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A B S T R A C T

The manual identification and count of laminae in layered textures is a common practice in the study of
geological records, which can be time consuming and carry large uncertainty for dense or disturbed lamina
textures. We present here a novel image analysis approach to detect and count laminae in geoscientific imagery,
called WlCount. Based on Dynamic Time Warping and Wavelet analysis, WlCount firstly aligns persistent
vertical elements to increase the continuity of the lamina structure. Then, using a graphical interface, the user
extracts the most significant signal frequencies and allows the automatic count of the laminae. The software,
tested on a series of stalagmite cut images showing different types of laminations and a tree-ring image,
provides an estimation of the laminae detection and count comparable to the manual one. WlCount presents
as a useful open-source tool to help geoscientists, sensibly speeding up the lamination count process.
1. Introduction

Laminae or layers are a dominant type of texture in geoscience from
the micro to the macro scale. Several types of geoscientific studies
require the quantitative analysis of laminated structures: for example
stalagmite (Baker et al., 2021), tree-ring, coral (Isdale et al., 1998),
mollusk (Arkhipkin et al., 2018), lake sediment (Brauer et al., 1999;
Gan and Scholz, 2013) and ice core (Sigl et al., 2016) paleoclimate
reconstructions have all employed annual laminae counting methods
to create or support chronologies (Butler et al., 2013; Hopley et al.,
2018). In many cases, lamina structures can be blurry, irregular, or dis-
continuous. When this is the case, manual identification and counting
are usually the most accurate means of characterizing these structures,
but it is also very time consuming and can involve multiple operators.

This task can be supported by automatic counting techniques based
on signal processing (Lotter and Lemcke, 1999; Taylor et al., 2004).
These approaches consider an image containing laminations. The expert
draw a transect perpendicular to the laminae to extract a time series
of the intensity signal. The time series is then processed to identify
peaks corresponding to each lamina. This can be based on band-pass
filters and minima/maxima detection (Weber et al., 2010; Nagra et al.,
2017), fuzzy logic (Ebert and Trauth, 2015), and wavelet transform
to extract the component of the signal with a prescribed frequency
(e.g. annual periodicity) (Smith et al., 2009). These techniques require
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repeating the analysis using multiple transects to account for the lami-
nae variability and sometime involve a preliminary assumption on the
growth rate. A more sophisticated approach, tested with success on
varve sediments (Fabijańska et al., 2020), uses a deep neural network to
identify laminae in the target images. This has the advantage of being
capable to analyze entire 2D images, but it requires a large training
dataset of similar lamination patterns and an accurate setup phase.
While these kinds of approaches are promising to assist the counting
of laminated structures, there is considerable scope for improvement in
developing user-friendly efficient methods. For example: simplification
of the preliminary operations to extract the time series, reduction in
the need for user-led assumptions in the setup, and techniques to
accommodate variable laminae size and density.

An alternative approach to analyze different structured signals,
as laminated patterns, is Dynamic Time Warping (DTW). Originally
introduced in the late 1970’s (Sakoe and Chiba, 1978), DTW is a
technique used to compare different time series or more generally data
vectors, and apply continuous deformations to align them to match
common features such as similar sequences of peaks. Based on the
amount of deformation applied to match the data series, the level of
similarity of the signals is quantified. This approach has been recently
used for a variety of applications in geoscience: to estimate travel time
in hydrological time series (Claure et al., 2018), to identify common
features in physical logs (Silversides and Melkumyan, 2016), for seismic
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pattern classification (Orozco-Alzate et al., 2015), in correlations of
stratigraphic sections (Lallier et al., 2013, 2016), and to compare
paleoclimate proxy time series (Ajayi et al., 2020; Burstyn et al., 2021).

Using the potential of the DTW technique, we present here a novel
semi-automatic tool called WlCount. The goal is to assist scientists
through the detection and counting process with a simple workflow
supported by a graphical user interface (GUI). In contrast to existing
techniques, WlCount extract information from a whole given image
instead of a given transect. To do that, we introduce an initial automatic
stage where, using DTW, the raster image is deformed to reach the
vertical alignment of the laminae. The pixel rows in the image are then
summed along the column axis to obtain a time series of the signal
along the laminae growth direction, from which a chronology may be
derived. This avoids the need for a user to choose a particular transect
for counting, which may be ambiguous, and reduces uncertainty by
retaining only the persistent laminated structure from the local noise.
In a second stage, the time series is decomposed with the wavelet
transform and, with the help of the GUI, the user can isolate the signal
component which corresponds to the laminae structure. The extracted
signal is then automatically thresholded to identify the laminae, whose
location is marked in real time in the image. This way, the user can
repeat the process to improve the laminae detection.

The proposed approach is primarily tested on a series of pictures
obtained by synchrotron radiation x-ray fluorescence mapping (SR-
XFM) over annually laminated stalagmites (Golgotha Cave, Yonderup
Cave, and Harrie Wood Cave, Australia). The obtained automatic count
is compared both visually and statistically with a manual count. The
main goal is to assess the ability of the method to reproduce the manual
count over a selection of maps in which the laminae vary in size,
clarity and amplitude. To test the potential for other applications in the
geoscience domain, an additional laminae-detection test is performed
on an tree-ring image from a dendrochronological tree stem sample.

The paper is structured as follows: Section 2 presents the method
and the implementation, in Sections 3 and 4 the images used and the
test methods are described, the results are presented in Section 5 and
discussed in Section 6, and concluding remarks are given in Section 7.

2. Methods

WlCount is a novel approach based on image analysis and signal
processing with the goal of assisting geoscientists in the identification
and counting of laminae represented in raster images. The depicted
laminae may have a variable orientation, but preferably sub-vertical
(see point 3). The workflow, implemented in python, is composed of
the following steps:

Input : raster image of size 𝑛 rows × 𝑚 columns, which can be
multivariate (Fig. 1a).
1. If the image is multivariate (e.g. RGB or multiband), the mean
value across all variables for each pixel is computed to obtain a
univariate image (Fig. 1b).
2. A fixed 5-pixel moving-average filter can be applied as optional
preprocessing step to remove small-scale noise and improve the
visibility of relevant structures (Fig. 1c).
3. Using the dynamic time-warping technique (DTW, Fig. 2), each
pixel row is deformed to obtain a vertical alignment of the lami-
nae (Fig. 1d), preserving the structure coherence from row to row.
To assure convergence in the DTW alignment, the deformation is
by default limited in a radius of 10 pixels. In preliminary tests
(not shown here) this limitation assured a correct alignment in all
cases showing a continuous laminae deformation not exceeding
+-45 degrees from the column axis.
4. The aligned image is averaged along the column axis (along
lamina) to obtain a unique time series (Fig. 1d, red line) of
length 𝑚, showing the amplitude structures related to the seasonal
information, observed along the row direction. In the time series,
each lamina is represented by a wave of a certain length and
2

magnitude.
5. The time series is decomposed using the discrete wavelet trans-
form (Daubechies, 1988; Mallat, 1989): the signal is convoluted
with a wavelet, i.e. a theoretical function defined over a limited
support and characterized by a certain scale length. The convo-
lution allows obtaining the signal component of the time series
in the same scale length as the wavelet. The wavelet is defined
for different scale lengths and convoluted each time over the
time series. The result is a 2D image where each row represents
the intensity of the signal component for a certain scale length
(Fig. 1e).
6. The original image, the aligned image with the associated time
series, and its wavelet transform are shown in an interactive GUI:
at this point the user can draw, with the mouse pointer from left
to right, a section over the wavelet image (Fig. 1e, dashed red
line) to select the specific signal component corresponding to the
annual laminae wavelength. If the section is drawn in the upper
part of the wavelet image, dense/small laminae structures are
detected, while large-scale laminations are detected if the section
is drawn in the lower part (the scale length is indicated in the 𝑦
axis). The line can be composed of multiple contiguous segments,
which allows detection of laminae that are varying in thickness
across the image. As explained in the following step, the result of
this operation in terms of detected laminae can be immediately
checked and repeated if necessary.
7. At every segment drawn, the corresponding portions of wavelet
signal are retrieved (Fig. 1f, red curve). Its mean intensity is com-
puted and used as threshold to identify the positive half waves
indicating the laminae presence in the image. If the selected
wavelet component portion is close to stationary, this simple
threshold method is usually sufficient to detect the laminae. The
mid-point of each positive half wave is marked as a lamina with
a cross in the aligned image (Fig. 1f, red crosses). The user can
undo/redo each segment to improve the result.
8. Once the process reaches a point that the user is satisfied
with the laminae identification, the section can be ended by a
keyboard command, which displays the counts. Multiple lines can
be drawn in the wavelet image to assess the uncertainty over
different counts.

utput : .dat file containing the coordinates of each count series,
python .npy files for the extracted time series and aligned image
(points 3 and 4), and a .pdf screenshot of the GUI.

2.1. Laminae alignment by DTW

In the WlCount workflow, every pixel row composing the image
intersects the subvertical laminae structures, thus constitutes a data
vector containing the laminae fluctuations. DTW (dtaidistance imple-
mentation Meert et al., 2020) is applied iteratively to deform all pixel
rows to obtain a vertical alignment of the laminae structure in the im-
age (Section 2 step 3). This is applied to pairs of rows in a hierarchical
fashion (Fig. 2): DTW is applied to the first row of the image to match
the second one, then to the third to match the fourth, and so on. This
way, all the pairs of adjacent rows are aligned with each other (if the
number of rows are odd the last one is discarded). At this point, the
numerical values in the two rows of each pair are averaged to obtain
a unique row. Applying the averaging to all pairs results in an image
composed by half the number of pixel rows. Next, DTW is applied again,
aligning the new row pairs and averaging to obtain half the number
of rows. The process is repeated until one single pixel row remains,
consisting in the time series of step 4 in the WlCount workflow. For
display purposes, every original pixel row is again deformed to match

this time series and obtain a visible aligned image (Fig. 1d).
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Fig. 1. Sketch of the WlCount workflow, composed of the following steps (see Section 2): (a) input image (multivariate or black and white); (b) if multivariate, the input image is
averaged along multiple variables; (c) a moving-average filter allows eliminating small-scale noise; (d) using Dynamic Time Warping on every pixel row, the lamination structures
are aligned along the column axis, then the image pixel values are summed up along the columns to extract a time series of the laminar structure (red line); (e) the obtained
time series is decomposed with the wavelet transform (green/purple image) and the user manually selects inside it the wavelet component representing the lamination; (f) in the
selected component (red curve), the laminae are identified as portions above its mean value and their center is displayed in the aligned image (red crosses). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
3. Used data

The imagery used to test the WlCount technique consists of a se-
ries of SR-XFM generated maps (XFM Australian Synchrotron, Howard
et al., 2020) obtained from polished slabs sectioned along the growth
axis of cave stalagmites, sampled from underground caves in New
South Wales (NSW) and South West Western Australia (SWWA). For
all images (Fig. 3), the Strontium (Sr) relative element concentration
map is used for the automatic counting since in this case it shows the
3

laminated structure most clearly. The 8-bit RGB intensity levels are
based on the instrumental levels of light detection, with zones of high
element concentration displayed with light shades. The maps length
varies from 4 to 26 mm with a pixel resolution of 2–10 μm (Table 1).
The represented laminated textures are of different types, including thin
well-defined laminae (1562), thick irregular (23 265), barely visible
(1563) or disturbed by porosity (23 261 and 23 262).

The tree-ring sample used in the last experiment is the test image
used in the demonstration of the MtreeRing software (Shi et al., 2019).
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Fig. 2. Sketch of the hierarchical DTW workflow. From left to right, lines connect aligned pairs of pixel rows to the resulting row on the right. In this example, only two levels
of alignment are necessary to generate the final time series.
Fig. 3. Synchrotron images of the stalagmite sections used in the tests, including different textures types: thin well-defined laminae (1562), thick irregular (23 265), barely visible
(1563) or disturbed by porosity (23 261 and 23 262). The light intensity indicates a higher Sr concentration. See the images metadata in Table 1.
Table 1
Summary of the metadata of the stalagmite sections used in the tests.

Section ID Location x-axis length [mm] Image size [pixels] Pixel size [μm]

1562 Yonderup Cave, SWWA 19.1 125 × 4775 4.0
1563 Golgotha Cave, SWWA 4.2 1250 × 2100 2.0
23 261 Golgotha Cave, SWWA 18.0 300 × 4500 4.0
23 262 Golgotha Cave, SWWA 26.0 150 × 3250 8.0
23 265 Harrie Wood, NSW Alps 21.0 140 × 2100 10.0
The images used in this analysis are increment core samples from
coniferous species (Larix gmelinii) in the northern Greater Khingan
Mountains (Heilongjiang Province, NE China).

4. Validation

The proposed technique is tested by operating the WlCount software
on all test images and performing 3 counts for each image. The laminae
are counted and their position marked in the aligned section with
a series of cross pointers. The position (x coordinate) and number
of the detected laminae is then compared to a manual count (MC),
used as reference. Being the MC repeated by different operators, an
uncertainty value (+- integer) is related to the number of laminae
which have not been constantly detected over repeated counts, being
weakly prominent or discontinuous. Following Faraji et al. (2021),
three codes for uncertain counts are considered: code 0 if a lamina
presents a relative (0–1) detection frequency in the range [0.96 − 1],
code 1 for the range [0.51−0.95] and code 2 for the range (0.06−0.50].
Code 0 is considered a detection with zero error, while for the other
codes the corresponding error on the count of each uncertain lamina
is determined as 1 − (𝑝1 + 𝑝2)∕2, with [𝑝1, 𝑝2] as the frequency range.
Therefore, for every code-1 and code-2 lamina, the error contribution
is respectively 0.27 and 0.72. The sum of these unitary contributions
constitutes the MC error.

To make a quantitative comparison between the automatic and
manual counts, two statistical indicators have been considered: (i) the
4

number of laminae counted with WlCount is compared to the MC and
its uncertainty range and (ii) the average distance (𝐷𝑎) is computed
between the manually counted laminae to the closest laminae detected
with WlCount. 𝐷𝑎 allows assessing whether the spatial laminae dis-
tribution obtained from WlCount is similar to the one from the MC.
If this distance is lower than the mean laminae thickness (𝑇 𝑎), this
suggests the spatial distribution of the detected laminae follows the
actual laminae distribution. 𝑇 𝑎 is estimated as (𝑥𝑠𝑡𝑎𝑟𝑡 − 𝑥𝑒𝑛𝑑 )∕(MC − 1),
where 𝑥𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑒𝑛𝑑 are the first and last lamina 𝑥 coordinates detected
by MC.

5. Results

As visual examples of the WlCount software GUI, the output display
for the counts on sections 1562 and 23 265 are shown in Fig. 4 (all
output displays attached as supplemental material). The output display
shows the original image (mean of all variables if multivariate) at
the top, the aligned image in the center together with the time series
describing the laminae variations along the 𝑥 axis, and the wavelet
transform of the same time series at the bottom. Section 1562 (Fig. 4
a) presents a thin laminae structure in varying density and signal
intensity. Avoiding the MA preprocessing (Section 2 step 2), allows
preserving the fine-scale details for the alignment (Fig. 4 a, center
image). The alignment process improves the visibility and continuity of
thin and barely visible vertical structures, whose signal is contained in
the final time series (red line). The wavelet transform of this time series
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Fig. 4. Example of the WlCount graphic interface section 1562 (a) and 23 265 (b), displaying the original image (top), the aligned image with extracted time series and laminae
detection (center), and wavelet transform (bottom). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(Fig. 4 a, bottom image) shows a marked periodicity in the wavelet
scale range of 3–6 pixels (y axis), which corresponds to the laminae
structure. By drawing segmented lines in the wavelet transform image,
the user isolates this signal component. It is then used by the software to
detect the laminae presence in the upper image and return the amount
(235–293 bands).

The second example (Fig. 4 b) shows the output display for section
23 262. In this case, the laminae structure appears thicker because the
section is approximately half the length with respect to section 1562
(the image is stretched to occupy the whole display). The user choose
to apply the MA preprocessing which removed the small-scale noise,
resulting in a smoother image and time series. In the wavelet transform
image (Fig. 4 bottom), the choice of the wavelet component with scale
length of 2 pixels allowed detecting 99 laminae, marked in the aligned
image. The image alignment improved again the continuity of the
laminae structures. Note that the three lines in the wavelet transform
are superposed but they are formed by different segments. This allows
breaking up the wavelet signal in different parts, for which their
threshold corresponds to their mean value. The final laminae count
is equivalent but small differences appear in the laminae locations
(crosses of different colors in Fig. 4 b, center image).

Fig. 5 shows all the test sections with reference manual laminae
count (MC) and the WlCount estimations (three attempts per section).
All laminae detected in the MC (blue crosses) are linked to the closest
WlCount detection by a dashed white segment. For all sections, the
WlCount laminae distribution is overall similar to the MC, but some
mismatch in the detection can occur, as visible in Fig. 5 b and e:
Wlcount may count twice an MC lamina or vice versa. This result is
confirmed by the statistical scores in Table 2. Sections 1562 and 1563
present respective MC values of 246 and 131 with a relatively small
uncertainty (+-12 and +-19), while the WlCount estimations are in
part within and in part outside this uncertainty range (Table 2 bold
values). For sections 23 261 and 23 262 the laminae are dense, less
continuous, and more disturbed by porosity (Fig. 5c and d). For these
5

images, the MC uncertainty is higher (+-43 and +-85) and all WlCount
estimations lie within the same range. Section 23 265 presents better
defined laminae for which the MC and Wlcount match well with very
low uncertainty (98+-5 and 99 respectively).

For all counts, the average distance between every MC detection and
the closest WlCount detection (𝐷𝑎 in Table 2) is sensibly lower than the
average laminae thickness (Table 2 𝑇 𝑎). This suggests that the laminae
locations detected by WlCount match on average the MC locations.

The last test image shows a ring lamination from a cross section
of tree-ring sample. With respect to the previous stalagmite images,
the laminated pattern here is more regular and the border clearer,
which makes the detection and counting task easier. As confirmed by
the visual output (Fig. 6), WlCount is able to detect efficiently all the
rings and provide the exact count. Note that here, the laminae thickness
is larger and the associated wavelet frequency is represented in the
central part of the wavelet transform image, which has been captured
with a unique threshold line. The presence of discontinuities in the
ring border (thin stripes in blue shaded zones) does not affect the ring
detection.

6. Discussion

In contrast to previous techniques for geoscientific laminae counting
(Section 1), which are mainly based on time series analysis from linear
transects, the workflow introduced here is, to our knowledge, the first
laminae-counting tool which extracts information from a whole given
image with no training phase. The pairwise hierarchical application
of the DTW alignment (Section 2 step 3) allows estimating the lami-
nated structure based on the average thickness and location of signals
persistent along the column direction. Both counts displayed in Fig. 4
show how the hierarchical DTW not only aligns the subvertical or
curved structures, but allows increasing their continuity over local
disturbances, which shrink and tend to disappear in the aligned images.
The results show that this approach is adaptive to textures of different
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Fig. 5. Comparison of the detected laminae locations between the reference manual count (blue crosses) and WlCount (other colors). The white dashed lines indicate connections
between manually detected laminae and the closest automatic detections. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
thickness, including discontinuous, disturbed, or barely visible lami-
nae, which can constitute a primary limitation for pattern-recognition
techniques (see e.g. Fabijańska et al., 2020).

WlCount is designed to be supervised with a graphical interface,
relying on the scientist knowledge on the studied morphology. This
requires the user to become familiar with the wavelet analysis and
the choice of the appropriate component from the wavelet image.
This stage is needed since the choice of the frequency representative
of the lamination cannot become automatic for different reasons: the
laminae signal can vary sensibly in wavelength and intensity, it is not
necessarily the most intense signal present, it may be strongly non-
stationary, or it may not cover the whole section. To deal with this
6

complexity, automatic algorithms usually require a numerical setup
(see Section 1) and a supervised trial and error approach. Conversely,
with the proposed technique, the process is more intuitive since the
laminae periodicity displayed matches their spatial distribution and it is
selected manually with a trace. The resulting laminae detection appears
on the display, allowing quick corrections.

The optional MA preprocessing, e.g. used for section 23 265
(Fig. 4b), can improve the visibility of the structures by removing
small-scale noise, which can generate vertical artifacts in the alignment
image. However, this noise is usually filtered out in the wavelet analysis
by choosing the appropriate wavelet component. The MA preprocessing
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Table 2
Summary of the results on the counts on all sections, including: the section ID, the different counts (#) performed using WlCount, the reference manual count (MC) with uncertainty
range, the average laminae thickness (𝑇 𝑎), the average distance between MC laminae and the closest WlCount laminae (𝐷𝑎), and the use of the moving-average (MA) preprocessing
(step 2 Section 2). MC is a unique value with uncertainty for every section. WlCount counts outside the MC uncertainty range are indicated in bold.

Section ID WlCount # MC [laminae] WlCount [laminae] 𝑇 𝑎 [pixels] 𝐷𝑎 [pixels] Use of MA

1562 0 246+-12 235 19.48 5.78 No
1 293 4.44 No
2 235 5.28 No

1563 0 131+-19 127 15.72 5.03 Yes
1 154 4.10 Yes
2 96 6.46 Yes

23 261 0 245+-43 269 12.81 4.68 No
1 208 5.87 No
2 247 5.12 No

23 262 0 351+-85 324 8.21 2.78 No
1 327 2.62 No
2 322 2.81 No

23 265 0 98+−5 99 20.03 5.78 Yes
1 99 6.11 Yes
2 99 5.75 Yes
Fig. 6. Example of the WlCount application (output display) on a tree-ring image used to test the MtreeRing software (Shi et al., 2019), for dendrochronological applications.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
is not suggested if thin (<5 pixels) laminae are present, e.g. section
1562 (Fig. 4a).

The results suggest that the WlCount estimation is comparable to the
manual count for both the number of detected laminae and their posi-
tion (Table 2). The uncertainty of the WlCount estimation can be given
by tracing multiple trajectories in the wavelet space, to explore the zone
representing the laminae fluctuation. In case of high uncertainty, the
WlCount estimation can constitute a baseline assessment which can be
further examined and manually edited using the output files.

Tested on high-resolution images of 106 pixels (Table 1), the tech-
nique took up to 5 min to generate one aligned image on a personal
computer. This phase can be skipped when the software is run again
on the same image, by using the previous alignment files which are
automatically stored and recalled from the local folder. The alignment
algorithm (Section 2 step 3) is mainly non-sequential, so it can be
parallelized for cluster computing if needed. Examining the images and
choosing the wavelet component takes usually some minutes, while
manual count can take up to hours for one single count.

We now compare WlCount to other lamina counting approaches
and consider its applicability in geoscience. Previously proposed ap-
proaches based on Markov chains (Winstrup et al., 2012) allow a more
rigorous quantification of the uncertainty in the layer identifications.
Nevertheless, they require statistical assumptions on the layer thickness
and a set of layer templates to calibrate the algorithm. This probabilistic
approach, tested on chemical time series from ice cores, is convenient
for long and stationary scan-line data exhibiting relatively regular
lamination structures, for which an accurate inspection is impractical.
Conversely, WlCount requires to visualize entirely the data under form
7

of 2D images, but it is adaptive to more diverse and non-stationary lam-
ination structures, with no required calibration phase and a relatively
fast operation.

The test on the tree-ring image (Fig. 6) shows that the proposed
technique can easily detect tree-ring laminations. With respect to the
MtreeRing algorithm, tested on the same image (Shi et al., 2019)
with comparable results to the commercial software WinDENDRO™,
WlCount does not require tracing a scan line perpendicular to the
ring borders. This is not necessary since the average laminae location
and thickness is represented in the aligned image (Fig. 1d). Moreover,
the WlCount approach is less affected by discontinuity in the ring
patterns, since the time series extracted from the image is not based
on segmentation as in MtreeRing.

The proposed approach can also have a potential in the field of
sclerochronology (Hudson et al., 1976), which analyzes laminar growth
patterns in skeletal tissue samples of mollusks and fishes (Schöne,
2013). These laminae, often curved and poorly defined, can benefit
from the hierarchical DTW technique, which enhances the visibility
of the persistent features in the vertical laminae alignment. This can
also reduce potential bias due to the discard of samples presenting dis-
continuous or unclear lamination, which can be relevant since possibly
correlated to environmental conditions (Peharda et al., 2021).

In the present all-purpose implementation, WlCount outputs the
coordinates of the lamina centers, which allows obtaining the local
laminae thickness by calculating the difference between adjacent center
coordinates. This will not define the exact position of each lamina
border, but it will allow analyzing the laminae thickness variation along
the section. Depending on the process which generated the lamination,
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the border of a lamina can be defined as the mid point between
two local maxima in the signal or a break point in the signal slope.
In future research, the WlCount implementation can be tailored for
specific applications by including this information in the output data.

7. Conclusions

The analysis of laminated structures in geoscientific imagery is a
common task to acquire information on geochronology and periodic
natural processes. In this paper, we introduced WlCount as a novel
semi-automatic laminae counting method, with the goal of speeding
up and supporting laminae detection counting operations. With respect
to the available assisted or automatic count approaches, the novelty
of WlCount resides in the extraction of the average features of the
laminated structure from a whole given image, without the need of
tracing and comparing multiple line scans and minimizing the effect
of disturbances and discontinuities.

By applying Dynamic Time Warping to pairs of pixel rows in the
image, the technique aligns vertical structures and extracts a time series
of the longitudinal variations. This time series is then decomposed
using the wavelet transform, which generates a 2D image describing
the longitudinal variations at different scales. From the GUI, the user
selects the wavelet component representing the longitudinal variations
corresponding to the laminated structures. This component is then
automatically thresholded to detect the laminae position in the section
image.

Tested on a series of different images from cave stalagmites, Wl-
Count returned a laminae number and position similar to the reference
manual count for both the laminae number and their location. The un-
certainty of the count can be assessed by performing different wavelet
component selections in the scale range representative of the laminae
fluctuations. This allows comparing the number and positions of the
detected laminae for different counts. The output detection data can
be further examined and manually edited if needed. The last test on a
tree-ring image suggests the potential of WlCount in other geoscientific
fields as the one of dendrochronology, but further testing is needed and
possibly an adaptation of the produced output data.

Overall, WlCount presents as a flexible tool to make a quick as-
sessment on the number and spatial distribution of the laminae on
the studied images, with an accuracy and reliability comparable to the
manual count, but a minimal user intervention. Future development
will include further testing and adaptation of the implementation to
specific applications.

Code availability section

Name of the code/library: WlCount
Contact: Fabio Oriani, University of Lausanne, fabio.oriani@protonma
il.com
Suggested Hardware requirements: processor frequency 3.60+ GHz, 8+
GB memory
Program language: Python 3
Software required: Phyton 3 with additional open-source packages (see
repository)
Program size: 1.2 GB (whole repository)
The source codes are available for downloading at the link:
https://bitbucket.org/orianif/wlcount/src/master/
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