analysis in the discovery
phase and 17,750 probes in the validation phase. The overlap between the two sets of probes
consisted of 16,002 probes.

Batch adjustment—The microarray experiments in both phases were conducted in 8
batches. To account for potential between-batch variability, an Empirical Bayes method,
implemented in the COMBAT software, developed by (16) and written in R, was used. We
also corrected for batch effects in the analysis. Additionally, the quality control duplicate
samples were used to evaluate the batch effects and the effectiveness of batch adjustments.

Differential gene expression—To identify genes differentially expressed between
parous and nulliparous samples, we used the following three methods: Significance Analysis
of Microarrays (SAM, Method 1) (17) implemented in the R package samr, Surrogate
Variable Analysis (SVA, Method 2) (18, 19) implemented in the R package SVA and
logistic regression analysis (LRA, Method 3).

It has been shown that genetic, environmental, demographic, and technical factors may have
substantial effects on gene expression (18–21). In addition to measured variables of interest,
there might be sources of signal due to unknown or unmeasured factors. Leek and Storey
(18) showed that failing to incorporate these sources of heterogeneity into analysis can result
in both spurious and masked associations. They introduced “surrogate variable analysis”
(SVA) to overcome the problems caused by heterogeneity in gene expression studies and
showed that SVA increases the biological accuracy and reproducibility of gene expression
studies. SVA uses a residual expression matrix, obtained by removing the effects of the
outcome variable (parity status in our study) on expression, to estimate, via singular value
decomposition of the residual matrix, the signatures of expression heterogeneity in terms of
an orthogonal basis of singular vectors. Statistical procedures are then used to assess the
significance of these signatures, to identify the subset of genes driving each signature and to
form surrogate variables based on the signatures of the corresponding subsets of genes in the
original expression data. The resulting surrogate variables are used to adjust the analysis of
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the associations between genes and parity status. For each gene, an unadjusted p-value
measuring the significance of that gene as an independent predictor of the outcome variable
is calculated using logistic regression that adjusts for surrogate variables (Method 2).

We also used logistic regression analysis (LRA, Method 3) to identify differentially
expressed genes while controlling for the effects of potentially confounding factors that
were measured in the study, such as body mass index (BMI), oral contraceptive (OC) use
history, hormone replacement therapy (HRT) and smoking history. In order to select a
subset of the measured characteristics for inclusion in the logistic regression analysis for
adjustment, we compared them to the significant surrogate variables derived in Method 2
using the Spearman’s correlation. The top five characteristics that were most significantly
associated with one of the surrogate variables in the discovery phase were selected to be
adjusted for in the logistic regression analysis. These characteristics were BMI, HRT
duration, breast density, smoking duration and OC use history. Other combinations of
characteristics significantly associated with surrogate variables were also adjusted for in the
logistic regression analyses of parity status. For each gene, an unadjusted p-value measuring
the significance of that gene as an independent predictor of parity status was calculated
using logistic regression adjusting for the selected variables.

The False Discovery Rate (FDR) approach was used to control for multiple comparisons
(17, 22, 23). SAM (Method 1) computes a two-sample t-test-like statistic for each gene and
uses a permutation procedure to estimate FDRs which are used to select differentially
expressed genes. For SVA and logistic regression, the QVALUE method (22) implemented
in the R package qvalue was used to adjust p-values for multiple comparisons. Genes with a
FDR of < 10% and at least a 1.25-fold change between parous and nulliparous samples were
considered statistically significant.

Genomic signature of pregnancy in the breast—To derive a genomic predictor of
pregnancy in the breast, we used five classification methods: “neareast shrunken centroids”
method implemented in the Bioconductor package pamr (24), Support Vector Machine
(SVM) implemented in the R library e1071 (25), Classification and Regression Trees
(CART) implemented in the R library rpart (26), Boosted Classification Trees using the
AdaBoost algorithm (27) and Random Forest implemented in the R package randomForest
(28). The approximately 500 most significant genes based on a combined FDR and fold-
change criterion were used for these analyses except for methods that perform automatic
variable selection (e.g., nearest shrunken centroids classifier). We then used the genomic
classifiers identified in the discovery phase to estimate the probability of being parous
(parity score) for each woman in the validation phase. The significance of the genomic
signature of parity was evaluated using the logistic regression model with FTP as the
response variable and the parity score (genomic predictor) along with potential confounding
variables, such as BMI, breast density, HRT and OC duration and smoking history, as
independent predictors. Sensitivity and specificity of each genomic classifier derived in the
DP were evaluated in the validation phase. The statisticians were unaware of the parity
status of the women.

RESULTS
Supplemental Figure 1 provides a workflow of subject accrual and sample processing. A
total of 389 women were interviewed between September 2008 and May 2009. Among
these, 134 (34%) were excluded based on the eligibility criteria and 4 (1%) cancelled their
interview. This resulted in 251 women (111 nulliparous and 140 parous) included in the
study. Two (0.5%) women were excluded later in the study when it was found that one of
them had breast cancer and the other one had premenopausal FSH levels. Additionally, 123

Belitskaya-Lévy et al. Page 5

Cancer Prev Res (Phila). Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



women were excluded after RNA extraction due to RNA degradation, absence of epithelial
structures or an insufficient amount of RNA. The remaining 126 women (44 nulliparous and
82 parous) were included in the current study. Nineteen microarray chips were rejected
based on standard Affymetrix quality control measures (average background, scale factors,
percent present calls) and based on probe-level model (PLM) analysis. This left 107 chips
for the differential expression analysis of parous versus nulliparous women: 55 in the
discovery phase (37 parous, 18 nulliparous) and 52 in the validation phase (30 parous, 22
nulliparous).

Table 1 presents characteristics of parous and nulliparous women in the discovery and
validation phases. There were no statistically significant differences between parous and
nulliparous women within each study phase or between women in the discovery and
validation phases within each parity group.

Differential gene expression
Using SVA, we identified eleven significant surrogate variables (SVs) in the discovery and
nine in the validation phase. These variables potentially have a significant effect on gene
expression. Two of the SVs in both phases accounted for over 10% of the variation in gene
expression (data not shown). Supplemental Tables 2A and 2B show Spearman’s correlation
coefficients of the SVs, including batch. Prior to batch adjustment, the batch variable was
significantly associated with SV1 (rho = 0.56, p = 0.01), indicating that batch adjustment
was required. It was no longer significantly associated with any of the SVs after adjustment
using the COMBAT method. BMI, HRT duration, OC duration, breast density and smoking
history were significantly associated with the surrogate variables indicating that these factors
might impact gene expression. These variables were controlled for in LRA (Method 3).
Some of the surrogate variables were found to be significantly associated with FTP (e.g.,
SV1 and SV4 in the discovery phase and SV2, SV4 and SV6 in the validation phase) and
were, therefore, excluded from SVA analysis (Method 2) because our objective was to
identify genes significantly associated with FTP.

Table 2 presents the numbers of statistically significant genes identified using the three
statistical methods in the discovery and validation phases at a FDR of 10% and with at least
a 1.25-fold change. The numbers of differentially expressed genes were much higher in the
discovery than in the validation phase. In both phases combined, depending on the statistical
method used, between 228 and 288 genes were identified as differentially expressed,
whereas 218 genes were identified as differentially expressed by all three methods. Up-
regulated genes were found to be more reproducible than the down-regulated genes with 62–
64% of the significant genes identified in the validation phase being also significant in the
discovery phase, compared to 9–13% of down-regulated genes. SAM and LRA yielded the
highest proportion of reproducible genes: 45% of genes significant in the validation phase
were also significant in the discovery phase. Using LRA, 305 probe sets identified as
significantly differentially expressed in the discovery phase and confirmed in the validation
phase. These genes are reported in Supplemental Table 3.

Genomic signature of pregnancy in the breast
Five genomic predictors of parity were derived in the discovery phase using the five
classification methods described in the Statistical Methods section and their significance was
evaluated in the validation phase using logistic regression models that adjusted for clinical
variables. Table 3 shows the estimated coefficients, standard errors and p-values of the
genomic predictors and clinical variables in the logistic regression models applied to the
validation phase with full-term pregnancy as dependent variable. The results indicate that
the genomic predictors derived using the discovery phase data remained significant
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predictors of parity in the validation phase with and without adjustment for other variables
(data without adjustment are not shown). Boosted classification trees and nearest shrunken
centroids consistently performed better than the other classification methods. The prediction
accuracy of the best classifiers was estimated in the validation phase to be between 65 and
75%.

DISCUSSION
To our knowledge, this is the first study that seeks to comprehensively characterize in an
unselected, population-based group of healthy volunteers the differences in gene expression
in breast core biopsy specimens between parous and nulliparous women. Using a discovery-
validation approach 274 up-regulated and 31 down-regulated probe sets were identified,
which may constitute the core genomic signature that distinguishes the breast of parous
postmenopausal women from that of nulliparous ones. Using supervised learning methods,
we derived a genomic signature of parity in breast specimens from the subjects included in
the discovery phase of the project and established that it was a significant independent
predictor of parity in the subjects in the validation phase.

The genes differentially expressed in parous and nulliparous postmenopausal women are
presented in Supplemental Table 3 and involved in regulation of transcription, centrosome
organization, RNA splicing, cell cycle control, adhesion and differentiation. Among up-
regulated genes, EZH2 is a member of polycomb-group of proteins involved in maintaining
transcriptional repression of genes. This gene acts as a tumor suppressor and also functions
as a histone methyltransferase (29). NINL, TRAF5 and SFI1 are up-regulated in parous
breast and involved in centrosome organization and maintaining the microtubule
cytoskeleton. CDK3, MCTS1, and SYCP2 are involved in cell cycle control. PRPF39,
LUC7L3, HNRNPA1, HNRNPA2B1, PNN, PABPN1, RBMX, SNRNP200, PRPF4B and
SFPQ are involved in RNA splicing. Among the down-regulated genes, CLDN10, CD36,
PDZD2, CLSTN2, LAMA4, PCDH9 and SORBS1 play role in cell adhesion. It is of interest
that up-regulated genes were more prevalent and consistent than down-regulated genes in
parous compared to nulliparous women. This suggests that parity results mainly in over-
expression of genes involved in breast cell differentiation, organization, and tumor
suppression as opposed to down-regulation of genes that might drive development of cancer.
The details and biological significance of the genes and pathways differentially expressed in
parous vs nulliparous breast will be discussed in a separate paper.

Recently, Asztalos et al. (7) examined gene expression in the normal premenopausal human
breast, comparing nulliparous, recently parous (0–2 years since pregnancy), and distantly
pregnant (5–10 years after pregnancy) age-matched premenopausal women. They analyzed a
customized 64-gene set focusing on the genes involved in inflammation, extracellular matrix
remodeling, angiogenesis, and estrogen signaling. They reported that 14 of the 64 selected
genes were differentially expressed in parous versus nulliparous breast tissues. Compared to
nulliparous breast, parous breast had significant up-regulation of genes related to
inflammation (CCL21, LBP, SAA1/2, IGKC) and down-regulation of genes involved in
angiogenesis (VEGFA) and estrogen signaling (ERα, PGR, ERBB2) (7).

There was no overlap between the differentially-expressed genes reported here and those
reported by Asztalos et al. (7), an inconsistency possibly related to differences in
menopausal status, study populations and laboratory methods. Compared to the hypothesis-
driven report by Asztalos et al. (7) our study took a comprehensive approach and addressed
a much broader list of genes. It also focused on older, postmenopausal women because the
objective was to detect long-term, gene expression changes, i.e. gene expression differences
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between parous and nulliparous that could be observed many years after the first full-term
pregnancy.

The study’s strengths include the formal two-phase approach for analyses of genomic
differences between parous and nulliparous breast, with independent discovery and
validation phases but identical procedures throughout the study. The comprehensive gene
assessment with microarray assays is strength of our study. The study focused on healthy
subjects attending a mammography clinic and therefore representative of the general
population of Sweden, a country where mammography is widely accepted. In addition to
using rigorous research procedures, stringent criteria were used to control for multiple
comparisons and false discovery rate. The laboratory personnel were blinded to samples
parity status. In addition, all data analysts were blinded to the parity status of subjects in the
validation phase until the parity status predictions were made and the parity scores were
derived for the subjects in the validation phase. The consistency of results across three
different statistical methods used (SAM, SVA, and LRA) strengthened our confidence in the
study results.

There were some limitations as well. The study population was restricted to residents of the
northernmost part of Sweden and all participants were of Swedish or Finnish ethnicity. It
was felt that these characteristics would be advantageous in order to avoid gene expression
variations resulting from differences in ethnicity rather than parity. The study results,
however, should be confirmed in other populations. In addition, although the vast majority
of eligible women accepted rather enthusiastically to participate in the study, some women
were excluded from the study based on eligibility criteria (34%) or due to RNA degradation,
absence of epithelial structures or an insufficient amount of RNA (32%). Since pregnancy
may affect mammographic density, exclusion of women with low-density mammograms
may have resulted in differential selection of women at higher, or lower, risk of breast
cancer between parous and nulliparous subjects. This is an issue, though, not easily
addressable since examination of gene expression cannot be done unless both epithelial
structures and sufficient RNA of good quality are present.

We used a FDR of 10%. However, the true FDR corresponding to our list of significant
genes is likely to be much lower than 10% since only probes that passed the FDR of 10% in
both the discovery and the validation phases were included in the list and those that passed
the FDR of 10% in only one of the two phases were excluded. Additionally, because we
were studying normal, rather than pathological tissues, we a priori expected modest effect
sizes (e.g., fold-change of 1.25) for genomic changes associated with pregnancy in healthy
postmenopausal women.

In summary, the results provide substantial support to the concept that a full-term pregnancy
induces permanent genomic changes in the breast, thus reflecting the well-known permanent
phenotypical changes that follow a full-term pregnancy. Once further confirmed in
additional populations with wider ranges of age, ethnicity and other characteristics, the
existence of a well-characterized genomic signature of pregnancy could be used as an
intermediate marker for instance to assess potential chemopreventive interventions with
hormones mimicking the effects of pregnancy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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BMI body mass index

CART Classification and Regression Trees

DP discovery phase

HRT hormone replacement therapy

FDR false discovery rate

FTP full-term pregnancy

LRA logistic regression analysis

OC oral contraceptives

NUSE normalized unscaled standard error plot

PLM probe-level mode analysis

RMA Robust Multi-chip Analysis

SAM Significance Analysis of Microassays

SD standard deviation

SVA Surrogate Variable Analysis

SVM Support Vector Machine

VP validation phase
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Table 2

Significant genes identified by the three methods (SAM, SVA, LRA) using FDR = 10% and Fold Change >
1.25

Methods

Method 1: SAM Method 2: SVA Method 3: LRA

Up-regulated genes

Significant genes

DP 1749 1859 1773

VP 463 370 428

Intersection 288 228 274

Consistency*
DP 1314 (75%) 1366 (73%) 1344 (76%)

VP 446 (96%) 351 (95%) 411 (96%)

Down-regulated genes

Significant genes

DP 1061 1058 1030

VP 246 288 243

Intersection 30 26 31

Consistency*
DP 847 (80%) 844 (80%) 837 (81%)

VP 152 (62%) 146 (51%) 154 (63%)

Overall

Significant genes

DP 2810 2917 2803

VP 709 658 671

Intersection 318 254 305

Consistency*
DP 2158 (77%) 2210 (76%) 2181 (78%)

VP 597 (85%) 497 (76%) 565 (84%)

NOTE:

*
Consistency is defined as the proportion of significantly up-regulated (or down-regulated) genes in the DP (VP) phase that are also up-regulated

(or down-regulated) in the VP (DP) phase.
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